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Introduction

0.1 Aims and applications

Directed Algebraic Topology is a recent subject which arose in the

1990’s, on the one hand in abstract settings for homotopy theory, like

[G1], and on the other hand in investigations in the theory of concurrent

processes, like [FGR1, FGR2]. Its general aim should be stated as ‘mod-

elling non-reversible phenomena’. The subject has a deep relationship

with category theory.

The domain of Directed Algebraic Topology should be distinguished

from the domain of classical Algebraic Topology by the principle that

directed spaces have privileged directions and directed paths therein need

not be reversible. While the classical domain of Topology and Alge-

braic Topology is a reversible world, where a path in a space can always

be travelled backwards, the study of non-reversible phenomena requires

broader worlds, where a directed space can have non-reversible paths.

The homotopical tools of Directed Algebraic Topology, corresponding

in the classical case to ordinary homotopies, the fundamental group and

fundamental n-groupoids, should be similarly ‘non-reversible’: directed

homotopies, the fundamental monoid and fundamental n-categories. Sim-

ilarly, its homological theories will take values in ‘directed’ algebraic

structures, like preordered abelian groups or abelian monoids. Homo-

topy constructions like mapping cone, cone and suspension, occur here

in a directed version; this gives rise to new ‘shapes’, like (lower and

upper) directed cones and directed spheres, whose elegance is strength-

ened by the fact that such constructions are determined by universal

properties.

Applications will deal with domains where privileged directions ap-

pear, such as concurrent processes, rewrite systems, traffic networks,

1



2 Introduction

space-time models, biological systems, etc. At the time of writing, the

most developed ones are concerned with concurrency: see [FGR1, FGR2,

FRGH, Ga1, GG, GH, Go, Ra1, Ra2].

A recent issue of the journal ‘Applied Categorical Structures’, guest-

edited by the author, has been devoted to ‘Directed Algebraic Topology

and Category Theory’ (vol. 15, no. 4, 2007).

0.2 Some examples

As an elementary example of the notions and applications we are going

to treat, consider the following (partial) order relation in the cartesian

plane

p

p′

p′′

a

x

y

•
•

•

,,

//

OO

(x, y) 6 (x′, y′) ⇔ |y′ − y| 6 x′ − x. (0.1)

The picture shows the ‘cone of the future’ at a point p (i.e. the set of

points which follow it) and a directed path from p′ to p′′, i.e. a continuous

mapping a : [0, 1] → R2 which is (weakly) increasing, with respect to

the natural order of the standard interval and the previous order of the

plane: if t 6 t′ in [0, 1], then a(t) 6 a(t′) in the plane.

Take now the following (compact) subspaces X,Y of the plane, with

the induced order (the cross-marked open rectangles are taken out). A

directed path in X or Y satisfies the same conditions as above

• • • ••p′ p′′ p′ p′′

X Y

×

×

×
×

77

33

''

22

22

,,

''

(0.2)

We shall see that - as displayed in the figures above - there are, re-

spectively, 3 or 4 ‘homotopy classes’ of directed paths from the point

p′ to the point p′′, in the fundamental categories ↑Π1(X), ↑Π1(Y ); in

both cases there are none from p′′ to p′, and every loop is constant.



0.3 Directed spaces and other directed structures 3

(The prefixes ↑ and d- are used to distinguish a directed notion from the

corresponding ‘reversible’ one.)

First, we can view each of these ‘directed spaces’ as a stream with

two islands, and the induced order as an upper bound for the relative

velocity feasible in the stream. Secondly, one can interpret the horizontal

coordinate as (a measure of) time, the vertical coordinate as position in

a 1-dimensional physical medium, and the order as the possibility of

going from (x, y) to (x′, y′) with velocity 6 1 (with respect to a ‘rest

frame’ of the medium). The two forbidden rectangles are now linear

obstacles in the medium, with a bounded duration in time. Thirdly, our

figures can be viewed as execution paths of concurrent automata subject

to some conflict of resources, as in [FGR2], fig. 14.

In all these cases, the fundamental category distinguishes between

obstructions (islands, temporary obstacles, conflict of resources) which

intervene essentially together (in the earlier diagram on the left) or one

after the other (on the right). On the other hand, the underlying topo-

logical spaces are homeomorphic, and topology, or algebraic topology,

cannot distinguish these two situations. Notice also that, here, all the

fundamental monoids ↑π1(X,x0) are trivial: as a striking difference with

the classical case, the fundamental monoids often carry a very minor part

of the information of the fundamental category ↑Π1(X).

The study of the fundamental category of a directed space, via mini-

mal models up to directed homotopy of categories, will be developed in

Chapter 3.

0.3 Directed spaces and other directed structures

The framework of ordered topological spaces is a simple starting point

but is too poor to develop directed homotopy theory.

We want a ‘world’ sufficiently rich to contain a ‘directed circle’ ↑S1

and higher directed spheres ↑Sn - all of them arising from the dis-

crete two-point space under directed suspension (of pointed objects).

In ↑S1, directed paths will move in a particular direction, with fun-

damental monoids ↑π1(↑S1, x0) ∼= N; its directed homology will give
↑H1(↑S1) ∼= ↑Z, i.e. the group of integers equipped with the natural or-

der, where the positive homology classes are generated by cycles which

are directed paths (or, more generally, positive linear combinations of

directed paths).

Our main structure, to fulfil this goal, will be a topological space

X equipped with a set dX of directed paths [0, 1] → X, closed under:
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constant paths, partial increasing reparametrisation and concatenation

(Section 1.4). Such objects are called d-spaces or spaces with distin-

guished paths, and a morphism of d-spaces X → Y is a continuos map-

ping which preserves directed paths. All this forms a category dTop

where limits and colimits exist and are easily computed - as topological

limits or colimits, equipped with the adequate d-structure.

Furthermore, the standard directed interval ↑I = ↑[0, 1], i.e. the real

interval [0, 1] with the natural order and the associated d-structure, is an

exponentiable object: in other words, the (directed) cylinder I(X) = X×
↑I determines an object of (directed) paths P (Y ) = Y ↑I (providing the

functor right adjoint to I), so that a directed homotopy can equivalently

be defined as a map of d-spaces IX → Y or X → PY. The underlying

set of the d-space P (Y ) is the set of distinguished paths dY .

Various d-spaces of interest arise from an ordinary space equipped

with an order relation, as in the case of ↑I, the directed line ↑R and their

powers; or, more generally, from a space equipped with a local preorder

(Sections 1.9.2 and 1.9.3), as for the directed circle ↑S1. But other d-

spaces of interest, which are able to build a bridge with noncommutative

geometry, cannot be defined in this way: for instance, the quotient d-

space of the directed line ↑R modulo the action of a dense subgroup (see

Section 6 of this Introduction).

The category Cub of cubical sets is also an important framework

where directed homotopy can be developed. It actually has some advan-

tages on dTop: in a cubical set K, after observing that an element of K1

need not have any counterpart with reversed vertices, we can also note

that an element of Kn need not have any counterpart with faces per-

muted (for n > 2). Thus, a cubical set has ‘privileged directions’, in any

dimension. In other words, Cub allows us to break both basic symme-

tries of topological spaces, the reversion of paths and the transposition

of variables in 2-dimensional paths, parametrised on [0, 1]2, while dTop

is essentially based on a one-dimensional information and only allows us

to break the symmetry of reversion. As a consequence, pointed directed

homology of cubical sets is much better behaved than that of d-spaces,

and yields a perfect directed homology theory (Section 2.6.3).

On the other hand, Cub presents various drawbacks, beginning with

the fact that elementary paths and homotopies, based on the obvious

interval, cannot be concatenated; however, higher homotopy properties

of Cub can be studied with the geometric realisation functor Cub →
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dTop and the notion of relative equivalence which it provides (Section

5.8.6).

The breaking of symmetries is an essential feature which distinguishes

directed algebraic topology from the classical one; a discussion of these

aspects can be found in Section 1.1.5.

Directed homotopies have been studied in various structures, either

because of general interests in homotopy theory, or with a purpose of

modelling concurrent systems, or in both perspectives. Such structures

comprise: differential graded algebras [G3], ordered or locally ordered

topological spaces [FGR2, GG, Go, Kr], simplicial, precubical and cu-

bical sets [FGR2, GG, G1, G12], inequilogical spaces [G11], small cat-

egories [G8], flows [Ga2], etc. Our main structure, d-spaces, was in-

troduced in [G8]; it has also been studied by other authors, e.g. in

[FhR, FjR, Ra2].

0.4 Formal foundations for directed algebraic topology

We will use settings based on an abstract cylinder functor I(X) and nat-

ural transformations between its powers, like faces, degeneracy, connec-

tions,... Or, dually, on a cocylinder functor P (Y ), representing the object

of (directed) paths of an object Y . Or also, on an adjunction I a P

which allows one to see directed homotopies as morphisms I(X) → Y

or equivalently X → P (Y ), as mentioned above for d-spaces.

As a crucial aspect, such a formal structure is based on endofunctors

and ‘operations’ on them (natural transformations between their pow-

ers). In other words, it is ‘categorically algebraic’, in much the same way

as the theory of monads, a classical tool of category theory (Section A4,

in the Appendix). This is why such structures can generally be lifted

from a ground category to categorical constructions on the latter, like

categories of diagrams, or sheaves, or algebras for a monad (Chapter 5).

After a basic version in Chapter 1, which covers all the frameworks

we are interested in, we develop stronger settings in Chapter 4. Rela-

tive settings, in Section 5.8, deal with a basic world, satisfying the basic

axioms of Chapter 1, which is equipped with a forgetful functor with

values in a strong framework; such a situation has already been men-

tioned above, for the category Cub of cubical sets and the (directed)

geometric realisation functor Cub→ dTop.

A peculiar fact of all ‘directed worlds’ (categories of ‘directed objects’)

is the presence of an involutive covariant endofunctor R, called reversor,

which turns a directed object into the opposite one, R(X) = Xop; its
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action on preordered spaces, d-spaces and (small) categories is obvious;

for cubical sets, one interchanges lower and upper faces. Then, the

ordinary reversion of paths is replaced with a reflection in the opposite

directed object. Notice that the classical reversible case is a particular

instance of the directed one, where R is the identity functor,

In the classical case, settings based on the cylinder (or path) end-

ofunctor go back to Kan’s well-known series on ‘Abstract Homotopy’,

and in particular to [Ka2] (1956); the book [KP], by Kamps and Porter,

is a general reference for such settings. In the directed case, the first

occurrence of such a system, containing a reversor, is probably a 1993

paper of the present author [G1].

Quillen model structures [Qn] seem to be less suited to formalise di-

rected homotopy. But, in the reversible case, we prove (in Theorem

4.9.6) that our strong setting based on the cylinder determines a struc-

ture of ‘cofibration category’, a non selfdual version of Quillen’s model

categories introduced by Baues [Ba].

0.5 Interactions with category theory

On the one hand, category theory intervenes in directed algebraic topol-

ogy through the fundamental category of a directed space, viewed as a

sort of algebraic model of the space itself. On the other hand, directed al-

gebraic topology can be of help in providing a sort of geometric intuition

for category theory, in a sharper way than classical algebraic topology

- the latter can rather provide intuition for the theory of groupoids, a

reversible version of categories.

The interested reader can see, in 1.8.9, how the pasting of comma

squares of categories only works up to convenient notions of ‘directed

homotopy equivalence’ of categories - in the same way as, in Top, the

pasting of homotopy pullbacks leads to homotopy equivalent spaces.

The relationship of directed algebraic topology and category theory

is even stronger in ‘higher dimension’. It consists of higher fundamental

categories for directed spaces, on the one hand, and geometric intuition

for the - very complex - theory of higher dimensional categories, on the

other hand. Such aspects are still under research and will not be treated

in this book. The interested reader is referred to [G15, G16, G17] and

references therein.

Finally, we should note that category theory has also been of help in

fixing the structures which we explore here, according to general princi-

ples discussed in the Appendix, A1.6.
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0.6 Interactions with non-commutative geometry

While studying the directed homology of cubical sets, in Chapter 2,

we also show that cubical sets (and d-spaces) can express topological

facts missed by ordinary topology and already investigated within non-

commutative geometry. In this sense, they provide a sort of ‘noncom-

mutative topology’, without the metric information of C*-algebras.

This happens, for instance, in the study of group actions or foliations,

where a topologically-trivial quotient (the orbit set or the set of leaves)

can be enriched with a natural cubical structure (or a d-structure) whose

directed homology agrees with Connes’ analysis in noncommutative ge-

ometry.

Let us only recall here that, if ϑ is an irrational number, Gϑ = Z+ϑZ

is a dense subgroup of the additive group R, and the topological quo-

tient R/Gϑ is trivial (has the indiscrete topology). Noncommutative

geometry ‘replaces’ this quotient with the well-known irrational rota-

tion C*-algebra Aϑ (Section 2.5.1). Here we replace it with the cubical

set Cϑ = (�↑R)/Gϑ, a quotient of the singular cubical set of the di-

rected line (or the quotient d-space Dϑ = ↑R/Gϑ, cf. 2.5.2). Computing

its directed homology, we prove that the (pre)ordered group ↑H1(Cϑ) is

isomorphic to the totally ordered group ↑Gϑ ⊂ R. It follows that the

classification up to isomorphism of the family Cϑ (or Dϑ) coincides with

the classification of the family Aϑ up to strong Morita equivalence. No-

tice that, algebraically (i.e. forgetting order), we only get H1(Cϑ) ∼= Z2,

which gives no information on ϑ: here, the information content pro-

vided by the ordering is much finer than that provided by the algebraic

structure.

0.7 From directed to weighted algebraic topology

In Chapter 6 we end this study by investigating ‘spaces’ where paths have

a ‘weight’, or ‘cost’, expressing length or duration, price, energy, etc.

The general aim is now: measuring the cost of (possibly non-reversible)

phenomena.

The weight function takes values in [0,∞] and is not assumed to be

invariant up to path-reversion. Thus, ‘weighted algebraic topology’ can

be developed as an enriched version of directed algebraic topology, where

illicit paths are penalised with an infinite cost, and the licit ones are mea-

sured. Its algebraic counterpart will be ‘weighted algebraic structures’,

equipped with a sort of directed seminorm.
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A generalised metric space in the sense of Lawvere [Lw1] yields a prime

structure for this purpose. For such a space we define a fundamental

weighted category, by providing each homotopy class of paths with a

weight, or seminorm, which is subadditive with respect to composition.

We also study a more general framework, w-spaces or spaces with

weighted paths (a natural enrichment of d-spaces), whose relationship

with noncommutative geometry also takes into account the metric aspects

- in contrast with cubical sets and d-spaces. Here, the irrational rotation

C*-algebra Aϑ corresponds to the w-space Wϑ = wR/Gϑ, a quotient of

the standard weighted line, whose classification up to isometric isomor-

phism (resp. Lipschitz isomorphism) is the same as the classification of

Aϑ up to isomorphism (resp. strong Morita equivalence).

0.8 Terminology and notation

The reader is assumed to be acquainted with the basic notions of topol-

ogy, algebraic topology and category theory. However, most of the no-

tions and results of category theory which are used here are recalled in

the Appendix, Chapter A.

In a category A, the set of morphisms (or maps, or arrows) X → Y ,

between two given objects, is written as A(X,Y ). A natural transforma-

tion between the functors F,G : A → B is written as ϕ : F → G : A →
B, or ϕ : F → G.

Top denotes the category of topological spaces and continuous map-

pings. A homotopy ϕ between maps f, g : X → Y is written as ϕ : f →
g : X → Y , or ϕ : f → g. R is the euclidean line and I = [0, 1] is the

standard euclidean interval. The concatenation of paths and homotopies

is written in additive notation: a + b and ϕ + ψ; trivial paths and ho-

motopies are written as 0x, 0f . Gp (resp. Ab) denotes the category of

groups (resp. abelian groups) and their homomorphisms.

Cat denotes the 2-category of small categories, functors and natural

transformations. In a small category, the composition of two consecutive

arrows a : x → x′, b : x′ → x′′ is either written in the usual notation ba

or in additive notation a+ b. In the first case, the identity of the object

x is written as idx or 1x, in the second as 0x. Loosely speaking, we tend

to use additive notation in the fundamental category of some directed

object, or in a small category which is itself ‘viewed’ as a directed object;

on the other hand, we follow the usual notation when we are applying

the standard techniques of category theory, which would look unfamiliar

in additive notation.



0.9 Acknowledgements 9

A preorder relation, generally written as x ≺ y, is assumed to be re-

flexive and transitive; an order, often written as x 6 y, is also assumed

to be anti-symmetric (and need not be total). A mapping which pre-

serves preorders is said to be increasing (always used in the weak sense).

As usual, a preordered set X will be identified with the (small) category

whose objects are the elements of X, with precisely one arrow x → x′

when x ≺ x′ and none otherwise. We shall distinguish between the or-

dered real line r and the ordered topological space ↑R (the euclidean

line with the natural order), whose fundamental category is r. ↑Z is the

ordered group of integers, while z is the underlying ordered set.

The index α takes values 0, 1; these are often written as −,+, e.g. in

superscripts.
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Part I

First order directed homotopy and homology





1

Directed structures and first order homotopy
properties

We begin by studying basic homotopy properties, which will be sufficient

to introduce directed homology in the next chapter.

Section 1.1 explores the transition from classical to directed homotopy,

comparing topological spaces with the simplest topological structure

where privileged directions appear: the category pTop of preordered

topological spaces.

In Sections 1.2, 1.3 we begin a formal study of directed homotopy,

in a dI1-category, i.e. a category equipped with an abstract cylinder

endofunctor I endowed with a basic structure. Dually, we have a dP1-

category, with a cocylinder (or path) functor P , while a dIP1-category

has both endofunctors, under an adjunction I a P . The higher or-

der structure, developed in Chapter 4, will make substantial use of the

‘second order’ functors, I2 or P 2.

Sections 1.4, 1.5 introduce our main directed world, the category dTop

of spaces with distinguished paths, or d-spaces, which - with respect to

preordered spaces - also contains objects with non-reversible loops, like

the directed circle ↑S1. Then, in Section 1.6, we explore the category

Cub of cubical sets and their left or right directed homotopy structures.

Coming back to the general theory, in Section 1.7, we deal with dI1-

homotopical categories, i.e. dI1-categories which have a terminal object

and all homotopy pushouts, and therefore also mapping cones and sus-

pensions. This leads to the (lower or upper) cofibre sequence of a

map, whose classical counterpart for topological spaces is the well-known

Puppe sequence [Pu].

These results are dualised in Section 1.8, which is concerned with dP1-

homotopical categories, homotopy pullbacks and the fibre sequence of a

map. Pointed dIP1-homotopical categories combine both aspects and

cover pointed preordered spaces and pointed d-spaces.

13



14 Directed structures and first order homotopy properties

We end in Section 1.9, by discussing other topological settings for di-

rected algebraic topology: inequilogical spaces, c-sets, generalised metric

spaces, bitopological spaces, locally preordered spaces.

Note. The index α takes values 0, 1; these are often written as −,+
(e.g. in superscripts).

1.1 From classical homotopy to the directed case

We explore here the transition from classical to directed homotopy, com-

paring topological spaces with the simplest topological structure where

privileged directions appear: a preordered topological space (Section

1.1.3).

Small categories can also be interpreted as directed structures, viewing

an arrow as a path and a natural transformation as a directed homotopy

from a functor to another (Section 1.1.6).

1.1.0 The structure of the classical interval

In the category Top of topological spaces and continuous mappings, a

path in the space X is a map a : I→ X defined on the standard interval

I = [0, 1], with euclidean topology.

The basic, ‘first order’ structure of I consists of four maps, linking it

to its 0-th cartesian power, the singleton I0 = {∗}

∂α : {∗} ⇒ I, ∂−(∗) = 0, ∂+(∗) = 1 (faces),

e : I→ {∗}, e(t) = ∗ (degeneracy),

r : I→ I, r(t) = 1− t (reversion).

(1.1)

Identifying a point x of the space X with the corresponding map x :

{∗} → X, this basic structure determines:

(a) the endpoints of a path a : I→ X, a∂− = a(0) and a∂+ = a(1),

(b) the trivial path at the point x, which will be written as 0x = xe,

(c) the reversed path of a, written as −a = ar.

Two consecutive paths a, b : I→ X (a∂+ = b∂−, i.e. a(1) = b(0)) have

a concatenated path a+ b

(a+ b)(t) =

{
a(2t) if 0 6 t 6 1/2,

a(2t− 1) if 1/2 6 t 6 1.
(1.2)

Formally, this can be expressed saying that the standard concatenation
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pushout - pasting two copies of the interval, one after the other - is

homeomorphic to I and can be realised as I itself

{∗} ∂+
//

∂−

��

I

c−

��

c−(t) = t/2,

I
c+
// I c+(t) = (t+ 1)/2.

(1.3)

Indeed, the concatenated path a+ b : I→ X comes from the universal

property of the pushout, and is characterised by the conditions

(a+ b).c− = a, (a+ b).c+ = b. (1.4)

Finally, there is a ‘second order’ structure which involves the standard

square I2 = [0, 1]×[0, 1] and is used to construct homotopies of paths

g− : I2 → I, g−(t, t′) = max(t, t′) (lower connection),

g+ : I2 → I, g+(t, t′) = min(t, t′) (upper connection),

s : I2 → I2, s(t, t′) = (t′, t) (transposition).

(1.5)

These maps, together with (1.1), complete the structure of I as an in-

volutive lattice in Top (or, better, a ‘dioid’ with symmetries, see Section

1.1.7).

