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Introduction

We present a symbolic-numeric approach to find multivariate
polynomial models describing a set of noisy data, represented as a set X of
limited precision points.

Observations:

Data without noise: the polynomial model can be described by the
elements of the vanishing ideal I(X) of X

I(X) = {f | f (p) = 0, ∀p ∈ X}

Data with noise: Each point of X represents a cloud of points
(numerically equivalent to X). Structures based on polynomials
involving real data lose many of their rigorous algebraic properties.
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Noisy Data

If the points of X̂ are a “small” perturbation of the points of X their
vanishing ideals I(X) and I(X̂) may be very different.

Example Let X = {(1, 1), (3, 2), (5, 3)} and X̂ = {(1, 1), (3, 2), (5.1, 3)}

I(X) :

{
x − 2y + 1
y3 − 6y2 + 11y − 6

I(X̂) :


x2 − 20x + 37y − 18
xy − 43x + 81y − 39
y2 − 90.1x + 172.2y − 83.1
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Data without noise

Given a set X of points we can compute the τ -Gröbner basis of I(X)

The Buchberger-Möller algorithm
Input: A set of points X
Output: A Gröbner basis of I(X)

Step Zero: O = {1}

Generic Step: O = {t1, . . . , tk} and t >τ ti .
t(X), t1(X), . . . , tk(X) linearly dependent? (*)
Yes: polynomial of basis formed
No: t is added to O

(*) ⇔ - construct MO(X) = (t1(X), . . . , tk(X))
- solve LSP: MO(X)α(X) = t(X)
- check whether ρ(X) = t(X)−MO(X)α(X) = 0
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Input: A set of points X
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Example

Example Let X = {(1, 1), (3, 2), (5, 3)} and X̂ = {(1, 1), (3, 2), (5.1, 3)}

Consider O = {t1 = 1, t2 = y} t = x

[t1(X), t2(X), t(X)] =

 1 1 1
1 2 3
1 3 5

 [t1(X̂), t2(X̂), t(X̂)] =

 1 1 1
1 2 3
1 3 5.1


t(X)− 2t2(X) + t1(X) = 0 Independent vectors
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Empirical points

Noisy data set ⇐⇒ Empirical points: X ⊂ Rn and a tolerance ε ∈ R+

X̃ is numerically equivalent to X iff
X̃ consists of points belonging to the
“clouds” around the elements of X ~

ε
2

ε
1

p

p

A generic p̃ can be expressed as p̃ = (p1 + e1, . . . , pn + en) =⇒
we make use of error variables

e = (e11, . . . , es1, e12, . . . , es2, . . . , e1n, . . . , esn) and ‖e‖∞ ≤ ε

A generic admissible perturbation X̃ of X is expressed as

X̃ = X(e) = {p1(e), . . . , ps(e)}
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Problem

Problem
Given a set X of empirical points

determine a polynomial of low degree and the corresponding (simple)
variety at which the points almost lie

that is

Given X = {p1, . . . , ps} ⊆ Rn set of points, ε ∈ R+ tolerance
compute

f ∗ ∈ R[x1, . . . , xn]
X∗ = {p∗1 , . . . , p∗s } ⊆ Rn s.t.

{
f ∗(p∗i ) = 0
‖p∗i − pi‖∞ < ε

∀p∗i ∈ X∗

The simplicity of the model judged by the degree of f ∗

The goodness of model by the max distance of X∗ from X
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Adapting the BM Algorithm to the empirical case

The New algorithm (empirical case)
Input: set of empirical points X and tolerance ε
Out: low degree polynomial f vanishing at X(ê), ‖ê‖ < ε

Generic Step: O = {t1, . . . , tk} and t >τ ti .
check whether there exists ê s.t. X(ê) is adm.pert. of X and

ρ(X(ê)) = t(X(ê))−MO(X(ê))α(X(ê)) = 0 (∗)

(Exact Case ρ = t(X)−MO(X)α(X) = 0)

Yes: low degree polynomial is formed and stop
No: t is added to O

(*) ρ(e) = 0 in D = {e : ‖e‖∞ < ε,MO(e) is full rank}
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Underdetermined nonlinear systems

Problem: compute a solution of ρ(e) = 0 s.t. e ∈ D

Normal Flow Algorithm.1 Let x̄ = 0 ∈ D, ω � 1, h=(1,. . . ,1)
- While ‖h‖2 > ω do

h = −Jacρ(x̄)†ρ(x̄)
x̄ = x̄ + h

- Return x̄ and stop

The NF Algorithm depends on the conditioning of Jacρ(x̄)
SO we adopt the following strategy:

If Jacρ(x) well-conditioned ⇒ we apply the NF Algorithm to ρ

If Jacρ(x) ill-conditioned ⇒ we construct ρ̂ : D → Rm such that
Jacρ̂(x) well-conditioned in D and ‖ρ̂(x)− ρ(x)‖ small in D

1Walker, Watson (1990)
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Numerical Rank and Rank Revealing Decomposition

Our strategy is based on

Numerical Rank. Let A ∈ Matm×n(R), δ > 0 and k > 1. If

σ1(A) ≥ . . . ≥ σr (A) > kδ > δ > σr+1(A) ≥ . . . ≥ σn(A)

then r is called the numerical (δ, k)-rank of A.

