Due giorni di Algebra Lineare Numerica

Structured matrices in the computation of band spectra of photonic crystals

Pietro Contu, Cornelis van der Mee, and Sebastiano Seatzu

Università degli Studi di Cagliari

17 Febbraio 2012

Outline

1 Photonic Crystals (PC)

7 Conclusions

Outline

1 Photonic Crystals (PC)
2 2D PC
3 FDFD Method
4 FDFE Method

5 Numerical Results

6 3D Photonic Crystals
7 Conclusions

Outline

1 Photonic Crystals (PC)
2 2D PC
3 FDFD Method

4 FDFE Method

5 Numerical Results
6 3D Photonic Crystals

7 Conclusions

Outline

1 Photonic Crystals (PC)
2 2D PC
3 FDFD Method

4 FDFE Method

5 Numerical Results
6 3D Photonic Crystals

7 Conclusions

Outline

1 Photonic Crystals (PC)
2 2D PC
3 FDFD Method

4 FDFE Method

5 Numerical Results

6 3D Photonic Crystals

7 Conclusions

Outline

1 Photonic Crystals (PC)
2 2D PC
3 FDFD Method

4 FDFE Method

5 Numerical Results

6 3D Photonic Crystals

7 Conclusions

Outline

1 Photonic Crystals (PC)
2 2D PC
3 FDFD Method

4 FDFE Method

5 Numerical Results

6 3D Photonic Crystals
7 Conclusions

Photonic Crystal: What is it?

periodic in one direction

periodic in two directions

$■$ Photonic crystals are dielectric media whose dielectric constant $\varepsilon(\mathbf{x})$, with $\mathbf{x} \in \mathbb{R}^{3}$, satisfies the periodicity condition

$$
\varepsilon\left(\mathbf{x}+m_{1} \mathbf{a}_{1}+m_{2} \mathbf{a}_{2}+m_{3} \mathbf{a}_{3}\right)=\varepsilon(\mathbf{x})
$$

for certain linearly independent vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3} \in \mathbb{R}^{3}$, where m_{1}, m_{2} and m_{3} are arbitrary integers.
■ The periodicity of the dielectric constant $\varepsilon(\mathbf{x})$ causes optical properties which are similar to the electronic properties for semiconductor crystals with a periodic potential.
■ Photonic crystals exhibit frequency intervals where incident light can propagate (bands) and frequency intervals in which incident light cannot propagate (band-gaps).

Physical Assumptions

In order to study photonic crystals we have to refer to Maxwell's equations and cast them into the photonic crystals frame.

- Isotropy and linearity yield

$$
\mathbf{D}=\varepsilon(\mathbf{r}) \mathbf{E}, \quad \mathbf{B}=\mu(\mathbf{r}) \mathbf{H}
$$

- Magnetic permeability constant $(\mu(\mathbf{r}) \simeq 1): \mathbf{B}=\mathbf{H}$.

■ Lossless media: $\varepsilon(\boldsymbol{r}): \mathbb{R}^{3} \rightarrow \mathbb{R}$

- In a photonic crystal we don't have free charge $(\rho=0)$ and free current $(\mathbf{J}=0)$.
- We seek time-harmonic modes:

$$
\begin{equation*}
\mathbf{H}(\mathbf{r}, t)=\mathbf{H}(\mathbf{r}) e^{i \omega t}, \quad \mathbf{E}(\mathbf{r}, t)=\mathbf{E}(\mathbf{r}) e^{i \omega t} \tag{2}
\end{equation*}
$$

Physical Assumptions

In order to study photonic crystals we have to refer to Maxwell's equations and cast them into the photonic crystals frame.

■ Isotropy and linearity yield:

$$
\begin{equation*}
\mathbf{D}=\varepsilon(\mathbf{r}) \mathbf{E}, \quad \mathbf{B}=\mu(\mathbf{r}) \mathbf{H} . \tag{1}
\end{equation*}
$$

- Magnetic permeability constant $(\mu(\mathbf{r}) \simeq 1): \mathbf{B}=\mathbf{H}$.

■ Lossless media: $\varepsilon(\mathbf{r}): \mathbb{R}^{3} \rightarrow \mathbb{R}$.

- In a photonic crystal we don't have free charge $(\rho=0)$ and free current ($\mathbf{J}=0$).
■ We seek time-harmonic modes:

$$
\begin{equation*}
\mathbf{H}(\mathbf{r}, t)=\mathbf{H}(\mathbf{r}) e^{i \omega t}, \quad \mathbf{E}(\mathbf{r}, t)=\mathbf{E}(\mathbf{r}) e^{i \omega t} \tag{2}
\end{equation*}
$$

Maxwell's Equations for photonic crystals

Maxwell equations, which govern light transmission in photonic crystals, reduce to the following system of equations:

$$
\begin{aligned}
\nabla \cdot[\varepsilon \mathbf{E}] & =0, & & \text { [Coulomb's law] } \\
\nabla \times \mathbf{H}-i \sqrt{\eta} \varepsilon \mathbf{E} & =0, & & \text { [Ampère's law] } \\
\nabla \times \mathbf{E}+i \sqrt{\eta} \mathbf{H} & =0, & & \text { [Faraday's law] } \\
\nabla \cdot \mathbf{H} & =0, & & \text { [Absence of free magnetic poles] }
\end{aligned}
$$

where $\sqrt{\eta}=\frac{\omega}{c}$.

```
We apply Bloch's theorem: E(x)= i}\mp@subsup{e}{}{ik\cdotx}\mathcal{E}(x),H(x)=\mp@subsup{e}{}{ik\cdotx}\mathcal{H}(x)\mathrm{ , where
\mathcal{E}(x+m
H}(\mathbf{x}+\mp@subsup{m}{1}{}\mp@subsup{\mathbf{a}}{1}{}+\mp@subsup{m}{2}{}\mp@subsup{\mathbf{a}}{2}{}+\mp@subsup{m}{3}{}\mp@subsup{\mathbf{a}}{3}{})=\mathcal{H}(\mathbf{x})\mathrm{ , we get:
```

$\nabla \cdot[\varepsilon(x) \mathcal{E}(x)]+i k \cdot[\varepsilon(x) \mathcal{E}(x)]=0$,
$\nabla \times \mathcal{H}(\mathrm{x})+i[\mathrm{k} \times \mathcal{H}(\mathrm{x})]-i \sqrt{\eta} \varepsilon(\mathrm{x}) \mathcal{E}(\mathrm{x})=0$.
$\nabla \times \mathcal{E}(\mathbf{x})+i[\mathbf{k} \times \mathcal{E}(\mathbf{x})]+i \sqrt{\eta} \varepsilon(\mathbf{x}) \mathcal{H}(\mathbf{x})=0$,
$\nabla \cdot[\mathcal{H}(\mathrm{x})]+i \mathbf{k} \cdot \mathcal{H}(\mathrm{x})=0$.