The choice of the superscripts of g−, g+ comes from the fact that the

unit of gα is ∂α(∗). Within homotopy theory, the importance of these

binary operations has been highlighted by R. Brown and P.J. Higgins

[BH1, BH3], which introduced the term of connection, or higher degen-

eracy. Algebraically and categorically, the ‘soundness’ of introducing

these operations is made evident by the notions of ‘dioid’ and ‘diad’,

which correspond - respectively - to monoid and monad (Sections 1.1.7

- 1.1.9).

1.1.1 The cylinder

Given two continuous mappings f, g : X → Y (in Top), a homotopy

ϕ : f → g ‘is’ a map ϕ : X×I→ Y defined on the cylinder I(X) = X×I,

which coincides with f on the lower basis of the cylinder and with g on

the upper one

ϕ(x, 0) = f(x), ϕ(x, 1) = g(x) (for all x ∈ X). (1.6)

This map will be written as ϕ̂ : X×I→ Y when we want to distinguish
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it from the homotopy ϕ : f → g which it represents. All this is based on

the cylinder endofunctor:

I : Top→ Top, I(X) = X×I, (1.7)

and on the four natural transformations which it inherits from the basic

structural maps of the standard interval (written as the latter)

∂α : X → IX, ∂−(x) = (x, 0), ∂+(x) = (x, 1) (faces),

e : IX → X, e(x, t) = x (degeneracy),

r : IX → IX, r(x, t) = (x, 1− t) (reversion).

(1.8)

Notice that we often define a functor by its action on objects, as in

(1.7), provided its extension to morphisms is evident: I(f) = f×idI in

the present case (also written f×I). As a general fact of notation, a

component ϕX : FX → GX of the natural transformation ϕ : F → G is

often written as ϕ : FX → GX, as above.

Identifying I{∗} = {∗}×I = I, the structural maps of the standard

interval coincide with the components of the transformations (1.8) on

the singleton.

The transformations ∂α, e, r give rise to the faces ϕ∂α of a homotopy,

the trivial homotopy 0f = fe of a map and the reversed homotopy −ϕ =

ϕr. (More precisely, the homotopy −ϕ : g → f is represented by the

map (−ϕ)̂ = ϕ̂r : IX → Y .)

A path a : I → X is the same as a homotopy a : x → x′ between its

endpoints (always by identifying I{∗} = I).

Two consecutive homotopies ϕ : f → g, ψ : g → h can be concate-

nated, extending the procedure for paths, in (1.2). This can be formally

expressed noting that the concatenation pushout of the cylinder - pasting

two copies of a cylinder IX, ‘one on top of the other’ - can be realised

as the cylinder itself

X
∂+
//

∂−

��

IX

c−

��

c−(x, t) = (x, t/2),

IX
c+
// IX c+(x, t) = (x, (t+ 1)/2).

(1.9)

In fact, the subspaces c−(IX) = X×[0, 1/2] and c+(IX) = X×[1/2, 1]

form a finite closed cover of IX, so that a mapping defined on IX is

continuous if and only if its restrictions to such subspaces are. The

concatenated homotopy ϕ + ψ : f → h is represented by the map (ϕ +

ψ)̂ : IX → Y which reduces to ϕ on c−, and to ψ on c+.
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Note that the fact that ‘pasting two copies of the cylinder gives back

the cylinder’ is rather peculiar of spaces; e.g. it does not hold for chain

complexes, where the concatenation of homotopies is based on a more

general procedure, dealt with in Section 4.2; nor does it hold for the

homotopy structure of Cat, cf. 1.1.6, 4.3.2.

Here also, there is a ‘second order’ structure, with three natural trans-

formations which involve the second order cylinder I2(X) = I(I(X)) =

X×I2 and will be used to construct higher homotopies (i.e. homotopies

of homotopies)

gα : I2X → IX, gα(x, t, t′) = (x, gα(t, t′)) (connections),

s : I2X → I2X, s(x, t, t′) = (x, t′, t) (transposition).
(1.10)

For instance, it is important to note that, given a homotopy ϕ :

f− → f+ : X → Y , we need the transposition to construct a homotopy

Iϕ, by modifying the mapping I(ϕ̂), which does not have the correct

faces

Iϕ : If− → If+, (Iϕ)̂ = I(ϕ̂).sX : I2X → IY,

I(ϕ̂).sX.∂α(IX) = I(ϕ̂).I(∂αX) = Ifα.
(1.11)

1.1.2 The cocylinder

We conclude this brief review of the formal bases of classical homotopy

recalling that a homotopy ϕ : f → g, described by a map ϕ̂ : IX → Y ,

also has a dual description as a map ϕ̌ : X → PY with values in the

path-space PY = Y I.

In fact, it is well known (and rather easy to verify) that every locally

compact Hausdorff space A is exponentiable in Top, which means that

the functor−×A : Top→ Top has a right adjoint, written (−)A : Top→
Top (cf. A4.2, A4.3, in the Appendix). Concretely, the space Y A is the

set of maps Top(A, Y ) equipped with the compact-open topology. The

adjunction consists of the natural bijection

Top(X×A, Y )→ Top(X,Y A), f 7→ f ′, f ′(x)(a) = f(x, a), (1.12)

which is called the exponential law, as it gives a bijection Y X×A →
(Y A)X .

In particular, the cylinder functor I = −×I has a right adjoint

P : Top→ Top, P (Y ) = Y I, (1.13)

called the cocylinder or path functor: P (Y ) is the space of paths I→ Y ,
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with the compact-open topology (also called the topology of uniform

convergence on I). The counit of the adjunction

ev : P (Y )×I→ Y, (a, t) 7→ a(t), (1.14)

is also called evaluation (of paths).

The functor P inherits from the interval I, contravariantly, a dual

structure, which we write with the same symbols. It consists of a basic,

first order part:

∂α : PY → Y, ∂−(a) = a(0), ∂+(a) = a(1) (faces),

e : Y → PY, e(y)(t) = y (degeneracy),

r : PY → PY, r(a)(t) = a(1− t) (reversion),

(1.15)

and a second order structure:

gα : PY → P 2Y, gα(a)(t, t′) = a(gα(t, t′)) (connections),

s : P 2Y → P 2Y, s(a)(t, t′) = a(t′, t) (transposition).
(1.16)

In this description, the faces of a homotopy ϕ̌ : X → PY are defined

as ∂αϕ̌ : X → Y .

Concatenation of homotopies can now be performed with the con-

catenation pullback QY (which can be realised as the object of pairs of

consecutive paths) and the concatenation map c

QY
c+ //

c− ��

PY

∂−��
PY

∂+

// Y

QY = {(a, b) ∈ PY ×PY | ∂+(a) = ∂−(b)},
c : QY → PY, c(a, b) = a+ b (concatenation map).

(1.17)

Again, as a peculiar property of topological spaces, the natural trans-

formation c is invertible (splitting a path into its two halves), and we

can also realise QY as PY .

1.1.3 Preordered topological spaces

The simplest topological setting where one can study directed paths and

directed homotopies is likely the category pTop of preordered topological

spaces and preorder-preserving continuous mappings; the latter will be

simply called morphisms or maps, when it is understood we are in this
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category. (Recall that a preorder relation, generally written ≺, is only

assumed to be reflexive and transitive; it is an order if it is also anti-

symmetric.)

Here, the standard directed interval ↑I = ↑[0, 1] has the euclidean

topology and the natural order. A (directed) path in a preordered space

X is - by definition - a map a : ↑I → X (continuous and preorder-

preserving).

The category pTop has all limits and colimits (see Section A2), con-

structed as for topological spaces and equipped with the initial or final

preorder for their structural maps; for instance, in a product X =
∏
Xj ,

we have the product preorder: (xj) ≺X (x′j) if and only if, for each index

j, xj ≺ x′j in Xj .

The forgetful functor U : pTop→ Top has both a left and a right ad-

joint, D a U a D′ where DS (resp. D′S) is the space S equipped with

the discrete order (resp. the chaotic, or indiscrete, preorder). The stan-

dard embedding of Top in pTop will be the one given by the indiscrete

preorder, so that all (ordinary) paths in S are directed in D′S.

Note that the category of ordered spaces does not allow for such an

embedding, and would not allow us to view classical algebraic topology

within the directed one; furthermore, its colimits are ‘different’ from the

topological ones.

Our category is not cartesian closed (Section A4.3), of course; but

it is easy to transfer here the classical result for topological spaces, re-

called above (in 1.1.2). Thus, every preordered space A having a locally

compact Hausdorff topology and an arbitrary preorder is exponentiable

in pTop, with Y A consisting of the set pTop(A, Y ) ⊂ Top(UA,UY ) of

preorder-preserving continuous mappings, equipped with the (induced)

compact-open topology and the pointwise preorder

f ≺ g if (∀x ∈ A)(f(x) ≺Y g(x)). (1.18)

The natural bijection pTop(X×A, Y )→ pTop(X,Y A) is a restriction

of the classical one (1.12) to preorder-preserving continuous mappings,

and is described by the same formula.

A richer setting, the category dTop of d-spaces, or spaces with dis-

tinguished paths (mentioned in Section 3 of the Introduction), will be

studied starting from Section 1.4.
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1.1.4 The basic structure of directed homotopies

Let us examine the first order structure of the standard directed interval
↑I = ↑[0, 1], in the category pTop of preordered topological spaces.

Faces and degeneracy are as in the classical case (1.1)

∂α : {∗} −→←−−→ ↑I : e, ∂−(∗) = 0, ∂+(∗) = 1, e(t) = ∗, (1.19)

where ↑I0
= {∗} is now an ordered space, with the unique order-relation

on the singleton.

On the other hand, the classical reversion r(t) = 1 − t is not an

endomap of ↑I, but becomes a map which we prefer to call reflection

r : ↑I→ ↑Iop
, r(t) = 1− t (reflection), (1.20)

as it takes values in the opposite preordered space ↑Iop
(with the opposite

preorder).

Here also, the standard concatenation pushout can be realised as ↑I
itself

{∗} ∂+
//

∂−
��

↑I

c−
��

c−(t) = t/2,

↑I
c+
// ↑I c+(t) = (t+ 1)/2,

(1.21)

since a mapping a : ↑I→ X with values in a preordered space is a map

(continuous and preorder-preserving) if and only if its two restrictions

acα (to the first or second half of the interval) are maps.

For every preordered topological spaceX, we have the (directed) cylin-

der I(X) = X×↑I, with the product topology and the product preorder:

(x, t) ≺ (x′, t′) if (x ≺ x′ in X) and (t 6 t′ in ↑I). (1.22)

The cylinder functor has a first-order structure, formed of four natural

transformations. Faces and degeneracy are as in the classical case (1.8),

but the reflection r, again, has to be expressed via the reversor, i.e. the

involutive endofunctor R which reverses the preorder-relation

∂α : 1 −→←−−→ I : e, (faces, degeneracy),

R : pTop→ pTop, R(X) = Xop (reversor),

r : IR→ RI, r : I(Xop)→ (IX)op,

r(x, t) = (x, 1− t) (reflection).

(1.23)

Since ↑I is exponentiable in pTop (by 1.1.3), we also have a path
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functor, right adjoint to the cylinder functor, where the preordered space

P (Y ) has the compact-open topology and the pointwise preorder:

P : pTop→ pTop, P (Y ) = Y ↑I,
a ≺ b if ( ∀ t ∈ [0, 1]) (a(t) ≺Y b(t)) (for a, b : ↑I→ Y ).

(1.24)

The path functor is equipped with a dual (first-order) structure, formed

of four natural transformations (with the same reversor R as above)

∂α : P → 1, e : 1→ P, r : RP → PR. (1.25)

A (directed) homotopy ϕ : f− → f+ : X → Y is defined by a map

ϕ̂ : X×↑I→ Y with ϕ̂∂α = fα; or, equivalently, by a map ϕ̌ : X → Y ↑I
with ∂αϕ̌ = fα. It yields a reflected homotopy between the opposite

spaces:

ϕop : Rf+ → Rf− : Xop → Y op,

(ϕop)̂ = R(ϕ̂).rX : IRX → RIX → RY.
(1.26)

1.1.5 Breaking the symmetries of classical algebraic topology

A topological space X has intrinsic symmetries, which act on its singular

n-cubes a : In → X.

We have already recalled the standard reversion r and the standard

transposition s (Section 1.1.0)

r : I→ I, r(t) = 1− t; s : I2 → I2, s(t, t′) = (t′, t). (1.27)

Their n-dimensional versions

ri = Ii−1×r×In−i : In → In (i = 1, ..., n),

si = Ii−1×s×In−i−1 : In → In (i = 1, ..., n− 1),
(1.28)

generate the group of symmetries of the n-cube, i.e. the hyperoctahedral

group (Z/2)n o Sn (a semidirect product): the reversions ri commute

with each other and generate the first factor, while the transpositions si
generate the symmetric group Sn. Plainly, the hyperoctahedral group

acts on the set of n-cubes a : In → X.

Generally speaking, we will call ‘reversible’ a framework which has

reversions, and ‘symmetric’ (or also ‘permutable’) a framework which

has transpositions. Topological spaces have both kinds of symmetries,

while, in directed algebraic topology, the first kind must be broken and

the second can.

(a) Reversion versus reflection. We have already recalled that the
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prime effect of the reversion r : I → I is reversing the paths, in any

topological space. This map also gives the reversion of homotopies,

by means of the reversion of the cylinder functor (Section 1.1.1); or,

equivalently, by the reversion of the path functor (Section 1.1.2).

Preordered topological spaces, studied above, lack a reversion. But we

now have a sort of ‘external reversion’, i.e. a reflection pair (R, r) consist-

ing of an involutive endofunctor R : pTop → pTop (which reverses the

preorder, and will be called reversor) and a reflection r : IR → RI for

the cylinder functor; or, equivalently, r : RP → PR, for the path functor

(Section 1.1.4). This behaviour will be shared by all the structures for

directed homotopy which we will consider. Notice that the reversible

case is a particular instance, when R is the identity.

(b) Transposition. Coming back to topological spaces, the transposi-

tion s(t, t′) = (t′, t) of the standard square I2 yields the transposition

symmetry of the iterated cylinder functor I2(X) = X×I2 (Section 1.1.1)

and of the iterated path functor P 2(Y ) = Y I2 (1.1.2). It follows, as we

have seen in (1.11), that the cylinder functor is homotopy invariant (and

the same holds for P ).

This second-order symmetry (acting on I2 and P 2) exists in various

directed structures, for instance in pTop and dTop, but does not exist

in other cases, e.g. for cubical sets (studied in Section 1.6). Its role,

within directed algebraic topology, is double-edged. On the one hand, its

presence yields the important consequence recalled above: the homotopy

invariance of the cylinder and path functors. On the other hand, it

restricts the interest of directed homology (and prevents a good relation

of the latter with suspension): we will see that, for a cubical set X

having this sort of symmetry, the directed homology group ↑Hn(X) has

a trivial preorder, for n > 2 (Proposition 2.2.6).

The presence of the transposition symmetry, for preordered spaces and

d-spaces, reveals that the directed character of these structures does not

go beyond the one-dimensional level: after distinguishing some paths
↑I → X and forbidding others, no higher choice is needed: namely, a

continuous mapping a : ↑In → X (in pTop or dTop) is a map of the

category if and only if, for every increasing map f : ↑I → ↑In, the path

af : ↑I→ X is a map.

On the other hand, in an abstract cubical set K, after observing that

an element of K1 need not have any counterpart with reversed vertices,

we can also notice that an element of Kn need not have any counterpart

with faces permuted (for n > 2). Thus, a cubical set has a real choice

of ‘privileged directions’, in any dimension.
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It is interesting to note that, for cubical sets (and other directed struc-

tures lacking a transposition), there is again a sort of (weak) ‘surrogate’,

consisting of an external transposition pair (S, s), where S : Cub →
Cub is the involutive endofunctor which reverses the order of faces (cf.

(1.134), (1.155)).

1.1.6 Categories and directed homotopy

We give now a brief description of directed homotopy in Cat, the carte-

sian closed category of small categories. Directed homotopy equivalence

in Cat will be studied in Chapter 3, as a crucial tool to classify the

fundamental categories of directed spaces, and analyse thus such spaces.

The reversor functor R takes a small category to the opposite one

R : Cat→ Cat, R(X) = Xop. (1.29)

Let us make precise that Xop has precisely the same objects as X,

with Xop(x, y) = X(y, x) and the opposite composition, so that R is

(strictly) involutive.

The role of the standard point is played by the terminal category

1 = {∗}, while the directed interval ↑i = 2 = {0 → 1} is an order cate-

gory on two objects. It has obvious faces ∂± : 1 → 2 and the (unique)

isomorphism r : 2→ 2op as reflection.

A point x : 1 → X of the small category X is an object of the latter;

we will also write x ∈ X. A (directed) path a : 2→ X from x to x′ is an

arrow a : x → x′ of X, their concatenation is the composition, strictly

associative and unitary. This is a motivation of our frequent use of the

additive notation for composition, as above for topological paths (see

Section 8 of the Introduction). Notice that the standard concatenation

pushout (1.3) gives here the ordinal category 3 (with non-trivial arrows

0→ 1→ 2), which is not isomorphic to the interval 2 (in contrast with

the behaviour of the topological interval); this aspect will be dealt with

in Section 4.3.2.

The (directed) cylinder functor IX = X×2 has a right adjoint, PY =

Y 2 (the category of morphisms of Y and its commutative squares, see

A1.7). According to this adjunction, a (directed) homotopy ϕ : f →
g : X → Y , represented by a functor X×2 → Y or, equivalently, X →
Y 2, is the same as a natural transformation f → g.

Operations of homotopies coincide with the 2-categorical structure of

Cat (Section A5.2). In particular, homotopy concatenation is the verti-

cal composition of natural transformations, which is strictly associative
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and unitary. This operation will be written in the same notation we are

using for composition in small categories: either the ordinary one or the

additive one (below, x is an object of the domain category of the natural

transformations ϕ : f → g and ψ : g → h)

(ψϕ)(x) = ψx.ϕx, id(f)(x) = id(fx) (usual notation),

(ϕ+ ψ)(x) = ϕx+ ψx, 0f (x) = 0f(x) (additive notation).

We have already said that directed homotopy equivalence in Cat will

be studied later. Ordinary equivalence of categories is a stricter, far sim-

pler notion. It is based on the standard reversible interval, the groupoid

on two objects linked by an isomorphism u and its inverse:

i = {0 � 1}, r : i→ i, r(u) = u−1, (1.30)

with the obvious reversion r, defined above. This gives rise to a reversible

cylinder functor X×i, with right adjoint Y i (the full subcategory of Y 2

whose objects are the isomorphisms of Y ); thus, a reversible homotopy

ϕ : f → g : X → Y is the same as a natural isomorphism of functors.

This reversible homotopy structure will be written as Cati.

Its restriction to the full subcategory Gpd of small groupoids is also

of interest. (Notice that both structures on Cat reduce to the same ho-

motopies for groupoids, represented by the restriction of the (co)cylinder

of Cati.)

1.1.7 Dioids

Let us say something more about the higher structure of the standard

interval I of topological spaces. We have already remarked (in 1.1.0)

that it is an involutive lattice, with respect to the binary operations

g−(t, t′) = max(t, t′), g+(t, t′) = min(t, t′).

However, the idempotence of these operations is of little interest for

homotopy (and does not hold for other structures of interest on I, see

1.1.9). What is really relevant is the fact that I is a dioid [G1], i.e. a set

equipped with two monoid operations, such that the unit element of each

of them is an absorbent element for the other. (In [G1], this structure

is also called a ‘cubical monoid’, because a dioid is to a monoid what a

cubical set is to an augmented simplicial set; but this term might suggest

a different structure, namely a cubical object in the category of monoids,

and will not be used here.)

In general, in a monoidal category A = (A,⊗, E) (see A4.1), a dioid
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is an object I equipped with maps (still called faces or units, degeneracy,

and connections or main operations)

E
∂α //// I
e

oo I⊗ I
gαoooo (α = −,+) (1.31)

which satisfy the following axioms, also displayed in the commutative

diagrams below (for α 6= β):

e∂α = 1, egα = e.I⊗ e = e.e⊗ I (degeneracy),

gα.I⊗ gα = gα.gα ⊗ I (associativity),

gα.I⊗ ∂α = 1 = gα.∂α ⊗ I (unit),

gβ .I⊗ ∂α = ∂αe = gβ .∂α ⊗ I (absorbency),

(1.32)

E
∂α // I

e

��

I

e

��

I⊗ I
I⊗eoo e⊗I //

gα

��

I

e

��

I⊗3 I⊗gα//

gα⊗I

��

I⊗ I

gα

��
E E I

e
oo

e
// E I⊗ I

gα
// I

I
I⊗∂α // I⊗ I

gα

��

I
∂α⊗Ioo I

I⊗∂α //

e
��

I⊗ I

gβ

��

I
∂α⊗Ioo

e
��

I E
∂α

// I E
∂α

oo

In the cartesian case (i.e. if the tensor is the cartesian product), E is

the terminal object of the category and the degeneracy axiom is auto-

matically satisfied.

An involutive dioid is further equipped with an involutive reversion

r : I → I exchanging the lower and upper structure, and can be equiv-

alently defined as a monoid equipped with an involutive mapping (of

sets) which takes the unit of multiplication to an absorbent element.

