Can clouds of points generate numerical storms?

Claudia Fassino
(joint work with Maria-Laura Torrente)

Dipartimento di Matematica
Università di Genova www.dima.unige.it/~fassino/

Genova, 16th-17th February 2012

Introduction

We present a symbolic-numeric approach to find multivariate polynomial models describing a set of noisy data, represented as a set \mathbb{X} of limited precision points.

Introduction

We present a symbolic-numeric approach to find multivariate polynomial models describing a set of noisy data, represented as a set \mathbb{X} of limited precision points.

Observations:

- Data without noise: the polynomial model can be described by the elements of the vanishing ideal $\mathcal{I}(\mathbb{X})$ of \mathbb{X}

$$
\mathcal{I}(\mathbb{X})=\{f \mid f(p)=0, \forall p \in \mathbb{X}\}
$$

Introduction

We present a symbolic-numeric approach to find multivariate polynomial models describing a set of noisy data, represented as a set \mathbb{X} of limited precision points.

Observations:

- Data without noise: the polynomial model can be described by the elements of the vanishing ideal $\mathcal{I}(\mathbb{X})$ of \mathbb{X}

$$
\mathcal{I}(\mathbb{X})=\{f \mid f(p)=0, \forall p \in \mathbb{X}\}
$$

- Data with noise: Each point of \mathbb{X} represents a cloud of points (numerically equivalent to \mathbb{X}). Structures based on polynomials involving real data lose many of their rigorous algebraic properties.

Noisy Data

If the points of $\widehat{\mathbb{X}}$ are a "small" perturbation of the points of \mathbb{X} their vanishing ideals $\mathcal{I}(\mathbb{X})$ and $\mathcal{I}(\widehat{\mathbb{X}})$ may be very different.

Noisy Data

If the points of $\widehat{\mathbb{X}}$ are a "small" perturbation of the points of \mathbb{X} their vanishing ideals $\mathcal{I}(\mathbb{X})$ and $\mathcal{I}(\widehat{\mathbb{X}})$ may be very different.
Example Let $\mathbb{X}=\{(1,1),(3,2),(5,3)\}$ and $\widehat{\mathbb{X}}=\{(1,1),(3,2),(5.1,3)\}$

$$
\mathcal{I}(\mathbb{X}):\left\{\begin{array}{l}
x-2 y+1 \\
y^{3}-6 y^{2}+11 y-6
\end{array} \quad \mathcal{I}(\widehat{\mathbb{X}}):\left\{\begin{array}{l}
x^{2}-20 x+37 y-18 \\
x y-43 x+81 y-39 \\
y^{2}-90.1 x+172.2 y-83.1
\end{array}\right.\right.
$$

Data without noise

Given a set \mathbb{X} of points we can compute the τ-Gröbner basis of $\mathcal{I}(\mathbb{X})$
The Buchberger-Möller algorithm
Input: A set of points \mathbb{X}
Output: A Gröbner basis of $\mathcal{I}(\mathbb{X})$

- Step Zero: $\mathcal{O}=\{1\}$
- Generic Step: $\mathcal{O}=\left\{t_{1}, \ldots, t_{k}\right\}$ and $t>_{\tau} t_{i}$.
$t(\mathbb{X}), t_{1}(\mathbb{X}), \ldots, t_{k}(\mathbb{X})$ linearly dependent? $\left.{ }^{*}\right)$
Yes: polynomial of basis formed
No: t is added to \mathcal{O}

Data without noise

Given a set \mathbb{X} of points we can compute the τ-Gröbner basis of $\mathcal{I}(\mathbb{X})$
The Buchberger-Möller algorithm
Input: A set of points \mathbb{X}
Output: A Gröbner basis of $\mathcal{I}(\mathbb{X})$

- Step Zero: $\mathcal{O}=\{1\}$
- Generic Step: $\mathcal{O}=\left\{t_{1}, \ldots, t_{k}\right\}$ and $t>_{\tau} t_{i}$.
$t(\mathbb{X}), t_{1}(\mathbb{X}), \ldots, t_{k}(\mathbb{X})$ linearly dependent? $\left.{ }^{*}\right)$
Yes: polynomial of basis formed
No: t is added to \mathcal{O}

$$
\begin{aligned}
(*) \Leftrightarrow & - \text { construct } M_{\mathcal{O}}(\mathbb{X})=\left(t_{1}(\mathbb{X}), \ldots, t_{k}(\mathbb{X})\right) \\
& - \text { solve LSP: } \quad M_{\mathcal{O}}(\mathbb{X}) \alpha(\mathbb{X})=t(\mathbb{X}) \\
& - \text { check whether } \rho(\mathbb{X})=t(\mathbb{X})-M_{\mathcal{O}}(\mathbb{X}) \alpha(\mathbb{X})=0
\end{aligned}
$$

