Can clouds of points generate numerical storms?

Claudia Fassino (joint work with Maria-Laura Torrente)

Dipartimento di Matematica Università di Genova www.dima.unige.it/~fassino/

Genova, 16th-17th February 2012

C. Fassino (Univ. Genova)

Clouds of points and numerical storms Genova, 16th February 2012 1 / 16

We present a **symbolic-numeric approach** to find multivariate polynomial models describing a set of noisy data, represented as a set X of limited precision points.

We present a **symbolic-numeric approach** to find multivariate polynomial models describing a set of noisy data, represented as a set X of limited precision points.

Observations:

• Data without noise: the polynomial model can be described by the elements of the vanishing ideal $\mathcal{I}(\mathbb{X})$ of \mathbb{X}

$$\mathcal{I}(\mathbb{X}) \hspace{.1in} = \hspace{.1in} \{f \mid f(p) = 0, \hspace{.1in} orall p \in \mathbb{X}\}$$

We present a **symbolic-numeric approach** to find multivariate polynomial models describing a set of noisy data, represented as a set X of limited precision points.

Observations:

• Data without noise: the polynomial model can be described by the elements of the vanishing ideal $\mathcal{I}(\mathbb{X})$ of \mathbb{X}

$$\mathcal{I}(\mathbb{X}) \hspace{.1in} = \hspace{.1in} \{f \mid f(p) = 0, \hspace{.1in} orall p \in \mathbb{X}\}$$

• Data with noise: Each point of X represents a cloud of points (numerically equivalent to X). Structures based on polynomials involving real data lose many of their rigorous algebraic properties.

Noisy Data

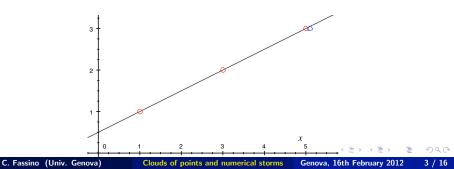
If the points of $\widehat{\mathbb{X}}$ are a "small" perturbation of the points of \mathbb{X} their vanishing ideals $\mathcal{I}(\mathbb{X})$ and $\mathcal{I}(\widehat{\mathbb{X}})$ may be very different.

Noisy Data

If the points of $\widehat{\mathbb{X}}$ are a "small" perturbation of the points of \mathbb{X} their vanishing ideals $\mathcal{I}(\mathbb{X})$ and $\mathcal{I}(\widehat{\mathbb{X}})$ may be very different.

Example Let $X = \{(1,1), (3,2), (5,3)\}$ and $\widehat{X} = \{(1,1), (3,2), (5.1,3)\}$

$$\mathcal{I}(\mathbb{X}): \begin{cases} x-2y+1\\ y^3-6y^2+11y-6 \end{cases} \quad \mathcal{I}(\widehat{\mathbb{X}}): \begin{cases} x^2-20x+37y-18\\ xy-43x+81y-39\\ y^2-90.1x+172.2y-83.1 \end{cases}$$



Given a set X of points we can compute the τ -Gröbner basis of $\mathcal{I}(X)$

The Buchberger-Möller algorithm Input: A set of points XOutput: A Gröbner basis of $\mathcal{I}(X)$

• Step Zero: $\mathcal{O}=\{1\}$

Given a set X of points we can compute the τ -Gröbner basis of $\mathcal{I}(X)$

The Buchberger-Möller algorithm Input: A set of points XOutput: A Gröbner basis of $\mathcal{I}(X)$

• Step Zero: $\mathcal{O}=\{1\}$

$$\begin{aligned} (*) \Leftrightarrow &- \text{ construct } M_{\mathcal{O}}(\mathbb{X}) = (t_1(\mathbb{X}), \dots, t_k(\mathbb{X})) \\ &- \text{ solve LSP: } \quad M_{\mathcal{O}}(\mathbb{X})\alpha(\mathbb{X}) = t(\mathbb{X}) \\ &- \text{ check whether } \rho(\mathbb{X}) = t(\mathbb{X}) - M_{\mathcal{O}}(\mathbb{X})\alpha(\mathbb{X}) = 0 \end{aligned}$$