On the other hand, a symmetric dioid has an involutive transposition

s : I⊗ I→ I⊗ I exchanging I⊗ ∂α with ∂α ⊗ I and leaving the connec-

tions invariant. These notions will be adapted to the directed case in

Section 4.2.8.

1.1.8 Diads

The ‘categorical version’ of a monoid is a monad (see A4.4), which is

the basis of ‘algebricity’ in category theory. Similarly, as a ‘categori-

cal version’ of a dioid, we define a diad on the category A [G1] as a
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collection (I, ∂−, ∂+, e, g−, g+) consisting of an endofunctor I : A → A

(the cylinder endofunctor) and natural transformations (with the usual

names of faces, degeneracy and connections)

idA = 1 = I0
∂α //// I
e

oo I2
gαoooo (α = −,+) (1.33)

making the following diagrams commute (for α 6= β)

1
∂α // I

e

��

I

e

��

I2Ieoo eI //

gα

��

I

e

��

I3 Igα //

gαI
��

I2

gα

��
1 1 I

e
oo

e
// 1 I2

gα
// I

I
I∂α // I2

gα

��

I
∂αIoo I

I∂α //

e

��

I2

gβ

��

I
∂αIoo

e

��
I 1

∂α
// I 1

∂α
oo

(If A is a small category, this is a dioid in the non-symmetric strict

monoidal category of endofunctors of the category A, with tensor prod-

uct the composition of endofunctors. This interpretation can be ex-

tended to arbitrary categories, in a set-theoretical setting which allows

one to consider general categories of endofunctors.)

An involutive diad is further equipped with a reversion r : I → I

exchanging the lower and upper structure, while a symmetric diad has

a transposition s : I2 → I2 exchanging I∂α with ∂αI and leaving the

connections invariant. (Again, we will not use here the term ‘cubical

monad’ which was used in [G1] as a synonym of diad.)

1.1.9 A digression on dioids

This subsection is about dioids which are not lattices, their use in ho-

motopy and some physical interpretations; it will not be used in the

sequel.

Every unital ring R has a structure of involutive dioid, with respect

to ring-multiplication and the operation x∗ y given by the following set-

theoretical involution r (which takes the unit 1 of multiplication to the

absorbent element 0)

r(x) = 1− x, x ∗ y = r(rx.ry) = x+ y − x.y. (1.34)
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On the real field R this (non-idempotent) structure is smooth (while

lattice operations are not) and can be used in smooth homotopy theory;

one can restrict the structure to the involutive subdioid [0, 1], or not.

Another interesting non-idempotent example, on the compact real

interval, is the dioidal half-line, i.e. the Alexandroff compactification

H1 = [0,∞] of the additive monoid [0,∞[, with the extended sum and

the involution r(x) = x−1 (taking 0 to the absorbent element ∞). The

resulting operation

x ∗ y = (x−1 + y−1)−1, (1.35)

can be called inverse sum, or also harmonic sum, since (1/n) ∗ 1 =

1/(n+ 1).

The dioidH1 has a physical interpretation, referring to electric circuits

of pure resistors. Interpret its elements as resistances, ‘0’ as the perfect

conductor, ‘∞’ as the perfect insulator, ‘+’ as series combination and ‘∗’
as parallel combination (where conductances, the inverses of resistances,

are added). The operation ∗ of H1 is also of use in geometric optics,

where p ∗ q = f is the well-known formula relating corresponding points

with respect to a lens of focal length f . H1 is a topological dioid, since

the sum is proper over [0,∞[.

P1R = R ∪ {∞} and P1C = C ∪ {∞} have a similar structure of

involutive dioid, given by the extended sum and the involution r(x) =

x−1. They are not topological dioids. The dioid P1C formalises the

calculus of impedances (and their inverses, admittances) for networks of

resistors, inductors and capacitors in a steady sinusoidal state.

Extending H1, one can also consider the dioidal n-orthant Hn = Rn
+∪

{∞} as the one-point compactification of the additive monoid Rn
+ =

[0,∞[n, with the extended sum and the involution, r(x) = x/||x||2. It is

a topological dioid, since the sum is proper over Rn
+. Notice that Hn is

not a cartesian power of H1, and H2 is not a subdioid of P1C (whose

inverse sum is given by the involution r(z) = z−1 = z/|z|2).

As a final remark, if M is a topological monoid, equipped with a

continuous involution r over the subspace M \{0}, one gets a topological

involutive dioid X = M ∪ {∞} by one-point compactification, provided

that the operation M×M →M is a proper map and that r(x)→∞ for

x→ 0.
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1.2 The basic structure of the directed cylinder and

cocylinder

The phenomena which we want to study, hinted at in the previous sec-

tion, make sense in a category A equipped with homotopies which, gen-

erally, cannot be reversed - but reflected in opposite objects.

These homotopies can be produced by a formal cylinder endofunctor

I (Section 1.2.1), or - dually - by a cocylinder functor P (Section 1.2.2);

or by both, under an adjunction I a P (Section 1.2.2). At the end

of Section 1.2 we briefly consider a more general self-dual setting based

on formal directed homotopies, which - however - would give no real

advantage (Section 1.2.9).

Most of this material has been introduced in [G1, G3, G4, G21]. The

starting point, in the classical (reversible) case, goes back to Kan’s ab-

stract cylinder approach [Ka2].

1.2.1 The basic setting, I

Our first basic setting is based on a formal cylinder endofunctor equipped

with natural transformations, as in (1.23) for preordered spaces.

More precisely, a dI1-category A comes equipped with:

(a) a reversor R : A → A, i.e. an involutive (covariant) automorphism

(also written R(X) = Xop, R(f) = fop),

(b) a cylinder endofunctor I : A→ A, with four natural transformations:

two faces (∂α), a degeneracy (e) and a reflection (r)

∂α : 1 −→←−−→ I : e, r : IR→ RI (α = ±), (1.36)

satisfying the equations

e∂α = 1: idA→ idA, RrR.r = 1: IR→ IR,

Re.r = eR : IR→ R, r.∂−R = R∂+ : R→ RI.
(1.37)

Since RR = 1, the transformation r is invertible with r−1 = RrR :

RI → IR. It is easy to verify that r.∂+R = R∂−.

A homotopy ϕ : f− → f+ : X → Y is defined as a map ϕ : IX →
Y with ϕ.∂αX = fα. When we want to distinguish the homotopy

from the map which represents it, we write the latter as ϕ̂. Each map

f : X → Y has a trivial endohomotopy, 0f : f → f , represented by

f.eX = eY.If : IX → Y .

Every homotopy ϕ : f → g : X → Y has a reflected homotopy

ϕop : gop → fop : Xop → Y op, (ϕop)̂ = R(ϕ̂).r : IRX → RY, (1.38)
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and (ϕop)op = ϕ, (0f )op = 0fop .

An object X is said to be reversive or self-dual if it is isomorphic to

Xop. A dI1-category will be said to be reversible when R is the identity;

then, every homotopy has a reversed homotopy −ϕ = ϕop : g → f .

Reversible structures have no ‘privileged directions’ and will only be

considered here in as much as they can be of help in studying non-

reversible situations.

In a dI1-category, the pair (R, r) will also be called the reflection pair

of A. The reader is warned that the following two bodies of notions

should not be confused: on the one hand we have the reversor R, the

reflection r and reversive objects; on the other hand, reflective subcate-

gories and their reflectors (a standard notion of category theory), which

will be frequently used in Section 3.3.

A dI1-subcategory of a dI1-category (A, R, I, ∂α, e, r) is a subcategory

A′ ⊂ A which is closed with respect to the whole structure, and inherits

therefore a dI1-structure.

1.2.2 The basic setting, II

Dually, a dP1-category has a reversor R : A → A (as above) and a

cocylinder, or path endofunctor P : A→ A, with natural transformations

in opposite directions, satisfying the dual equations (with α = ±)

∂α : P −→←−−→ 1 : e, r : RP → PR (R2 = id),

∂αe = 1: idA→ idA, RrR.r = 1: RP → RP,

r.Re = eR : R→ RP, ∂−R.r = R∂+ : RP → R.

(1.39)

Again, (R, r) is the reflection pair of A. A homotopy ϕ : f− →
f+ : X → Y is now defined as a map ϕ : X → PY with ∂αY.ϕ = fα,

which will be written as ϕ̌ when useful.

Given a dI1-structure on the category A, if the cylinder endofunctor

I has a right adjoint P , the latter automatically inherits a dP1-structure

(R, ∂′α, e′, r′), with the same reversor R and natural transformations

which are mates to the transformations of I under the given adjunction

(cf. A5.3). Explicitly, writing η : 1 → PI the unit and ε : IP → 1 the

counit of the adjunction, we have:

e′ = (Pe.η : 1A → PI → P ),

∂′α = (ε.∂αP : P → IP → 1A),

r′ = (PRε.PrP.ηRP : RP → P (IR)P → P (RI)P → PR).

(1.40)
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We say then that A is a dIP1-category. Such a structure, of course,

is formed of the adjunction I a P together with the reversor R and

two triples of natural transformations, (∂α, e, r) and (∂′α, e′, r′), each

triple determining the other, as in (1.40) or dually. Then, both endo-

functors give rise to the same homotopies, represented equivalently by

maps ϕ̂ : IX → Y or ϕ̌ : X → PY . The counit of the adjunction I a P

will also be called path-evaluation (cf. (1.14), for spaces) and written

ev : IP → 1. (1.41)

Here also, a dP1 or dIP1-category is said to be reversible when R is

the identity, so that every homotopy has a reversed homotopy −ϕ =

ϕop : g → f . The notions of dP1-subcategory and dIP1-subcategory are

defined as in the dI1-case.

For instance, Top is a reversible dIP1-category, with the obvious

structure based on the standard interval (recalled in Section 1.1). The

category pTop of preordered topological spaces is a non-reversible dIP1-

category, with the structure described in 1.1.4, based on the rever-

sor R(X) = Xop (which reverses preorder) and the cylinder functor

I(X) = X×↑I. Cat has a non-reversible dIP1-structure, where ho-

motopies are natural transformations (Section 1.1.6), R(X) = Xop is

the opposite category and the cylinder is I(X) = X ×2. Cat also

has a reversible dIP1-structure, written Cati, based on the self-dual

category i, where homotopies are natural isomorphisms, and Gpd is a

dIP1-subcategory of the latter (Section 1.1.6). Chain complexes have a

canonical reversible structure, studied in Section 4.4. But we will see in

Section 5.7 that they also admit a weakly reversible structure, where R

is coherently isomorphic to the identity; the latter structure is also of in-

terest, because it can be lifted to chain algebras (losing any reversibility

property), while the first cannot.

As in these examples, a dIP1-structure is often generated by a stan-

dard directed interval, by cartesian (or tensor) product and internal

hom, respectively (see 1.2.5).

Concatenation and the second order structure will be dealt with in

Part II.
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1.2.3 The basic structure of homotopies

Let A be a dI1-category. One can define a whisker composition for maps

and homotopies

X ′
h // X

f //

g
//↓ ϕ Y

k // Y ′

k◦ϕ◦h : kfh→ kgh : X ′ → Y ′,

(k◦ϕ◦h)̂ = k.ϕ̂.Ih : IX ′ → Y ′,
(1.42)

which will also be written as kϕh, even though one should recall that the

computational formula is k.ϕ̂.Ih.

This ternary operation satisfies:

k′◦(k◦ϕ◦h)◦h′ = (k′k)◦ϕ◦(hh′) (associativity),

1Y ◦ϕ◦1X = ϕ, k◦0f ◦h = 0kfh (identities),

(k◦ϕ◦h)op = kop◦ϕop◦hop : (kgh)op → (kfh)op (reflection).

(1.43)

(These properties will be abstracted in a self-dual setting based on

assigning homotopies, see 1.2.9.)

Actually, we can define a richer cubical structure on A (which will

be important starting with Chapter 3): a p-dimensional homotopy ϕ :

X →p Y is a map ϕ̂ : IpX → Y . The composition with ψ : Y →q Z is

n-dimensional (with n = p+ q) and defined as:

ψ◦ϕ : X →n Z, (ψ◦ϕ)̂ = ψ̂.Iqϕ̂ : InX → IqY → Z. (1.44)

As we have already seen for topological spaces (cf. (1.11)), to extend

the endofunctor I to homotopies requires a transposition s : I2 → I2.

This will be done in 4.1.5.

1.2.4 Concrete structures

A concrete dI1-category will be a dI1-category A equipped with a rever-

sive object E, called the standard point, or free point, of A, and with a

specified isomorphism

E → Eop. (1.45)

This is essentially equivalent to assigning a representable forgetful

functor (Section A1.7), invariant up to isomorphism under the rever-

sor R

U = | − | = A(E,−) : A→ Set, UR ∼= U. (1.46)
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Whenever possible, we will identify E = Eop and UR = R. The

functor U is faithful if and only if E is a separator (or generator) in A:

given two maps f 6= g : X → Y , there exists some x : E → X such that

fx 6= gx. (Notice that a concrete category is generally assumed to be

equipped with a faithful forgetful functor with values in Set, which here

need not be true.)

In the examples below, we start from choosing the relevant forget-

ful functor, as an ‘underlying set’ in some sense, and then define the

standard point as its representative object. Notice that the free point

need not be terminal or initial (typically, it is not so in a pointed dI1-

category); furthermore, the set U(E) = A(E,E) may have more than

one element, as in case (d).

(a) If A is Top, pTop (or dTop), the forgetful functor is given by the

underlying set, and the standard point is the singleton {∗}, with its

unique A-structure.

(b) For pointed preordered spaces (see 1.5.5) the forgetful functor is

given by the underlying set, and the free point is the two-point set

S0 = {−1, 1}, with the discrete topology and the discrete order (i.e.

the equality relation), pointed at 1 (for instance). The isomorphism

|X| = A(S0, X) comes precisely from the fact that S0 has one ‘free

point’, which can be mapped to any point of the pointed preordered

space X.

(c) For Cat, the (non-faithful) forgetful functor is given by the set of

objects, and the standard point is the singleton category 1 = {∗}.

(d) For chain complexes, the (non-faithful) forgetful functor is given by

the underlying set of the 0-component, and the free point is the abelian

group Z (in degree 0). For directed chain complexes (see 2.1.1), we will

take the set of (weakly) positive elements of the 0-component; the free

point will be the abelian group ↑Z with natural order (in degree 0):

it is a reversive object but cannot be identified with ↑Zop (which has

the opposite order). Similarly, the sets U(A) and UR(A), of (weakly)

positive or negative elements of A0, are in canonical bijection but cannot

be identified.

Now, let A be concrete dI1-category; for the sake of simplicity, we

assume that E = Eop (which simply allows us to omit the specified

isomorphism E → Eop). The object I = I(E) inherits the structure of a

dI1-interval in A: by this we mean that it is equipped with four maps:



1.2 The basic structure of the directed cylinder and cocylinder 33

two faces (∂α), a degeneracy (e) and a reflection (r)

∂α : E −→←−−→ I : e, r : I→ Iop (α = ±), (1.47)

satisfying the equations

e∂α = 1: E → E, rop.r = 1: I→ I,

eop.r = e : I→ E, r.∂− = (∂+)op : E → Iop.
(1.48)

A point of X is an element x ∈ |X|, i.e. a map x : E → X, while a

(directed) path in X is a map a : I → X, defined on I = I(E); thus, a

path is a homotopy on the standard point E, between its endpoints

a : x− → x+ : E → X, xα = ∂α(a) = a∂α. (1.49)

Every point x : E → A has a trivial path, 0x = xe : x→ x (or degenerate

path). Every path a : x→ y has a reflected path r(a) : yop → xop in Xop

r(a) = aop.r : I→ Xop, ∂−r(a) = aop.r∂− = aop.∂+op = yop. (1.50)

Furthermore, given two paths a−, a+ : x− → x+ with the same end-

points, a 2-homotopy h : a− → a+, or homotopy with fixed endpoints, is

a map defined on the standard square I(2) = I2(E), with two parallel

faces aα and the other two degenerate at xα

h : I2(E)→ X, h.(I∂α) = aα, h.(∂αI) = xαe. (1.51)

The fundamental graph ↑Γ1(X) has, for arrows, the classes of paths

up to the equivalence relation generated by homotopy with fixed end-

points. In the same setting, extending the notions above, we will define

the cubical set of singular cubes of X (Section 2.6.5). In a richer setting,

allowing for concatenation of homotopies (and paths), ↑Γ1(X) will be-

come the fundamental category ↑Π1(X) of X (cf. Chapter 3 and Section

4.5).

On the other hand, a concrete dP1-category A comes, by definition,

with a forgetful functor U = | − | : A → Set such that UR ∼= U . This

notion is not dual to the previous one (necessarily, since the general

notion of a category equipped with a functor to Set is not self-dual).

Notice that we are not assuming that U be representable, nor faithful.

Here, a point in X will be an element of |X|, and a path in X will

be an element a ∈ |PX|. The faces of a are obtained by applying the

mappings U(∂α) : |PX| → |X|. By arguments parallel to the previous

ones, one constructs, also here, the fundamental graph ↑Γ1(X).

Finally, a concrete dIP1-category A is a dIP1-category with a rep-

resentable forgetful functor U = A(E,−) : A → Set, and E = R(E).
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Then the previous constructions coincide, since - because of the adjunc-

tion I a P , we have a canonical bijection:

|PX| = A(E,PX) = A(I(E), X) = A(I, X). (1.52)

1.2.5 Monoidal and cartesian structures

Let A = (A,⊗, E, s) be a symmetric monoidal category (see [M3, EK,

Ke2]; or A4.1 for a brief review of definitions). We shall always omit

the isomorphisms pertaining to the monoidal structure, except for the

symmetry isomorphism

s(X,Y ) : X ⊗ Y → Y ⊗X. (1.53)

Let us assume that A is equipped with a reversor R : A → A. Here,

this will mean an involutive (covariant) automorphism R(X) = Xop,

which is strictly monoidal and consistent with the symmetry:

Eop = E, (X ⊗ Y )op = Xop ⊗ Y op,

(s(X,Y ))op = s(Xop, Y op).
(1.54)

Thus, A has a forgetful functor U = A(E,−) : A → Set. (All the

examples of 1.2.4 can be obtained in this way, for a suitable monoidal

structure on A.)

A dI1-interval I in A has, by definition, the structure described above

(within a concrete dI1-category, see (1.47), (1.48)). Then, the tensor

product −⊗ I yields a dI1-structure:

I(X) = X ⊗ I, ∂αX = X ⊗ ∂α : X → IX,

eX = X ⊗ e : IX → X, rX = Xop ⊗ r : IRX → RIX,
(1.55)

called the symmetric monoidal dI1-structure defined by the interval I;

this structure is concrete (Section 1.2.4), with standard point E and

standard interval I(E) = E ⊗ I = I. We will see, in 4.1.4, that this

structure is always a symmetric dI1-category, in the sense that the trans-

position s : I2 → I2 given by the symmetry s(I, I) of the tensor product

satisfies the relevant axioms of consistency with the rest of the structure.

Now, if the dI1-interval I is an exponentiable object (Section A4.2) in

A, we have a symmetric monoidal dIP1-structure, with

P (Y ) = Y I, ∂′αY = Y ∂
α

: PY → Y,

e′Y = Y e : Y → PY, r′Y = (Y op)r : RPY → PRY.
(1.56)

A cartesian dI1-category (or dIP1-category) is a symmetric monoidal
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dI1-category (or dIP1-category) where the tensor product is the carte-

sian one (equipped with the canonical symmetry isomorphism). For

instance, pTop, Top and Cat are cartesian dIP1-categories; the first

two are not cartesian closed.

On the other hand, a dI1-structure on a symmetric monoidal category

A with reversor gives a dI1-interval I = I(E), with ∂α = ∂αE : E → I,

and so on. But notice that this dI1-interval may not give back the

original structure - when the latter is not monoidal. (For instance, the

dI1-structure of pointed d-spaces is monoidal with respect to the smash

product, but is not so with respect to the cartesian product; see 1.5.5.)

Occasionally, we will also consider a formal interval in a non-symmetric

monoidal category with reversor. This situation requires more care, as

it originates a left cylinder I ⊗ X, a right cylinder X ⊗ I and - as a

consequence - left and right homotopies; for instance, this is the case of

cubical sets (Section 1.6).

1.2.6 Functors and preservation of homotopies

Let A and X be dI1-categories; we shall write their structures with the

same letters (R, I, ∂α, e, r).

We say that a functor H : A → X preserves homotopies if for every

homotopy f → g in A there exists some homotopy Hf → Hg in X.

Replacing this existence condition with structure, a lax dI1-functor

H = (H, i, h) : A → X will be a functor H equipped with two natural

transformations i, h which satisfy the following conditions (implying that

i is invertible)

i : RH → HR, h : IH → HI (comparisons),

(RiR).i = 1RH ,
(1.57)

H
∂αH //

H∂α $$

IH
eH //

h

��

H IRH
Ii //

rH
��

IHR
hR // HIR

Hr
��

HI
He

::

RIH
Rh
// RHI

iI
// HRI

It follows that every homotopy ϕ : f− → f+ : A → B in A (repre-

sented by a map ϕ̂ : IA → B with ϕ∂α = fα) gives a homotopy in
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X

Hϕ : Hf− → Hf+ : HA→ HB,

(Hϕ)̂ = H(ϕ̂).hA : IHA→ HIA→ HB,

H(ϕ̂).hA.∂αHA = H(ϕ̂.∂αA) = Hfα,

(1.58)

consistently with faces (as checked above), trivial homotopies and reflec-

tion: H(0f ) = 0H(f), H(ϕop) = (Hϕ)op.