Example

Example Let $\mathbb{X}=\{(1,1),(3,2),(5,3)\}$ and $\widehat{\mathbb{X}}=\{(1,1),(3,2),(5.1,3)\}$
Consider $\mathcal{O}=\left\{t_{1}=1, t_{2}=y\right\} t=x$
$\left[t_{1}(\mathbb{X}), t_{2}(\mathbb{X}), t(\mathbb{X})\right]=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 5\end{array}\right] \quad\left[t_{1}(\widehat{\mathbb{X}}), t_{2}(\widehat{\mathbb{X}}), t(\widehat{\mathbb{X}})\right]=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 5.1\end{array}\right]$
$t(\mathbb{X})-2 t_{2}(\mathbb{X})+t_{1}(\mathbb{X})=0 \quad$ Independent vectors

Empirical points

Noisy data set \Longleftrightarrow Empirical points: $\mathbb{X} \subset \mathbb{R}^{n}$ and a tolerance $\varepsilon \in \mathbb{R}^{+}$

Empirical points

Noisy data set \Longleftrightarrow Empirical points: $\mathbb{X} \subset \mathbb{R}^{n}$ and a tolerance $\varepsilon \in \mathbb{R}^{+}$
$\widetilde{\mathbb{X}}$ is numerically equivalent to \mathbb{X} iff
$\widetilde{\mathbb{X}}$ consists of points belonging to the
"clouds" around the elements of \mathbb{X}

Empirical points

Noisy data set \Longleftrightarrow Empirical points: $\mathbb{X} \subset \mathbb{R}^{n}$ and a tolerance $\varepsilon \in \mathbb{R}^{+}$
$\widetilde{\mathbb{X}}$ is numerically equivalent to \mathbb{X} iff
$\widetilde{\mathbb{X}}$ consists of points belonging to the
"clouds" around the elements of \mathbb{X}

A generic \widetilde{p} can be expressed as $\widetilde{p}=\left(p_{1}+e_{1}, \ldots, p_{n}+e_{n}\right) \Longrightarrow$ we make use of error variables

$$
\mathbf{e}=\left(e_{11}, \ldots, e_{s 1}, e_{12}, \ldots, e_{s 2}, \ldots, e_{1 n}, \ldots, e_{s n}\right) \text { and }\|\mathbf{e}\|_{\infty} \leq \varepsilon
$$

Empirical points

Noisy data set \Longleftrightarrow Empirical points: $\mathbb{X} \subset \mathbb{R}^{n}$ and a tolerance $\varepsilon \in \mathbb{R}^{+}$
$\widetilde{\mathbb{X}}$ is numerically equivalent to \mathbb{X} iff
$\widetilde{\mathbb{X}}$ consists of points belonging to the
"clouds" around the elements of \mathbb{X}

A generic \widetilde{p} can be expressed as $\widetilde{p}=\left(p_{1}+e_{1}, \ldots, p_{n}+e_{n}\right) \Longrightarrow$ we make use of error variables

$$
\mathbf{e}=\left(e_{11}, \ldots, e_{s 1}, e_{12}, \ldots, e_{s 2}, \ldots, e_{1 n}, \ldots, e_{s n}\right) \text { and }\|\mathbf{e}\|_{\infty} \leq \varepsilon
$$

A generic admissible perturbation $\widetilde{\mathbb{X}}$ of \mathbb{X} is expressed as

$$
\widetilde{\mathbb{X}}=\mathbb{X}(\mathbf{e})=\left\{p_{1}(\mathbf{e}), \ldots, p_{s}(\mathbf{e})\right\}
$$

Problem

Problem

Given a set \mathbb{X} of empirical points
determine a polynomial of low degree and the corresponding (simple) variety at which the points almost lie
that is

Problem

Problem

Given a set \mathbb{X} of empirical points determine a polynomial of low degree and the corresponding (simple) variety at which the points almost lie that is