Example Let $X = \{(1,1), (3,2), (5,3)\}$ and $\widehat{X} = \{(1,1), (3,2), (5,1,3)\}$ Consider $\mathcal{O} = \{t_1 = 1, t_2 = y\}$ t = x

$$egin{aligned} & [t_1(\mathbb{X}),t_2(\mathbb{X}),t(\mathbb{X})] = egin{bmatrix} 1 & 1 & 1 \ 1 & 2 & 3 \ 1 & 3 & 5 \end{bmatrix} \ & t(\mathbb{X}) - 2t_2(\mathbb{X}) + t_1(\mathbb{X}) = 0 \end{aligned}$$

$$[t_1(\widehat{X}), t_2(\widehat{X}), t(\widehat{X})] = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 5.1 \end{bmatrix}$$

Independent vectors

Empirical points

Noisy data set \iff Empirical points: $\mathbb{X} \subset \mathbb{R}^n$ and a tolerance $\varepsilon \in \mathbb{R}^+$

э

Noisy data set \iff Empirical points: $\mathbb{X} \subset \mathbb{R}^n$ and a tolerance $\varepsilon \in \mathbb{R}^+$

 $\widetilde{\mathbb{X}}$ is numerically equivalent to \mathbb{X} iff $\widetilde{\mathbb{X}}$ consists of points belonging to the "clouds" around the elements of \mathbb{X}

Noisy data set \iff Empirical points: $\mathbb{X} \subset \mathbb{R}^n$ and a tolerance $\varepsilon \in \mathbb{R}^+$

 $\widetilde{\mathbb{X}}$ is numerically equivalent to \mathbb{X} iff $\widetilde{\mathbb{X}}$ consists of points belonging to the "clouds" around the elements of \mathbb{X}

A generic \tilde{p} can be expressed as $\tilde{p} = (p_1 + e_1, \dots, p_n + e_n) \Longrightarrow$ we make use of error variables

 $\mathbf{e} = (e_{11}, \dots, e_{s1}, e_{12}, \dots, e_{s2}, \dots, e_{1n}, \dots, e_{sn}) \text{ and } \|\mathbf{e}\|_{\infty} \leq \varepsilon$

Noisy data set \iff Empirical points: $\mathbb{X} \subset \mathbb{R}^n$ and a tolerance $\varepsilon \in \mathbb{R}^+$

 $\widetilde{\mathbb{X}}$ is numerically equivalent to \mathbb{X} iff $\widetilde{\mathbb{X}}$ consists of points belonging to the "clouds" around the elements of \mathbb{X}

A generic \tilde{p} can be expressed as $\tilde{p} = (p_1 + e_1, \dots, p_n + e_n) \Longrightarrow$ we make use of error variables

$$\mathbf{e} = (e_{11}, \dots, e_{s1}, e_{12}, \dots, e_{s2}, \dots, e_{1n}, \dots, e_{sn}) \ \text{and} \ \|\mathbf{e}\|_{\infty} \leq \varepsilon$$

A generic admissible perturbation $\widetilde{\mathbb{X}}$ of \mathbb{X} is expressed as

$$\widetilde{\mathbb{X}} = \mathbb{X}(\mathbf{e}) = \{p_1(\mathbf{e}), \dots, p_s(\mathbf{e})\}$$

Problem

Problem

Given a set X of empirical points determine a polynomial of low degree and the corresponding (simple) variety at which the points almost lie

that is

Problem

Given a set X of empirical points determine a polynomial of low degree and the corresponding (simple) variety at which the points almost lie

that is

Given $X = \{p_1, \dots, p_s\} \subseteq \mathbb{R}^n$ set of points, $\varepsilon \in \mathbb{R}^+$ tolerance **compute**

$$egin{aligned} f^* \in \mathbb{R}[x_1,\ldots,x_n] \ \mathbb{X}^* = \{p_1^*,\ldots,p_s^*\} \subseteq \mathbb{R}^n \quad ext{s.t.} & \left\{ egin{aligned} f^*(p_i^*) = 0 \ \|p_i^* - p_i\|_\infty < arepsilon \end{aligned}
ight. \ \forall p_i^* \in \mathbb{X}^* \end{aligned}$$