Maxwell's Equations for photonic crystals

Maxwell equations, which govern light transmission in photonic crystals, reduce to the following system of equations:

$$
\begin{aligned}
\nabla \cdot[\varepsilon \mathbf{E}] & =0, & & \text { [Coulomb's law] } \\
\nabla \times \mathbf{H}-i \sqrt{\eta} \varepsilon \mathbf{E} & =0, & & \text { [Ampère's law] } \\
\nabla \times \mathbf{E}+i \sqrt{\eta} \mathbf{H} & =0, & & \text { [Faraday's law] } \\
\nabla \cdot \mathbf{H} & =0, & & \text { [Absence of free magnetic poles] }
\end{aligned}
$$

where $\sqrt{\eta}=\frac{\omega}{c}$.
We apply Bloch's theorem: $\mathbf{E}(\mathbf{x})=e^{i \mathbf{k} \cdot \mathbf{x}} \mathcal{E}(\mathbf{x}), \mathbf{H}(\mathbf{x})=e^{i \mathbf{k} \cdot \mathbf{x}} \mathcal{H}(\mathbf{x})$, where $\mathcal{E}\left(\mathbf{x}+m_{1} \mathbf{a}_{1}+m_{2} \mathbf{a}_{2}+m_{3} \mathbf{a}_{3}\right)=\mathcal{E}(\mathbf{x})$ and $\mathcal{H}\left(\mathbf{x}+m_{1} \mathbf{a}_{1}+m_{2} \mathbf{a}_{2}+m_{3} \mathbf{a}_{3}\right)=\mathcal{H}(\mathbf{x})$, we get:

$$
\begin{aligned}
& \nabla \cdot[\varepsilon(\mathbf{x}) \mathcal{E}(\mathbf{x})]+i \mathbf{k} \cdot[\varepsilon(\mathbf{x}) \mathcal{E}(\mathbf{x})]=0 \\
& \nabla \times \mathcal{H}(\mathbf{x})+i[\mathbf{k} \times \mathcal{H}(\mathbf{x})]-i \sqrt{\eta} \varepsilon(\mathbf{x}) \mathcal{E}(\mathbf{x})=0, \\
& \nabla \times \mathcal{E}(\mathbf{x})+i[\mathbf{k} \times \mathcal{E}(\mathbf{x})]+i \sqrt{\eta} \varepsilon(\mathbf{x}) \mathcal{H}(\mathbf{x})=0 \\
& \nabla \cdot[\mathcal{H}(\mathbf{x})]+i \mathbf{k} \cdot \mathcal{H}(\mathbf{x})=0
\end{aligned}
$$

2D: TE and TM Modes

When $k_{z}=0$, the modes of every two-dimensional photonic crystal can be classified into two distinct polarizations: either (H_{x}, H_{y}, E_{z}) or $\left(E_{x}, E_{y}, H_{z}\right)$.

Figura: TM mode: the magnetic field is confined to the $x y$ plane.

Figura: TE mode: the electric field is confined to the $x y$ plane.

2D: TE and TM Eigenvalue Equations

In the TM mode we have to study spectral eigenvalue problem for the Helmholtz equation

$$
\begin{equation*}
-\left(\frac{\partial^{2} \psi}{\partial^{2} x}+\frac{\partial^{2} \psi}{\partial^{2} y}\right)=\eta \varepsilon(x, y) \psi \tag{3}
\end{equation*}
$$

and in the TE mode we have to solve the following

$$
\begin{equation*}
-\nabla \cdot\left(\frac{1}{\varepsilon(x, y)} \nabla \psi\right)=\eta \psi \tag{4}
\end{equation*}
$$

(where $\varepsilon(x, y)=n^{2}(x, y)$). In (3) the electric field is given by $(0,0, \psi(x, y))^{T}$, whereas in (4) the magnetic field is given by $(0,0, \psi(x, y))^{T}$. The main goal is to find the eigenvalues η.

Photonic Crystals in 2 Dimensions

Basically, we study two numerical methods for the following two cases:

As an example, in the connected case:

Prevailing Numerical Methods

Time Domain Methods

1) Plane Wave Expansion (PWE) Method;
2) Finite Difference Time Domain (FDTD) Method.

Frequency Domain Methods

1) Finite difference frequency domain (FDFD) method;
2) Fourier expansion (FE) method;
3) Finite element frequency domain (FEFD) method.

FDFD Method

■ We get the 2-D (modified) Helmholtz equations for TE modes

$$
\begin{equation*}
-\nabla \cdot\left(\frac{1}{\varepsilon} \nabla \phi\right)-i \nabla \cdot\left(\frac{1}{\varepsilon} \mathbf{k} \phi\right)-i \frac{1}{\varepsilon} \mathbf{k} \cdot \nabla \phi+\frac{\|\mathbf{k}\|^{2}}{\varepsilon} \phi=\eta \phi, \tag{5}
\end{equation*}
$$

and for TM modes

$$
\begin{equation*}
-\nabla^{2} \phi-2 i \mathbf{k} \cdot \nabla \phi+\|\mathbf{k}\|^{2} \phi=\eta \varepsilon \phi, \tag{6}
\end{equation*}
$$

under the following periodicity conditions

$$
\begin{aligned}
\phi(x, 0) & =\phi(x, b), \quad \phi(0, y)=\phi(a, y) \\
\frac{\partial \phi}{\partial y}(x, 0) & =\frac{\partial \phi}{\partial y}(x, b), \quad \frac{\partial \phi}{\partial x}(0, y)=\frac{\partial \phi}{\partial x}(a, y) .
\end{aligned}
$$

FDFD Method

Let us introduce the grid points

$$
\mathbf{x}_{j, l}=\left(\frac{j a}{n}, \frac{l b}{m}\right),
$$

where $j=0,1, \ldots, n, n+1$ and $I=0,1, \ldots, m, m+1$.
Then finite differencing Eq. (5) (TE modes) and Eq. (6) (TM modes) yields, for $h_{x}=a / n$ and $h_{y}=b / m$,

$$
\begin{align*}
& \frac{1}{2}\left(\frac{1}{\varepsilon_{j+1, l}}+\frac{1}{\varepsilon_{j, l}}\right)\left[-\frac{1}{h_{x}^{2}}-\frac{i k_{x}}{h_{x}}\right] \phi_{j+1, l}+\frac{1}{2}\left(\frac{1}{\varepsilon_{j, l}}+\frac{1}{\varepsilon_{j-1, l}}\right)\left[-\frac{1}{h_{x}^{2}}+\frac{i k_{x}}{h_{x}}\right] \phi_{j-1, l} \\
& +\frac{1}{2}\left(\frac{1}{\varepsilon_{j, l+1}}+\frac{1}{\varepsilon_{j, l}}\right)\left[-\frac{1}{k_{y}^{2}}-\frac{i k_{y}}{h_{y}}\right] \phi_{j, l+1}+\frac{1}{2}\left(\frac{1}{\varepsilon_{j, l}}+\frac{1}{\varepsilon_{j, l-1}}\right)\left[-\frac{1}{h_{y}^{2}}+\frac{i k_{y}}{h_{y}}\right] \phi_{j, l-1} \\
& +\left\{\frac{1}{4}\left(\frac{1}{\varepsilon_{j+1, l}}+\frac{2}{\varepsilon_{j, l}}+\frac{1}{\varepsilon_{j-1, l}}\right)\left[\frac{2}{h_{x}^{2}}+k_{x}^{2}\right]\right. \\
& \left.+\frac{1}{4}\left(\frac{1}{\varepsilon_{j, l+1}}+\frac{2}{\varepsilon_{j, l}}+\frac{1}{\varepsilon_{j, l-1}}\right)\left[\frac{2}{h_{y}^{2}}+k_{y}^{2}\right]\right\} \phi_{j, l}=\eta \phi_{j, l} \tag{7}
\end{align*}
$$

FDFD Method

$$
\begin{align*}
& -\frac{\phi_{j+1, I}-2 \phi_{j, I}+\phi_{j-1, I}}{h_{x}^{2}}-\frac{\phi_{j, I+1}-2 \phi_{j, I}+\phi_{j, I-1}}{h_{y}^{2}} \\
& -2 i k_{x} \frac{\phi_{j+1, I}-\phi_{j-1, I}}{2 h_{x}}-2 i k_{y} \frac{\phi_{j, I+1}-\phi_{j, I-1}}{2 h_{y}}+\left[k_{x}^{2}+k_{y}^{2}\right] \phi_{j, l} \\
& =\eta \varepsilon_{j, I} \phi_{j, l} \tag{8}
\end{align*}
$$

Equations (8) and (17) can both be written in the form

$$
(C-\eta D) \Psi=0
$$

Modi TE

- C nositive semidefinite sparse hermitian matrix;
- D identity matrix of order $m n$.

