Numerical Linear Algebra issues
 in Singular Spectrum Analysis of time series

Dario Fasino - with E. Bozzo, R. Carniel

University of Udine (Italy)
Genova, 2ggALN'12

Singular Spectrum Analysis (SSA): Introduction

SSA is a quite recent technique for the analysis of experimental time series, based on the SVD of certain Hankel matrices.

Let $x=\left(x_{1}, x_{2}, \ldots, x_{\ell}\right)^{T}$ a finite time series, $\ell=m+n-1$. The $m \times n$ Hankel matrix

$$
X_{m, n}=\left(\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{n} \\
x_{2} & x_{3} & \cdots & x_{n+1} \\
\vdots & \vdots & \vdots & \vdots \\
x_{m} & x_{m+1} & \cdots & x_{\ell}
\end{array}\right)
$$

is known as trajectory matrix, $X_{m, n}=\mathcal{T}_{m, n}(x)$.

Singular Spectrum Analysis (SSA): Introduction

SSA is a quite recent technique for the analysis of experimental time series, based on the SVD of certain Hankel matrices.

Let $z \in \mathbb{C}$. Then
$\operatorname{rank}\left(\begin{array}{ccc}1 & \cdots & z^{n-1} \\ z & \cdots & z^{n} \\ \vdots & \vdots & \vdots \\ z^{m-1} & \cdots & z^{\ell-2}\end{array}\right)=1$.

Let $x_{i}=p_{k}(i)$,
a k-degree algebraic poly. Then

$$
\operatorname{rank}\left(\begin{array}{ccc}
x_{1} & \cdots & x_{n} \\
\vdots & \vdots & \vdots \\
x_{m} & \cdots & x_{\ell}
\end{array}\right)=k .
$$

Time series made up by trigonometric, algebraic, exponential terms have small rank trajectory matrices.

Singular Spectrum Analysis (SSA): Introduction

SSA idea

Use SVD of trajectory matrices to decompose time series into constant terms, trends, oscillatory components, noise...

Given $x=\left(x_{1}, \ldots, x_{\ell}\right)$ and $\mathcal{I}_{1}, \ldots, \mathcal{I}_{k}$ a partition of $\{1, \ldots, n\}$ do:
(1) Build up trajectory matrix: $X=\mathcal{T}_{m, n}(x)$.
(2) Compute SVD $X=U \Sigma V^{\top}$; singular triples: $\left(u_{i}, \sigma_{i}, v_{i}\right)$.
(3) Group triples: $X^{(k)}=\sum_{i \in \mathcal{I}_{k}} \sigma_{i} u_{i} v_{i}^{\top}$.

Note: $\sum_{k} X^{(k)}=X$.
(9) Hankelization (diagonal averaging): $H^{(k)}=\mathcal{H}\left(X^{(k)}\right)$.

Note: $\sum_{k} H^{(k)}=X$.
(c) Extract components: $x^{(k)}=\mathcal{T}_{m, n}^{-1}\left(H^{(k)}\right)$.

Note: $\sum_{k} x^{(k)}=x$.

Example

Figure: SSA of a mixture of time series. $\ell=200, n=10, \ldots, 30$. Above: individual time series and respective SVs. Below: composite time series and respective SVs.

Example

Figure: SSA of a mixture of time series. $\ell=200, n=30$.
Left: first original component (blue) and its reconstruction (red). Right: second original component (blue) and its reconstruction (red).

References

\& N. Golyandina, V. Nekrutkin, A. Zhigljavsky.
Analysis of time series structure. SSA and related techniques.
Chapman \& Hall/CRC, 2001.
目 R. Carniel et al.
On the singular values decoupling in the Singular Spectrum Analysis of volcanic tremor at Stromboli.
Nat. Hazards Earth Syst. Sci., 6 (2006), 903-909.
目 E. Bozzo, R. Carniel, D. F.
Relationship between SSA and Fourier analysis: Theory and application to the monitoring of volcanic activity. Comp. Math. Appl. 60 (2010), 812-820.
θ V. Busoni.
Risultati di tipo perturbativo nell'analisi dello spettro singolare di serie temporali.
Tesi di Laurea in Matematica, Università di Udine, 2011.