The simplicity of the model judged by the degree of f^* The goodness of model by the max distance of X^* from X

Adapting the BM Algorithm to the empirical case

The New algorithm (empirical case) Input: set of empirical points X and tolerance ε Out: low degree polynomial f vanishing at $X(\hat{\mathbf{e}})$, $\|\hat{\mathbf{e}}\| < \varepsilon$

Generic Step: O = {t₁,..., t_k} and t >_τ t_i.
 check whether there exists ê s.t. X(ê) is adm.pert. of X and

$$\rho(\mathbb{X}(\widehat{\mathbf{e}})) = t(\mathbb{X}(\widehat{\mathbf{e}})) - M_{\mathcal{O}}(\mathbb{X}(\widehat{\mathbf{e}}))\alpha(\mathbb{X}(\widehat{\mathbf{e}})) = 0 \quad (*)$$

(Exact Case $\rho = t(\mathbb{X}) - M_{\mathcal{O}}(\mathbb{X})\alpha(\mathbb{X}) = 0$)
Yes: low degree polynomial is formed and stop
No: t is added to \mathcal{O}

Adapting the BM Algorithm to the empirical case

The New algorithm (empirical case) Input: set of empirical points X and tolerance ε Out: low degree polynomial f vanishing at $X(\hat{\mathbf{e}})$, $\|\hat{\mathbf{e}}\| < \varepsilon$

Generic Step: *O* = {t₁,..., t_k} and t >_τ t_i.
 check whether there exists ê s.t. X(ê) is adm.pert. of X and

$$\rho(\mathbb{X}(\widehat{\mathbf{e}})) = t(\mathbb{X}(\widehat{\mathbf{e}})) - M_{\mathcal{O}}(\mathbb{X}(\widehat{\mathbf{e}}))\alpha(\mathbb{X}(\widehat{\mathbf{e}})) = 0 \quad (*)$$
(Exact Case $\rho = t(\mathbb{X}) - M_{\mathcal{O}}(\mathbb{X})\alpha(\mathbb{X}) = 0$)
Yes: low degree polynomial is formed and stop
No: t is added to \mathcal{O}

(*) $\rho(\mathbf{e}) = 0$ in $D = \{\mathbf{e} : \|\mathbf{e}\|_{\infty} < \varepsilon, M_{\mathcal{O}}(\mathbf{e}) \text{ is full rank} \}$

Underdetermined nonlinear systems

compute a solution of $\rho(\mathbf{e}) = 0$ s.t. $\mathbf{e} \in D$

Problem:

¹Walker, Watson (1990)

C. Fassino (Univ. Genova)

Underdetermined nonlinear systems

Problem: compute a solution of $\rho(\mathbf{e}) = 0$ s.t. $\mathbf{e} \in D$

• Normal Flow Algorithm.¹ Let $\bar{x} = 0 \in D$, $\omega \ll 1$, h=(1,...,1)

- While
$$\|h\|_2 > \omega$$
 do
 $h = -\mathsf{Jac}_{
ho}(ar{x})^\dagger
ho(ar{x})$
 $ar{x} = ar{x} + h$

- Return \bar{x} and stop

¹Walker, Watson (1990)

C. Fassino (Univ. Genova)

Underdetermined nonlinear systems

Problem: compute a solution of $\rho(\mathbf{e}) = 0$ s.t. $\mathbf{e} \in D$

- Normal Flow Algorithm.¹ Let $\bar{x} = 0 \in D$, $\omega \ll 1$, $h=(1,\ldots,1)$
 - While $\|h\|_2 > \omega$ do $h = -Jac_{\rho}(\bar{x})^{\dagger}\rho(\bar{x})$ $\bar{x} = \bar{x} + h$
 - Return \bar{x} and stop