Modi TM

- C two-index sparse circulant matrix;
- D diagonal matrix with positive entries.

FDFD Method

$$
\begin{align*}
& -\frac{\phi_{j+1, I}-2 \phi_{j, I}+\phi_{j-1, I}}{h_{x}^{2}}-\frac{\phi_{j, I+1}-2 \phi_{j, I}+\phi_{j, I-1}}{h_{y}^{2}} \\
& -2 i k_{x} \frac{\phi_{j+1, I}-\phi_{j-1, I}}{2 h_{x}}-2 i k_{y} \frac{\phi_{j, I+1}-\phi_{j, I-1}}{2 h_{y}}+\left[k_{x}^{2}+k_{y}^{2}\right] \phi_{j, l} \\
& =\eta \varepsilon_{j, I} \phi_{j, l} \tag{8}
\end{align*}
$$

Equations (8) and (17) can both be written in the form

$$
(C-\eta D) \Psi=0
$$

Modi TE

- C positive semidefinite sparse hermitian matrix;
- D identity matrix of order $m n$.

Modi TM

- C two-index sparse circulant matrix;
- D diagonal matrix with positive entries.

FDFD Method

$$
C=\left(\begin{array}{cccc|cccc|cccc|cccc}
\alpha & \beta & 0 & \bar{\beta} & \gamma & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bar{\gamma} & 0 & 0 & 0 \\
\bar{\beta} & \alpha & \beta & 0 & 0 & \gamma & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bar{\gamma} & 0 & 0 \\
0 & \bar{\beta} & \alpha & \beta & 0 & 0 & \gamma & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bar{\gamma} & 0 \\
\beta & 0 & \bar{\beta} & \alpha & 0 & 0 & 0 & \gamma & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bar{\gamma} \\
\hline \bar{\gamma} & 0 & 0 & 0 & \alpha & \beta & 0 & \bar{\beta} & \gamma & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \bar{\gamma} & 0 & 0 & \bar{\beta} & \alpha & \beta & 0 & 0 & \gamma & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \bar{\gamma} & 0 & 0 & \bar{\beta} & \alpha & \beta & 0 & 0 & \gamma & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \bar{\gamma} & \beta & 0 & \bar{\beta} & \alpha & 0 & 0 & 0 & \gamma & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & \bar{\gamma} & 0 & 0 & 0 & \alpha & \beta & 0 & \bar{\beta} & \gamma & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \bar{\gamma} & 0 & 0 & \bar{\beta} & \alpha & \beta & 0 & 0 & \gamma & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \bar{\gamma} & 0 & 0 & \bar{\beta} & \alpha & \beta & 0 & 0 & \gamma & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \bar{\gamma} & \beta & 0 & \bar{\beta} & \alpha & 0 & 0 & 0 & \gamma \\
\hline \gamma & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bar{\gamma} & 0 & 0 & 0 & \alpha & \beta & 0 & \beta \\
0 & \gamma & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bar{\gamma} & 0 & 0 & \bar{\beta} & \alpha & \beta & 0 \\
0 & 0 & \gamma & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bar{\gamma} & 0 & 0 & \bar{\beta} & \alpha & \beta \\
0 & 0 & 0 & \gamma & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bar{\gamma} & \beta & 0 & \bar{\beta} & \alpha
\end{array}\right),
$$

FDFD Method

where

$$
\begin{gathered}
\alpha=\left(\frac{2}{h_{x}^{2}}+\frac{2}{h_{y}^{2}}+k^{2}\right), \\
\beta=\left(-\frac{1}{h_{x}^{2}}+i \frac{k_{x}}{h_{x}}\right), \quad \bar{\beta}=\left(-\frac{1}{h_{x}^{2}}-i \frac{k_{x}}{h_{x}}\right), \\
\gamma=\left(-\frac{1}{h_{y}^{2}}+i \frac{k_{y}}{h_{y}}\right), \quad \bar{\gamma}=\left(-\frac{1}{h_{y}^{2}}-i \frac{k_{y}}{h_{y}}\right) .
\end{gathered}
$$

The eigenvalues of C are the numbers

$$
\begin{aligned}
\hat{c}(z, w ; \mathbf{k}) & =\frac{2}{h_{x}^{2}}+k_{x}^{2}+k_{y}^{2}+\left(-\frac{1}{h_{x}^{2}}+\frac{i k_{x}}{h_{x}}\right) z+\left(-\frac{1}{h_{x}^{2}}-\frac{i k_{x}}{h_{x}}\right) z^{-1} \\
& +\frac{2}{h_{y}^{2}}+\left(-\frac{1}{h^{2}}+\frac{i k_{y}}{h_{y}}\right) w+\left(-\frac{1}{h_{y}^{2}}-\frac{i k_{y}}{h_{y}}\right) w^{-1}
\end{aligned}
$$

where $z^{n}=1$ and $w^{m}=1$.

FDFD Method

Writing $z=e^{i \theta_{j}}$ with $\theta_{j}=\frac{2 \pi j}{n}$ and $w=e^{i \varphi_{l}}$ with $\varphi_{l}=\frac{2 \pi l}{m}$, we can write the eigenvalues in the form

$$
\hat{c}(z, w ; \mathbf{k})=k_{x}^{2}+k_{y}^{2}+\frac{2}{h_{x}^{2}}\left(1-\cos \theta_{j}\right)-\frac{2 k_{x}}{h_{x}} \sin \theta_{j}+\frac{2}{h_{y}^{2}}\left(1-\cos \varphi_{I}\right)-\frac{2 k_{y}}{h_{y}} \sin \varphi_{I},
$$

where $j=0,1, \ldots, n-1$ and $I=0,1, \ldots, m-1$.

$$
\begin{aligned}
E_{\mathrm{abs}}= & -\frac{1}{3}\left(\frac{\pi j}{n}\right)^{2}\left[\left(\frac{2 \pi j}{a}+k_{x}\right)^{2}-k_{x}^{2}\right]\left\{1+O\left(\left(\frac{j}{n}\right)^{2}\right)\right\} \\
& -\frac{1}{3}\left(\frac{\pi I}{m}\right)^{2}\left[\left(\frac{2 \pi l}{b}+k_{y}\right)^{2}-k_{y}^{2}\right]\left\{1+O\left(\left(\frac{l}{m}\right)^{2}\right)\right\}
\end{aligned}
$$

For the relative error we then get the following upper bound:

$$
E_{\mathrm{rel}}=\max \left[\frac{1}{3}\left(\frac{\pi j}{n}\right)^{2}\left\{1+O\left(\left(\frac{j}{n}\right)^{2}\right)\right\}, \frac{1}{3}\left(\frac{\pi I}{m}\right)^{2}\left\{1+O\left(\left(\frac{l}{m}\right)^{2}\right)\right\}\right] .
$$

FDFE Method

Putting $\mathbf{A}=\left\{t_{1} \mathbf{a}_{1}+t_{2} \mathbf{a}_{2}: 0 \leq t_{1}, t_{2}<1\right\}$, we define the complex Hilbert spaces $H_{\text {per }}$ and $H_{\text {per }}^{1}$ consisting of those measurable complex-valued functions ϕ on \mathbb{R}^{2} which satisfy the periodicity condition $\phi\left(\mathbf{x}+m_{1} \mathbf{a}_{1}+m_{2} \mathbf{a}_{2}, \mathbf{k}\right)=\phi(\mathbf{x}, \mathbf{k})$ and are finite with respect to the following respective squared norms:

$$
\begin{aligned}
& \|\phi\|_{H_{\mathrm{per}}}^{2}=\iint_{\mathbf{A}} d x d y|\phi(x, y)|^{2} \\
& \|\phi\|_{H_{\text {per }}^{1}}^{2}=\iint_{\mathbf{A}} d x d y\left(|\phi(x, y)|^{2}+\|\nabla \phi(x, y)\|^{2}\right)
\end{aligned}
$$

