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Discrete ill-posed problem

We consider the least-squares problem

min
x∈Rn
‖Ax− b‖, A ∈ Rm×n, m ≥ n,

under the assumptions that

• the matrix A is severely ill-conditioned;

• the data vector b is error-contaminated;

• there is not an obvious way to define a numerical rank for A;

• the solution is regular → it lives in the span of the first
singular vectors (discrete Picard condition).



Regularization method

A regularization method to approximate the noise-free solution of

min
x∈Rn
‖Ax− bδ‖, where ‖b− bδ‖ ≤ δ‖b‖,

is a pair
{Rλ, λ(δ,bδ)}

such that

xλ = Rλ(bδ) −→ A†b, when δ −→ 0.

The parameter choice rule in a regularization method must depend
on the noise level δ [Bakushinski 1984].

Often in real applications an accurate bound δ is unknown, so
error-free, or heuristic methods, are used.



Small to medium-sized problems: TSVD

Let the singular value decomposition (SVD) of A be

A = U

[
Σ
0

]
V T ,

where U and V are are orthogonal, Σ = diag(σi ) ∈ Rn×n, and

σ1 ≥ σ2 ≥ · · · ≥ σ` > σ`+1 = · · · = σn = 0.

The best rank-k approximation of A w.r.to the spectral norm is

Ak = U

[
Σk

O

]
V T ,

with
Σk = diag[σ1, σ2, . . . , σk , 0, . . . , 0︸ ︷︷ ︸

n−k

].



Small to medium-sized problems: TSVD

Introduce the Moore-Penrose pseudoinverse of Ak

A†k = V
[
Σ†k OT

]
UT ,

where

Σ†k = diag[σ−1
1 , σ−1

2 , . . . , σ−1
k , 0, . . . , 0︸ ︷︷ ︸

n−k

] ∈ Rn×n.

The minimal-norm solution of the least-squares problem
minx∈Rn ‖Akx− b‖ can be expressed as

xk = A†kb =
k∑

j=1

uTj b

σj
vj ,

This is the truncated SVD (TSVD) solution
and k = 1, . . . , ` is the regularization parameter.



Using a regularization matrix: TGSVD

Let us introduce a regularization matrix L ∈ Rp×n. We call
minimal L-norm solution the vector x†L which solves the problem

min
x∈S
‖Lx‖, S = {x ∈ Rn | ATAx = ATb},

under the assumption

N (A) ∩N (L) = {0}.

By means of the generalized singular value decomposition (GSVD)
of the matrix pair (A, L)

A = UΣAZ
−1, L = VΣLZ

−1,

it is possible to define the truncated GSVD (TGSVD) solution xk ,
where k = 0, 1, . . . , p is the regularization parameter.



Discrepancy principle vs. heuristic rules

The discrepancy principle is an a posteriori rule, which selects

k(δ,bδ) = min{k : ‖Axk − bδ‖ ≤ τδ‖b‖}.

The constant τ is usually larger than 1.

We used τ = 1.3, knowledge of the noise level δ is needed.

Heuristic rules are based on what can be observed/measured

• residuals: ‖rk‖ = ‖Axk − b‖
• norms: ‖xk‖, ‖Lxk‖
• . . .



Residuals are not enough
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Some heuristic parameter choice rules

• L-curve [Hansen 1992], [Hansen, O’Leary 1993]
• Corner algorithm [Hansen, Jensen, R 2006]
• L-triangle [Castellanos, Gómez, Guerra 2002]
• Residual L-curve [Reichel, Sadok 2008]
• Condition L-curve [Calvetti, Lewis, Reichel 2002]
• Regińska method [Regińska 1996]
• restricted Regińska [Reichel, R 2012]

• Generalized Cross Validation (GCV) [Craven, Wahba 1979]

• Error Estimates [Brezinski, R, Seatzu 2008/9],

• Quasi-optimality criterion [Morozov 1984]

• Specific for LSQR
• Quadrature [Hnětynková, Plešinger, Strakoš 2009]
• Ratio [Reichel, R 2012]



L-curve

The L-curve is defined as the graph that connects adjacent points
in the sequence

{log ‖Axj − b‖, log ‖xj‖}, j = 1, 2, . . . , `.

The graph generally is L-shaped.

The L-curve criterion consist of selecting the value of the
regularization parameter corresponding to the corner of the curve.



L-curve
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Difficult situations: clusters of points
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Heat(1) example: 100× 50, δ = 10−2



Difficult situations: clusters of points
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Difficult situations: small var. in norms/residuals
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Difficult situations: small var. in norms/residuals
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The adaptive pruning (or corner) algorithm

The key idea is that if we remove the right amount of points from
a discrete L-curve, then the corner can be easily found.

If too few points are removed we still maintain unwanted local
features, and if too many points are removed the corner will be
incorrectly located or may disappear.