The dual notion is a lax dP1-functor K = (K, i, k) : A → X be-

tween dP1-categories, with natural transformations i : KR → RK and

k : KP → PK satisfying dual conditions

i : KR→ RK, k : KP → PK (comparisons),

(RiR).i = 1KR,
(1.59)

K
Ke //

eK $$

KP
K∂α //

k

��

K KRP
iP //

Kr
��

RKP
Rk // RPK

rK
��

PK
∂αK

::

KPR
kR
// PKR

Pi
// PRK

Now, a lax dI1-functor H : A → X between dIP1-categories becomes

automatically a lax dP1-functor, with the inverse natural isomorphism

i−1 : HR → RH and the comparison k mate to h under the adjunction

I a P (Section A5.3)

k : HP → PH, kA = (HPA→ PIHPA→ PHIPA→ PHA). (1.60)

The latter necessarily satisfies the coherence conditions (1.59). We say

that H, equipped with the natural isomorphism i and the natural trans-

formations h : IH → HI, k : KP → PK (mates under the adjunction

I a P ), is a lax dIP1-functor.

A strong dI1-functor U : A → X between dI1-categories is a lax dI1-

functor whose comparisons are invertible. More particularly, U is strict

if all comparisons are identities; then, the functor U commutes strictly

with the structures

RU = UR, IU = UI, ∂αU = U∂α : U → IU = UI,

eU = Ue : IU = UI → U, rU = Ur : IRU → IRU.
(1.61)

In this case, a functor H : X → A right adjoint to U inherits com-

parisons i : RH → HR and h : IH → HI making it a lax dI1-functor

(generally non strong)

iX = (RHX → HURHX = HRUHX → HRX),

hX = (IHX → HUIHX = HIUHX → HIX).
(1.62)
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(The involutions R of A and X give UR a RH and RU a HR;

since UR = RU , the uniqueness of the right adjoint gives a canonical

isomorphism RH → HR, which can be computed combining units and

counits as above.)

On the other hand, a left adjoint D a U inherits a transformation

DI → ID, which is of no utility for transforming homotopies. Various

examples will be seen below (starting with 1.2.8).

1.2.7 Dualities

First, categorical duality turns a dI1-category A into the dual category

A∗ with a dP1-category structure: the reversor R∗, the path functor

P = I∗, the natural transformations (∂α)∗ : P → 1, etc. This duality

reverses the direction of arrows and takes a homotopy ϕ : f → g : X → Y

in A (defined by a map ϕ : IX → Y ) to a homotopy ϕ∗ : f∗ → g∗ : Y →
X of A∗ (defined by the map ϕ∗ : Y → PX).

Second, we call R-duality, or reflection-duality, the fact of turning a

dI1-category A into the dI1-category AR with reversed faces (∂R)− =

∂+, (∂R)+ = ∂− (all the rest being unchanged). This reverses the di-

rection of homotopies (including paths), as it takes a homotopy ϕ : f →
g : X → Y in A to the homotopy ϕR : g → f : X → Y in AR. The

functor R can be viewed as a dI1-isomorphism AR → A, and one can

replace ϕR with the reflected homotopy, in A (see (1.26))

R(ϕR) = ϕop : gop → fop : Xop → Y op, (ϕop)̂ = R(ϕ̂).rX. (1.63)

In other words, R-duality amounts to applying the reversor R to ob-

jects and maps, and reflecting homotopies with the procedure ϕ 7→ ϕop.

Notice that we are writing A∗ the dual of a (generally large) dI1-

category, while within the directed structure of Cat (Section 1.1.6), the

dual of a small category is written as RX = Xop. Small categories

are viewed here as directed spaces, in their own right, and also as di-

rected algebraic structures used to study other directed spaces via their

fundamental categories.

1.2.8 Some forgetful functors and their adjoints

The categories Top (of topological spaces) and pTop (of preordered

topological spaces), have a canonical dIP1-structure, described in the

previous section (the former is reversible).
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The forgetful functor U : pTop → Top is a strict dI1-functor (Sec-

tion 1.2.6) and - as a consequence - a lax dP1-functor; note that the

comparison

UP → PU, UP (Y ) = U(Y
↑I) ⊂ (UY )I = PU(Y ), (1.64)

is indeed not invertible.

We also know (by 1.2.6, again) that the right adjoint D′ : Top →
pTop (which equips a topological space with the chaotic preorder, see

1.1.3) inherits the structure of a lax dI1-functor, with RD′ = D′R. In

fact, the (non-invertible) comparison

ID′ → D′I, ID′(S) = D′(S)×↑I→ D′(S×I) = D′I(S), (1.65)

is the identity mapping between two preordered spaces having the same

underlying topological space and comparable preorders: the second is

coarser, and strictly so (unless S is empty).

Always because of general reasons (cf. 1.2.6), the left adjoint D : Top

→ pTop (providing the discrete order) inherits a natural transformation

DI → ID, DI(S) = D(S×I)→ D(S)×↑I = ID(S), (1.66)

which is not invertible, and of no utility for homotopies and paths; and

indeed, it is obvious that the functor D : Top → pTop cannot take

paths to directed paths.

We have also seen, in 1.1.6, that Cat has a non-reversible dIP1-

structure, based on the directed interval 2, and a reversible one, based on

the groupoid i and written Cati. The category Gpd of small groupoids

is a dIP1-subcategory of the latter (Section 1.2.2), and the embedding

U : Gpd → Cat is a lax dI1-functor, with comparisons:

i : RU → UR, iX : Xop → X, a 7→ a−1,

h : IU → UI, hX : X×2 ⊂ X×i.
(1.67)

1.2.9 A setting based on directed homotopies

As foreshadowed in 1.2.3, it may be interesting to establish a self-dual

setting based on directed homotopies, without having to choose between

cylinder or path representation. (This setting is related to the notion of

h-category recalled in A5.1, which is here enriched with a reversor.)

Say that a dh1-structure on the category A consists of the following

data:
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(a) a reversor R : A→ A (again, an involutive covariant automorphism,

written as R(X) = Xop);

(b) for each pair of parallel morphisms f, g : X → Y , a set of (directed)

homotopies A2(f, g), whose elements are written as ϕ : f → g : X → Y

(or ϕ : f → g), so that each map f has a trivial (or degenerate, or

identity) endohomotopy 0f : f → f ;

(c) an involutive action of R on homotopies, which turns ϕ : f → g into

ϕop : gop → fop;

(d) a whisker composition for maps and homotopies

X ′
h // X

f //

g
//↓ ϕ Y

k // Y ′ k◦ϕ◦h : kfh→ kgh. (1.68)

These data must satisfy the following axioms:

k′◦(k◦ϕ◦h)◦h′ = (k′k)◦ϕ◦(hh′) (associativity),

1Y ◦ϕ◦1X = ϕ, k◦0f ◦h = 0kfh (identities),

(k◦ϕ◦h)op = kop◦ϕop◦hop, (0f )op = 0fop (reflection).

(1.69)

(More formally, this structure can be viewed as a category with rever-

sor, enriched over the category of reflexive graphs; the latter is endowed

with a suitable symmetric monoidal closed structure, see 4.3.3.)

Implicitly, we have already seen in 1.2.3 that every dI1-category has

a dh1-structure. Dually, the same is true of dP1-categories.

However, developing the theory of dh1-categories, the advantage of

having a self-dual setting would soon disappear. We would soon be

obliged to assume the existence of homotopy pushouts (see Sections 1.3

and 1.7), in order to construct the cofibre sequence of a map; or, dually,

the existence of homotopy pullbacks, to construct the fibre sequence of

a map (Section 1.8). This would reintroduce the cylinder, as the homo-

topy pushout of two identities (Section 1.3.5); or, dually, the cocylinder

as the homotopy pullback of two identities. More precisely, it is easy to

prove that a dh1-category with all homotopy pushouts is the same as a

dI1-category with all homotopy pushouts.

This is why we prefer to work from the beginning with the cylinder

or the path endofunctor.
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1.3 First order homotopy theory by the cylinder functor, I

We study here various notions of directed homotopy equivalence and the

homotopy pushout of two maps, in an arbitrary dI1-category A (Section

1.2.1).

Higher order properties of homotopy pushouts need a richer setting,

and are deferred to Chapter 4. The present matter comes mostly from

[G3, G7, G8].

1.3.1 Future and past homotopy equivalence

Let A be a dI1-category (or a dP1-category). A future homotopy equiv-

alence (f, g;ϕ,ψ) between the objects X,Y (or homotopy equivalence in

the future) consists of a pair of maps and a pair of homotopies, the units

f : X � Y : g, ϕ : 1X → gf, ψ : 1Y → fg, (1.70)

which go from the identities of X,Y to the composed maps.

Future homotopy equivalences compose: given a second future homo-

topy equivalence

h : Y � Z : k, ϑ : 1Y → kh, ζ : 1Z → hk, (1.71)

their composite will be:

hf : X � Z : gk, gϑf.ϕ : 1X → gk.hf, hψk.ζ : 1Z → hf.gk. (1.72)

Thus, being future homotopy equivalent objects is an equivalence re-

lation.

By R-duality (Section 1.2.7), a past homotopy equivalence, or homo-

topy equivalence in the past, has homotopies in the opposite direction,

called counits, from the composed maps (gf, fg) to the identities

f : X � Y : g, ϕ : gf → 1X , ψ : fg → 1Y . (1.73)

More particularly, given a pair of morphisms i : X0 � X : p such that

pi = idX0 and there is a homotopy ϕ : idX → ip (resp. ϕ : ip → idX),

we say that X0 is a future (resp. past) deformation retract of X, that

i is the embedding of a future (resp. past) deformation retract and that

p is a future (resp. past) deformation retraction. We add the adjective

strong to each of these terms if one can choose the homotopy ϕ so that

ϕi = 0i. In all these cases i is a split monomorphism (i.e. it admits a

retraction p with pi = id) and X0 is a regular subobject of X.

(Recall that, in an arbitrary category, a regular subobject of an object
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X is an equaliser i : X0 → X of some pair of maps X ⇒ Y , or more

precisely the equivalence class of all equalisers of such a pair; see A1.3).

In Top, a regular subobject of X amounts to a subspace X0 ⊂ X; in

pTop, it amounts to a subspace equipped with the induced preorder.)

A lax dI1-functor H = (H, i, h) : A → X acts on homotopies (see

(1.58)), whence it also preserves future and past homotopy equivalences,

as well as future and past deformation retracts. The same holds for a

lax dP1-functor. More generally, it also holds for a functor H : A→ X

which preserves homotopies in the sense of 1.2.6, even though, now, H

is not provided with a precise way of operating on homotopies.

If the structure of A is reversible, future and past homotopy equiva-

lences coincide, and are simply called homotopy equivalences; the same

holds for deformation retracts.

1.3.2 Contractible and co-contractible objects

Let A be always a dI1-category (or a dP1-category). If A has a terminal

object >, an object X is said to be future contractible if it is future

homotopy equivalent to>. Equivalently, X admits the terminal object>
as a future deformation retract, or also, there is a homotopy ϕ : 1X → f

from the identity to a constant map f : X → X (a morphism which

factorises through the terminal object).

Categorical duality turns the terminal object > of A into the initial

object ⊥ of A∗, and future contractible objects of A into future co-

contractible objects of A∗ (i.e. objects which are future homotopy equiv-

alent to the initial object). On the other hand, R-duality preserves the

terminal and turns future contractible objects of A into past contractible

objects of AR (Section 1.2.7).

Future (or past) contractibility is adequate for categories of an ‘ex-

tensive character’, like (directed) topological spaces and cubical sets.

Future (or past) co-contractibility is adequate for categories of an ‘in-

tensive character’, like unital differential graded algebras (or the opposite

categories of the previous ones). Obviously, the two notions coincide for

pointed categories, like pointed spaces or ‘general’ differential graded

algebras (without unit assumption).

Let us also remark that, when the initial object is absolute (i.e. every

map X → ⊥ is invertible), as happens with ‘spaces’ and cubical sets,

then the only co-contractible object is the initial one. Dual facts hold

for unital differential algebras: the terminal object (the null algebra) is

absolute and the unique contractible object.
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One should also be aware that, while contractibility and constant maps

are always based on the terminal object (and the dual notions on the

initial one), the abstract notion of a point, already considered in 1.2.4,

behaves differently. Thus, for pointed topological spaces, the free point

is the unit S0 of the smash product, while (co)contractibility is based

on the zero object.

Examples in pTop will be considered below (in 1.3.4). The terminal

object will be re-examined in 1.7.0.

1.3.3 Coarse d-homotopy equivalence

Let A be always a dI1-category (or a dP1-category). We consider here

some coarse equivalence relations produced by the homotopies of A.

But we will see, in Chapter 3, that Cat (with the directed homotopies

considered above, in 1.1.6) has finer equivalence relations, of a deeper

interest for the study of the fundamental category of a directed space.

First, the existence of a homotopy ϕ : f → g simply defines a reflexive

relation, closed under composition with maps (Section 1.2.3). We shall

denote as f ∼1 g the equivalence relation generated by the latter, which

amounts to the existence of a finite sequence of homotopies, forward or

backward

f = f0 → f1 ← f2 . . . → fn = g. (1.74)

This relation is a congruence of categories, because the original rela-

tion is closed under whisker composition, and will be called the homo-

topy congruence in A. One can define the homotopy category of A as

the quotient

Ho1(A) = A/ ∼1, (1.75)

but we will make little use of this construction, which gives a very poor

model of A.

Second, the equivalence relation between objects of A generated by

future and past homotopy equivalence will be called coarse d-homotopy

equivalence. This can be controlled, step by step: we shall speak of

an n-step coarse d-homotopy equivalence for a sequence of n homotopy

equivalences in the future or in the past

X = X0 � X1 � . . . � Xn = Y. (1.76)

The composed map f : X → Y will also be called a coarse d-homotopy

equivalence. Note that f and the other composite g : Y → X in (1.76)
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give gf ∼1 idX, fg ∼1 idY , so that X and Y are isomorphic in the

homotopy category Ho1(A).

Finally, a subobject u : X0 → X will be said to be the embedding of

a coarse directed deformation retract in n steps if it is the composite of

a finite sequence

X0 → X1 → . . . → Xn = X, (1.77)

where each morphism is the embedding of a future or past deformation

retract; and in precisely n steps if a shorter similar chain does not exist.

Then X0 is coarse d-homotopy equivalent to X in n steps.

If A has a terminal object >, we say that the object X is coarsely d-

contractible in n steps, if there is a map > → X which is a coarse directed

deformation retract in n steps (note that this condition is stronger than

saying coarsely d-homotopy equivalent to the terminal, in n steps).

If the structure of A is reversible and homotopies can be concatenated,

the existence of a homotopy ϕ : f → g amounts to the equivalence rela-

tion f ∼1 g. Homotopy equivalences coincide with the maps of A which

become isomorphisms in Ho1(A), and satisfy thus the ‘two out of three’

property: namely, if in a composite h = gf two maps out of f, g, h are

homotopy equivalences, so is the third.

1.3.4 Examples

Let us consider these notions in pTop, where the terminal object is the

singleton {∗} (as a preordered space).

A preordered subspace X0 ⊂ X is (the embedding of) a future de-

formation retract of X if and only if there is a map ϕ (of preordered

spaces) such that

ϕ : X×↑I→ X, ϕ(x, 0) = x, ϕ(x, 1) ∈ X0 (for x ∈ X). (1.78)

This implies thatX is upper bounded byX0 for the path preorder (each

point of X has some upper bound in X0). Thus, a preordered space X

which is future contractible has a maximum for its preorder: the point

i(∗), where i : {∗} → X is the embedding of a future deformation retract.

For instance, the cylinder X ×↑I has a strong future deformation

retract at its upper basis ∂+(X) ⊂ IX, by the lower connection (reaching

the upper basis at time t′ = 1)

g− : (X×↑I)×↑I→ X×↑I, g−(x, t, t′) = (x,max(t, t′)). (1.79)
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Symmetrically, the lower basis ∂−(X) is a strong past deformation

retract of IX.

The left half-line ↑ ]−∞, 0] ⊂ ↑R is future contractible to 0 (which is

reached by the d-homotopy ϕ(x, t) = −x(t− 1), at time t = 1), but not

past contractible. The d-line ↑R is coarsely d-contractible in 2 steps, as

↑ ]−∞, 0] is a past deformation retract of ↑R (reached by the homotopy

ψ(x, t) = min(x, tx) at t = 0); and two steps are needed, since the line

has no maximum or minimum.

Similarly, all ↑Rn are coarsely d-contractible in 2 steps (for n > 0):

one can take as a past deformation retract X = ↑ ]−∞, 0]n, moving all

points of the complement to the boundary of X along lines parallel to

the main diagonal x1 = ... = xn.

Consider now the following subspaces of the ordered plane, V and the

infinite stairway W

V = ([0, 1]×{0}) ∪ ({0}×[0, 1])) ⊂ ↑R2,

W =
⋃
k∈Z (([k, k + 1]×{−k}) ∪ ({k}×[−k, 1− k])),

(1.80)

V W

//

OO

//

OO

V is past contractible (to the origin). W is not even coarsely d-

contractible: it is easy to see that the existence of a homotopy f → idW

or idW → f implies f(W ) = W . But a finite stairway consisting of 2n

or 2n−1 consecutive segments of W is coarsely d-contractible in n steps

(in the even case, each step contracts the first and last segment; in the

odd one, the first step contracts one of them).

1.3.5 Homotopy pushouts

Let f : X → Y and g : X → Z be two morphisms with the same domain,

in the dI1-category A. The standard homotopy pushout, or h-pushout,

from f to g is a four-tuple (A;u, v;λ) as in the left diagram below, where

λ : uf → vg : X → A is a homotopy satisfying the following universal
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property (of cocomma squares)

X
g //

f
��

Z

v
��

X
id //

id
��

X

∂+

��
Y

u
//

λ //

A X
∂−
//

λ //

IX

(1.81)

- for every λ′ : u′f → v′g : X → A′, there is precisely one map h : A→ A′

such that u′ = hu, v′ = hv, λ′ = h◦λ.

The existence of the solution depends on A, of course; its uniqueness

up to isomorphism is obvious. The object A, a ‘double mapping cylin-

der’, will be denoted as I(f, g). When g or f is an identity, one has a

mapping cylinder, I(f,X) or I(X, g).

The reflection rX : IRX → RIX induces an isomorphism

rI : I(Rg,Rf)→ RI(f, g),

which will be called the reflection of h-pushouts.

As shown in the right diagram above, the cylinder IX itself is the

h-pushout of the pair (idX, idX): equipped with the obvious structural

homotopy ∂ (cylinder evaluation, represented by the identity of the cylin-

der)

∂ : ∂− → ∂+ : X → IX, ∂̂ = id(IX); (1.82)

it establishes a bijection between maps h : IX → W and homotopies

h◦∂ : h∂− → h∂+ : X →W , because of the very definition of homotopy.

On the other hand, every homotopy pushout can be constructed using

the cylinder and the ordinary colimit of the following diagram, which -

as shown on the right hand - amounts to three ordinary pushouts (or

two)

X
g //

∂+

��

Z

v

��

X
g //

∂+

��

Z

��
X

∂− //

f

��

IX
λ

##

X
∂− //

f

��

IX //

��

I(X, g)

��
Y

u
// I(f, g) Y // I(f,X) // I(f, g)

(1.83)

Therefore, a dI1-category A has homotopy pushouts if and only if it

has cylindrical colimits, i.e. - by definition - the colimit I(f, g) of each

diagram of the previous type.

The existence of ordinary pushouts in A is sufficient for this; but -
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interestingly - is not necessary. For instance, the category Ch•D of chain

complexes on an additive category D (Section A4.6), equipped with or-

dinary homotopies, has all h-pushouts (which can be constructed with

the additive structure), but it has cokernels (and pushouts) if and only if

D has. Chain complexes of free abelian groups are a relevant case where

all h-pushouts exist, while ordinary pushouts do not, see 1.3.6(d). (A

non-reversible example can be constructed with the category of directed

chain complexes of free abelian groups, cf. 4.4.5.)

Higher properties of h-pushouts need a richer structure on the cylinder

functor, which will be studied in Chapter 4.

1.3.6 Examples

(a) The construction of the double mapping cylinder I(f, g), in pTop is

made clear by the following picture (where f, g are embeddings, for the

sake of simplicity)

Y

IX

Z

y

z

•

•

GG
(1.84)

The space I(f, g), as the colimit described above (in (1.83)), results of

the pasting of the cylinder IX with the spaces Y,Z, under the following

identifications (for x ∈ X):

I(f, g) = (Y + IX + Z)/ ∼, [x, 0] = [f(x)], [x, 1] = [g(x)]. (1.85)

Thus, the structural maps u : Y → I(f, g) and v : Z → I(f, g) are

always injective, while λ : IX → I(f, g) is necessarily injective outside

of the bases ∂αX (it is injective ‘everywhere’ if and only if both f and

g are).

The preorder induced on I(f, g) is also evident, and an (increasing)

path from y ∈ Y to z ∈ Z (for instance) results of the concatenation of

three paths in Y, IX and Z, as below, with f(x1) = f(x′) and g(x′′) =
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g(x3)

a1 : y → f(x1) in Y, a2 : (x′, 0)→ (x′′, 1) in IX,

a3 : g(x3)→ z in Z, ([f(x1)] = [x′, 0], [x′′, 1] = [g(x3)]).
(1.86)

(b) In Cat, I(f, g) is called a cocomma object, and the left diagram (1.81)

is called a cocomma square. The category I(f, g) is, again, a quotient

of a sum (as in (1.85)), modulo a generalised congruence of categories

(also working on objects, as considered in [BBP]).