The NF Algorithm depends on the **conditioning** of $Jac_{\rho}(\bar{x})$ **SO** we adopt the following strategy:

- If $\operatorname{Jac}_{\rho}(x)$ well-conditioned \Rightarrow we apply the NF Algorithm to ρ
- If $\operatorname{Jac}_{\rho}(x)$ ill-conditioned \Rightarrow we construct $\widehat{\rho}: D \to \mathbb{R}^m$ such that $\operatorname{Jac}_{\widehat{\rho}}(x)$ well-conditioned in D and $\|\widehat{\rho}(x) \rho(x)\|$ small in D

¹Walker, Watson (1990)

Numerical Rank and Rank Revealing Decomposition

Our strategy is based on

• Numerical Rank. Let $A \in Mat_{m \times n}(\mathbb{R})$, $\delta > 0$ and k > 1. If

 $\sigma_1(A) \geq \ldots \geq \sigma_r(A) > k\delta > \delta > \sigma_{r+1}(A) \geq \ldots \geq \sigma_n(A)$

then r is called the numerical (δ, k) -rank of A.

Numerical Rank and Rank Revealing Decomposition

Our strategy is based on

• Numerical Rank. Let $A \in Mat_{m \times n}(\mathbb{R})$, $\delta > 0$ and k > 1. If

$$\sigma_1(A) \geq \ldots \geq \sigma_r(A) > k\delta > \delta > \sigma_{r+1}(A) \geq \ldots \geq \sigma_n(A)$$

then r is called the numerical (δ, k) -rank of A.

• Rank Revealing Decomposition ². Let $A \in Mat_{m \times n}(\mathbb{R})$ and r=numerical (δ, k) -rank of $A \Rightarrow \exists$ a permutation matrix Π s.t.

$$A\Pi = Q \begin{pmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{pmatrix}$$

$$\sigma_{\min}(R_{11}) \ge \frac{k}{q(n,r)}\delta \text{ and } \|R_{22}\|_2 \le q(n,r)\delta$$

The first *r* columns of $A\Pi$ are strongly independent

²Hong, Pan (1992) C. Fassino (Univ. Genova)

Back to the problem

We consider, at the first step of the Normal Flow Algorithm, the ill conditioned system

$$\mathsf{Jac}_
ho(0)h=-
ho(0)$$

We select the maximum number of "strongly independent equations"

- computing $\mathbf{r} = \operatorname{rank}_{\delta,k}(\operatorname{Jac}_{\rho}(0) \mid \rho(0))$, with $\delta \geq \varepsilon$;
- computing the Rank Revealing Decomposition of

$$\left(\begin{array}{c} \mathsf{Jac}_{\rho}(0)^t\\ \rho(0)^t \end{array}\right) \mathbf{\Pi} = Q \left(\begin{array}{cc} R_{11} & R_{12}\\ 0 & R_{22} \end{array}\right)$$

• partitioning $\Pi = (\Pi_1 \mid \Pi_2)$ with $\Pi_1 \in \operatorname{Mat}_{m \times r}(\mathbb{R})$.

Back to the problem

We consider, at the first step of the Normal Flow Algorithm, the ill conditioned system

$$\mathsf{Jac}_
ho(0)h=-
ho(0)$$

We select the maximum number of "strongly independent equations"

- computing $\mathbf{r} = \operatorname{rank}_{\delta,k}(\operatorname{Jac}_{\rho}(0) \mid \rho(0))$, with $\delta \geq \varepsilon$;
- computing the Rank Revealing Decomposition of

$$\left(\begin{array}{c} \mathsf{Jac}_{\rho}(0)^t\\ \rho(0)^t \end{array}\right) \mathbf{\Pi} = Q \left(\begin{array}{cc} R_{11} & R_{12}\\ 0 & R_{22} \end{array}\right)$$