[Hansen, Jensen, R 2006]



The adaptive pruning (or corner) algorithm

1 Stage one.

1 We construct a sequence of pruned L-curves (selecting the
largest line segments).

2 For each curve, we select candidate corners by two algorithms:
• the first is based on the local behaviour of the curve (angles);
• the second is based on the global behaviour of the curve.

2 Stage two.
1 We select a candidate from the list, so that

• the curve is convex at that point;
• the point is the last one before the residuals stagnate.



The corner algorithm at work
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The corner algorithm at work
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Other L-curves

• Residual L-curve [Reichel, Sadok 2008]

{log ‖rj‖, log j}, j = 1, 2, . . . , `.

• Condition L-curve [Calvetti, Lewis, Reichel 2002]

{log ‖rj‖, log κ(Aj)}, j = 1, 2, . . . , `.

In both cases we select the TSVD truncation parameter by the
corner algorithm.



The Regińska method

In [Regińska 1996] an interesting analysis of the L-curve method,
applied to Tikhonov regularization, is presented.

The choice rule proposed therein can be adapted to the situation
when the regularization parameter is discrete.

In particular, it can be proved that minimizing the function

φν(j) = ‖rj‖ ‖xj‖ν , j = 1, 2, . . . , `− 1,

where ν > 0 is a parameter, is equivalent to finding the corner of
the L-curve. In fact

φν(j) = exp (log ‖rj‖+ ν log ‖xj‖) = exp (xj + νyj)

is a norm of the vector from the origin to (xj , yj), on the L-curve.



The restricted Regińska (RR) method

The performance of the Regińska choice rule can be greatly
enhanced by a preprocessing procedure:

• eliminate points {‖rj‖, ‖xj‖} with ‖xj‖ very large;

• select the largest convex subset;

• apply Regińska’s method.
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Error estimates based on extrapolation

Let x† be the normal solution to

min
x∈Rn
‖Ax− b‖2.

If x is an approximate solution and r = b− Ax, then

‖x† − x‖2 ' η2
ν = dν−1

0 d5−2ν
1 dν−3

2 ν ∈ R

where
d0 = ‖r‖2, d1 = ‖AT r‖2, d2 = ‖AAT r‖2.

We select k∗ = arg mink ην(k).

Two examples: η2 = ‖r‖·‖AT r‖
‖AAT r‖ , η3 = ‖r‖2

‖AT r‖ (Auchmuty).

[Brezinski, R, Seatzu 2008, 2009], [Reichel, R, Seatzu 2009].



Error estimates based on extrapolation

2 4 6 8 10 12 14 16 18 20
10

−5

10
0

10
5

10
10

10
15

 

 

error
η

2

η
3

η
4

TSVD/Shaw example: 40× 20, δ = 10−8



Quasi-optimality hybrid methods

The quasi-optimality criterion

‖xk+1 − xk‖ = min
1≤j<`

‖xj+1 − xj‖

was introduced in [Morozov 1984].

The function to be minimized typically has many local minima,
which often lead to an unappropriate choice of the parameter.

We found it effective to use it in an hybrid approach:

• determine an initial index by a different method;

• apply the quasi-optimality criterion in a neighborhood of this
estimate.



Large problems: LSQR

The iterates xj ∈ Kj(A
TA,ATb) generated by LSQR are such that

‖Axj − b‖ = min
x∈Kj (ATA,ATb)

‖Ax− b‖.

The method is implemented via Lanczos bidiagonalization of A:

AVj = Uj+1C̄j , ATUj = VjC
T
j ,

where

• Uj+1e1 = b/‖b‖;
• the columns of Uj+1 and Vj are orthonormal;

• C̄j ∈ R(j+1)×j is lower bidiagonal with leading submatrix Cj .

All the choice rules discussed can be inexpensively applied to LSQR
to select the iterate xj which best approximates x.



Using a regularization matrix in LSQR

If we introduce a regularization matrix L ∈ Rp×n, the problem to
be solved is the following

min
x∈S
‖Lx‖, S = {x ∈ Rn | ATAx = ATb}.

In [Eldén 1982], the A-weighted generalized inverse L†A of L was
introduced, with the property that the above problem reduces to

min
y∈Rn
‖AL†Ay − b̄‖,

where b̄ is a suitable modification of b.

We apply LSQR to the solution of this problem and use a choice
rule to determine which iterate yk to select. This iterate is then
transformed to an approximate solution xk of the original problem.



The Quadrature choice rule

In [Hnětynková, Plešinger, Strakoš 2009], a new method to
estimate the error e in b is presented, based on the connection
between Lanczos bidiagonalization and Gauss quadrature originally
introduced in [Golub, Meurant 1994].
Let

AAT = WΛW T , Λ = diag[λ1, λ2, . . . , λm] ∈ Rm×m,

then the matrix function

bT f (AAT )b =
m∑
j=1

f (λj)ω
2
j , ωj = bTW ej ,

can be viewed as a Stieltjes integral and approximated by a j-point
Gauss quadrature formula. It can be shown that

Gj f := ‖b‖2eT1 f (CjC
T
j )e1.