As a consequence of the first Green identity and the periodicity condition, we see that $\phi \in H_{\text {per }}^{1}$ is a variational solution to (6) (TM mode) if

FDFE Method

Putting $\mathbf{A}=\left\{t_{1} \mathbf{a}_{1}+t_{2} \mathbf{a}_{2}: 0 \leq t_{1}, t_{2}<1\right\}$, we define the complex Hilbert spaces $H_{\text {per }}$ and $H_{\text {per }}^{1}$ consisting of those measurable complex-valued functions ϕ on \mathbb{R}^{2} which satisfy the periodicity condition $\phi\left(\mathbf{x}+m_{1} \mathbf{a}_{1}+m_{2} \mathbf{a}_{2}, \mathbf{k}\right)=\phi(\mathbf{x}, \mathbf{k})$ and are finite with respect to the following respective squared norms:

$$
\begin{aligned}
& \|\phi\|_{H_{\text {per }}}^{2}=\iint_{\mathbf{A}} d x d y|\phi(x, y)|^{2} \\
& \|\phi\|_{H_{\text {per }}^{1}}^{2}=\iint_{\mathbf{A}} d x d y\left(|\phi(x, y)|^{2}+\|\nabla \phi(x, y)\|^{2}\right) .
\end{aligned}
$$

As a consequence of the first Green identity and the periodicity condition, we see that $\phi \in H_{\text {per }}^{1}$ is a variational solution to (6) (TM mode) if

$$
\begin{equation*}
\iint_{\mathbf{A}} d x d y\left\{\nabla \phi \cdot \nabla v^{*}-2 i[\mathbf{k} \cdot \nabla \phi] v^{*}+\|\mathbf{k}\|^{2} \phi v^{*}-\eta \varepsilon \phi v^{*}\right\}=0, \tag{9}
\end{equation*}
$$

for every $v \in H_{\text {per }}^{1}$.

FDFE Method

Analogously, we call $\phi \in H_{\text {per }}^{1}$ a distributional solution to (5) (TE mode) if

$$
\iint_{\mathbf{A}} d x d y\left\{\frac{1}{\varepsilon} \nabla \phi \cdot \nabla v^{*}-i v^{*} \mathbf{k} \cdot \nabla\left(\frac{1}{\varepsilon} \phi\right)-\frac{i}{\varepsilon} v^{*} \mathbf{k} \cdot \nabla \phi+\frac{\|\mathbf{k}\|^{2}}{\varepsilon} \phi v^{*}-\eta \phi v^{*}\right\}=0,
$$ for every $v \in H_{\text {per }}^{1}$. Putting $h_{x}=(a / n), h_{y}=(b / m)$, we introduce the bivariate functions

extended periodically to $(x, y) \in \mathbb{R}^{2}$. Here, for $(j, I) \in \mathbb{Z}^{2}$, we have $x_{j}=j_{1} h_{1}=\left(j_{1} / n\right) a_{1}$ and $y_{l}=j_{2} h_{2}=\left(j_{2} / m\right) a_{2}$ and we interpolate $\phi \in H_{\text {per }}^{1}$ as follows:

FDFE Method

Analogously, we call $\phi \in H_{\text {per }}^{1}$ a distributional solution to (5) (TE mode) if

$$
\begin{equation*}
\iint_{\mathbf{A}} d x d y\left\{\frac{1}{\varepsilon} \nabla \phi \cdot \nabla v^{*}-i v^{*} \mathbf{k} \cdot \nabla\left(\frac{1}{\varepsilon} \phi\right)-\frac{i}{\varepsilon} v^{*} \mathbf{k} \cdot \nabla \phi+\frac{\|\mathbf{k}\|^{2}}{\varepsilon} \phi v^{*}-\eta \phi v^{*}\right\}=0 \tag{10}
\end{equation*}
$$

for every $v \in H_{\text {per }}^{1}$. Putting $h_{x}=(a / n), h_{y}=(b / m)$, we introduce the bivariate functions

$$
\varphi_{\left(j_{1}, j_{2}\right)}(x, y)=\left(1-\frac{\left|x-x_{j_{1} \mid}\right|}{h_{1}}\right)\left(1-\frac{\left|y-y_{j_{2}}\right|}{h_{2}}\right), \quad\left(j_{1}, j_{2}\right) \in \mathbb{Z}^{2}
$$

extended periodically to $(x, y) \in \mathbb{R}^{2}$. Here, for $(j, I) \in \mathbb{Z}^{2}$, we have $x_{j}=j_{1} h_{1}=\left(j_{1} / n\right) a_{1}$ and $y_{l}=j_{2} h_{2}=\left(j_{2} / m\right) a_{2}$ and we interpolate $\phi \in H_{\text {per }}^{1}$ as follows:

$$
\phi(x, y)=\sum_{j_{1}=0}^{n-1} \sum_{j_{2}=0}^{m-1} \phi_{\left(j_{1}, j_{2}\right)} \varphi_{\left(j_{1}, j_{2}\right)}(x, y)
$$

and take $v=\varphi_{\left(1_{1}, l_{2}\right)}$ for every $I_{1} \in\{0,1, \ldots, n-1\}$ and $I_{2} \in\{0,1, \ldots, m-1\}$.

FDFE Method

Bivariate functions

$$
\varphi_{\left(j_{1}, j_{2}\right)}(x, y)=\left(1-\frac{\mid x-x_{j_{1} \mid}}{h_{1}}\right)\left(1-\frac{\left|y-y_{j_{2} \mid}\right|}{h_{2}}\right), \quad\left(j_{1}, j_{2}\right) \in \mathbb{Z}^{2},
$$

and their support:

FDFE Method

We obtain the linear system (TM mode) of order nm

$$
\begin{align*}
\sum_{j^{\prime}=0}^{n-1} \sum_{l^{\prime}=0}^{m-1} \phi_{\left(j^{\prime}, l^{\prime}\right)} & \int_{0}^{a} d x \int_{0}^{b} d y\left\{\left(\nabla \varphi_{\left(j^{\prime}, l^{\prime}\right)}+i \varphi_{\left(j^{\prime}, l^{\prime}\right)} \mathbf{k}\right) \cdot\left(\nabla \varphi_{(j, l)}-i \varphi_{(j, /)} \mathbf{k}\right)\right\} \\
& =\eta \sum_{j^{\prime}=0}^{n-1} \sum_{l^{\prime}=0}^{m-1} \phi_{\left(j^{\prime}, l^{\prime}\right)} \int_{0}^{a} d x \int_{0}^{b} d y \varepsilon(x, y) \varphi_{\left(j^{\prime}, l^{\prime}\right)}(x, y) \varphi_{(j, l)}(x, y) \tag{11}
\end{align*}
$$

whose unknowns are the values of $\phi(x, y)$ at the interpolation points of the photonic cell $0 \leq x \leq a, 0 \leq x \leq b$. From (10) (TE mode) we obtain instead

$$
\begin{align*}
\sum_{j^{\prime}=0}^{n-1} \sum_{l^{\prime}=0}^{m-1} \phi_{\left(j^{\prime}, l^{\prime}\right)} & \int_{0}^{a} \int_{0}^{b} \frac{d x d y}{\varepsilon(x, y)}\left\{\left(\nabla \varphi_{\left(j^{\prime}, l^{\prime}\right)}+i \varphi_{\left(j^{\prime}, l^{\prime}\right)} \mathbf{k}\right) \cdot\left(\nabla \varphi_{(j, l)}-i \varphi_{(j, l)} \mathbf{k}\right)\right\} \\
= & \eta \sum_{j^{\prime}=0}^{n-1} \sum_{l^{\prime}=0}^{m-1} \phi_{\left(j^{\prime}, l^{\prime}\right)} \int_{0}^{a} d x \int_{0}^{b} d y \varphi_{\left(j^{\prime}, l^{\prime}\right)}(x, y) \varphi_{(j, l)}(x, y) \tag{12}
\end{align*}
$$