Given $\mathbb{X}=\left\{p_{1}, \ldots, p_{s}\right\} \subseteq \mathbb{R}^{n}$ set of points, $\varepsilon \in \mathbb{R}^{+}$tolerance compute

$$
\begin{aligned}
& f^{*} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right] \\
& \mathbb{X}^{*}=\left\{p_{1}^{*}, \ldots, p_{s}^{*}\right\} \subseteq \mathbb{R}^{n}
\end{aligned} \text { s.t. }\left\{\begin{array}{l}
f^{*}\left(p_{i}^{*}\right)=0 \\
\left\|p_{i}^{*}-p_{i}\right\|_{\infty}<\varepsilon
\end{array} \quad \forall p_{i}^{*} \in \mathbb{X}^{*}\right.
$$

The simplicity of the model judged by the degree of f^{*}
The goodness of model by the max distance of \mathbb{X}^{*} from \mathbb{X}

Adapting the BM Algorithm to the empirical case

The New algorithm (empirical case)
Input: set of empirical points \mathbb{X} and tolerance ε
Out: low degree polynomial f vanishing at $\mathbb{X}(\widehat{\mathbf{e}}),\|\widehat{\mathbf{e}}\|<\varepsilon$

- Generic Step: $\mathcal{O}=\left\{t_{1}, \ldots, t_{k}\right\}$ and $t>_{\tau} t_{i}$. check whether there exists $\widehat{\mathbf{e}}$ s.t. $\mathbb{X}(\widehat{\mathbf{e}})$ is adm.pert. of \mathbb{X} and

$$
\begin{gathered}
\rho(\mathbb{X}(\widehat{\mathbf{e}}))=t(\mathbb{X}(\widehat{\mathbf{e}}))-M_{\mathcal{O}}(\mathbb{X}(\widehat{\mathbf{e}})) \alpha(\mathbb{X}(\widehat{\mathbf{e}}))=0 \\
\left(\text { Exact Case } \rho=t(\mathbb{X})-M_{\mathcal{O}}(\mathbb{X}) \alpha(\mathbb{X})=0\right)
\end{gathered}
$$

Yes: low degree polynomial is formed and stop
No: t is added to \mathcal{O}

Adapting the BM Algorithm to the empirical case

The New algorithm (empirical case)
Input: set of empirical points \mathbb{X} and tolerance ε
Out: low degree polynomial f vanishing at $\mathbb{X}(\widehat{\mathbf{e}}),\|\widehat{\mathbf{e}}\|<\varepsilon$

- Generic Step: $\mathcal{O}=\left\{t_{1}, \ldots, t_{k}\right\}$ and $t>_{\tau} t_{i}$. check whether there exists $\widehat{\mathbf{e}}$ s.t. $\mathbb{X}(\widehat{\mathbf{e}})$ is adm.pert. of \mathbb{X} and

$$
\rho(\mathbb{X}(\widehat{\mathbf{e}}))=t(\mathbb{X}(\widehat{\mathbf{e}}))-M_{\mathcal{O}}(\mathbb{X}(\widehat{\mathbf{e}})) \alpha(\mathbb{X}(\widehat{\mathbf{e}}))=0
$$

(Exact Case $\left.\rho=t(\mathbb{X})-M_{\mathcal{O}}(\mathbb{X}) \alpha(\mathbb{X})=0\right)$
Yes: low degree polynomial is formed and stop
No: t is added to \mathcal{O}

$$
\left(^{*}\right) \quad \rho(\mathbf{e})=0 \quad \text { in } \quad D=\left\{\mathbf{e}:\|\mathbf{e}\|_{\infty}<\varepsilon, M_{\mathcal{O}}(\mathbf{e}) \text { is full rank }\right\}
$$

Underdetermined nonlinear systems

Problem: compute a solution of $\rho(\mathbf{e})=0$ s.t. $\mathbf{e} \in D$
${ }^{1}$ Walker, Watson (1990)
C. Fassino (Univ. Genova)

Clouds of points and numerical storms

Underdetermined nonlinear systems

Problem: compute a solution of $\rho(\mathbf{e})=0$ s.t. $\mathbf{e} \in D$

- Normal Flow Algorithm. ${ }^{1}$ Let $\bar{x}=0 \in D, \omega \ll 1$, $\mathrm{h}=(1, \ldots, 1)$
- While $\|h\|_{2}>\omega$ do

$$
\begin{aligned}
& h=-\operatorname{Jac}_{\rho}(\bar{x})^{\dagger} \rho(\bar{x}) \\
& \bar{x}=\bar{x}+h
\end{aligned}
$$

