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The problem

We consider ill-conditioned linear systems

Ax = b

We mainly focus the attention on full-rank problems in which the singular
values of A decay gradually to zero.

Discretization of compact operators, as in the case of Fredholm
integral equations of the �rst kind.

Vandermonde type systems arising from interpolation.
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Motivations

We want to construct an iterative solver able to overcome some of the
typical drawback of the classical iterative solvers:

Semi-convergence: the iterates initially approach the solution but
quite rapidly diverge

Strong dependence on the parameter-choice strategy: in order
to prevent divergence a reliable stopping criterium has to be used

Poor accuracy: typically holds for Krylov type methods based on the
use of ATA (CGLS)
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Outline

Reformulation of the problem in term of a matrix function evaluation

Extension to Tikhonov regularization

Theoretical and numerical error analysis

Filter factor analysis

The choice of the regularization parameters

Numerical experiments
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Reformulation of the problem

The basic idea is to solve the system Ax = b in two steps, �rst solving in
some way the regularized system

(A+ λI ) xλ = b

(Franklin�s method) and then recovering the solution x from the system

(A+ λI )�1 Ax = xλ

that is equivalent to compute

x = f (A)xλ

where
f (z) = 1+ λz�1
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The choice of lambda

By the de�nition of f the attainable accuracy depends on the the
conditioning of (A+ λI )�1 A. Theoretically the best situation is attained
de�ning λ such that

κ(A+ λI ) = κ((A+ λI )�1 A)

In the SPD case taking

λ =
p

λ1λN � 1/
q

κ(A)

where λ1 and λN are respectively the smallest and the largest eigenvalue
of A, we obtain

κ(A+ λI ) = κ((A+ λI )�1 A) =
q

κ(A)
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The computation of the matrix function - The Arnoldi
algorithm

For the computation of f (A)xλ we use the standard Arnoldi method
projecting the matrix A onto the Krylov subspaces generated by A and xλ

Km(A, xλ) = spanfxλ,Axλ, ...,A
m�1xλg

For the construction of the subspaces Km(A, xλ) the Arnoldi algorithm
generates an orthonormal sequence fvjgj�1, with v1 = xλ/ kxλk, such
that Km(A, xλ) = span fv1, v2, ..., vmg. For every m,

AVm = VmHm + hm+1,mvm+1eTm .

where Vm = [v1, v2, ..., vm ], Hm is an upper Hessenberg matrix with
entries hi ,j = vTi Avj and ej is the j-th vector of the canonical basis of Rm .
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The computation of the matrix function - The ASP
method

The m-th Arnoldi approximation to x = f (A)xλ is de�ned as

xm = kxλkVm f (Hm)e1

At each step of the Arnoldi algorithm we have to compute the vector
wj = Avj . The method theoretically converges in a �nite number of steps.
For the computation of f (Hm) we employ the Schur-Parlett algorithm
(Golub and Van Loan 1983).
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Extension to Tikhonov regularization - The ATP method

The method can be extended to problems in which the exact right hand
side b is a¤ected by noise. We assume to work with a perturbed right-hand
side b = b+ eb . Given λ and H we solve the regularized system

(ATA+ λHTH)xλ = A
T b.

and then we approximate x by computing

x =
�
ATA

��1
(ATA+ λHTH)xλ = f (Q)xλ

where Q =
�
HTH

��1 �
ATA

�
. As before, for the computation of f (Q)xλ

we use the standard Arnoldi method projecting the matrix Q onto the
Krylov subspaces generated by Q and xλ. Now, at each step we have have
to compute the vectors wj = Qvj , j � 1, with v1 = xλ/ kxλk, that is, to
solve the systems

�
HTH

�
wj =

�
ATA

�
vj .