A motivating problem (and our answer)

April 5, 2003: a major paroxism destroyed a seismic station on the Stromboli volcano.

SSA analysis of the sismogram suggests the presence of a consistent preparatory phase.
What information is conveyed in the SVs of (not so large) trajectory matrices coming from chaotic time series?

Figure: SSA of a volcanic tremor sismogram.
Singular values of 7200 trajectory matrices $X_{3000,10}$ (smoothed plot; x -axis in hours)

A motivating problem (and our answer)

Our result: The behaviour of SVs mirrors qualitative modifications in the power spectrum of the time series.

Figure: SSA of a volcanic tremor sismogram.
Singular values of 7200 trajectory matrices $X_{3000,10}$ (smoothed plot; x -axis in hours)

Stationary time series

Definition

The infinite time series $\vec{x}=\left(x_{1}, x_{2}, \ldots\right)$ is called stationary if

$$
\forall i, j \geqslant 0 \quad \lim _{m \rightarrow \infty} \frac{1}{m} \sum_{k=1}^{m} x_{i+k} x_{j+k}=R(i-j),
$$

where $R: \mathbb{Z} \mapsto \mathbb{R}$ is the covariance function of x.
Equivalently, the covariance matrix

$$
T_{n}=\lim _{m \rightarrow \infty} \frac{1}{m} X_{m, n}^{T} X_{m, n}
$$

exists for all n (and is a Toeplitz matrix).

Stationary time series

Definition

The infinite time series $\vec{x}=\left(x_{1}, x_{2}, \ldots\right)$ is called stationary if

$$
\forall i, j \geqslant 0 \quad \lim _{m \rightarrow \infty} \frac{1}{m} \sum_{k=1}^{m} x_{i+k} x_{j+k}=R(i-j),
$$

where $R: \mathbb{Z} \mapsto \mathbb{R}$ is the covariance function of x.
By Herglotz theorem, \vec{x} is a stationary time series iff there exists a (unique, bounded) nondecreasing function $\mu(t)$ on $\mathcal{I}=[0,2 \pi]$ such that

$$
R(k)=\frac{1}{2 \pi} \int_{\mathcal{I}} \mathrm{e}^{\mathrm{i} 2 \pi k t} \mathrm{~d} \mu(t), \quad k \in \mathbb{Z} .
$$

Stationary time series

Definition

The infinite time series $\vec{x}=\left(x_{1}, x_{2}, \ldots\right)$ is called stationary if

$$
\forall i, j \geqslant 0 \quad \lim _{m \rightarrow \infty} \frac{1}{m} \sum_{k=1}^{m} x_{i+k} x_{j+k}=R(i-j),
$$

where $R: \mathbb{Z} \mapsto \mathbb{R}$ is the covariance function of x.
A special case: \vec{x} is called aperiodic or chaotic whenever

$$
R(k)=\frac{1}{2 \pi} \int_{\mathcal{I}} \mathrm{e}^{\mathrm{i} 2 \pi k t} f(t) \mathrm{d} t, \quad k \in \mathbb{Z} .
$$

The function $f \in L^{1}(\mathcal{I}), f \geqslant 0$, is the spectral density of \vec{x} and the symbol of the Toeplitz matrix sequence $\left\{T_{n}\right\}$.