The Quadrature choice rule

If we compute the SVD decomposition

Cj = WjSjW̃
T
j ,

then

Gj f =

j∑
i=1

f
(
(s

(j)
i )2

)(
ω

(j)
i

)2
,

where Sj = diag[s
(j)
1 , s

(j)
2 , . . . , s

(j)
j ] and ω

(j)
i = ‖b‖eT1 Wjei .

(ω
(j)
j )2 is a decreasing function of j , which stagnates when j is

large, where (ω
(j)
j )2 ≈ ‖e‖2 [H., P., S. 2009]

They propose to stop the iteration when the stagnation first occur.



The Ratio choice rule

It is a modification of the Quadrature method. We consider

ρj =
ω

(j)
j

s
(j)
j

, j = 1, 2, . . . , i ,

where s
(j)
j is the smallest singular value of Cj .

We choose the iterate xk such that

ρk = min
1≤j≤i

ρj .

If a plateau is present around the minimum, we take the last point
of the plateau.



LSQR: Quadrature vs. Ratio
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LSQR: the effect of reorthogonalization
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Numerical experiments: the wild bunch

We compared various methods on a set of 1200 linear systems:

• 10 test linear systems with prescribed solution
• Matlab: Hilbert, Lotkin;
• Regularization Tools: Baart, Deriv2(2), Foxgood, Gravity,

Heat(1), Ilaplace(3), Phillips, Shaw.

Quality index:

Q(µ) =
‖x− xµest‖
‖x− xµopt‖

≥ 1

failure: Q(µ) > 10 severe failure: Q(µ) > 102
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Parameter choice rules for TSVD

Method n × n 2n × n

L-corner 6%( 0%) 4%(0%)
Res. L-curve 3%( 1%) 1%(0%)
Cond. L-curve 2%( 1%) 8%(6%)
Regińska 4%( 0%) 2%(0%)
Restr. Regińska 3%( 0%) 2%(0%)
Quasi-optimality 9%( 1%) 7%(1%)
GCV 24%(20%) 8%(4%)
Extrapolation 5%( 1%) 9%(0%)
Discrepancy 0%( 0%) 0%(0%)

‖x− xµest‖
‖x− xµopt‖

> 10,
‖x− xµest‖
‖x− xµopt‖

> 102



Parameter choice rules for LSQR

Method n × n 2n × n

L-corner 4%( 0%) 2%( 0%)
L-triangle 4%( 3%) 4%( 4%)
Res. L-curve 13%(12%) 10%(10%)
Cond. L-curve 4%( 4%) 13%( 9%)
Regińska 3%( 0%) 1%( 0%)
Restr. Regińska 1%( 0%) 1%( 0%)
Quasi-optimality 2%( 0%) 1%( 0%)
Extrapolation 8%( 0%) 12%( 1%)
Quadrature 3%( 1%) 2%( 0%)
Ratio 0%( 0%) 0%( 0%)
Discrepancy 0%( 0%) 0%( 0%)

‖x− xµest‖
‖x− xµopt‖

> 10,
‖x− xµest‖
‖x− xµopt‖

> 102



Regularization matrix L = D2

TGSVD n × n 2n × n

Regińska 5%(0%) 6%(0%)
Restr. Regińska 2%(0%) 2%(0%)
Quasi-optimality 12%(0%) 6%(0%)
Extrapolation 8%(2%) 3%(0%)
Discrepancy 3%(0%) 2%(0%)

Std.form/LSQR n × n 2n × n

Regińska 8%(0%) 7%(0%)
Restr. Regińska 1%(0%) 2%(0%)
Quasi-optimality 6%(0%) 4%(0%)
Ratio 11%(0%) 11%(1%)
Discrepancy 3%(0%) 3%(0%)



TSVD and Hybrid-Quasioptimality

Method n × n 2n × n

Q-L-corner 6%( 0%) 4%(0%)
Q-Res. L-curve 2%( 1%) 1%(0%)
Q-Cond. L-curve 1%( 1%) 5%(2%)
Q-Regińska 4%( 0%) 2%(0%)
Q-Restr. Regińska 3%( 0%) 2%(0%)
Q-GCV 20%(17%) 4%(1%)
Q-Extrapolation 1%( 1%) 0%(0%)

Method n × n 2n × n
L-corner 6%( 0%) 4%( 0%)
Res. L-curve 3%( 1%) 1%( 0%)
Cond. L-curve 2%( 1%) 8%( 6%)
Regińska 4%( 0%) 2%( 0%)
Restr. Regińska 3%( 0%) 2%( 0%)
GCV 24%(20%) 8%( 4%)
Extrapolation 5%( 1%) 9%( 0%)



The End

Thanks!