(c) For the category dCh•Ab of directed chain complexes of abelian

groups, see 4.4.5.

(d) We have mentioned above (in 1.3.5) that the category of free abel-

ian groups and homomorphisms, say fAb, lacks (some) pushouts, or

equivalently (some) cokernels. Showing this fact is less obvious than

one might think, since - for instance - the ‘free cokernel’ of the multi-

plication by 2 in Z exists and is the null group. More generally, in the

finite-dimensional case, taking the quotient modulo the torsion subgroup

‘creates free cokernels’, out of the ordinary ones.

Our example (which is not needed for the sequel) will be based on the

fact that the countable power A = ZN, also called the Specker group,

is not free abelian, as proved by Specker [Sp], but has a jointly monic

family of homomorphisms pi : A→ Z, its projections.

Take a free presentation (k, p) of A in Ab, and suppose, for a contra-

diction, that the monomorphism k : F1 → F0 has a cokernel q : F0 → F

in fAb

F1
// k // F0

p // //

q

����

A

pi

��r||||
F // Z

This homomorphism q is surjective (since its image in F must be

free) and factorises through the ordinary cokernel p : F0 → A, which

yields a surjective homomorphism r : A→ F . All projections pi : A→ Z

must factorise through r, since pip : F0 → Z is in fAb and must factorise

through q. It follows that the kernel of r is null and r is an isomorphism;

which is absurd, because A is not free.
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1.3.7 Functoriality

Assuming that the dI1-category A has h-pushouts, these form a functor

A∨ → A, where ∨ is the formal-span category: • ← • → • . In fact,

a morphism (x, y, z) : (f, g)→ (f ′, g′) in A∨ is a commutative diagram

Y

y

��

X
foo g //

x
��

Z

z
��

Y ′ X ′
f ′
oo

g′
// Z ′

(1.87)

This yields a map h = I(x, y, z) : I(f, g) → I(f ′, g′), which is defined

as suggested by the following diagram (where λ′ : u′f ′ → v′g′ denotes

the second h-pushout)

X
g //

x

��

f %%

Z
v

&&
z

��
Y

u
//

y

��

λ

??

I(f, g)

h

��

X ′
g′ //

f ′ %%

Z ′

v′

&&
Y ′

u′
//λ′

??

I(f ′, g′)

(1.88)

1.3.8 Lemma (Pasting Lemma for h-pushouts)

Let A be a dI1-category and let λ, µ, ν be h-pushouts, as in the diagram

below. Then, there is a comparison map k : C → D defined by the

universal properties of λ, µ and such that:

kvu = a, kz = b, k◦µ = 0bg, (1.89)

X
f //

x
��

Y
g //

y

��

Z

z

��

Z

b

��
A

u
//

λ //

B v //
w

++

µ //

C

A
a

//

ν 00

D

Again, the present setting is insufficient to get a comparison the other

way round (see 4.6.2).
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Proof First, we define a map w : B → C by the universal property of λ

wu = a, wy = bg, w◦λ = ν.

Then we define k : C → D by the universal property of µ, using the

fact that wy = bg:

kv = w, kz = b, k◦µ = 0bg.

1.3.9 Lemma (Special Pasting Lemma)

Let A be a dI1-category. In the following diagram, λ is an h-pushout,

the right-hand square is commutative and we let λ′ = vλ : vux→ zgf .

X
f //

x
��

Y
g //

y

��

Z

z
��

A
u
//

λ //

B
v
// C

(1.90)

Then the triple (vu, z, λ′) is the h-pushout of (x, gf) if and only if the

right-hand square is an ordinary pushout.

Proof We give a proof based on the universal property of the h-pushout,

but one could also use the cylindrical colimit (1.83) and some pasting

properties of ordinary pushouts, which are well known in category the-

ory.

First, we assume that the right square be an ordinary pushout, and

prove the universal property for (vu, z, λ′). Given a triple (a, b, ν) as

below

X
f //

x
��

Y
g //

y

��

Z

z
��

Z

b

��
A

u
//

λ //

B v //
w

++

C

A
a

//

ν 00

D

(1.91)

we define a map w : B → C by the universal property of λ (as in the

previous proof)

wu = a, wy = bg, w◦λ = ν. (1.92)
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Then we define k : C → D by the universal property of the pushout

square:

kv = w, kz = b, (1.93)

and conclude that

kvu = a, kz = b, k◦λ′ = ν. (1.94)

As to uniqueness, given a morphism k : C → D which satisfies (1.94),

the composite w = kv must satisfy (1.92), and is thus determined by the

data (a, b, ν); then k, which satisfies (1.93), is also uniquely determined.

Conversely, let (vu, z, λ′) be the h-pushout of (x, gf) and let us prove

that the square vy = zg is a pushout. Given a commutative square

wy = bg, let a = wu : A → D and ν = w◦λ : ax → bgf , as in diagram

(1.91). Now, by the universal property of the outer h-pushout, the

triple (a, b, ν) determines a unique k : C → D such that (1.94) holds;

this implies (1.93), because the maps kv, w : B → D have the same

composites with the h-pushout (u, y, λ). The fact that (1.93) determines

k : C → D is proved in the same way.

1.4 Topological spaces with distinguished paths

We begin now the study of the category dTop of spaces with distin-

guished paths, or d-spaces. With respect to preordered spaces, this

‘world’ also contains objects having non-trivial loops, like the directed

circle ↑S1 (Section 1.4.3), or point-like vortices (see 1.4.7). It is our main

non-reversible world of a topological kind.

A preordered space X will always be viewed as a d-space by distin-

guishing the (weakly) increasing paths a : ↑I → X. But one should be

warned that the canonical functor d : pTop → dTop so defined is not

an embedding, as it can identify different preorders of a space (Section

1.4.5).

1.4.0 Spaces with distinguished paths

The category pTop considered above (Section 1.1) behaves well, with

respect to directed homotopy theory, but lacks interesting objects, like

a ‘directed circle’. Indeed, in a preordered space, every loop stays in a

zone where the preorder is chaotic, and is therefore a reversible loop -

even a constant one, if the preorder is antisymmetric. This deficiency

can be overcome in various ways.
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Our main solution, in this sense, will be the category dTop of d-

spaces, introduced in [G8]. A d-space X, or space with distinguished

paths, is a topological space equipped with a set dX of (continuous)

maps a : I → X, called distinguished paths or directed paths or d-paths,

satisfying three axioms:

(i) (constant paths) every constant map I→ X is directed,

(ii) (partial reparametrisation) dX is closed under composition with

every (weakly) increasing map I→ I,

(iii) (concatenation) dX is closed under path-concatenation: if the d-

paths a, b are consecutive in X (i.e. a(1) = b(0)), then their ordi-

nary concatenation a+ b (Section 1.1.0) is also a d-path.

It is easy to see that directed paths are also closed under the n-ary

concatenation a1 + ... + an of consecutive paths, based on the regular

partition 0 < 1/n < 2/n < ... < 1 of the standard interval; and, more

generally, under a generalised n-ary concatenation based on an arbitrary

partition of [0, 1] in n subintervals. Note also that, in axiom (ii), we are

not assuming that the increasing map I→ I be surjective; therefore, any

restriction of a d-path to a subinterval of [0, 1] is distinguished (after

reparametrisation on I).

A map of d-spaces, or d-map, is a continuous mapping f : X → Y

between d-spaces which preserves the directed paths: if a ∈ dX, then

fa ∈ dY .

Here also, the forgetful functor U : dTop → Top has a left and a

right adjoint, D a U a D′. Now, DS is the space S with the discrete

d-structure (the finest), where the distinguished paths reduce to (all)

the constant ones, while D′S has the natural d-structure (the largest),

where all (continuous) paths are distinguished. A topological space will

be viewed as a d-space by its natural structure D′S, so that all its paths

are retained; D′ preserves products and subspaces.

Reversing d-paths, by the involution r(t) = 1 − t, yields the opposite

d-space RX = Xop, where a ∈ d(Xop) if and only if ar is in dX. This

defines the reversor endofunctor

R : dTop→ dTop, RX = Xop. (1.95)

Following a general terminology (Section 1.2.1), the d-space X is re-

versive if it is isomorphic to Xop. More particularly, we say that it is

reversible if X = Xop, i.e. if its distinguished paths are closed under

reversion. But notice that we do not want to extend such a definition
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to all categories with reversor, since in Cat or Cub it would not give a

reasonable notion (see the last remark in 1.6.4).

We shall consider in Section 1.9 other ‘topological’ settings for directed

algebraic topology, like ‘locally ordered’ topological spaces, ‘inequilogical

spaces’ and bitopological spaces in the sense of J.C. Kelly [Ky], which

are rather defective with respect to the present setting. On the other

hand we have already remarked that, in pTop and dTop, the directed

structure is essentially ‘one-dimensional’ (Section 1.1.5): cubical sets

and ‘spaces with distinguished cubes’ yield a richer directed structure,

if a more complex one (Section 1.6).

1.4.1 Limits and colimits

The d-structures on a topological space S are closed under arbitrary

intersection in the lattice of parts of Top(I, S) and form therefore a

complete lattice for the inclusion, or ‘finer’ relation (corresponding to

the fact that idS be directed).

A (directed) subspace X ′ ⊂ X of a d-space X has the restricted struc-

ture, which selects those paths in X ′ that are directed in X; it is the

less fine structure which makes the inclusion into a map. A (directed)

quotient X/R has the quotient structure, generated by the projected d-

paths via reparametrisation and finite concatenation (or, equivalently,

via generalised finite concatenation, in the sense described above); it is

the finest structure which makes the projection X → X/R into a map.

It follows easily that the category dTop has all limits and colimits,

constructed as in Top and equipped with the initial or final d-structure

for the structural maps. For instance a path I →
∏
Xj with values

in a product of d-spaces is directed if and only if all its components

I → Xj are, while a path I →
∑
Xj with values in a sum of d-spaces is

directed if and only if it is directed in some summand Xj . Equalisers and

coequalisers are realised as subspaces or quotients, in the sense described

above.

If X is a d-space and A ⊂ |X| is a non-empty subset, X/A will denote

the d-quotient of X which identifies all points of A. More generally, for

any subset A of |X|, one should define the quotient X/A as the following
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pushout of the inclusion A→ X

A //

��

X

��
{∗} // X/A

(1.96)

which amounts to the previous description when A 6= ∅, but gives the

sum X + {∗} when A is empty. Notice that we always get a (naturally)

pointed d-space; these are dealt with below (in 1.5.4).

Let now G be a group, written in additive notation (independently of

commutativity). A (right) action of G on a d-space X is an action on

the underlying topological space such that, for each g ∈ G, the induced

homeomorphism

X → X, x 7→ x+ g, (1.97)

is a map of d-spaces (and therefore an isomorphism of d-spaces, with

inverse x 7→ x− g = x+ (−g)).

The d-space of orbits X/G is obviously defined as the quotient d-space,

modulo the (usual) equivalence relation which arises from the action. Its

d-structure has a simpler description than for a general quotient.

1.4.2 Lemma (Group actions on d-spaces)

If the group G acts on a d-space X, the d-space of orbits X/G is the usual

topological quotient, equipped with the projections of the distinguished

paths of X.

Proof It suffices to prove that these projections are closed under partial

increasing reparametrisation and concatenation. The first fact is obvi-

ous. As to the second, let a, b : I→ X be two distinguished paths whose

projections are consecutive in X/G. Then there is some g ∈ G such

that a(1) = b(0) + g. The path b′(t) = b(t) + g is distinguished in X

(by (1.97)), and the concatenation c = a + b′ is also. Finally, writing

p : X → X/G the canonical projection, pb′ = pb and pc = pa+ pb.

1.4.3 Standard models

The euclidean spaces Rn, In,Sn will have their natural (reversible) d-

structure, admitting all (continuous) paths as distinguished ones. I will

be called the natural interval.
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The directed real line, or d-line ↑R, will be the euclidean line with

directed paths given by the increasing maps I → R (with respect to

the natural orders). Its cartesian power in dTop, the n-dimensional

real d-space ↑Rn is similarly described (with respect to the product

order: x 6 x′ if and only if xi 6 x′i, for all i). The standard d-interval
↑I = ↑[0, 1] has the subspace structure of the d-line; the standard d-cube
↑In is its n-th power, and a subspace of ↑Rn.

These d-spaces are reversive (i.e. isomorphic to their opposite); in

particular, the canonical reflecting isomorphism

r : ↑I→ R(↑I), t 7→ 1− t, (1.98)

will play a role, by reflecting paths and homotopies into the opposite

d-space. (The structure of ↑I as a dIP1-interval will be analysed in

1.5.1.)

The standard directed circle ↑S1 will be the standard circle with the

anticlockwise structure, where the directed paths a : I → S1 move this

way, in the oriented plane R2: a(t) = (cosϑ(t), sinϑ(t)), with an in-

creasing (continuous) argument ϑ : I→ R

↑S1

oo

(1.99)

↑S1 can be obtained as the coequaliser in dTop of the following pair

of maps

∂−, ∂+ : {∗} ⇒ ↑I, ∂−(∗) = 0, ∂+(∗) = 1. (1.100)

Indeed, the ‘standard construction’ of this coequaliser is the quotient
↑I/∂I, which identifies the endpoints; the d-structure of the quotient

(generated by the projected paths) is the required one, precisely because

of the axioms on concatenation and reparametrisation of d-paths.

The directed circle can also be described as an orbit space

↑S1 = ↑R/Z, (1.101)

with respect to the action of the group of integers on the directed line ↑R
(by translations); therefore, the distinguished paths of ↑S1 are simply

the projections of the increasing paths in the line (Lemma 1.4.2).

The directed n-dimensional sphere ↑Sn is defined, for n > 0, as the

quotient of the directed cube ↑In modulo its (ordinary) boundary ∂In,
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while ↑S0 has the discrete topology and the natural d-structure (obvi-

ously discrete)

↑Sn = (↑In)/(∂In) (n > 0), ↑S0 = S0 = {−1, 1}. (1.102)

All directed spheres are reversive; their d-structure, further analysed

in Section 1.4.7, can be described by an asymmetric distance (see (6.14)).

The standard circle has another d-structure of interest, induced by

the d-space R×↑R and called the ordered circle ↑O1 (as motivated in

1.4.5)

•

•

↑O1 ⊂ R×↑R.

OO OO (1.103)

Here, d-paths have an increasing second projection. ↑O1 is the quo-

tient of ↑I + ↑I which identifies lower and upper endpoints, separately;

i.e. the coequaliser of the following two natural embeddings of S0

S0 → ↑I ⇒ ↑I + ↑I. (1.104)

It is thus easy to guess that the unpointed d-suspension of S0 will give
↑O1, while the pointed one will give ↑S1 and, by iteration, all higher ↑Sn
(Section 1.7.4, 1.7.5).

Various d-structures on the projective plane can be constructed as

directed mapping cones (see [G7]). For the disc, see 1.4.7.

1.4.4 Remarks

(a) Direction should not be confused with orientation. Every rotation of

the plane preserves orientation, but only the trivial rotation preserves

the directed structure of ↑R2; on the other hand, the transposition of

coordinates preserves the d-structure but reverses orientation. A non-

orientable surface like the Klein bottle has a natural d-structure, which is

locally isomorphic to ↑R2. On the torus, the directed structure ↑S1×↑S1

has nothing to do with its orientation; as is the case of all the directed

structures considered above (Section 1.4.3), in dimension > 2.

(b) A line in ↑R2 inherits the canonical d-structure (isomorphic to ↑R)

if and only if its slope belongs to [0,+∞]; otherwise, it acquires the
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discrete d-structure (with the euclidean topology). Similarly, the d-

structure induced by ↑R2 on any circle has two d-discrete arcs, where

the slope is negative: the directed circle ↑S1 cannot be embedded in the

directed plane.

(c) The join of the d-structures of ↑R and ↑Rop is not the natural

R, but a finer structure R∼ : a d-path there is a piecewise monotone

map [0, 1]→ R, i.e. a generalised finite concatenation of increasing and

decreasing maps. The reversible interval I∼ ⊂ R∼ is of interest for

reversible paths (Section 1.4.6).

(d) To define a d-topological group G, one should require that the struc-

tural operations be directed maps G×G → G and G → Gop in dTop.

This is the case of ↑Rn and ↑S1. (This structure will be examined in

5.4.3.) Notice that ordered groups present a similar pattern: the inverse

gives a mapping G→ Gop of ordered sets.

1.4.5 Comparing preordered spaces and d-spaces

The interplay between pTop and dTop is somewhat less trivial than

one might think. We have two obvious adjoint functors

p : dTop � pTop : d, p a d, (1.105)

where d equips a preordered space X with the (preorder-preserving)

maps ↑I → X as distinguished paths, while p provides a d-space with

the path-preorder x � x′ (x′ is reachable from x), meaning that there

exists a distinguished path from x to x′. Both functors preserve products

and the directed interval, so that both are strict dI1-functors.

Both functors are faithful, but d is not an embedding (nor is p, of

course). In fact, for a preordered space (X,≺), the path-preorder of

pd(X,≺) = (X,�) can be strictly finer than the original one; for

instance, the preordered circle (S1,≺) ⊂ R×↑R gives the d-space

d(S1,≺) = ↑O1 (cf. (1.103)), which has a path-order (S1,�) strictly

finer than the original preorder: two points x 6= x′ with the same second

coordinate are preorder-equivalent but cannot be joined by a directed

path. Now, d(S1,≺) = d(S1,�) = ↑O1, which proves that d is not

injective on objects. Moreover, d takes the counit (S1,≺) → (S1,�)

to id(↑O1), which shows that it is not full (a full and faithful functor

reflects isomorphisms).

The functor d : pTop→ dTop preserves limits (as a right adjoint) but

does not preserve colimits: the coequaliser of the endpoints {∗} ⇒ ↑I
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has the indiscrete preorder in pTop and a non-trivial d-structure ↑S1 in

dTop. Which is why dTop is more interesting.

A d-space will be said to be of (pre)order type if it can be obtained, as

above, from a topological space with such a structure. Thus, ↑Rn, ↑In

are of order type; Rn, In and Sn are of chaotic preorder type; the product

R×↑R is of preorder type. The d-space ↑S1 is not of preorder type.

The ordered circle ↑O1 = d(S1,≺) = d(S1,�) is of order type, which

motivates the name we are using (even if it can also be defined by the

preorder relation ≺).

1.4.6 Directed paths

A path in a d-space X is defined as a d-map a : ↑I→ X on the standard

d-interval. It is easy to check that this is the same as a distinguished

path a ∈ dX. It will also be called a directed path, when we want to

stress the difference with ordinary paths in the underlying space UX,

(which is a more general notion, of course).

The path a has two endpoints, or faces ∂−(a) = a(0), ∂+(a) = a(1).

Every point x ∈ X has a degenerate path 0x, constant at x. A loop

(∂−(a) = ∂+(a)) amounts to a d-map ↑S1 → X (by (1.100)).

By the very definition of d-structure (Section 1.4.0), we already know

that the concatenation a + b of two consecutive paths (∂+a = ∂−b)

is directed. This amounts to saying that, in dTop (as for spaces and

preordered spaces, see 1.1.0, 1.1.4), the standard concatenation pushout -

pasting two copies of the d-interval, one after the other - can be realised

as ↑I itself, with embeddings cα into the first or second half of the interval

{∗} ∂+
//

∂−
��

↑I

c−
��

c−(t) = t/2,

↑I
c+
// ↑I c+(t) = (t+ 1)/2.

(1.106)

Recall that the existence of a path in X from x to x′ gives the path

preorder, x � x′ (Section 1.4.5). The equivalence relation ' spanned

by � gives the partition of a d-space in its path components and yields

a functor

↑Π0 : dTop→ Set, ↑Π0(X) = |X|/' . (1.107)

(As a matter of notation, we use a non-capital π when dealing with

pointed objects.) A non-empty d-space X is path connected if ↑Π0(X)
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is a point. Then, also the underlying space UX is path connected,

while the converse is obviously false (cf. 1.4.4(b)). The directed spaces
↑Rn, ↑In, ↑Sn are path connected (n > 0); but ↑Sn is more strongly so,

because its path-preorder � is already chaotic: every point can reach

each other.

The path a will be said to be reversible if also the mapping a(1− t) is

a directed path in X:

−a : ↑I→ X, (−a)(t) = a(1− t) (reversed path). (1.108)

Obviously, such paths are closed under concatenation. This notion

should not be confused with the reflected path r(a) : ↑I → Xop (cf.

(1.50)), which is defined by the same formula a(1− t) and always exists,

but lives in the opposite d-space Xop. Of course, if X itself is a reversible

d-space (Section 1.4.0), i.e. X = Xop, the two notions coincide.

Equivalently, a is reversible if it is a d-map a : I∼ → X on the re-

versible interval (Section 1.4.4(c)). (On the other hand, requiring that a

be directed on the natural interval I is a stronger condition, not closed

under concatenation: the pasting, on an endpoint, of two copies of the

natural interval I in dTop is not isomorphic to I.)

1.4.7 Vortices, discs and cones

Let X be a d-space. Loosely speaking, a non-reversible path in X with

equal (resp. different) endpoints can be viewed as revealing a vortex

(resp. a stream). If X is of preorder type (Section 1.4.5), it cannot

have a vortex, since every loop must be reversible - as we have already

remarked. On the other hand, the directed circle ↑S1 has non-reversible

loops.