Asymptotic distributions

Definition

Two triangular sequences $\left\{\xi_{i}^{(n)}\right\}_{i=1 \ldots n}$ and $\left\{\zeta_{i}^{(n)}\right\}_{i=1 \ldots n}$, with $n \in \mathbb{N}$, are equally distributed (or asymptotically equidistributed), $\xi_{i}^{(n)} \sim \zeta_{i}^{(n)}$ if, for all continuous functions F having bounded support,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left[F\left(\xi_{i}^{(n)}\right)-F\left(\zeta_{i}^{(n)}\right)\right]=0
$$

Theorem
Let $\left\{T_{n}\right\}$ be a sequence of Toeplitz matrices whose symbol $f \in L^{1}(\mathcal{I})$ is Riemann-integrable. Then $\lambda_{i}\left(T_{n}\right) \sim f(2 \pi i / n)$.

Asymptotic distributions

Definition

Two triangular sequences $\left\{\xi_{i}^{(n)}\right\}_{i=1 \ldots n}$ and $\left\{\zeta_{i}^{(n)}\right\}_{i=1 \ldots n}$, with $n \in \mathbb{N}$, are equally distributed (or asymptotically equidistributed), $\xi_{i}^{(n)} \sim \zeta_{i}^{(n)}$ if, for all continuous functions F having bounded support,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left[F\left(\xi_{i}^{(n)}\right)-F\left(\zeta_{i}^{(n)}\right)\right]=0
$$

Theorem [Tyrtyshnikov '96]

Let A_{n}, B_{n} be $m(n) \times n$ matrices, with $m(n) \geq n$. If

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left\|A_{n}-B_{n}\right\|_{F}^{2}=0 \quad \Longrightarrow \quad \sigma_{i}\left(A_{n}\right) \sim \sigma_{i}\left(B_{n}\right)
$$

SSA and Fourier analysis

Let $\vec{x}=\left(x_{1}, x_{2} \ldots\right)$ be a stationary time series,

$$
\widehat{X}_{m, n}=\frac{1}{\sqrt{m}} X_{m, n} \quad \widetilde{X}_{m, n}=\frac{1}{\sqrt{m}}\left(\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{n} \\
x_{2} & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & x_{1} \\
\vdots & x_{m} & \cdots & \vdots \\
x_{m} & x_{1} & \cdots & x_{n-1}
\end{array}\right)
$$

Lemma

For any integer sequence $m(n)$ such that $n / m(n) \rightarrow 0$ as $n \rightarrow \infty$, the singular values of $\widehat{X}_{m(n), n}$ and $\widetilde{X}_{m(n), n}$ are equally distributed.

SSA and Fourier analysis

Indeed:

$$
\begin{aligned}
\frac{1}{n}\left\|\widehat{X}_{m(n), n}-\widetilde{X}_{m(n), n}\right\|_{F}^{2} & =\frac{1}{m(n)} \sum_{k=1}^{n} \frac{n-k}{n}\left(x_{k}-x_{m(n)+k}\right)^{2} \\
& <\frac{2}{m(n)} \sum_{k=1}^{n} x_{k}^{2}+x_{m(n)+k}^{2} \\
& =\underbrace{\frac{2 n}{m(n)}}_{\rightarrow 0}(\underbrace{\frac{1}{n} \sum_{k=1}^{n} x_{k}^{2}}_{\rightarrow R(0)}+\underbrace{\frac{1}{n} \sum_{k=1}^{n} x_{m(n)+k}^{2}}_{\rightarrow R(0)}) \rightarrow 0
\end{aligned}
$$

Note: \vec{x} stationary \Rightarrow any trailing subsequence is stationary.

SSA and Fourier analysis

For any fixed window length m, let $x=\left(x_{1}, \ldots, x_{m}\right)^{T}$, and let $\hat{x}=\left(\hat{x}_{0}, \ldots, \hat{x}_{m-1}\right)^{T}=F_{m} x$ be its Fourier transform.
Let $\Lambda_{m}=\operatorname{Diag}\left(1, \mathrm{e}^{\mathrm{i} 2 \pi / m}, \ldots, \mathrm{e}^{\mathrm{i} 2(m-1) \pi / m}\right)$ and $P_{m}=F_{m}^{H} \Lambda_{m} F_{m}$.
The matrix $T_{m, n}=\widetilde{X}_{m, n}^{T} \widetilde{X}_{m, n}$ is Toeplitz, with symbol

$$
f_{m, n}(z)=\frac{1}{m} \sum_{k=-n+1}^{n-1} x^{T} P_{m}^{-k} x \mathrm{e}^{\mathrm{i} k z}=\frac{1}{m} \sum_{k=-n+1}^{n-1} \hat{x}^{H} \Lambda_{m}^{-k} \hat{x} \mathrm{e}^{\mathrm{i} k z}
$$