• partitioning $\Pi = (\Pi_1 \mid \Pi_2)$ with $\Pi_1 \in \operatorname{Mat}_{m \times r}(\mathbb{R})$.

$$\widehat{\rho}(\mathbf{e}) = \begin{pmatrix} \Pi_1^t \rho(\mathbf{e}) \\ G \Pi_1^t \rho(\mathbf{e}) \end{pmatrix} \text{ where } G = R_{12}^t R_{11}^{-t}$$

$$\widehat{\rho}(\mathbf{e}) = \begin{cases} \Pi_1^t \rho(\mathbf{e}) = 0 \ \text{} r \\ G \Pi_1^t \rho(\mathbf{e}) = 0 \ \text{} m - r \end{cases}$$

- the *m* − *r* last equations depend on the first *r* equations;
- the first r rows of $Jac_{\hat{\rho}}(0)$ (or of $Jac_{\hat{\rho}}(\mathbf{e})$ if $\mathbf{e} \approx \mathbf{0}$) is well conditioned;
- $\|\widehat{\rho}(\mathbf{e}) \Pi^t \rho(\mathbf{e})\|_2 \le q(m, r)\delta + O(\delta^2) \quad \forall \mathbf{e} \in D$ If $\rho(\mathbf{e}^*) = 0$, $\mathbf{e}^* \in D$, then $\|\widehat{\rho}(\mathbf{e}) - \Pi^t \rho(\mathbf{e})\|_2 = O(\delta^2)$

Conclusion: we apply the NF algorithm to $\Pi_1^t \rho(\mathbf{e})$ which is

- equivalent to $\widehat{\rho}(\mathbf{e})$
- "close" to $\rho(\mathbf{e})$
- with well-conditioned Jacobian matrices on D.

Example

We consider the set of points created by perturbing less than 0.1 the coords of 6 points on $y^2 - x - 2y + 2 = 0$:

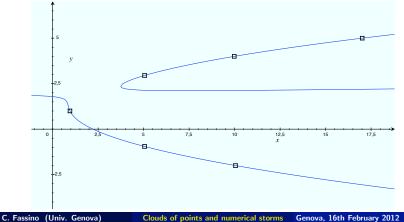
 $\mathbb{X} = \{(0.95, 1), (5.05, 2.95), (5.05, -0.95), (9.98, 4), (10.05, -2), (17.01, 5)\}$

Example

We consider the set of points created by perturbing less than 0.1 the coords of 6 points on $y^2 - x - 2y + 2 = 0$:

 $\mathbb{X} = \{(0.95, 1), (5.05, 2.95), (5.05, -0.95), (9.98, 4), (10.05, -2), (17.01, 5)\}$

A straightforward computation using BM algorithm gives



13 / 16

Example

Our Algorithm applied to X with $\varepsilon = 0.1$, $\delta = 2\varepsilon$, k = 2 computes $\bar{f} = y^2 - 0.9816x - 2.0176y + 1.9660$ ($\approx y^2 - x - 2y + 2$) 7.5 10 x

Singular values and condition number of $[Jac_{\rho}(0) \mid \rho(0)]$

 $\{6.39, 4.67, 3.33, 0.035, 0.02, 0.00\} \quad K_2(\operatorname{Jac}_{\rho}(0) \mid \rho(0)) \approx 310$

Zooming around the first point we get...

э

Problem 1: Parameters

Empirical points \iff tolerance ε on the coordinates of the input points. **Numerical rank of** $[\operatorname{Jac}_{\rho}(0)|\rho(0)] \iff$ parameters δ and k s.t.

$$\sigma_1 \ge \dots \sigma_r > k\delta > \delta \ge \sigma_{r+1} \ge \sigma_m$$

What is the best choice of δ and k as function of ε ?

Problem 2: Strategy

A different strategy for solving the non linear system $\rho(\mathbf{e}) = 0$ avoiding the "almost dependent" equations (using the information about the tolerance...)