We shall say that the d-space X has a point-like vortex at x if every

neighbourhood of x in X contains some non-reversible loop. It is easy

to realise a directed disc having a point-like vortex (see below), while
↑S1 has none.

All higher directed spheres ↑Sn = (↑In)/(∂In), for n > 2, have a point-

like vortex at the class [0] (of the boundary points), as showed by the

following sequence of non-reversible loops in ↑S2, which are ‘arbitrarily
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small’

?? ?? (1.109)

Since every point x 6= [0] of ↑Sn has a neighbourhood isomorphic to
↑Rn, this also shows that our higher d-spheres are not locally isomorphic

to any fixed ‘model’. This fact cannot be reasonably avoided, since we

shall see that the d-spaces ↑Sn are determined as pointed suspensions

of S0.

There are various d-structures of interest on the disc D2 = CS1, i.e.

the mapping cone of idS1 in Top.

In the figure below, we represent four cases which induce the natural

structure S1 on the boundary: a directed path in these d-spaces is a map

(ρ(t) cosϑ(t), ρ(t) sinϑ(t)), where the continuous function ρ : I → I is,

respectively decreasing, increasing, constant, arbitrary, while ϑ : I→ R

is just continuous

C+(S1) C−(S1) a foliated
structure

D2

.
↓

↑
→ ← .

↑

↓
← → .

(1.110)

All these structures are of preorder type (defined by the following

relations, respectively: ρ > ρ′; ρ 6 ρ′; ρ = ρ′; chaotic). One can view

the first (resp. second) as a conical peak (resp. sink) directed upwards.

The first two cases will be obtained as upper or lower directed cones of

S1 and have been named accordingly; see 1.7.2.

Similarly, we can consider four structures which induce ↑S1 on the
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boundary: take the function ρ as above, and ϑ : I→ R increasing

C+(↑S1) C−(↑S1) a foliated
structure

a vortex

.
↓

↑
→ ← .

↑

↓
← → . .OO OO OO OO

(1.111)

These four structures have a point-like vortex at the origin. Again,

the first two cases are upper or lower directed cones, of ↑S1. Four other

structures can be similarly obtained from ↑O1, see (1.103).

1.4.8 Theorem (Exponentiable d-spaces)

Let ↑A be any d-structure on a locally compact Hausdorff space A. Then
↑A is exponentiable in dTop (Section A4.2). More precisely, for every

d-space Y

Y
↑A = dTop(↑A, Y ) ⊂ Top(A,UY ), (1.112)

is the set of directed maps, with the compact-open topology restricted

from the topological exponential (UY )A and the d-structure where a path

c : I → U(Y ↑A) ⊂ (UY )A is directed if and only if the corresponding

map č : I×A→ UY is a d-map ↑I× ↑A→ Y .

Proof We have already recalled (in 1.1.2) that a locally compact Haus-

dorff space A is exponentiable in Top: the space Y A is the set of maps

Top(A, Y ) with the compact-open topology, and the adjunction consists

of the natural bijection

Top(X,Y A)→ Top(X×A, Y ), f 7→ f̌ , f̌(x, a) = f(x)(a). (1.113)

Now, if Y is a d-space, the d-structure of Y ↑A defined above is well

formed, as required in the axioms (i)-(iii) of 1.4.0.

(i) Constant paths. If c : I→ Y ↑A is constant at the d-map g : ↑A→ Y ,

then č can be factored as ↑I×↑A→ ↑A→ Y , and is directed as well.

(ii) Partial reparametrisation. For any h : ↑I → ↑I, the map (ch)̌ =

č.(h×↑A) is directed.

(iii) Concatenation. Let c = c1+c2 : I→ U(Y ↑A), with či : ↑I×↑A→ Y .

By the next lemma, the product −×↑A preserves the concatenation
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pushout (1.106). Therefore č, as the pasting of č1, č2 on this pushout, is

a directed map.

Finally, we must prove that the bijection (1.113) restricts to a bijection

between dTop(X,Y ↑A) and dTop(X×↑A, Y ). In fact, we have a chain

of equivalent conditions

• the map f : X → Y ↑A is directed,

• ∀x ∈ dX, the map (fx)̌ = f̌ .(x× ↑A) : ↑I×↑A→ Y is directed,

• ∀x ∈ dX, ∀h ∈ d↑I, ∀ a ∈ d↑A, the map f̌ .(xh×a) : ↑I×↑I→ Y

is directed,

• the map f̌ : X × ↑A→ Y is directed.

1.4.9 Lemma

For every d-space X, the functor X ×− : dTop → dTop preserves

the standard concatenation pushout (1.106), yielding the concatenation

pushout of the cylinder functor

X
∂+
//

∂−

��

IX

c−

��

c−(x, t) = (x, t/2),

IX
c+
// IX c+(x, t) = (x, (t+ 1)/2).

(1.114)

Proof In Top, the underlying space UX satisfies this property, because

the spaces UX× [0, 1/2] and UX× [1/2, 1] form a finite closed cover of

UX×I, so that each mapping defined on the latter and continuous on

such closed parts is continuous.

Consider then a map f : UX×I→ UY obtained by pasting two maps

f0, f1 on the topological pushout UX×I

f(x, t) =

{
f0(x, 2t), for 0 6 t 6 1/2,

f1(x, 2t− 1), for 1/2 6 t 6 1.

Let now 〈a, h〉 : ↑I→ ↑X×↑I be any directed map. If the image of h is

contained in one half of I, then f.〈a, h〉 is certainly directed. Otherwise,

there is some t1 ∈ ]0, 1[ such that h(t1) = 1/2, and we can assume that

t1 = 1/2 (up to pre-composing with an automorphism of ↑I). Now, the

path f.〈a, h〉 : I→ UY is directed in Y , because it is the concatenation
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of the following two directed paths ci : ↑I→ Y

c0(t) = f(a(t/2), h(t/2)) = f0(a(t/2), 2h(t/2)),

c1(t) = f(a((t+ 1)/2), h((t+ 1)/2))

= f1(a((t+ 1)/2), 2h((t+ 1)/2)− 1).

1.5 The basic homotopy structure of d-spaces

The ordered interval ↑I of pTop is still exponentiable in the new domain,

and dTop is a cartesian dIP1-category, in the sense of 1.2.5. We begin to

investigate homotopies and directed homotopy equivalence, for d-spaces

and pointed d-spaces.

1.5.1 The directed structure

Directed homotopy in dTop is established much in the same way as for

preordered spaces, in 1.1.4. It is based on the cartesian product and the

reversor R : dTop→ dTop.

The standard directed interval ↑I = ↑[0, 1], a d-space of order type

(Section 1.4.3), is exponentiable by Theorem 1.4.8. It is a cartesian

dIP1-interval, with the obvious faces, degeneracy and reflection (as in

pTop, Section 1.1.4)

∂α : {∗} −→←−−→ ↑I : e, ∂−(∗) = 0, ∂+(∗) = 1, e(t) = ∗,
r : ↑I→ ↑Iop

, r(t) = 1− t (reflection).
(1.115)

The cylinder functor and the path functor form thus a cartesian dIP1-

structure (Section 1.2.5):

I(X) = X×↑I, P (Y ) = Y
↑I (I a P ). (1.116)

Here, the cylinder X×↑I has the product topology and distinguished

paths 〈a, h〉 : ↑I → X×↑I, where a ∈ dX and h : ↑I → ↑I is continuous

and order-preserving. On the other hand, the d-space Y ↑I is the set

of d-paths dTop(↑I, Y ) with the compact-open topology (induced by

the topological path-space P (UY ) = Top(I, UY )) and the d-structure

where a map

c : I→ dTop(↑I, Y ) ⊂ Top(I, UY ), (1.117)

is directed if and only if, for all increasing maps h, k : I→ I, the associ-

ated path t 7→ c(h(t))(k(t)) is in dY .
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As for preordered spaces, the forgetful functor U : dTop → Top is

a strict dI1-functor (Section 1.2.6) and a lax dP1-functor, with a non-

invertible comparison UP (Y ) = U(Y ↑I) ⊂ (UY )I = PU(Y ). Thus, also

here, the right adjoint D′ : Top → pTop inherits the structure of a lax

dI1-functor, which is not strong.

Both adjoint functors p : dTop � pTop : d (Section 1.4.5) preserve

products and the directed interval, and commute with the reversor,

whence they are both strict dI1-functors. It follows that the right adjoint

d is a lax dP1-functor.

1.5.2 Homotopies

A (directed) homotopy ϕ : f → g : X → Y of d-spaces is defined in the

usual way, as a map IX → Y or equivalently X → PY .

As for paths (Section 1.4.6), we say that a homotopy ϕ : f → g is

reversible if also the mapping (−ϕ)(x, t) = ϕ(x, 1−t) is a d-map X×↑I→
Y , which yields a directed homotopy

−ϕ : g → f : X → Y.

The latter should not be confused with the reflected homotopy (1.38)

ϕop : gop → fop : Xop → Y op,

which is defined by the same formula ϕ(x, 1− t) and always exists, but

is concerned with the opposite d-spaces.

The relation of future (or past) homotopy equivalence of d-spaces

(Section 1.3.1) implies the usual homotopy equivalence of the underlying

spaces. In fact, it is strictly stronger. As a trivial example, the d-discrete

structure DR on the real line (where all d-paths are constant, Section

1.4.0) is not (even) coarsely d-contractible (Section 1.3.3). Less trivially,

within path connected d-spaces, it is easy to show that the d-spaces

S1, ↑S1 and ↑O1 defined above (Section 1.4.3) are not future (or past)

homotopy equivalent. In fact, a directed map S1 → ↑O1 or ↑S1 → ↑O1

must stay in one half of ↑O1, whence its underlying map is homotopically

trivial. On the other hand, a d-map S1 → ↑S1 is necessarily constant.

The inclusion X0 ⊂ X of a d-subspace is the embedding of a future

deformation retract of X (Section 1.3.1) if and only if there is a d-map

ϕ such that

ϕ : X×↑I→ X, ϕ(x, 0) = x, ϕ(x, 1) ∈ X0,

ϕ(x′, 1) = x′ (for x ∈ X,x′ ∈ X0).
(1.118)
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For instance, as for preordered spaces (Section 1.3.4), the cylinder

X×↑I has a strong future deformation retract at its upper basis ∂+(X)

and a strong past deformation retract at its lower basis ∂−(X). With

reference to 1.4.7, the discs C+(S1) and C+(↑S1) are future contractible

to their vertex, while the ‘lower’ ones, labelled C−, are past contractible.

1.5.3 Homotopy functors

Each d-space A gives a covariant ‘representable’ homotopy functor (and

a contravariant one)

[A,−] : dTop→ Set, ([−, A] : dTop∗ → Set), (1.119)

where [A,X] denotes the set of classes of maps A→ X, up to the equiva-

lence relation ∼1 generated by directed homotopies (see (1.74)). These

functors are plainly d-homotopy invariant: if ϕ : f → g is a homotopy

in dTop, then [A, f ] = [A, g].

In particular, ↑Π0(X) = [{∗}, X]. Also [↑S1,−], [S1,−], [↑O1,−] ex-

press invariants of interest; the first gives the set of homotopy classes

of directed free loops, and should not be confused with the fundamental

monoid of a pointed d-space (Section 3.2.5).

1.5.4 Pointed directed spaces

A pointed d-space is obviously a pair (X,x0) formed of a d-space X with

a base point x0 ∈ X; a morphism f : (X,x0) → (Y, y0) is a map of

d-spaces which preserves the base points: f(x0) = (y0).

The corresponding category will be written as dTop•; it is pointed,

with zero-object {∗} (where the base point need not be specified). For-

mally, dTop• can be identified with the ‘slice’ category dTop\{∗}, whose

objects are the morphisms {∗} → X of dTop (see Section 5.2). The re-

versor of dTop• is obviously R(X,x0) = (Xop, x0).

Limits and colimits are obvious (as for pointed sets): limits and quo-

tients are computed as in dTop and pointed in the obvious way, whereas

sums are quotients (in dTop) of the corresponding unpointed sums, un-

der identification of the base points. Notice that this identification re-

quires the closure of the induced d-paths under reparametrisation and

concatenation, so that a sum in dTop• of path-connected pointed d-

spaces is path connected.

The forgetful functor which forgets the base point

U : dTop• → dTop, (−)• a U, (1.120)



1.5 The basic homotopy structure of d-spaces 65

has a left adjoint X 7→ X•, which adds an ‘isolated’ base point ∗. In

other words, X• is the sum d-space X + {∗}, based at the added point;

the latter is open and the only d-path through it is the constant one.

This functor yields the pointed directed interval

↑I• = (↑I + {∗}, ∗). (1.121)

1.5.5 Pointed directed homotopies

This interval ↑I• provides a symmetric monoidal dIP1-structure on dTop•
(Section 1.2.5), with respect to the smash product:

(X,x0) ∧ (Y, y0) = ((X×Y )/(X×{y0} ∪ {x0}×Y ), [x0, y0]). (1.122)

Notice that the classical formula of the smash product of pointed

topological spaces - which collapses all pairs (x, y0) and (x0, y) - is here

interpreted as a quotient of d-spaces. The unit of the smash product is

the discrete d-pace S0 = {−1, 1}, pointed at 1 (for instance).

The functor (−)• : dTop→ dTop• transforms the cartesian structure

of dTop into the monoidal structure of dTop• (up to natural isomor-

phisms)

(X×Y )• ∼= X• ∧ Y•, {∗}• ∼= S0. (1.123)

Thus, the pointed cylinder

I : dTop• → dTop•,

I(X,x0) = (X,x0) ∧ ↑I• ∼= (IX/I{x0}, [x0, t]),
(1.124)

is the quotient of the unpointed cylinder which collapses the fibre at

the base point, I{x0} = {x0}×↑I. It inherits the following structural

transformations

∂α : (X,x0)→ I(X,x0), ∂α(x) = [x, α] (α = 0, 1),

e : I(X,x0)→ (X,x0), e[x, t] = x,

r : I(Xop, x0)→ (I(X,x0))op, r[x, t] = [x, 1− t].
(1.125)

Its right adjoint, the pointed cocylinder, is just the ordinary cocylin-

der, pointed at the constant loop at the base point: ω0 = 0y0

P : dTop• → dTop•, P (Y, y0) = (PY, ω0). (1.126)

We have already noted, in Section 1.3.2, that contractibility is based

on the zero-object, while points are defined by the unit of the smash-

product, S0 ∼= {∗}• (the free point, Section 1.2.4).

The forgetful functor U : dTop• → dTop is a strict dP1-functor and
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a lax dI1-functor, with comparison at (X,x0) given by the canonical

projection IX → UI(X,x0) = IX/I{x0}.
A path in the pointed d-space (X,x0) is the same as a path in X,

and path components are the same. But the functor ↑Π0 : dTop→ Set

(defined in (1.107)) should now be enriched, with values in pointed sets

↑π0 : dTop• → Set•, ↑π0(X,x0) = (↑Π0(X), [x0]). (1.127)

The category pTop• of pointed preordered spaces can be dealt with in

a similar way.

1.6 Cubical sets

Cubical sets have a classical non-symmetric monoidal structure (Section

1.6.3). As a consequence, the obvious directed interval ↑i, freely gener-

ated by a 1-cube (Section 1.6.4) gives rise to a left cylinder ↑i⊗X and

a right cylinder X ⊗↑i, and to two notions of directed homotopy, which

are related by an endofunctor, the ‘transposer’ S. The non-classical part

of this material comes from [G12].

Cubical singular homology of topological spaces can be found in the

texts of Massey [Ms] and Hilton-Wylie [HW].

1.6.0 The singular cubical set of a space

Every topological space X has an associated cubical set �X, with com-

ponents �nX = Top(In, X), the set of singular n-cubes of X. Its faces

and degeneracies (for α = 0, 1; i = 1, ..., n)

∂αi : �nX → �n−1X, (faces),

ei : �n−1X → �nX (degeneracies),
(1.128)

arise (contravariantly) from the faces and degeneracies of the standard

topological cubes In

∂αi = Ii−1×∂α×In−i : In−1 → In,

∂αi (t1, ..., tn−1) = (t1, ..., α, ..., tn−1),

ei = Ii−1×e×In−i : In → In−1,

ei(t1, ..., tn) = (t1, ..., t̂i, ..., tn).

(1.129)

(Here, t̂i means to omit the coordinate ti, a standard notation in alge-

braic topology.)

This is actually true in every symmetric monoidal dI1-category, with
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formal interval I (as we will see in 2.6.5). But in the present case, a

cubical set of type �X has actually a much richer, relevant structure,

obtained from the structure of the standard interval I as an involu-

tive lattice in Top (Section 1.1.0); indeed, connections, reversion and

transposition yield similar transformations between singular cubes of

the space X (for α = 0, 1; i = 1, ..., n)

gαi : �nX → �n+1X (connections),

ri : �nX → �nX (reversions),

si : �n+1X → �n+1X (transpositions).

(1.130)

As we have already remarked (Section 1.1.5), the group of symmetries

of the n-cube, (Z/2)n o Sn, acts on �nX: reversions and transposi-

tions generate, respectively, the action of the first and second factor of

this semidirect product. Now, in homotopy theory, reversion (in team

with connections) yields reverse homotopies and inverses in homotopy

groups, while transposition yields the homotopy-preservation property

of the cylinder, cone and suspension endofunctors (see Chapter 4). On

the other hand, not assigning this additional structure allows us to break

symmetries (reversion and transposition) which are intrinsic to topolog-

ical spaces.

1.6.1 Cubical sets

Abstracting from the singular cubical set of a topological space recalled

above, a cubical set X = ((Xn), (∂αi ), (ei)) is a sequence of sets Xn

(n > 0), together with mappings, called faces (∂αi ) and degeneracies (ei)

∂αi = ∂αni : Xn → Xn−1,

ei = eni : Xn−1 → Xn (α = ±; i = 1, ..., n),
(1.131)

satisfying the cubical relations

∂αi .∂
β
j = ∂βj .∂

α
i+1 (j 6 i),

ej .ei = ei+1.ej (j 6 i),
(1.132)

∂αi .ej =


ej .∂

α
i−1 (j < i),

id (j = i),

ej−1.∂
α
i (j > i).

Elements of Xn are called n-cubes, and vertices or edges for n = 0 or
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1, respectively. Every n-cube x ∈ Xn has 2n vertices: ∂α1 ∂
β
2 ∂

γ
3 (x) for

n = 3. Given a vertex x ∈ X0, the totally degenerate n-cube at x is

obtained by applying n degeneracy operators to the given vertex, in any

(legitimate) way:

en1 (x) = ein ...ei2ei1(x) ∈ Xn (1 6 ij 6 j). (1.133)

A morphism f = (fn) : X → Y is a sequence of mappings fn : Xn →
Yn which commute with faces and degeneracies. All this forms a category

Cub which has all limits and colimits and is cartesian closed.

(Cub is the presheaf category of functors X : Iop → Set, where I is

the subcategory of Set consisting of the elementary cubes 2n, together

with the maps 2m → 2n which delete some coordinates and insert some

0’s and 1’s, without modifying the order of the remaining coordinates.

See 1.6.7 and A1.8; or [GM] for cubical sets with a richer structure, and

further developments.)

The terminal object > is freely generated by one vertex ∗ and will also

be written {∗}; notice that each of its components is a singleton. The

initial object is empty, i.e. all its components are; all the other cubical

sets have non-empty components in every degree.

We will make use of two covariant involutive endofunctors, called re-

versor and transposer

R : Cub→ Cub, RX = Xop = ((Xn), (∂−αi ), (ei)) (reversor),

S : Cub→ Cub, SX = ((Xn), (∂αn+1−i), (en+1−i)) (transposer),

RR = id, SS = id, RS = SR. (1.134)

(The meaning of −α, for α = ±, is obvious.) The first reverses the

1-dimensional direction, the second the 2-dimensional one; plainly, they

commute. If x ∈ Xn, the same element viewed in Xop will often be

written as xop, so that ∂−i (xop) = (∂+
i x)op.

We say that a cubical set X is reversive if RX ∼= X and permutative

if SX ∼= X.

1.6.2 Subobjects and quotients

A cubical subset Y ⊂ X is a sequence of subsets Yn ⊂ Xn, stable under

faces and degeneracies.

An equivalence relation E in X is a cubical subset of X×X whose

components En ⊂ Xn×Xn are equivalence relations; then, the quotient

X/E is the sequence of quotient sets Xn/En, with induced faces and
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degeneracies. In particular, for a non-empty cubical subset Y ⊂ X,

the quotient X/Y has components Xn/Yn, where all cubes y ∈ Yn are

identified.

For a cubical set X, we define the homotopy set

Π0(X) = X0/ ∼, (1.135)

where the relation ∼ of connection is the equivalence relation in X0

generated by being vertices of a common edge. The connected component

of X at an equivalence class [x] ∈ Π0(X) is the cubical subset formed by

all cubes of X whose vertices lie in [x]; X is always the sum (or disjoint

union) of its connected components. If X is not empty, we say that it is

connected if it has one connected component, or equivalently if Π0(X)

is a singleton.

One can easily see that the forgetful functor (−)0 : Cub→ Set has a

left adjoint, defined by the discrete cubical set on a set

D : Set→ Cub, (DS)n = S (n ∈ N), (1.136)

whose components are constant, while faces and degeneracies are iden-

tities. Then, the functor Π0 : Cub→ Set is left adjoint to D.