Due to the stationarity assumption, $\lim _{m \rightarrow \infty} T_{m, n}=T_{n}$, hence for "fastly growing" $m(n)$ we have $\lim _{n \rightarrow \infty} \frac{1}{n}\left\|T_{m(n), n}-T_{n}\right\|_{F}^{2}=0$.

$$
\sigma_{i}\left(\widehat{X}_{m(n), n}\right)^{2} \sim \sigma_{i}\left(\widetilde{X}_{m(n), n}\right)^{2}=\lambda_{i}\left(T_{m(n), n}\right) \sim \lambda_{i}\left(T_{n}\right) \sim f(2 \pi i / n)
$$

SSA and Fourier analysis

For any fixed window length m, let $x=\left(x_{1}, \ldots, x_{m}\right)^{T}$, and let $\hat{x}=\left(\hat{x}_{0}, \ldots, \hat{x}_{m-1}\right)^{T}=F_{m} x$ be its Fourier transform.
Let $\Lambda_{m}=\operatorname{Diag}\left(1, \mathrm{e}^{\mathrm{i} 2 \pi / m}, \ldots, \mathrm{e}^{\mathrm{i} 2(m-1) \pi / m}\right)$ and $P_{m}=F_{m}^{H} \Lambda_{m} F_{m}$.
The matrix $T_{m, n}=\widetilde{X}_{m, n}^{T} \widetilde{X}_{m, n}$ is Toeplitz, with symbol

$$
f_{m, n}(z)=\frac{1}{m} \sum_{k=-n+1}^{n-1} x^{T} P_{m}^{-k} x \mathrm{e}^{\mathrm{i} k z}=\frac{1}{m} \sum_{k=-n+1}^{n-1} \hat{x}^{H} \Lambda_{m}^{-k} \hat{x} \mathrm{e}^{\mathrm{i} k z}
$$

Moreover, for any fixed m, n and for $j=1, \ldots, n$

$$
f_{m, n}\left(\frac{2 \pi j}{n}\right)=\frac{1}{m} \hat{x}^{H}\left(\sum_{k=-n+1}^{n-1} \mathrm{e}^{\mathrm{i} k 2 \pi j / n} \Lambda_{m}^{-k}\right) \hat{x}=\frac{1}{m} \sum_{i=0}^{m-1}\left|\hat{x}_{i}\right|^{2} \eta_{i, j}
$$

where $\eta_{i, j}=\sum_{k=-n+1}^{n-1} \mathrm{e}^{\mathrm{i} k 2 \pi(j / n-i / m)}$.

SSA and Fourier analysis

Figure: Plots of the coefficients $\eta_{i, j}=D_{n}(2 \pi(j / n-i / m))$. Here $m=1000$.

$$
D_{n}(\theta)=\sum_{k=-n+1}^{n-1} \mathrm{e}^{\mathrm{i} k \theta} \quad \text { is the } n \text {th Dirichlet kernel. }
$$

SSA and Fourier analysis

Theorem

If \vec{x} is a stationary time series
(+ assumptions on integrability of f and growth of $m(n)$ as $n \rightarrow \infty$) then the singular values of $\widehat{X}_{m(n), n}$ and $\left\{f^{1 / 2}(2 \pi j / n)\right\}_{j=1 \ldots .}$ are equally distributed.