FDFE Method

The linear systems (11) and (12) constitute the finite element schemes to compute the eigenvalues η for fixed wavevector \mathbf{k} for the TM and TE modes, respectively.

$$
A=\left(\begin{array}{cccc|cccc|cccc|cccc}
\alpha & \beta_{2} & 0 & \bar{\beta}_{2} & \beta_{1} & \gamma_{1} & 0 & \gamma_{2} & 0 & 0 & 0 & 0 & \bar{\beta}_{1} & \bar{\gamma}_{2} & 0 & \bar{\gamma}_{1} \\
\bar{\beta}_{2} & \alpha & \beta_{2} & 0 & \gamma_{2} & \beta_{1} & \gamma_{1} & 0 & 0 & 0 & 0 & 0 & \bar{\gamma}_{1} & \bar{\beta}_{1} & \bar{\gamma}_{2} & 0 \\
0 & \bar{\beta}_{2} & \alpha & \beta_{2} & 0 & \gamma_{2} & \beta_{1} & \gamma_{1} & 0 & 0 & 0 & 0 & 0 & \bar{\gamma}_{1} & \bar{\beta}_{1} & \bar{\gamma}_{2} \\
\beta_{2} & 0 & \bar{\beta}_{2} & \alpha & \gamma_{1} & 0 & \gamma_{2} & \beta_{1} & 0 & 0 & 0 & 0 & \bar{\gamma}_{2} & 0 & \bar{\gamma}_{1} & \bar{\beta}_{1} \\
\hline \bar{\beta}_{1} & \bar{\gamma}_{2} & 0 & \bar{\gamma}_{1} & \alpha & \beta_{2} & 0 & \bar{\beta}_{2} & \beta_{1} & \gamma_{1} & 0 & \gamma_{2} & 0 & 0 & 0 & 0 \\
\bar{\gamma}_{1} & \bar{\beta}_{1} & \bar{\gamma}_{2} & 0 & \bar{\beta}_{2} & \alpha & \beta_{2} & 0 & \gamma_{2} & \beta_{1} & \gamma_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & \bar{\gamma}_{1} & \bar{\beta}_{1} & \bar{\gamma}_{2} & 0 & \bar{\beta}_{2} & \alpha & \beta_{2} & 0 & \gamma_{2} & \beta_{1} & \gamma_{1} & 0 & 0 & 0 & 0 \\
\bar{\gamma}_{2} & 0 & \bar{\gamma}_{1} & \bar{\beta}_{1} & \beta_{2} & 0 & \bar{\beta}_{2} & \alpha & \gamma_{1} & 0 & \gamma_{2} & \beta_{1} & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & \bar{\beta}_{1} & \bar{\gamma}_{2} & 0 & \bar{\gamma}_{1} & \alpha & \beta_{2} & 0 & \bar{\beta}_{2} & \beta_{1} & \gamma_{1} & 0 & \gamma_{2} \\
0 & 0 & 0 & 0 & \bar{\gamma}_{1} & \bar{\beta}_{1} & \bar{\gamma}_{2} & 0 & \bar{\beta}_{2} & \alpha & \beta_{2} & 0 & \gamma_{2} & \beta_{1} & \gamma_{1} & 0 \\
0 & 0 & 0 & 0 & 0 & \bar{\gamma}_{1} & \bar{\beta}_{1} & \bar{\gamma}_{2} & 0 & \bar{\beta}_{2} & \alpha & \beta_{2} & 0 & \gamma_{2} & \beta_{1} & \gamma_{1} \\
0 & 0 & 0 & 0 & \bar{\gamma}_{2} & 0 & \bar{\gamma}_{1} & \bar{\beta}_{1} & \beta_{2} & 0 & \bar{\beta}_{2} & \alpha & \gamma_{1} & 0 & \gamma_{2} & \beta_{1} \\
\hline \beta_{1} & \gamma_{1} & 0 & \gamma_{2} & 0 & 0 & 0 & 0 & \bar{\beta}_{1} & \bar{\gamma}_{2} & 0 & \bar{\gamma}_{1} & \alpha & \beta_{2} & 0 & \bar{\beta}_{2} \\
\gamma_{2} & \beta_{1} & \gamma_{1} & 0 & 0 & 0 & 0 & 0 & \bar{\gamma}_{1} & \bar{\beta}_{1} & \bar{\gamma}_{2} & 0 & \bar{\beta}_{2} & \alpha & \beta_{2} & 0 \\
0 & \gamma_{2} & \beta_{1} & \gamma_{1} & 0 & 0 & 0 & 0 & 0 & \bar{\gamma}_{1} & \bar{\beta}_{1} & \bar{\gamma}_{2} & 0 & \bar{\beta}_{2} & \alpha & \beta_{2} \\
\gamma_{1} & 0 & \gamma_{2} & \beta_{1} & 0 & 0 & 0 & 0 & \bar{\gamma}_{2} & 0 & \bar{\gamma}_{1} & \bar{\beta}_{1} & \beta_{2} & 0 & \bar{\beta}_{2} & \alpha
\end{array}\right)
$$

FDFE Method

$$
\begin{aligned}
& \text { where } \\
& \alpha=\frac{4}{3} \frac{h_{y}}{h_{x}}+\frac{4}{3} \frac{h_{x}}{h_{y}}+k^{2} \frac{4}{9} h_{x} h_{y}, \\
& \beta_{1}=-\frac{1}{3}+k^{2} \frac{1}{9} h_{x} h_{y}-i k_{y} \frac{2}{3} h_{x}, \quad \bar{\beta}_{1}=-\frac{1}{3}+k^{2} \frac{1}{9} h_{x} h_{y}+i k_{y} \frac{2}{3} h_{x} \text {, } \\
& \beta_{2}=-\frac{1}{3}+k^{2} \frac{1}{9} h_{x} h_{y}-i k_{x} \frac{2}{3} h_{y}, \quad \bar{\beta}_{2}=-\frac{1}{3}+k^{2} \frac{1}{9} h_{x} h_{y}+i k_{x} \frac{2}{3} h_{y}, \\
& \gamma_{1}=-\frac{1}{3}+k^{2} \frac{1}{36} h_{x} h_{y}-i \frac{k_{x} h_{y}+k_{y} h_{x}}{6}, \quad \bar{\gamma}_{1}=-\frac{1}{3}+k^{2} \frac{1}{36} h_{x} h_{y}+i \frac{k_{x} h_{y}+k_{y} h_{x}}{6} \text {, } \\
& \gamma_{2}=-\frac{1}{3}+k^{2} \frac{1}{36} h_{x} h_{y}+i \frac{k_{x} h_{y}-k_{y} h_{x}}{6}, \quad \bar{\gamma}_{2}=-\frac{1}{3}+k^{2} \frac{1}{36} h_{x} h_{y}-i \frac{k_{x} h_{y}-k_{y} h_{x}}{6} . \\
& B=\left(\begin{array}{llll|llll|llll|llll}
a & b & 0 & b & b & c & 0 & c & 0 & 0 & 0 & 0 & b & c & 0 & c \\
b & a & b & 0 & c & b & c & 0 & 0 & 0 & 0 & 0 & c & b & c & 0 \\
0 & b & a & b & 0 & c & b & c & 0 & 0 & 0 & 0 & 0 & c & b & c \\
b & 0 & b & a & c & 0 & c & b & 0 & 0 & 0 & 0 & c & 0 & c & b \\
\hline b & c & 0 & c & a & b & 0 & b & b & c & 0 & c & 0 & 0 & 0 & 0 \\
c & b & c & 0 & b & a & b & 0 & c & b & c & 0 & 0 & 0 & 0 & 0 \\
0 & c & b & c & 0 & b & a & b & 0 & c & b & c & 0 & 0 & 0 & 0 \\
c & 0 & c & b & b & 0 & b & a & c & 0 & c & b & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & b & c & 0 & c & a & b & 0 & b & b & c & 0 & c \\
0 & 0 & 0 & 0 & c & b & c & 0 & b & a & b & 0 & c & b & c & 0 \\
0 & 0 & 0 & 0 & 0 & c & b & c & 0 & b & a & b & 0 & c & b & c \\
0 & 0 & 0 & 0 & c & 0 & c & b & b & 0 & b & a & c & 0 & c & b \\
\hline b & c & 0 & c & 0 & 0 & 0 & 0 & b & c & 0 & c & a & b & 0 & b \\
c & b & c & 0 & 0 & 0 & 0 & 0 & c & b & c & 0 & b & a & b & 0 \\
0 & c & b & c & 0 & 0 & 0 & 0 & 0 & c & b & c & 0 & b & a & b \\
c & 0 & c & b & 0 & 0 & 0 & 0 & c & 0 & c & b & b & 0 & b & a
\end{array}\right),
\end{aligned}
$$

