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Main Issues

1. Nonstationary Iterated Tikhonov

2. Approximated algorithms

3. Numerical results



Large discrete ill-posed problems

y = Tx+ e

◮ T ∈ R
n×n large and severely ill-conditioned

◮ y ∈ R
n known, measured data

◮ e ∈ R
n noise, s.t. ‖e‖ = δ

Goal: compute approximation of the noise free solution x



Nonstationary Iterated Tikhonov

Nonstationary iterated Tikhonov is given by

xn = xn−1 + T ∗(TT ∗ + αnI )
−1(y − Txn−1), (1)

which is equivalent to

xn = xn−1 + (T ∗T + αnI )
−1T ∗(y − Txn−1). (2)

The iteration (2) can be interpreted as an iterative refinement. Let
en−1 = x − xn−1 be the error at the n − 1-th step, where x is the
true solution. Solving the error equation Ten−1 = rn−1 by
Tikhonov, where rn−1 = y − Txn−1 is the residual, and using the
solution to refine the previous approximation xn−1, we obtain the
equation (2).



Convergence

In the noise free case (δ = 0)

Theorem
The method (1) converges to x† = T †y if and only if

lim
n→∞

n∑

j=1

α−1
j = ∞.

◮ In the stationary case, αn = α, ∀n ∈ N, assuming that
x† = (T ∗T )νw for some ν > 0 with some w ∈ D((T ∗T )ν),
we have

‖xn − x†‖ = O(n−(ν+1)).



The geometric sequence

◮ A classical choice for αn is the successive geometric value

αn = αqn−1, 0 < q < 1. (3)

◮ Under standard regularity assumptions on x†

‖xn − x†‖ = O(qνn).

[M. Hanke and C. W. Groetsh, J. Optim. Theory Appl., 1998].



The noise case

◮ Using the discrepancy principle, i.e., the iterative method is
stopped at the first value of n = n(δ) ≥ 1 for which

‖y δ − Txδn(δ)‖ ≤ τδ, (4)

with τ > 1 fixed.

◮ For the geometric sequence

n(δ) ≤ O(| log δ|).

◮ For the stationary sequence

n(δ) = O(δ−
2

2ν+1 ).



Geometric vs stationary sequence

◮ Under standard regularity assumptions on x†, iterated
Tikhonov with the decreasing geometric sequence converges
faster than the stationary method both for perturbed and
nonperturbed data.

◮ On the other hand, the main drawback of the decreasing
geometric sequence is a steep error curve. Therefore, we need
a fair stopping criteria.

◮ Other nonstationary sequences could be considered if satisfy

lim
n→∞

n∑

j=1

α−1
j = ∞.



Approximated iterated Tikhonov

◮ In some applications TT ∗ + αnI and T ∗T + αnI are
computationally too expensive to invert.

◮ It is available a good approximation easy to invert.

◮ Image deblurring with space invariant point spread function:
T is Toeplitz + something (Hankel, low rank, . . . ). A good
approximation of T can be obtained by P in a matrix algebra
diagonalizzable by unitary transforms.



Algorithm 1

◮ Replacing (TT ∗ + αnI )
−1 with (PP∗ + αnI )

−1 in (1) we
obtain

xn = xn−1 + T ∗(PP∗ + αnI )
−1(y − Txn−1). (5)

◮ Defining the function

Φ(x) = ‖Tx − y‖2(PP∗+αI )−1

in the stationary case (αn = α) the iteration (5) can be
rewritten as

xn = xn−1 −∇Φ(xn−1).



Algorithm 2

◮ Replacing (TT ∗ + αnI )
−1 with (PP∗ + αnI )

−1 in (2) we
obtain

xn = xn−1 + (P∗P + αnI )
−1T ∗(y − Txn−1)

◮ In the stationary case, the previous method is the

Preconditioned Landweber

method previously investigated in [P. Brianzi, F. Di
Benedetto, and C. Estatico, SIAM J. Sci. Comput., 2008]

◮ In the stationary case, it is a quasi-Newton method for the
minimum problem

min
x

‖Tx − y‖2,

where the Hessian (T ∗T )−1 is replaced with (P∗P + αI )−1.



Algorithm 3

◮ Using the iterative refinement interpretation, an
approximation of (2) can be derived solving the error equation

Pen = rn

instead of Ten = rn, where the residual rn is defined by the
“true” model as rn = y − Txn. This produces the iteration

xn = xn−1 + (P∗P + αnI )
−1P∗(y − Txn−1).

◮ For the error equation accurate boundary conditions are not
necessary since the error is about uniformly distributed on the
domain if the model represented by T is accurate. Hence
periodic boundary conditions, such that P is diagonalized by
FFT, are an accurate model for the error equation even if they
are not good for the original linear system.



Computational cost

◮ Algorithms 1 and 2 have the same computational cost for
each iteration.

◮ Algorithms 1 and 2 require at each iteration a product with T

and T ∗, while the Algorithm 3 needs only one product with T .

◮ Let P be a circulant matrix, then the matrix-vector product
with (P∗P + αnI )

−1P∗ requires 2 FFTs like (P∗P + αnI )
−1.



Numerical Experiments

◮ The matrix P is defined by imposing periodic BCs to the PSF
such that P is diagonalized by FFT.

◮ We do not consider the stopping criteria.

◮ The maximum number of iterations is fixed to 300.

◮ For the nonstationary case, we use the geometric decreasing
sequence with α = 1.

◮ The relative restoration error (RRE) is

RRE =
‖x̃ − x‖

‖x‖
,

where x̃ is the computed solution.



Satelitte test

True Observed PSF



Stationary case
First row → α = 0.06, second row → α = 0.01

Algorithm 1 Algorithm 2 Algorithm 3

RRE = 0.3306, it. 300 RRE = 0.3966, it. 51 RRE = 0.3308, it. 300

RRE = 0.4547, it. 4 RRE = 0.4942, it. 2 RRE = 0.3329, it. 51



Nonstationary case
First row → q = 0.98, second row → q = 0.8

Algorithm 1 Algorithm 2 Algorithm 3

RRE = 0.3321, it. 227 RRE = 0.3671, it. 161 RRE = 0.3323, it. 227

RRE = 0.3537, it. 26 RRE = 0.4108, iter. 22 RRE = 0.3392, it. 30



Example 2

◮ Antireflective BCs

◮ 0.1% of white Gaussian noise

True Observed log(PSF)



Stationary case

RRE varying the iteration number

0 50 100 150 200 250 300
10

−2

10
−1

10
0

 

 
Algorithm 1
Algorithm 2
Algorithm 3

0 50 100 150 200 250 300
10

−2

10
−1

10
0

 

 
Alg. 1
Alg. 2
Alg. 3

α = 0.5 α = 0.4



Algorithm 3

Algorithm 3 with α = 0.04
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RRE RRE=0.0213, it. 33



Nonstationary case
First row → q = 0.98, second row → q = 0.9

Algorithm 1 Algorithm 2 Algorithm 3

RRE = 0.0379, it. 77 RRE = 0.0380, it. 78 RRE = 0.0218, it. 145

RRE = 0.072, it. 18 RRE = 0.072, it. 18 RRE = 0.0214, it. 43



Conclusions and work in progress

◮ For a quasi-symmetric PSF the Algorithm 3 computes the
best restoration and it is robust varying the regularization
parameter.

◮ The geometric decreasing sequence {αn} avoids a fair
estimation of the spectral thresholding parameter.

◮ For a strongly nonsymmetric PSF the Algorithm 3 is robust
but it does not compute the best approximation.

◮ The convergence and the stability of algorithms 1–3 should be
investigated.