- Return \bar{x} and stop

Underdetermined nonlinear systems

Problem: compute a solution of $\rho(\mathbf{e})=0$ s.t. $\mathbf{e} \in D$

- Normal Flow Algorithm. ${ }^{1}$ Let $\bar{x}=0 \in D, \omega \ll 1$, $\mathrm{h}=(1, \ldots, 1)$
- While $\|h\|_{2}>\omega$ do

$$
\begin{aligned}
& h=-\operatorname{Jac}_{\rho}(\bar{x})^{\dagger} \rho(\bar{x}) \\
& \bar{x}=\bar{x}+h
\end{aligned}
$$

- Return \bar{x} and stop

The NF Algorithm depends on the conditioning of $\operatorname{Jac}_{\rho}(\bar{x})$
SO we adopt the following strategy:

- If $\mathrm{Jac}_{\rho}(x)$ well-conditioned \Rightarrow we apply the NF Algorithm to ρ
- If $\operatorname{Jac}_{\rho}(x)$ ill-conditioned \Rightarrow we construct $\hat{\rho}: D \rightarrow \mathbb{R}^{m}$ such that $\operatorname{Jac}_{\hat{\rho}}(x)$ well-conditioned in D and $\|\widehat{\rho}(x)-\rho(x)\|$ small in D

Numerical Rank and Rank Revealing Decomposition

Our strategy is based on

- Numerical Rank. Let $A \in \operatorname{Mat}_{m \times n}(\mathbb{R}), \delta>0$ and $k>1$. If

$$
\sigma_{1}(A) \geq \ldots \geq \sigma_{r}(A)>k \delta>\delta>\sigma_{r+1}(A) \geq \ldots \geq \sigma_{n}(A)
$$

then r is called the numerical (δ, k)-rank of A.

Numerical Rank and Rank Revealing Decomposition

Our strategy is based on

- Numerical Rank. Let $A \in \operatorname{Mat}_{m \times n}(\mathbb{R}), \delta>0$ and $k>1$. If

$$
\sigma_{1}(A) \geq \ldots \geq \sigma_{r}(A)>k \delta>\delta>\sigma_{r+1}(A) \geq \ldots \geq \sigma_{n}(A)
$$

then r is called the numerical (δ, k)-rank of A.

- Rank Revealing Decomposition ${ }^{2}$. Let $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$ and $r=$ numerical (δ, k)-rank of $A \Rightarrow \exists$ a permutation matrix Π s.t.

$$
\begin{gathered}
A \Pi=Q\left(\begin{array}{ll}
R_{11} & R_{12} \\
0 & R_{22}
\end{array}\right) \\
\sigma_{\min }\left(R_{11}\right) \geq \frac{k}{q(n, r)} \delta \quad \text { and } \quad\left\|R_{22}\right\|_{2} \leq q(n, r) \delta
\end{gathered}
$$

The first r columns of $A \Pi$ are strongly independent

[^0]
Back to the problem

We consider, at the first step of the Normal Flow Algorithm, the ill conditioned system

$$
\operatorname{Jac}_{\rho}(0) h=-\rho(0)
$$

We select the maximum number of "strongly independent equations"

- computing $r=\operatorname{rank}_{\delta, k}\left(\operatorname{Jac}_{\rho}(0) \mid \rho(0)\right)$, with $\delta \geq \varepsilon$;
- computing the Rank Revealing Decomposition of

$$
\binom{\mathrm{Jac}_{\rho}(0)^{t}}{\rho(0)^{t}} \Pi=Q\left(\begin{array}{ll}
R_{11} & R_{12} \\
0 & R_{22}
\end{array}\right)
$$

- partitioning $\Pi=\left(\Pi_{1} \mid \Pi_{2}\right)$ with $\Pi_{1} \in \operatorname{Mat}_{m \times r}(\mathbb{R})$.