Paolo Novati - University of Padova ()Tikhonov - matrix function February 2012 9 / 27



Theoretical error analysis

The �eld of values of A is de�ned as

F (A) :=
�
yHAy
yHy

, y 2 CNn f0g
�

Theorem
Assume that F (A) � C+. Then

kf (A)xλ � kxλkVm f (Hm)e1k � K
λ

am+1 ∏m
i=1 hi+1,i kxλk ,

where a > 0 is the leftmost point of F (A) and 2 � K � 11.08 (Crouzeix
2007; in the symmetric case K = 1).
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Some general considerations

The rate of convergence is almost independent of the choice of λ,
and this is con�rmed by the numerical experiments.

The error decay is related with the rate of the decay of ∏m
i=1 hi+1,i .

Theorem
(From a result by Nevanlinna 1993) Let σj , j � 1, be the singular values of
an operator A. If

∑
j�1

σpj < ∞ for a certain p > 0

then

∏m
i=1 hi+1,i �

�ηep
m

�m/p

where
η � 1+ p

p ∑
j�1

σpj
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Some general considerations

For discrete ill-posed problems the rate of decay of ∏m
i=1 hi+1,i is

superlinear and depends on the p-summability of the singular values
of A, i.e., on the degree of ill-posedness of the problem.

Each Arnoldi-based method (CG, FOM, GMRES) shows the same
rate of convergence
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Error analysis in computer arithmetics for the ASP method

We need to assume that xλ, solution of (A+ λI ) xλ = b, is approximated
by xλ with an accuracy depending on the choice of λ and the method
used. In this way, the Arnoldi algorithm actually constructs the Krylov
subspaces Km(A, xλ). Hence for the error Em := x � kxλkVm f (Hm)e1 we
have

kEmk = kf (A)xλ � kxλkVm f (Hm)e1k �
kf (A)xλ � kxλkVm f (Hm)e1k+ kf (A) (xλ � xλ)k

For small values of λ, f (A) � I and we have that
kEmk � kxλ � xλk. The method is not able to improve the accuracy
provided by the solution of the initial system.

For large λ we have that xλ � xλ, but even assuming that
kf (A) (xλ � xλ)k � 0, we have another lower bound due the
ill-conditioning of f (A) = A�1 (A+ λI ).
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Error analysis in computer arithmetics for the ATP method

The error is given by

Em := f (Q)xλ � pm�1(Q)xλ

(pm�1 interpolates f at the eigenvalues of Q) where
(ATA+ λHTH)xλ = AT b and (ATA+ λHTH)xλ = AT b. As before we
can write

kEmk � kf (Q)xλ � pm�1(Q)xλk+ kf (Q) (xλ � xλ)k .

Theoretically we may choose λ very large, thus oversmoothing, in order to
reduce the e¤ect of noise. Unfortunately, the main problem is that, as
before, f (Q) may be ill-conditioned for λ large. Even in this case we
should �nd a compromise for the selection of a suitable value of λ, but
contrary to the ASP method for noise-free problems it is di¢ cult to design
a theoretical strategy. Indeed everything depends on the problem and on
the operator H.
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Filter factors

Assume that A is diagonalizable, that is, A = XDX�1 where
D = diag(λ1, ...,λN ). For the ASP method we have

xλ =
N

∑
i=1

λi
λi + λ

�
X�1b

�
i

λi
xi ,

where xi is the eigenvector associated with λi . After the �rst phase, the
�lter factors are thus gi = λi (λi + λ)�1. The Arnoldi algorithm produces
approximations of the type xm = pm�1(A)xλ, where pm�1 interpolates the
function f at the eigenvalues of Hm . Hence

xm =
N

∑
i=1

λipm�1(λi )
λi + λ

�
X�1b

�
i

λi
xi .

and the �lter factors are given by

f (m)i =
λipm�1(λi )

λi + λ
, i = 1, ...,N.
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Filter factors - an example