The forgetful functor (−)0 also has a right adjoint, defined by the

indiscrete cubical set D′S = Set(2•, S). In this formula, 2• denotes the

functor I→ Set (a cocubical set) given by the embedding which realises

the ‘formal n-cube’ as 2n; see 1.6.1.

More generally, there is an obvious functor of n-truncation

trn : Cub→ Cubn,

with values in the category of n-truncated cubical sets (with components

in degree 6 n); and there are adjoints skn a trn a coskn, called the

n-skeleton and n-coskeleton, respectively. Thus, (−)0 = tr0, D = sk0

and D′ = cosk0.

1.6.3 Tensor product

The category Cub has a non-symmetric monoidal structure [Ka1, BH3]

(X ⊗ Y )n = (
∑
p+q=n Xp×Yq)/ ∼n, (1.137)

where ∼n is the equivalence relation generated by identifying (er+1x, y)

with (x, e1y), for all (x, y) ∈ Xr×Ys (where r + s = n− 1).
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Writing x ⊗ y the equivalence class of (x, y), faces and degeneracies

are defined as follows, when x is of degree p and y of degree q

∂αi (x⊗ y) = (∂αi x)⊗ y (1 6 i 6 p),

∂αi (x⊗ y) = x⊗ (∂αi−p y) (p+ 1 6 i 6 p+ q),

ei(x⊗ y) = (eix)⊗ y (1 6 i 6 p+ 1),

ei(x⊗ y) = x⊗ (ei−p y) (p+ 1 6 i 6 p+ q + 1).

(1.138)

Note that ep+1(x ⊗ y) = (ep+1 x) ⊗ y = x ⊗ (e1y) is well defined

precisely because of the previous equivalence relation.

The (bilateral) identity of the tensor product is the terminal object

{∗}, i.e. the cubical set generated by one 0-dimensional cube; it is re-

versive and permutative (Section 1.6.1). The tensor product is linked to

reversor and transposer (1.134) as follows

R(X ⊗ Y ) = RX ⊗RY, (1.139)

s(X,Y ) : S(X ⊗ Y ) ∼= SY ⊗ SX,
x⊗ y 7→ y ⊗ x (external symmetry).

(1.140)

The isomorphism (1.140) replaces the symmetry of a symmetric tensor

product. (In other words, R is a strict isomorphism of the monoidal

structure, while (S, s) is an anti-isomorphism.)

Therefore, reversive objects are stable under tensor product while per-

mutative objects are stable under tensor powers: if SX ∼= X, then

S(X⊗n) ∼= (SX)⊗n ∼= X⊗n.

(The construction of internal homs will be recalled in (1.156).)

1.6.4 Standard models

The (elementary) standard interval ↑i = 2 is freely generated by a 1-

cube, u

0
u // 1 ∂−1 (u) = 0, ∂+

1 (u) = 1. (1.141)

This cubical set is reversive and permutative.

The (elementary) n-cube is its n-th tensor power

↑i⊗n = ↑i⊗ ...⊗ ↑i (for n > 0),

freely generated by its n-cube u⊗n, still reversive and permutative. (It

is the representable presheaf y(2n) = I(−, 2n) : Iop → Set, cf. A1.8).
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The (elementary) standard square ↑i2 = ↑i⊗ ↑i can be represented as

follows, showing the generator u⊗ u and its faces ∂αi (u⊗ u)

00
0⊗u //

u⊗0
��

u⊗u

01

u⊗1
��

•
2 //

1

��10
1⊗u

// 11

(1.142)

with ∂−1 (u ⊗ u) = 0 ⊗ u orthogonal to direction 1. Note that, for each

cubical object X, Cub(↑i⊗n, X) = Xn (Yoneda Lemma, [M3]).

The directed (integral) line ↑z is generated by (countably many) ver-

tices n ∈ Z and edges un, from ∂−1 (un) = n to ∂+
1 (un) = n + 1. The

directed integral interval ↑[i, j]z is the obvious cubical subset with ver-

tices in the integral interval [i, j]Z (and all cubes whose vertices lie there);

in particular, ↑i = ↑[0, 1]z.

The (elementary) directed circle ↑s1 is generated by one 1-cube u with

equal faces

∗ u // ∗ ∂−1 (u) = ∂+
1 (u) = ∗. (1.143)

Similarly, the elementary directed n-sphere ↑sn (for n > 1) is generated

by one n-cube u all whose faces are totally degenerate (see (1.133)),

hence equal

∂αi (u) = (e1)n−1(∂−1 )n(u) (α = ±; i = 1, ..., n). (1.144)

Moreover, ↑s0 = s0 is the discrete cubical set on two vertices (1.136),

say D{0, 1}. The elementary directed n-torus is a tensor power of ↑s1

↑tn = (↑s1)⊗n. (1.145)

We also consider the ordered circle ↑o1, generated by two edges with

the same faces

v−
u′ //
u′′
// v+ ∂α1 (u′) = ∂α1 (u′′), (1.146)

which is a ‘cubical model’ of the ordered circle ↑O1 already defined in

(1.103) as a d-space. (The latter is the directed geometric realisation of

the former, in the sense of 1.6.7.)

More generally, we have the ordered spheres ↑on, generated by two

n-cubes u′, u′′ with the same boundary: ∂αi (u′) = ∂αi (u′′) and further

relations. Starting from s0, the unpointed suspension provides all ↑on
(see (1.182)) while the pointed suspension provides all ↑sn (see (2.54));
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of course, these models have the same geometric realisation Sn (as a

topological space) and the same homology; but their directed homology

is different (Section 2.1.4). The models ↑sn are more interesting, with a

non-trivial order in directed homology.

All these cubical sets are reversive and permutative. Coming back to

a remark on reversible d-spaces, in 1.4.0, let us note that ↑s1 coincides

with its opposite cubical set. We do not want to consider this reversive

object, a model of the d-space ↑S1, as a ‘reversible’ cubical set (which

has not been defined).

1.6.5 Elementary directed homotopies

Let us start from the standard interval ↑i, and work with the monoidal

structure recalled above, with unit {∗} and reversor R. Recall that u

denotes the 1-dimensional generator of ↑i, and uop is the corresponding

edge of ↑iop (Section 1.6.1).

The cubical set ↑i has an obvious structure of monoidal dI1-interval

(as defined in 1.2.5)

∂α : {∗} → ↑i, ∂α(∗) = α (α = 0, 1),

e : ↑i→ {∗}, e(α) = ∗, e(u) = e1(∗),
r : ↑i→ ↑iop, r(0) = 1op, r(1) = 0op, r(u) = uop.

(1.147)

Since the tensor product is not symmetric, the elementary directed

interval yields a left (elementary) cylinder ↑i ⊗ X and a right cylinder

X ⊗ ↑i. But each of these functors determines the other, using the

transposer S (see (1.134), (1.140)) and the property S(↑i) = ↑i

I : Cub→ Cub, IX = ↑i⊗X,
SIS : Cub→ Cub, SIS(X) = S(↑i⊗ SX) = X ⊗ ↑i.

(1.148)

(The last equality is actually a canonical isomorphism, cf. (1.140).)

Let us begin considering the left cylinder, IX = ↑i ⊗ X. It has two

faces, a degeneracy and a reflection, as follows (for α = 0, 1)

∂α = ∂α ⊗X : X → IX, ∂α(x) = α⊗ x,
e = e⊗X : IX → X,

e(u⊗ x) = e1(∗)⊗ x = ∗ ⊗ e1(x) = e1(x),

r = r ⊗RX : IRX → RIX,

r(α⊗ xop) = ((1− α)⊗ x)op, r(u⊗ xop) = (u⊗ x)op.

(1.149)

Moreover, I has a right adjoint, the (elementary) left cocylinder or left
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path functor, which has a simpler description: P shifts down all compo-

nents discarding the faces and degeneracies of index 1 (which are then

used to build three natural transformations, the faces and degeneracy of

P )

P : Cub→ Cub, PY = ((Yn+1), (∂αi+1), (ei+1)),

∂α = ∂α1 : PY → Y, e = e1 : Y → PY.
(1.150)

The adjunction is defined by the following unit and counit (for x ∈ Xn,

y ∈ Yn, y′ ∈ Yn+1):

ηX : X → P (↑i⊗X), x 7→ u⊗ x,
εY : ↑i⊗ PY → Y, α⊗ y′ 7→ ∂α1 (y′), u⊗ y 7→ y.

(1.151)

Cub has thus a left dIP1-structure CubL consisting of the adjoint

functors I a P , their faces, degeneracy and reflection. An (elementary

or immediate) left homotopy f : f− →L f
+ : X → Y is defined as a map

f : IX → Y with f∂α = fα; or, equivalently, as a map f : X → PY

with ∂αf = fα. This second expression leads immediately to a simple

expression of f as a family of mappings

fn : Xn → Yn+1, ∂αi+1fn = fn−1∂
α
i ,

ei+1fn−1 = fnei, ∂α1 fn = fα (α = ±; i = 1, ..., n).
(1.152)

But Cub also has a right dIP1-structure CubR, based on the right

cylinder SIS(X) = X ⊗ ↑i. Its right adjoint SPS, called the right

cocylinder or right path functor, shifts down all components and discards

the faces and degeneracies of highest index (used again to build the

corresponding three natural transformations)

SPS : Cub→ Cub, SPS(Y ) = ((Yn+1), (∂αi ), (ei)),

∂α : SPS(Y )→ Y, ∂α = (∂αn+1 : Yn+1 → Yn)n>0,

e : Y → SPS(Y ), e = (en+1 : Yn → Yn+1)n>0.

(1.153)

For this structure, an (elementary) right homotopy f : f− →R f+ :

X → Y is a map f : X → SPS(Y ) with faces ∂αf = fα, i.e. a family

(fn) such that

fn : Xn → Yn+1, ∂αi fn = fn−1∂
α
i ,

eifn−1 = fnei, ∂αn+1fn = fα, (α = ±; i = 1, ..., n).
(1.154)

The transposer (1.134) can be viewed as an isomorphism S : CubL →
CubR between the left and the right structure: it is, actually, an invert-

ible strict dIP1-functor (Section 1.2.6), since RS = SR, IS = S(SIS)
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and SP = (SPS)S. One can define an external transposition s (corre-

sponding to the ordinary transposition s : P 2 → P 2 of spaces, in (1.16)),

which is actually an identity

s : PSPS → SPSP, sn = idYn+2, (1.155)

since both functors shift down all components of two degrees, discarding

the faces and degeneracies of least and greatest index.

Elementary homotopies of cubical sets (the usual ones, without con-

nections) are a very defective notion (like intrinsic homotopies of ‘face-

simplicial’ sets, without degeneracies): one cannot even contract the el-

ementary interval ↑i to a vertex (a simple computation on (1.152) shows

that this requires a non-degenerate 2-cube f(u), with the same faces as

g−1 (u) or g+
1 (u) - if connections exist).

Moreover, to obtain ‘non-elementary’ paths, which can be concate-

nated, and a fundamental category ↑Π1(X) one should use, instead of

the elementary interval ↑i = ↑[0, 1]Z, the directed integral line ↑z (Section

1.6.4), as in [G6] for simplicial complexes: then, paths are parametrised

on ↑z, but eventually constant at left and right, so to have initial and

terminal vertices. However, here we are interested in homology, where

concatenation is surrogated by formal sums of cubes, and we will restrain

ourselves to proving its invariance up to elementary homotopies, right

and left. Of course, we do not want to rely on the classical geometric

realisation (Section 1.6.6), which would ignore the directed structure.

The category Cub has left and right internal homs, which we shall not

need (see [BH3] for their definition). Let us only recall that the right

internal hom CUB(A, Y ) can be constructed with the left cocylinder

functor P and its natural transformations (which give rise to a cubical

object P •Y )

−⊗A a CUB(A,−), CUBn(A, Y ) = Cub(A,PnY ). (1.156)

1.6.6 The classical geometric realisation

We have already recalled, in 1.6.0, the functor

� : Top→ Cub, �S = Top(I•, S), (1.157)

which assigns to a topological space S the singular cubical set of (contin-

uous) n-cubes In → S, produced by the cocubical set of standard cubes

I• = ((In), (∂αi ), (ei)) (see (1.129)).
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As for simplicial sets, the geometric realisation R(K) of a cubical set

is given by the left adjoint functor

R : Cub � Top :�, R a � (1.158)

The topological space R(K) is constructed by pasting a copy of the

standard cube In for each n-cube x ∈ Kn, along faces and degeneracies.

This pasting (formally, the coend of the functor K.I• : Iop×I→ Top, see

[M3]) comes with a family of structural mappings, one for each cube x,

coherently with faces and degeneracies (of I• and K)

x̂ : In → R(K), x̂.∂αi = (∂αi x)̂ , x̂.ei = (eix)̂ . (1.159)

R(K) has the finest topology making all the structural mappings con-

tinuous.

This realisation is important, since it is well known that the combi-

natorial homology of a cubical set K coincides with the homology of

the CW-space RK (cf. [Mu], 4.39), for the simplicial case). But we also

want a finer ‘directed realisation’, keeping more information about the

cubes of K: we shall use a d-space (Section 1.6.7) or also a set equipped

with a presheaf of distinguished cubes (Section 1.6.8).

1.6.7 A directed geometric realisation

Cubical sets have a clear realisation as d-spaces, since we obviously want

to realise the object with one free generator of degree n as ↑In.

(Simplicial sets can also be realised as d-spaces, by a choice of ↑∆n ⊂
↑Rn which agrees with faces and degeneracies: the convex hull of the

points 0 < e1 < e1 + e2 < ... < e1 + ...+ en obtained from the canonical

basis of Rn.)

Recall that a cubical set K = ((Kn), (∂αi ), (ei)) is a functor K : Iop →
Set, for a category I ⊂ Set already recalled in 1.6.1. Its objects are the

sets 2n = {0, 1}n, its mappings are generated by the elementary faces

∂α : 20 → 2 and degeneracy e : 2 → 20, under finite products (in Set)

and composition. Equivalently, the mappings of I are generated under

composition by the following higher faces and degeneracies (i = 1, ..., n;

α = 0, 1; ti = 0, 1)

∂αi = 2i−1×∂α×2n−1 : 2n−1 → 2n,

∂αi (t1, ..., tn−1) = (t1, ..., ti−1, α, ..., tn−1),

ei = 2i−1×e×2n−1 : 2n → 2n−1,

ei(t1, ..., tn) = (t1, ..., t̂i, ..., tn).

(1.160)
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There is an obvious embedding of I in dTop, where faces and degen-

eracies are realised as above, with the standard ∂α : {∗} −→←−−→ ↑I : e

(and ti ∈ ↑I)

I : I→ dTop, 2n 7→ ↑In,

∂αi = ↑Ii−i×∂α×↑In−i : ↑In−1 → ↑In,

ei = ↑Ii−1×e×↑In−i : ↑In+1 → ↑In.

(1.161)

Now, the directed singular cubical set of a d-spaceX and its left adjoint

functor, the directed geometric realisation ↑R(K)of a cubical set K, can

be constructed as in the classical case recalled above

↑R : Cub � dTop : ↑�, ↑R a ↑�,
↑�n(X) = dTop(↑In, X).

(1.162)

The d-space ↑R(K) is thus the pasting in dTop of Kn copies of

I(2n) = ↑In (n > 0), along faces and degeneracies (again, the coend

of the functor K.I : Iop×I→ dTop).

In other words (since a colimit in dTop is the colimit of the underlying

topological spaces, equipped with the relevant d-structure), one starts

from the ordinary geometric realisation RK, as a topological space, and

equips it with the following d-structure ↑R(K): the distinguished paths

are generated, under concatenation and increasing reparametrisation, by

the mappings x̂a : I→ In → RK, where a : I→ In is an order-preserving

map and x̂ corresponds to some cube x ∈ Kn, in the colimit-construction

of RK.)

The adjunction U a D′ (Section 1.4.0) between spaces and d-spaces

Cub
↑R // dTop
↑�
oo

U // Top
D′
oo ↑R a ↑�, U a D′ (1.163)

gives back the ordinary realisation R = U.↑R : Cub→ Top, with R a
� = ↑�.D′.

Various basic objects of dTop are directed realisations of simple cu-

bical sets already considered in 1.6.4. For instance, the directed interval
↑I realises ↑i = {0 → 1}; the directed line ↑R realises ↑z; the ordered

circle ↑O1 realises ↑o1 = {0 ⇒ 1}; the directed circle ↑S1 realises
↑s1 = {∗ → ∗}.

It is easy to prove that ↑R : CubL → dTop is a strong dI1-functor

(Section 1.2.6). In fact, ↑R and the cylinder functors of CubL and

dTop preserve all colimits, as left adjoints, and every cubical set is a
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colimit of representable presheaves y(2n) = ↑i⊗n. But, on such objects,

one trivially has

↑R(I(↑i⊗n)) = ↑R(↑i⊗ ↑i⊗n) ∼= ↑In+1
= ↑In×↑I ∼= I(↑R(↑i⊗n)).

1.6.8 Sets with distinguished cubes

A finer (directed) cubical realisation ↑C(K) can be given in the category

cSet of sets with distinguished cubes, or c-sets, which we introduce now.

A c-set L is a set equipped with a sub-presheaf cL of the cubical set

Set(I•, L), such that L is covered by all distinguished cubes. In other

words, the structure of the set L consists of a sequence of sets of distin-

guished cubes cnL ⊂ Set(In, L), preserved by faces and degeneracies (of

the cocubical set I•) and satisfying the covering condition L =
⋃

Im(x)

(for x varying in the set of all distinguished cubes), so that the canonical

mapping pL : R(cL)→ L is surjective. A morphism of c-sets f : L→ L′

is a mapping of sets which preserves distinguished cubes: if x : In → L

is distinguished, also fx : In → L′ is.

(Note that, differently from the definition of dTop, here we are not

asking that distinguished cubes be ‘closed under concatenation and repa-

rametrisation’, which would give a complicated structure. The present

category cSet is well-adapted for directed homology, but less adequate

than dTop for directed homotopy.)

Now, the adjunction ↑R a ↑� constructed above, in 1.6.7, can be

factored through cSet

Cub
↑C // cSet
c
oo

d // Top
(−)�

oo ↑C a c, d a (−)�. (1.164)

First, if X is a d-space, its singular cubes in ↑�X cover the underlying

set (since all constant cubes are directed). Thus, we factorise the functor
↑� : dTop→ Cub letting X� be the underlying set |X| equipped with

the presheaf ↑�X ⊂ Set(I•, X), and letting c be the forgetful functor

assigning to a c-set L its structural presheaf cL. Note that the functor

c is faithful (because pL : R(cL)→ L is surjective).

Then, the left adjoint of c yields the directed realisation ↑C(K) of a

cubical set K as a c-set: it is the set RK underlying the geometric

realisation R(K), without topology but equipped with convenient dis-

tinguished cubes. The latter arise from the n-cubes x ∈ Kn, via the

associated mappings x̂ : In → RK (cf. (1.159)), which are closed under
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faces and degeneracies

cn(↑R(K)) = {x̂ | x ∈ Kn} ⊂ Set(In, RK). (1.165)

The bijection (↑C(K), L) = (K, cL) is easy to construct: given f :

↑C(K) → L, we define fn : Kn → cnL letting fn(x) = fx̂; given g :

K → cL, we take f = pL.Cf = (C(K)→ C(cL)→ L).

Finally, the functor d : cSet→ dTop (left adjoint to (−)�), acting on

a c-set L, gives the underlying set |L| equipped with the cubical topology,

i.e. the finest topology making all distinguished cubes In → L continu-

ous, and further equipped with the distinguished paths generated by the

distinguished 1-cubes of c1L (via reparametrisation and concatenation).

The bijection (d(L), X) = (L,X�) is obvious, since a mapping L → X

is continuous for the cubical topology of L if and only if it is continuous

on each distinguished n-cube x : In → L, if and only if each composite

f ◦x is an n-cube of �X.

We end with some comments on the category cSet. Given a c-set

L = (L, cL), a c-subset M = (M, cM) will be a c-set with cM ⊂ cL;

in other words, we are considering a subset M ⊂ L equipped with a

sub-presheaf cM ⊂ cL∩Set(I•,M) satisfying the covering condition on

M . It is a regular subobject (Section 1.3.1) if cM = cL ∩ Set(I•,M),

that is if the distinguished cubes of M are precisely those of L whose

image is contained in M ; a regular subobject amounts thus to a subset

M ⊂ L which is a union of images of distinguished cubes of L (equipped

with the restricted structure).

The quotient L/∼ of a c-set modulo an equivalence relation (on the

set L) will be the set-theoretical quotient, equipped with the projections

In → L → L/∼ of the distinguished cubes of L (which are obviously

stable under the faces and degeneracies of I•). This easy description of

quotients will be exploited in Section 2.5, as an advantage of c-sets with

respect to cubical sets: one has just to assign an equivalence relation on

the underlying set.

1.6.9 Pointed cubical sets

A strong reason for considering pointed cubical sets is that their homol-

ogy theory behaves much better than reduced homology of the unpointed

objects (as we shall see in Section 2.3).

A pointed cubical set is a pair (X,x0) formed of a cubical set with a

base point x0 ∈ X0; a morphism f : (X,x0) → (Y, y0) is a morphism
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of cubical sets which preserves the base points: f(x0) = y0. The corre-

sponding category, written Cub•, is pointed, with zero-object {∗}.
As for pointed d-spaces (Section 1.5.4), the forgetful functor Cub• →

Cub has a left adjoint X 7→ X•, which adds a discrete base point ∗
(in the sense that the only cubes having some vertex at ∗ are totally

degenerate, see (1.133)). The pointed directed interval is ↑i•.
Again, limits and quotients are computed as in Cub and pointed in the

obvious way, whereas sums are quotients of the corresponding unpointed

sums, under identification of the base points.