where

$$
a=\frac{4}{9} h_{x} h_{y}, \quad b=\frac{1}{9} h_{x} h_{y}, \quad c=\frac{1}{36} h_{x} h_{y}
$$

FDFE Method

Eigenvalues in the homogenous case $(\varepsilon(x, y)=1)$

$$
\eta(\mathbf{k})=\frac{\hat{a}(z, w ; \mathbf{k})}{\hat{b}(z, w ; \mathbf{k})},
$$

where

$$
\begin{aligned}
& \hat{a}(z, w ; \mathbf{k})=a\left(\phi_{\left(j_{1}, j_{2}\right)}, \phi_{\left(j_{1}, j_{2}\right)}\right)+a\left(\phi_{\left(j_{1}, j_{2}\right)}, \phi_{\left(j_{1}+1, j_{2}\right)}\right) z+\bar{a}\left(\phi_{\left(j_{1}, j_{2}\right)}, \phi_{\left(j_{1}+1, j_{2}\right)}\right) z^{-1} \\
& +a\left(\phi_{\left(j_{1}, j_{2}\right)}, \phi_{\left(j_{1}, j_{2}+1\right)}\right) w+\bar{a}\left(\phi_{\left(j_{1}, j_{2}\right)}, \phi_{\left(j_{1}, j_{2}+1\right)}\right) w^{-1}, \\
& \hat{b}(z, w ; \mathbf{k})=b\left(\phi_{\left(j_{1}, j_{2}\right)}, \phi_{\left(j_{1}, j_{2}\right)}\right)+b\left(\phi_{\left(j_{1}, j_{2}\right)}, \phi_{\left(j_{1}+1, j_{2}\right)}\right) z+\bar{b}\left(\phi_{\left(j_{1}, j_{2}\right)}, \phi_{\left(j_{1}+1, j_{2}\right)}\right) z^{-1} \\
& +b\left(\phi_{\left(j_{1}, j_{2}\right)}, \phi_{\left(j_{1}, j_{2}+1\right)}\right) w+\bar{b}\left(\phi_{\left(j_{1}, j_{2}\right)}, \phi_{\left(j_{1}, j_{2}+1\right)}\right) w^{-1},
\end{aligned}
$$

with $z^{n}=1$ and $w^{m}=1$.

FDFE Method

As in the FDFD method we can easily prove that:

$$
\left.\left.\begin{array}{rl}
E_{\mathrm{abs}}= & \operatorname{const}_{1}
\end{array}\right]\left(\frac{2 \pi j}{a}+k_{x}\right)^{2}-k_{x}^{2}\right]\left\{1+O\left(\left(\frac{j}{n}\right)^{2}\right)\right\}+,
$$

and for the relative error we then get the following upper bound:

$$
E_{\text {rel }}=-\max \left[\operatorname{const}_{1}\left\{1+O\left(\left(\frac{j}{n}\right)^{2}\right)\right\}, \text { const }_{2}\left\{1+O\left(\left(\frac{l}{m}\right)^{2}\right)\right\}\right],
$$

n and m being the number of mesh points along the x and y axes, respectively.

Numerical Results

Numerical Results

In the nonrectangular 2D case we use the basis vectors \mathbf{a}_{1} and \mathbf{a}_{2} to convert the Helmholtz equation to cartesian coordinates and both FDFD and FDFE methods work successfully:

- Pietro Contu, C. van der Mee, and Sebastiano Seatzu. Fast and Effective Finite Difference Method for 2D Photonic Crystals, Communications in Applied and Industrial Mathematics (CAIM), (2011)
- Pietro Contu, C. van der Mee, and Sebastiano Seatzu. A Finite

Element Frequency Domain method for 2D Photonic Crystals,
Journal of Computational Applied Mathematics (JCAM) (2012)

Numerical Results

In the nonrectangular 2D case we use the basis vectors \mathbf{a}_{1} and \mathbf{a}_{2} to convert the Helmholtz equation to cartesian coordinates and both FDFD and FDFE methods work successfully:

■ Pietro Contu, C. van der Mee, and Sebastiano Seatzu. Fast and Effective Finite Difference Method for 2D Photonic Crystals, Communications in Applied and Industrial Mathematics (CAIM), (2011).

- Pietro Contu, C. van der Mee, and Sebastiano Seatzu. A Finite Element Frequency Domain method for 2D Photonic Crystals, Journal of Computational Applied Mathematics (JCAM), (2012).

FDFD method for 3D PC

Let us now introduce the $3 n_{1} n_{2} n_{3}$-dimensional (real or complex) vector space $\mathrm{H}_{n_{1}, n_{2}, n_{3}}$ of columns vectors indexed by
$\left(j_{1}, j_{2}, j_{3}, s\right) \in \mathbb{Z}\left[n_{1}\right] \times \mathbb{Z}\left[n_{2}\right] \times \mathbb{Z}\left[n_{3}\right] \times\{1,2,3\}$, where $\left(j_{1}, j_{2}, j_{3}\right)$ is a lower index and s is an upper index.
We define the discrete divergence:

$$
\begin{aligned}
{[\nabla \cdot \mathbf{F}]_{j_{1}, j_{2}, j_{3}}=} & \frac{F_{j_{1}+1, j_{2}, j_{3}}^{1}-F_{j_{1}-1, j_{2}, j_{3}}^{1}}{2 h_{1}}+\frac{F_{j_{1}, j_{2}+1, j_{3}}^{2}-F_{j_{1}, j_{2}-1, j_{3}}^{2}}{2 h_{2}} \\
& +\frac{F_{j_{1}, j_{2}, j_{3}+1}^{3}-F_{j_{1}, j_{2}, j_{3}-1}^{3}}{2 h_{3}},
\end{aligned}
$$

and the discrete curl $\nabla \times: \mathrm{H}_{n_{1}, n_{2}, n_{2}} \rightarrow \mathrm{H}_{n_{1}, n_{2}, n_{3}}$ as follows:

$$
\begin{aligned}
& (\nabla \times \mathbf{F})_{j_{1}, j_{2}, j_{3}}^{1}=\left(\partial_{2} F^{3}-\partial_{3} F^{2}\right)_{j_{1}, j_{2}, j_{3}}, \\
& (\nabla \times \mathbf{F})_{j_{1}, j_{2}, j_{3}}=\left(\partial_{3} F^{1}-\partial_{1} F^{3}\right)_{j_{1}, j_{2}, j_{3}}, \\
& (\nabla \times \mathbf{F})_{j_{1}, j_{2}, j_{3}}=\left(\partial_{1} F^{2}-\partial_{2} F^{1}\right)_{j_{1}, j_{2}, j_{3}} .
\end{aligned}
$$