Each SV of $X_{m, n}$ depends essentially from a portion of the power spectrum $\left|\hat{x}_{0}\right|^{2}, \ldots,\left|\hat{x}_{m-1}\right|^{2}$ whose width is $\approx m / n$.
Actually, we can replace $f^{1 / 2}(2 \pi j / n)$ with the power bins

$$
\varphi_{j}^{(n)}=\left(\frac{1}{L} \sum_{i=\lfloor(j-1) L\rfloor}^{\lfloor j L\rfloor-1}\left|\hat{x}_{i}\right|^{2}\right)^{1 / 2} \quad L=\frac{m(n)}{2 n} \quad j=1, \ldots, n .
$$

Numerical example: Pseudorandom time series

Figure: SSA of 10 pseudorandom time series with spectral density function $f(z)=|1-2 \cos (z)+2 \cos (2 z)|$.
Left: singular values of trajectory matrices $\widehat{X}_{1000,20}$
Center: power bins $\varphi_{1}^{(20)}, \ldots, \varphi_{20}^{(20)}$
Right: power bins $\varphi_{i}^{(20)}$ in decreasing order.

Numerical example: Stromboli tremor analysis

Figure: Analysis of a volcanic tremor signal.
Left: singular values of trajectory matrices $\widehat{X}_{3000,10}$.
Right: power bins $\varphi_{i}^{(10)}$ in decreasing order.

Separability

Figure: SSA of two time series and their sum.

In general, the SVs of $\mathcal{T}_{m, n}\left(X^{(1)}\right)$ and $\mathcal{T}_{m, n}\left(x^{(2)}\right)$ cannot be recovered from those of $\mathcal{T}_{m, n}\left(x^{(1)}+x^{(2)}\right)$ - biorthogonality needed.

Problem

To what extent one can recover individual components without biorthogonality?

Separability

Theorem

Let $A, B \in \mathbb{R}^{m \times n}$ with SVDs $A=U_{A} \Sigma_{A} V_{A}^{T}$ and $B=U_{B} \Sigma_{B} V_{B}^{T}$. Suppose $\operatorname{rank}(A \mid B)=\operatorname{rank}(A+B)$. Moreover, let

$$
\varepsilon_{L}=\left\|U_{A}^{T} U_{B}\right\|, \quad \varepsilon_{R}=\left\|V_{A}^{T} V_{B}\right\| .
$$

Then,

$$
\frac{1}{\eta} \leqslant \frac{\sigma_{i}(A+B)}{\sigma_{i}(A \mid B)} \leqslant \eta, \quad \eta=\sqrt{\frac{\left(1+\varepsilon_{L}\right)\left(1+\varepsilon_{R}\right)}{\left(1-\varepsilon_{L}\right)\left(1-\varepsilon_{R}\right)}}
$$

Note: $\varepsilon_{L} \leqslant\left\|A^{+}\right\|\left\|B^{+}\right\|\left\|A^{T} B\right\|$ and $\varepsilon_{R} \leqslant\left\|A^{+}\right\|\left\|B^{+}\right\|\left\|A B^{T}\right\|$.

Separability

Theorem

Let $A, B \in \mathbb{R}^{m \times n}$ with SVDs $A=U_{A} \Sigma_{A} V_{A}^{T}$ and $B=U_{B} \Sigma_{B} V_{B}^{T}$. Suppose $\operatorname{rank}(A \mid B)=\operatorname{rank}(A+B)$. Moreover, let

$$
\varepsilon_{L}=\left\|U_{A}^{T} U_{B}\right\|, \quad \varepsilon_{R}=\left\|V_{A}^{T} V_{B}\right\| .
$$

Then,

$$
\frac{1}{\eta} \leqslant \frac{\sigma_{i}(A+B)}{\sigma_{i}(A \mid B)} \leqslant \eta, \quad \eta=\sqrt{\frac{\left(1+\varepsilon_{L}\right)\left(1+\varepsilon_{R}\right)}{\left(1-\varepsilon_{L}\right)\left(1-\varepsilon_{R}\right)}}
$$

Thank you.