Back to the problem

We consider, at the first step of the Normal Flow Algorithm, the ill conditioned system

$$
\operatorname{Jac}_{\rho}(0) h=-\rho(0)
$$

We select the maximum number of "strongly independent equations"

- computing $r=\operatorname{rank}_{\delta, k}\left(\operatorname{Jac}_{\rho}(0) \mid \rho(0)\right)$, with $\delta \geq \varepsilon$;
- computing the Rank Revealing Decomposition of

$$
\binom{\mathrm{Jac}_{\rho}(0)^{t}}{\rho(0)^{t}} \Pi=Q\left(\begin{array}{ll}
R_{11} & R_{12} \\
0 & R_{22}
\end{array}\right)
$$

- partitioning $\Pi=\left(\Pi_{1} \mid \Pi_{2}\right)$ with $\Pi_{1} \in \operatorname{Mat}_{m \times r}(\mathbb{R})$.

$$
\widehat{\rho}(\mathbf{e})=\binom{\Pi_{1}^{t} \rho(\mathbf{e})}{G \Pi_{1}^{t} \rho(\mathbf{e})} \quad \text { where } \quad G=R_{12}^{t} R_{11}^{-t}
$$

Main results

$$
\widehat{\rho}(\mathbf{e})=\left\{\begin{array}{rlll}
\Pi_{1}^{t} \rho(\mathbf{e}) & =0
\end{array}\right\} r
$$

- the $m-r$ last equations depend on the first r equations;
- the first r rows of $\operatorname{Jac}_{\widehat{\rho}}(0)$ (or of $\operatorname{Jac}_{\hat{\rho}}(\mathbf{e})$ if $\mathbf{e} \approx \mathbf{0}$) is well conditioned;
- $\left\|\hat{\rho}(\mathbf{e})-\Pi^{t} \rho(\mathbf{e})\right\|_{2} \leq q(m, r) \delta+O\left(\delta^{2}\right) \forall \mathbf{e} \in D$ If $\rho\left(\mathbf{e}^{*}\right)=0, \mathbf{e}^{*} \in D$, then $\left\|\hat{\rho}(\mathbf{e})-\Pi^{t} \rho(\mathbf{e})\right\|_{2}=O\left(\delta^{2}\right)$
Conclusion: we apply the NF algorithm to $\Pi_{1}^{t} \rho(\mathbf{e})$ which is
- equivalent to $\widehat{\rho}(\mathbf{e})$
- "close" to $\rho(\mathbf{e})$
- with well-conditioned Jacobian matrices on D.

Example

We consider the set of points created by perturbing less than 0.1 the coords of 6 points on $y^{2}-x-2 y+2=0$:
$\mathbb{X}=\{(0.95,1),(5.05,2.95),(5.05,-0.95),(9.98,4),(10.05,-2),(17.01,5)\}$

Example

We consider the set of points created by perturbing less than 0.1 the coords of 6 points on $y^{2}-x-2 y+2=0$:
$\mathbb{X}=\{(0.95,1),(5.05,2.95),(5.05,-0.95),(9.98,4),(10.05,-2),(17.01,5)\}$
A straightforward computation using BM algorithm gives

Example

Our Algorithm applied to \mathbb{X} with $\varepsilon=0.1, \delta=2 \varepsilon, k=2$ computes

$$
\bar{f}=y^{2}-0.9816 x-2.0176 y+1.9660 \quad\left(\approx y^{2}-x-2 y+2\right)
$$

Singular values and condition number of $\left[\operatorname{Jac}_{\rho}(0) \mid \rho(0)\right]$ $\{6.39,4.67,3.33,0.035,0.02,0.00\} \quad K_{2}\left(\operatorname{Jac}_{\rho}(0) \mid \rho(0)\right) \approx 310$

Example

Zooming around the first point we get...

Open problems

Problem 1: Parameters

Empirical points \Longleftrightarrow tolerance ε on the coordinates of the input points. Numerical rank of $\left[\operatorname{Jac}_{\rho}(0) \mid \rho(0)\right] \Longleftrightarrow$ parameters δ and k s.t.

$$
\sigma_{1} \geq \ldots \sigma_{r}>k \delta>\delta \geq \sigma_{r+1} \geq \sigma_{m}
$$

What is the best choice of δ and k as function of ε ?

Problem 2: Strategy

A different strategy for solving the non linear system $\rho(\mathbf{e})=0$ avoiding the "almost dependent" equations (using the information about the tolerance...)

[^0]: ${ }^{2}$ Hong, Pan (1992)