FDFD Method for 3D PC

We have to solve the spectral problem under periodicity conditions:

$$
\begin{align*}
& \nabla \cdot[\varepsilon(\mathbf{x}) \mathcal{E}(\mathbf{x})]+i \mathbf{k} \cdot[\varepsilon(\mathbf{x}) \mathcal{E}(\mathbf{x})]=0 \tag{13}\\
& \nabla \times \mathcal{H}(\mathbf{x})+i[\mathbf{k} \times \mathcal{H}(\mathbf{x})]-i \sqrt{\eta} \varepsilon(\mathbf{x}) \mathcal{E}(\mathbf{x})=0 \tag{14}\\
& \nabla \times \mathcal{E}(\mathbf{x})+i[\mathbf{k} \times \mathcal{E}(\mathbf{x})]+i \sqrt{\eta} \varepsilon(\mathbf{x}) \mathcal{H}(\mathbf{x})=0 \tag{15}\\
& \nabla \cdot[\mathcal{H}(\mathbf{x})]+i \mathbf{k} \cdot \mathcal{H}(\mathbf{x})=0 \tag{16}
\end{align*}
$$

Proposition

For $\sqrt{\eta}>0$, any solution to the equations (14) and (15) satisfies the
discrete divergence equations

FDFD Method for 3D PC

We have to solve the spectral problem under periodicity conditions:

$$
\begin{align*}
& \nabla \cdot[\varepsilon(\mathbf{x}) \mathcal{E}(\mathbf{x})]+i \mathbf{k} \cdot[\varepsilon(\mathbf{x}) \mathcal{E}(\mathbf{x})]=0 \tag{13}\\
& \nabla \times \mathcal{H}(\mathbf{x})+i[\mathbf{k} \times \mathcal{H}(\mathbf{x})]-i \sqrt{\eta} \varepsilon(\mathbf{x}) \mathcal{E}(\mathbf{x})=0 \tag{14}\\
& \nabla \times \mathcal{E}(\mathbf{x})+i[\mathbf{k} \times \mathcal{E}(\mathbf{x})]+i \sqrt{\eta} \varepsilon(\mathbf{x}) \mathcal{H}(\mathbf{x})=0 \tag{15}\\
& \nabla \cdot[\mathcal{H}(\mathbf{x})]+i \mathbf{k} \cdot \mathcal{H}(\mathbf{x})=0 \tag{16}
\end{align*}
$$

Proposition

For $\sqrt{\eta}>0$, any solution to the equations (14) and (15) satisfies the discrete divergence equations

$$
\begin{aligned}
& \nabla \cdot[\varepsilon(\mathbf{x}) \mathcal{E}(\mathbf{x})]+i \mathbf{k} \cdot[\varepsilon(\mathbf{x}) \mathcal{E}(\mathbf{x})]=0 \\
& \nabla \cdot[\mathcal{H}(\mathbf{x})]+i \mathbf{k} \cdot \mathcal{H}(\mathbf{x})=0
\end{aligned}
$$

FDFD Method for 3D PC

Finite Differencing Eqs. (14) and (15) we get a linear system of order $6 n_{1} n_{2} n_{3} \times 6 n_{1} n_{2} n_{3}$, where n_{1}, n_{2} and n_{3} are the numbers of grid points along the x, y and z axes, respectively:

$$
\begin{aligned}
& \frac{1}{2 h_{2}}\left(H_{j_{1}, j_{2}+1, j_{3}}^{3}-H_{j_{1}, j_{2}-1, j_{3}}^{3}\right)-\frac{1}{2 h_{3}}\left(H_{j_{1}, j_{2}, j_{3}+1}^{2}-H_{j_{1}, j_{2}, j_{3}-1}^{2}\right)+i\left(k_{2} H_{j_{1}, j_{2}, j_{3}}^{3}-k_{3} H_{j_{1}, j_{2}, j_{3}}^{2}\right) \\
& =i \sqrt{\eta} \varepsilon_{j_{1}, j_{2}, j_{3}} E_{j_{1}, j_{2}, j_{3}}^{1}, \\
& \frac{1}{2 h_{3}}\left(H_{j_{1}, j_{2}, j_{3}+1}^{1}-H_{j_{1}, j_{2}, j_{3}-1}^{1}\right)-\frac{1}{2 h_{1}}\left(H_{j_{1}+1, j_{2}, j_{3}}^{3}-H_{j_{1}-1, j_{2}, j_{3}}^{3}\right)+i\left(k_{3} H_{j_{1}, j_{2}, j_{3}}^{1}-k_{1} H_{j_{1}, j_{2}, j_{3}}^{3}\right) \\
& =i \sqrt{\eta} \varepsilon_{j_{1}, j_{2}, j_{3}}^{3} E_{j_{1}, j_{2}, j_{3}}^{2}, \\
& \frac{1}{2 h_{1}}\left(H_{j_{1}+1, j_{2}, j_{3}}^{2}-H_{j_{1}-1, j_{2}, j_{3}}^{2}\right)-\frac{1}{2 h_{2}}\left(H_{j_{1}, j_{2}+1, j_{3}}^{1}-H_{j_{1}, j_{2}-1, j_{3}}^{1}\right)+i\left(k_{1} H_{j_{1}, j_{2}, j_{3}}^{2}-k_{2} H_{j_{1}, j_{2}, j_{3}}^{1}\right) \\
& =i \sqrt{\eta} \varepsilon_{j_{1}, j_{2}, j_{3}}^{3} E_{j_{1}, j_{2}, j_{3}}^{3}, \\
& \frac{1}{2 h_{2}}\left(E_{j_{1}, j_{2}+1, j_{3}}^{3}-E_{j_{1}, j_{2}-1, j_{3}}^{3}\right)-\frac{1}{2 h_{3}}\left(E_{j_{1}, j_{2}, j_{3}+1}^{2}-E_{j_{1}, j_{2}, j_{3}-1}^{2}\right)+i\left(k_{2} E_{j_{1}, j_{2}, j_{3}}^{3}-k_{3} E_{j_{1}, j_{2}, j_{3}}^{2}\right) \\
& =i \sqrt{\eta} H_{1_{1}, j_{2}, j_{3}}^{1}, \\
& \frac{1}{2 h_{3}}\left(E_{j_{1}, j_{2}, j_{3}+1}^{1}-E_{j_{1}, j_{2}, j_{3}-1}^{1}\right)-\frac{1}{2 h_{1}}\left(E_{j_{1}+1, j_{2}, j_{3}}^{3}-E_{j_{1}-1, j_{2}, j_{3}}^{3}\right)+i\left(k_{3} E_{j_{1}, j_{2}, j_{3}}^{1}-k_{1} E_{j_{1}, j_{2}, j_{3}}^{3}\right) \\
& =i \sqrt{\eta} H_{j_{1}, j_{2}, j_{3}}^{2}, \\
& \frac{1}{2 h_{1}}\left(E_{j_{1}+1, j_{2}, j_{3}}^{2}-E_{j_{1}-1, j_{2}, j_{3}}^{2}\right)-\frac{1}{2 h_{2}}\left(E_{j_{1}, j_{2}+1, j_{3}}^{1}-E_{j_{1}, j_{2}-1, j_{3}}^{1}\right)+i\left(k_{1} E_{j_{1}, j_{2}, j_{3}}^{2}-k_{2} E_{j_{1}, j_{2}, j_{3}, j_{3}}^{1},\right. \\
& i \sqrt{\eta} H_{3}^{3},
\end{aligned}
$$