Rank Revealing Decomposition 2. Let A ∈ Matm×n(R) and
r=numerical (δ, k)-rank of A ⇒ ∃ a permutation matrix Π s.t.

AΠ = Q

(
R11 R12

0 R22

)
σmin(R11) ≥ k

q(n,r)δ and ‖R22‖2 ≤ q(n, r)δ

The first r columns of AΠ are strongly independent

2Hong, Pan (1992)
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Back to the problem

We consider, at the first step of the Normal Flow Algorithm, the ill
conditioned system

Jacρ(0)h = −ρ(0)

We select the maximum number of “strongly independent equations”

computing r = rankδ,k(Jacρ(0) | ρ(0)), with δ ≥ ε;

computing the Rank Revealing Decomposition of(
Jacρ(0)t

ρ(0)t

)
Π = Q

(
R11 R12

0 R22

)
partitioning Π = (Π1 | Π2) with Π1 ∈ Matm×r (R).

ρ̂(e) =

(
Πt

1ρ(e)
GΠt

1ρ(e)

)
where G = Rt

12R
−t
11

C. Fassino (Univ. Genova) Clouds of points and numerical storms Genova, 16th February 2012 11 / 16



Back to the problem

We consider, at the first step of the Normal Flow Algorithm, the ill
conditioned system

Jacρ(0)h = −ρ(0)

We select the maximum number of “strongly independent equations”

computing r = rankδ,k(Jacρ(0) | ρ(0)), with δ ≥ ε;

computing the Rank Revealing Decomposition of(
Jacρ(0)t

ρ(0)t

)
Π = Q

(
R11 R12

0 R22

)
partitioning Π = (Π1 | Π2) with Π1 ∈ Matm×r (R).

ρ̂(e) =

(
Πt

1ρ(e)
GΠt

1ρ(e)

)
where G = Rt

12R
−t
11

C. Fassino (Univ. Genova) Clouds of points and numerical storms Genova, 16th February 2012 11 / 16



Main results

ρ̂(e) =

{
Πt

1ρ(e) = 0 } r
GΠt

1ρ(e) = 0 }m − r

the m − r last equations depend on the first r equations;

the first r rows of Jacρ̂(0) (or of Jacρ̂(e) if e ≈ 0) is well conditioned;

‖ρ̂(e)− Πtρ(e)‖2 ≤ q(m, r)δ + O(δ2) ∀ e ∈ D
If ρ(e∗) = 0, e∗ ∈ D, then ‖ρ̂(e)− Πtρ(e)‖2 = O(δ2)

Conclusion: we apply the NF algorithm to Πt
1ρ(e) which is

equivalent to ρ̂(e)

“close” to ρ(e)

with well-conditioned Jacobian matrices on D.
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Example

We consider the set of points created by perturbing less than 0.1 the
coords of 6 points on y2 − x − 2y + 2 = 0:

X = {(0.95, 1), (5.05, 2.95), (5.05,−0.95), (9.98, 4), (10.05,−2), (17.01, 5)}

A straightforward computation using BM algorithm gives

0 2,5 5 7,5 10 12,5 15 17,5

-2,5

2,5

5
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Example

Our Algorithm applied to X with ε = 0.1, δ = 2ε, k = 2 computes

f̄ = y2 − 0.9816x − 2.0176y + 1.9660
(
≈ y2 − x − 2y + 2

)

-2,5 0 2,5 5 7,5 10 12,5 15

-2,5

2,5

5

Singular values and condition number of [Jacρ(0) | ρ(0)]

{6.39, 4.67, 3.33, 0.035, 0.02, 0.00} K2 (Jacρ(0) | ρ(0)) ≈ 310
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Example

Zooming around the first point we get...

0,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25 2,5

0,5

0,75

1

1,25

1,5
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Open problems

Problem 1: Parameters
Empirical points ⇐⇒ tolerance ε on the coordinates of the input points.
Numerical rank of [Jacρ(0)|ρ(0)] ⇐⇒ parameters δ and k s.t.

σ1 ≥ . . . σr > kδ > δ ≥ σr+1 ≥ σm

What is the best choice of δ and k as function of ε?

Problem 2: Strategy
A different strategy for solving the non linear system ρ(e) = 0 avoiding the
“almost dependent” equations (using the information about the
tolerance...)
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