GRAVITY(12) - Filter factors gi (asterisk) and f
(m)
i (circle) with

m = 4, 6, 8, 10. λ = 1/
p

κ(A)
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The Arnoldi (Lanczos) algorithm initially picks up the largest eigenvalues,
hence it automatically corrects the �lters corresponding to the low-middle
frequencies (gi ! f (m)i � 1), keep damping the highest ones.
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Filter factors - theoretical analysis

Assume that the Ritz values rj , j = 1, ...,m, are distinct. Therefore

pm�1(λi ) =
m

∑
j=1
lj (λi )f (rj ),

where lj , j = 1, ...,m are the Lagrange polynomials. Hence we obtain

f (m)i =
m

∑
j=1
lj (λi )

λi
rj

rj + λ

λi + λ
, i = 1, ...,N.

Since the Arnoldi algorithm ensures that rj � λj for j = 1, ...,m we have

f (m)i � 1 for i � m. For i > m and when λi � 0 we have that

f (m)i � pm�1(0)
λi

λi + λ
,

so that the �lters are close to the ones of the uncorrected scheme.
Therefore, the choice of λ only in�uences the high frequencies. For this
reason, for the ASP method, this choice is more related to the
conditioning of the subproblems.
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Filter factors - extension to the ATP method

The �lter factor analysis remains valid also for the ATP method. Taking
H = I and using the SVD decomposition we easily �nd that the �lter
factors are now given by

f (m)i =
σ2i pm�1(σ

2
i )

σ2i + λ

and hence our considerations for the ASP method remains true also for
this case. For H 6= I we just need to consider the GSVD. For problems
with noise, the choice of λ is of great importance. Anyway the correction
phase allows to reproduce the low frequencies independently of this choice.
In this sense, in practice we can take λ even very large in order to reduce
as much as possible the in�uence of noise.
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Some experiments from Reg. Tools by P.C.Hansen
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Error behavior of the GMRES and the ASP method with λ = 1e � 3,
1e � 5, 1e � 7, 1e � 9, for BAART(240)
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Some experiments from Reg. Tools by P.C.Hansen
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Error behavior of the GMRES and the ATP method with λ = 1 and
λ = 1e10 for BAART(240) with Gaussian noise (10�3)
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Some experiments from Reg. Tools by P.C.Hansen
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Error behavior of the preconditioned GMRES and the ASP method for
BAART(240) with λ = 1e � 5 and 1e � 7
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Some experiments from Reg. Tools by P.C.Hansen
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Maximum attainable accuracy with respect to the choice of lambda.
N = 160.
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Some experiments from Reg. Tools by P.C.Hansen
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Maximum attainable accuracy with respect to the choice of lambda with
right-hand side a¤ected by Gaussian noise (10�3). N = 160.
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An example of image restoration

We want to solve Ax = b where A 2 RN�N is the matrix representing the
blurring operator and b = Ax is the blurred image. We generate a noisy
image b = b+ eb , where eb is a Gaussian noise (10�3). As �lters we
consider

H1,2 =
�
I 
H1
H1 
 I

�
, where H1 =

0BBB@
1 �1

. . . . . .
1 �1

1

1CCCA 2 Rn�n,

H2,2 =

0BBBBB@
4 �1 �1
�1 4 �1 �1

. . . . . . . . .
�1 �1 4 �1

�1 �1 4

1CCCCCA 2 RN�N .
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An example of image restoration

Original Image Blurred and noisy Image

Restored Image with H 1 2 Restored Image with H 2 2

Image restoration with the ATP method using
H1,2, H2,2 and λ = 100.
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Results of image restoration

1 102 104 106

H1,2 0.060 0.060 0.062 0.059
H2,2 0.061 0.064 0.069 0.075

Minimum attainable error with respect
to the choice of λ
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Final remarks

Both methods are stable w.r.t. the choice of the number of iterations,
i.e. they do not require a reliable stopping rule

They are as fast and accurate as the most e¤ective iterative solvers

W.r.t. classical preconditioned iterative solvers, only one linear system
with the preconditioner has to be solved

They generally do not require an accurate parameter-choice strategy
for λ
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