FDFD Method for 3D PC

The $6 n_{1} n_{2} n_{3} \times 6 n_{1} n_{2} n_{3}$ linear system can be written in a more compact form:

$$
\left(\begin{array}{cc}
\mathbf{C} & i \sqrt{\eta} \mathbf{I} \tag{18}\\
-i \sqrt{\eta} \varepsilon & \mathbf{C}
\end{array}\right)\binom{\mathbf{E}}{\mathbf{H}}=0
$$

where $\varepsilon=\varepsilon \otimes \square_{3}$ is a diagonal matrix with positive entries and \mathbf{C} is a block circulant matrix with 3×3 blocks:

$$
\begin{gathered}
C_{0,0,0}=\left(\begin{array}{ccc}
0 & -i k_{3} & i k_{2} \\
i k_{3} & 0 & -i k_{1} \\
-i k_{2} & i k_{1} & 0
\end{array}\right), C_{ \pm 1,0,0}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \mp \frac{1}{2 h_{1}} \\
0 & \pm \frac{1}{2 h_{1}} & 0
\end{array}\right), \\
C_{0, \pm 1,0}=\left(\begin{array}{ccc}
0 & 0 & \pm \frac{1}{2 h_{2}} \\
0 & 0 & 0 \\
\mp \frac{1}{2 h_{2}} & 0 & 0
\end{array}\right), C_{0,0, \pm 1}=\left(\begin{array}{ccc}
0 & \mp \frac{1}{2 h_{3}} & 0 \\
\pm \frac{1}{2 h_{3}} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

FDFD Method for 3D PC

FDFD Method for 3D PC

Writing the two equations (18) in the form $\mathbf{C H}=i \sqrt{\eta} \mathbf{E}$ and $\mathbf{C E}=-i \sqrt{\eta} \mathbf{H}$, we get after one iteration

Eigenvalue problem for E
$\square \mathbf{C}^{2} \mathbf{E}=\eta \boldsymbol{\varepsilon} \mathbf{E}$

Eigenvalue problem for H

- $\mathbf{C} \frac{1}{\varepsilon} \mathbf{C} \mathbf{H}=\eta \mathbf{H}$

Conclusions

－FDFD method for 3D photonic crystal is in progress；
－Generalized eigenvalue problems appear in the study of photonic devices in optoelectronics；
－Algorithms which study multi－index circulant＋diagonal eigenvalue problems，in particular for large matrix orders，have to be properly implemented．

Conclusions

- FDFD method for 3D photonic crystal is in progress;
- Generalized eigenvalue problems appear in the study of photonic devices in optoelectronics;
- Algorithms which study multi-index circulant-diagonal eigenvalue problems, in particular for large matrix orders, have to be properly implemented

Conclusions

■ FDFD method for 3D photonic crystal is in progress;

- Generalized eigenvalue problems appear in the study of photonic devices in optoelectronics;
- Algorithms which study multi-index circulant+diagonal eigenvalue problems, in particular for large matrix orders, have to be properly implemented

Conclusions

■ FDFD method for 3D photonic crystal is in progress;
■ Generalized eigenvalue problems appear in the study of photonic devices in optoelectronics;

- Algorithms which study multi-index circulant+diagonal eigenvalue problems, in particular for large matrix orders, have to be properly implemented.

Bibliografy

Time Domain Methods

1) Plane Wave Expansion (PWE) Method
$■$ K.M. Leung and Y. Qiu, Multiple-scattering calculation of the two-dimensional photonic band structure, Phys. Rev. B 48, 7767-7771 (1993)
■ Ze Zhang and S. Satpathy, Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations, Phys. Rev. Lett. 65, 2650-2653 (1990)
\square K.M. Ho, C.T. Chan, and C.M. Soukoulis, Existence of a photonic gap in periodic dielectric structures, Phys. Rev. Lett. 65, 3152-3155 (1990)

■ H.S. Sözüer and J.W. Haus, Photonic bands: Convergence problems with the planewave method, Phys. Rev. B 45, 13962-13972 (1992)
■ M. Philal and A.A. Maradudin, Photonic band structure of two-dimensional systems: The triangular lattice, Phys. Rev. B 44, 8565-8571 (1991)

Bibliografy

Time Domain Methods

2) Finite Difference Time Domain (FDTD) Method

- A.J. Ward and J.B. Pendry, Refraction and geometry in Maxwell's equations, J. Mod. Opt. 43, 773-793 (1996)
- A.J. Ward and J.B. Pendry, Calculating photonic Green's functions us- ing a nonorthogonal finite-difference time-domain method, Phys. Rev. B 58, 7252-7259 (1998)
■ Min Qiu and Sailing He, A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions, J. Appl. Phys. 87, 8268-8275 (2000)
■ Sailing He, Sanshui Xiao, Linfang Shen, Jiangping He, and Jian Fu, A new finite-difference time-domain method for photonic crystals consisting of nearly-free-electron metals, J. Phys A 34, 9713-9721 (2001)
- B. Cowan, FDTD modeling of photonic crystal fibers, ARDB Technical Notes 4, ARDB-339, 7 pp., (2003)

Bibliografy

Frequency Domain Methods

1) Finite difference frequency domain (FDFD) method

■ Hung Yu David Yang, Finite difference analysis of 2-D photonic crystals, IEEE Trans. on Microwave Theory and Techniques 44, 2688-2695 (1996)
■ J.B. Pendry and A. MacKinnon, Calculation of photon dispersion relations, Phys. Rev. Lett. 69, 2772-2775 (1992)
■ D. Hermann, M. Frank, K. Busch, and P. Wölße, Photonic band structure computations, Opt. Express 8, 167-172 (2000)
2) Fourier expansion (FE) method

■ K. Sakoda, Optical transmittance of a two-dimensional triangular photonic lattice, Phys. Rev. B 51, 4672-4675 (1995)
■ K. Sakoda, Transmittance and Bragg reflectivity of two-dimensional photonic lattices, Phys. Rev. B 52, 8992-9002 (1995)
■ John D. Joannopoulos, Robert D. Meade, and Jahua N. Winn, Photonic Crystals, Molding the flow of light, Princeton University Press, (2006)

Bibliografy

Frequency Domain Methods

3) Finite element frequency domain (FEFD) method

■ W. Axmann and P. Kuchment, An efficient finite element method for computing spectra of photonic and acoustic band-gap materials, J. Comp. Phys. 150, 468-481 (1999)
■ B.P. Hiett, J.M. Generowicz, S.J. Cox, M. Molinari, D.H. Beckett, and K.S. Thomas, Application of finite element methods to photonic crystal modelling, IEE Proc.-Sci. Meas. Technol. 149, 293-296 (2002)

- D.C. Dobson, An efficient method for band structure calculations in 2D photonic crystals, J. Comp. Phys. 149, 363-376 (1999)
■ D.C. Dobson, J. Gopalakrishnan, and J.E. Pasciak, An efficient method for band structure calculations in 3D photonic crystals, J. Comp. Phys. 161, 668-679 (2000)
■ D. Boffi, M. Conforti, and L. Gastaldi, Modified edge finite elements for photonic crystals. Numerische Matematik, 105, 249-266 (2006)