The (left) cylinder and path endofunctors can be obtained from the

pointed directed interval ↑i•, via the smash tensor product:

(X,x0)⊗ (Y, y0) = ((X ⊗ Y )/∼, [x0, y0]), (1.166)

where ∼ is the equivalence relation which identifies all n-cubes x⊗y0 and

x0⊗ y with en(x0⊗ y0). Its unit is the discrete cubical set s0 = D{0, 1}
(Section 1.6.4), pointed at 0 (for instance).

However, it will be simpler to give a direct definition of these functors

(Section 2.3.2).

1.7 First order homotopy theory by the cylinder functor, II

Coming back to the general theory, we study dI1-homotopical categories,

i.e. those dI1-categories which have a terminal object and all h-pushouts,

and therefore all mapping cones and suspensions. We end by construct-

ing, in this setting, the (lower or upper) cofibre sequence of a map (The-

orem 1.7.9).

The present matter essentially appeared in [G3, G7]. Its classical

counterpart for topological spaces is the well-known Puppe sequence

[Pu], whose study in categories with an abstract cylinder functor was

developed in Kamps’ dissertation [Km1].

1.7.0 Homotopical categories via cylinders

Let A be a dI1-category with a terminal object >, so that every object

X has a unique morphism pX : X → >.

Note that, since homotopies are defined by a cylinder functor, the ob-

ject > is automatically 2-terminal, in the sense that each map pX : X →
> has precisely one endohomotopy, the trivial one (represented by the

unique map IX → >). Moreover, R> ∼= > (since R is an automorphism)

and we shall assume, for simplicity, that R> = >, so that R(pX) = pRX .
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A map X → Y which factors through > is said to be constant. Recall

(from 1.3.2) that an objectX is said to be future contractible if it is future

homotopy equivalent to >, or equivalently if there is a map i : > → X

which is the embedding of a future deformation retract, i.e. admits a

homotopy 1X → ipX .

We say that A is a dI1-homotopical category if it is a dI1-category

with all h-pushouts (Section 1.3.5) and a terminal object >. In the rest

of the section, we assume that this is the case.

Every dI1-category with a terminal object and ordinary pushouts is

dI1-homotopical, by 1.3.5. But we have also seen there, implicitly, that

a dI1-homotopical category need not have all pushouts.

The categories

pTop, dTop, Cub, Cat, pTop•, dTop•

are dI1-homotopical, with the cylinder functor already described above;

in fact, all of them are complete and cocomplete. Other examples

include: inequilogical spaces (Section 1.9.1), ‘convenient’ locally pre-

ordered spaces (Section 1.9.3), pointed cubical sets (Section 2.3), chain

complexes (Section 4.4), and various constructions on the previous cat-

egories, like functor categories or categories of algebras (see Chapter

5).

A dI1-homotopical functor

H = (H, i, h) : A→ X (i : RH → HR, h : IH → HI),

will be a strong dI1-functor (Section 1.2.6) between dI1-homotopical

categories which preserves the terminal object and satisfies the following

equivalent properties

(i) H preserves every h-pushout,

(ii) H preserves every cylindrical colimit (Section 1.3.5), as a colimit.

The equivalence is proved in the next lemma. Notice that property

(i) makes sense for all lax dI1-functors, since they act on homotopies

(1.58), and is obviously closed under composition, while (ii) makes sense

for arbitrary functors, but - then - is not closed under composition.

The directed geometric realisation functor ↑R : Cub→ dTop (Section

1.6.7), which preserves all colimits as a left adjoint, is a dI1-homotopical

functor.
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1.7.1 Lemma (The preservation of h-pushouts)

A strong dI1-functor H = (H, i, h) : A → X between dI-categories pre-

serves an h-pushout of A if and only if it preserves the corresponding

cylindrical colimit (Section 1.3.5) as a colimit.

Proof Consider an h-pushout of A, the left diagram below

X
g //

f

��

Z

v

��

HX
Hg //

Hf

��

HZ

Hv

��
Y

u
//

λ 00

I(f, g) HY
Hu
//

Hλ //

H(I(f, g))

(1.167)

This diagram is transformed by H into the right diagram above, where

- as defined in (1.58) - the homotopy Hλ is represented by the map

(Hλ)̂ = H(λ̂).hX : IHX → HIX → H(I(f, g)). (1.168)

We have seen in 1.3.5 that the h-pushout λ can be expressed by the

ordinary colimit in the left diagram below, which is transformed by

H : A→ B into the right diagram

X
g //

∂+

��

Z

v

��

HX
Hg //

H∂+

��

HZ

Hv

��

X
∂−
//

f
��

IX
λ̂

$$

HX
H∂−
//

Hf
��

HIX
Hλ̂

&&
Y

u
// I(f, g) HY

Hu
// HI(f, g)

(1.169)

Now, since the natural transformation h : IH → HI is invertible, we

can equivalently replace HIX with IHX, the map Hλ̂ with (Hλ)̂ =

H(λ̂).(hX) and the maps H∂α with

∂αH = (hX)−1.H∂α : HX → HIX → IHX,

Therefore, the right diagram (1.167) is an h-pushout if and only if the

right diagram (1.169) is a colimit.

1.7.2 Mapping cones, cones and suspension

Let A be a dI1-homotopical category, as defined above.

(a) A map f : X → Y has an upper mapping cone C+f = I(f, pX), or
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upper h-cokernel, defined as the h-pushout below, at the left

X
p //

f

��

>

v+

��

X
f //

p

��

Y

u

��
Y

u
//

γ 00

C+f >
v−
//

γ 00

C−f

(1.170)

Its structural maps are the lower basis u = hcok+(f) : Y → C+f

and the upper vertex v+ : > → C+f ; furthermore, we have a structural

homotopy γ : uf → v+p : X → C+f , which links f to a constant map,

in a universal way. The h-cokernel is a functor C+ : A2 → A, defined

on the category of morphisms of A.

Symmetrically, f has a lower mapping cone C−f = I(pX , f) defined

as the right h-pushout above, with a lower vertex v− and an upper basis

u. As a particular case of the reflection rI of h-pushouts (Section 1.3.5),

we have a reflection isomorphism for mapping cones

rC : C+(fop)→ (C−f)op,

induced by the reflection rX : IRX → RIX.

Notice that the name we are choosing for these constructions, upper

or lower, agrees with the vertex and not with the basis. This choice of

terminology (in contrast with [G3]) comes from a relationship of cones

with future and past contractibility, which is examined below, in 1.7.3.

(b) In particular, every object X has an upper cone C+X = C+(idX) =

I(idX, pX), defined as the left h-pushout below; or, equivalently, as the

ordinary pushout on the right (with u− = γ.∂−X)

X
p //

id

��

>

v+

��

X
p //

∂+

��

>

v+

��
X

u−
//

γ 00

C+X IX
γ
// C+X

(1.171)

This defines a functor C+ : A→ A. Notice: given a map f : X → Y ,

one should not confuse the mapping cone C+f = I(f, pX), which is an

object of A, with the map C+[f ] : C+X → C+Y induced by f between

the cones of X and Y . We will use square brackets in the second case,

even though the context should already be sufficient to distinguish these

things.

Symmetrically, there is a lower cone functor C− : A → A, with
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C−X = C−(idX) = I(pX , idX) and a lower vertex v−. The two cones

are linked by a reflection isomorphism rC : C+(Xop)→ (C−X)op.

If A is pointed, > is the zero object and the right diagram above shows

that the map γ : IX → C+X is the ordinary cokernel of ∂+ : X → IX,

whence a normal epimorphism. But, in the unpointed case, γ need not

be epi (see 1.7.4).

In 4.8.5, under stronger hypotheses on A, we will show that an upper

cone C+X is always strongly future contractible, to its vertex v+.

(c) Finally, the suspension of an object

ΣX = C+(pX) = C−(pX) = I(pX , pX),

is an upper and a lower cone, at the same time. It is obtained by

collapsing, independently, the bases of IX to an upper and a lower

vertex, v+ and v−

X
p //

p

��

>

v+

��
>

v−
//

σ 00

ΣX

(1.172)

There is now a reflection isomorphism for the suspension, rΣ : Σ(Xop)

→ (ΣX)op.

For the terminal object >, p : > → > is an isomorphism, and γ>, σ>
are also invertible. Identifying

I> = C+> = C−> = Σ>,

the faces ∂α : > → I> are also the faces and vertices of the cones and

suspension.

1.7.3 Lemma (Contractible objects and cones)

In a dI1-homotopical category A, an object X is future contractible if

and only if the basis u : X → C+X of its upper cone has a retraction

h : C+X → X.

Proof We use the notation of (1.171). If hu = idX, then the map

hγ : IX → X is a homotopy from hγ∂−X = hu = idX to hγ∂+X =

hv+pX : X → X, and the latter is a constant endomap.

Conversely, if there is a homotopy ϕ : IX → X with ϕ∂−X = idX

and ϕ∂+X = ipX : X → X, we define h : C+X → X as the unique



84 Directed structures and first order homotopy properties

map such that hγ = ϕ : IX → X and hv+ = i : > → X, and we obtain

hu = hγ.∂−X = ϕ.∂−X = idX.

1.7.4 Cones and suspension for d-spaces

Let X be a d-space. Its upper cone C+X, given by the right-hand

pushout in (1.171), can be computed as the quotient

C+X = (IX + {∗})/(∂+X + {∗}), (1.173)

where the upper basis of the cylinder is collapsed to an upper vertex

v+ = v+(∗), while the lower basis ∂− : X → IX → C+X ‘subsists’.

Note that C+∅ = {∗}: the cone C+X is a quotient of the cylinder IX

only for X 6= ∅.
Dually, the lower cone C−X is obtained by collapsing the lower basis

of IX to a lower vertex v− = v−(∗).
We have already described, in 1.4.7, the upper and lower cones of S1

and ↑S1, in dTop:

C+(S1) C−(S1) C+(↑S1) C−(↑S1)

.
↓

↑
→ ← .

↑

↓
← → .

↓

↑
→ ← .

↑

↓
← →OO OO

(1.174)

The suspension ΣX is the colimit of the diagram

X //

∂+

��

{∗}

v+

��

X
∂−
//

��

IX
σ̂

""
{∗}

v−
// ΣX

(1.175)

which collapses, independently, the bases of IX to a lower and an upper

vertex, v− and v+. Note that Σ∅ = S0 (with the unique d-structure),

and ΣS0 = ↑O1 (1.103).

As happens for topological spaces, the suspension ΣX of a d-space

can also be obtained by the following pushout: the pasting of both
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cones CαX of X, along their bases

X
u− //

u+

��

C+X

��
C−X // ΣX

(1.176)

This coincidence is not a general fact, within directed algebraic topol-

ogy. It rests on the fact that, in dTop (or in Top), pasting two copies of

the standard interval one after the other (a particular case of (1.176), for

X = {∗}), we get an object isomorphic to the standard interval (which

is Σ{∗}). But this is not true for Cat (where the corresponding pasting

gives the ordinal 3, nor for cubical sets (where we similarly get three

vertices), nor for chain complexes (directed or not).

It is easy to prove that a future cone C+X is past contractible if and

only if X is empty or past contractible.

1.7.5 Cones and suspension for pointed d-spaces

Let us recall, from (1.124), that, in the dI1-homotopical category dTop•
of pointed d-spaces, the cylinder I(X,x0) can be expressed as the quo-

tient of the unpointed cylinder IX which collapses the fibre at the base

point x0 (providing thus the new base point)

I(X,x0) = (IX/I{x0}, [x0, t]). (1.177)

As a consequence, the upper cone and suspension of a pointed d-space

can also be obtained from the corresponding unpointed constructions,

by collapsing the fibre of the base point

C+(X,x0) = I(X,x0)/∂+(X,x0) = (C+X/I{x0}, [x0, t]),

Σ(X,x0) = (ΣX/I{x0}, [x0, t]).
(1.178)

In particular, pointing the directed sphere ↑Sn = (↑In)/(∂In) (cf.

(1.102)) at xn = [(0, ..., 0)], we have, for n > 0

Σ(↑Sn, xn) ∼= (↑Sn+1, xn+1). (1.179)

1.7.6 Cones and suspension for cubical sets

Let X be a cubical set. Its left upper cone C+X (relative to the left

cylinder IX = ↑i⊗X, cf. 1.6.5) can again be computed as the quotient

(1.173).
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Analytically, we can describe C+X saying that it is generated by

(n + 1)-dimensional cubes u ⊗ x ∈ IX (for each x ∈ Xn) plus a vertex

v+, under the relations arising from X together with the identification

1⊗ x = en1 (v+) (x ∈ Xn). (1.180)

The left suspension ΣX is the colimit in Cub of the diagram (1.175).

Thus, the suspension of s0 = D{0, 1} yields the ‘ordered circle’ ↑o1

(1.146)

v−
u′ ,,

u′′
22 v

+ u′ = [0⊗ u], u′′ = [1⊗ u], (1.181)

(the square brackets denote equivalence classes in the colimit (1.175)).

More generally, we define

Σn(s0) = ↑on. (1.182)

But we are more interested in the pointed suspension (i.e. the suspen-

sion of pointed cubical sets) which will be studied in Section 2.3, and

yields the directed spheres ↑sn (as in the previous result for d-spaces,

(1.179)).

1.7.7 Differential and comparison

Let us come back to the general theory. In the dI1-homotopical category

A, every map f : X → Y has a lower differential d = d−(f) defined by

the universal property of the lower h-cokernel C−f (see the diagram

below)

d = d−(f) : C−f → ΣX (lower differential),

dv− = v− : > → ΣX, du = v+pY : Y → ΣX,

d◦γ = σ : v−pX → v+pX : X → ΣX (u = hcok−(f)).

(1.183)

Now, we go on with a construction which only depends on f and

makes an alternate use of lower and upper h-cokernels; the construction

is called ‘lower’, simply because it begins by the lower h-cokernel of f .

Following the pattern of the Pasting Lemma for h-pushouts (Lemma
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1.3.8)

X
f //

p

��

Y
p //

u
��

>
v+

��

>

v+

��
>

v−
//

γ //

C−f
u′ //

d ,,

γ′ //

C+u

>
v−

//

σ 00

ΣX

(1.184)

we can compare the pasting of the lower h-cokernel C−f and the upper

h-cokernel C+u, with the global h-pushout ΣX.

We obtain thus a lower comparison map k = k−(f), defined by the

universal property of C+u

k = k−(f) : C+u→ ΣX (lower comparison map),

ku′ = d, kv+ = v+, k◦γ′ = 0: du→ v+pY : Y → ΣX.
(1.185)

This yields a diagram, the reduced lower cofibre diagram of f

X
f // Y

u // C−f
d // ΣX

Σf //

]

ΣY

X
f
// Y

u
// C−f

u′
// C+u

d′
//

k

OO

ΣY

(1.186)

which commutes, except (possibly) at the ]-marked square; the latter

will be called the lower comparison square of f .

This diagram will be extended to the lower cofibre diagram of f , in

1.7.9. In a stronger setting, we will be able to prove that the compari-

son square commutes up to homotopy and that k is a future homotopy

equivalence (see Theorem 4.7.5).

Both d− and k− are natural in f . More precisely, d− and k− are

natural transformations of functors defined on A2, the category of mor-

phisms of A

d− : C− → Σ.Dom: A2 → A,

k− : C+.hcok− → Σ.Dom: A2 → A.
(1.187)

By reflection duality, we also have an upper differential d+(f) and an

upper comparison map k+(f) (natural in f), which are characterised by

the following conditions (see the diagram below):

d = ∂+(f) : C+f → ΣX (upper differential),

du = v−pY : Y → ΣX, dv+ = v+ : > → ΣX,

d◦γ = σ : v−pX → v+pX : X → ΣX (u = hcok+(f)).

(1.188)
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k = k+(f) : C−u→ ΣX (upper comparison map),

kv− = v−, ku′ = d, k◦γ′ = 0: v−pY → du : Y → ΣX.
(1.189)

X
f //

p

��

Y
p //

u
��

>
v−

��

>

v−

��

γ

��

γ′

��>
v+
// C+f

u′ //
d ,,

C−u σ

��>
v+

// ΣX

1.7.8 The cofibre sequences of a map

In a dI1-homotopical category, every map f : X → Y has a natural lower

cofibre sequence (or lower Puppe sequence)

X
f // Y

u // C−f
d // ΣX

Σf // ΣY
Σu // ΣC−f

Σd // Σ2X ...

u = hcok−(f), d = d−(f), (1.190)

formed by its lower h-cokernel u, its lower differential d (Section 1.7.7)

and the suspension functor.

Symmetrically, we have the upper cofibre sequence (or upper Puppe

sequence) of f

X
f // Y

u // C+f
d // ΣX

Σf // ΣY
Σu // ΣC+f

Σd // Σ2X ...

u = hcok+(f), d = d+(f), (1.191)

The upper sequence of fop is equivalent to the R-dual of the lower

sequence of f , via the isomorphisms rC : C+(fop) → (C−f)op and

rΣ : Σ(Xop)→ (ΣX)op (Section 1.7.2)

Xop // Y op // C+(fop) //

r��

Σ(Xop) //

r��

Σ(Y op) ...

r��
Xop // Y op // (C−f)op // (ΣX)op // (ΣY )op ...

(1.192)
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1.7.9 Theorem and Definition (The cofibre diagram)

In the dI1-homotopical category A, every map f : X → Y has a lower

cofibre diagram

X
f // Y

u // C−f
d // ΣX

Σf //

]

ΣY
Σu //

]

ΣC−f ...

X
f
// Y

u
// C−f

u2

// C+u
u3

//

h1

OO

C−u2 u4

//

h2

OO

C+u3 ...

h3

OO
(1.193)

This diagram links the lower cofibre sequence of f to a sequence of

iterated h-cokernels of f , where each map is, alternately, the lower or

upper h-cokernel of the preceding one. The squares marked with ] do

not commute, generally.

Note. In a stronger setting, we will prove that these squares are com-

mutative up to the homotopy congruence ∼1 and that every hi is a

composition of past and future homotopy equivalences; see Theorem

4.7.5.

Proof We will make a repeated use of the lower and upper comparison

maps, defined above (Section 1.7.7).

Let us begin noting that the lower comparison k1 = k−(f) : C+u →
ΣX links the lower sequence of u0 = f to the upper sequence of u =

u1 = hcok−(f)

X
f // Y

u // C−f
d // ΣX

Σf //

]

ΣY
Σu // ΣC−f ...

Y
u1

// C−f
u2

// C+u1
d2

//

k1

OO

ΣY
Σu1

// ΣC−f ...

(1.194)

where the square(s) marked with ] need not commute.

Now, we iterate this procedure (and its R-dual). Setting αn = − for

n odd and αn = + for n even, we obtain the expanded lower cofibre
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diagram of f

X
f // Y

u // C−f
d // ΣX

Σf //

]

ΣY
Σu // ΣC−f

Σd // Σ2X ...

]

Y
u1

// C−f
u2

// C+u1
d2

//

k1

OO

ΣY
Σu1

//

]

ΣC−f
Σd2

// Σ(C+u1)...

Σk1

OO

C−f
u2

// C+u1 u3

// C−u2
d3

//

k2

OO

ΣC−f
Σu2

//

]

Σ(C+u1)...

C+u1 u3

// C−u2 u4

// C+u3
d4

//

k3

OO

Σ(C+u1)...

(1.195)

un = hcokαn(un−1), u0 = f (n > 1),

dn = dαn(un−1), kn = kαn(un−1).
(1.196)

Finally, we compose all columns and get diagram (1.193), letting

hn = kn (n = 1, 2, 3),

hn = (Σkn−3).kn (n = 4, 5, 6),

hn = (Σ2kn−6).(Σkn−3).kn (n = 7, 8, 9), ...

(1.197)

1.8 First order homotopy theory by the path functor

Working now on a directed path functor, we dualise Sections 1.3 and 1.7,

introducing dP1-homotopical categories and the (lower or upper) fibre

sequences of a map. We end by combining both results in the pointed

self-dual case, i.e. pointed dIP1-homotopical categories (Sections 1.8.6

and 1.8.7).

1.8.1 Homotopy pullbacks

Dualising Section 1.3, let us assume that A is a dP1-category. Given two

arrows f, g with the same codomain, the standard homotopy pullback, or

h-pullback, from f to g is a four-tuple (A;u, v;λ) as in the left diagram

below, where λ : fu→ gv : A→ X is a homotopy satisfying the following
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universal property (of comma squares)

A
v //

u
��

Z

g
��

PX
∂+
//

∂− ��

X

id
��λ

JJ

λ

HH

Y
f
// X X

id
// X

(1.198)

- for every λ′ : fu′ → gv′ : A′ → X, there is precisely one map h : A′ →
A such that u′ = uh, v′ = vh, λ′ = λh.

The solution (A;u, v;λ) is determined up to isomorphism (when it

exists). We write A = P (f, g); we have: P (g, f) = R(P (Rf,Rg)).

In particular, the path object PX = P (idX, idX), displayed in the

right diagram above, comes equipped with the obvious structural homo-

topy

∂ : ∂− → ∂+ : PX → X, ∂̌ = id(PX). (1.199)

The homotopy pullback can be constructed with the path-object and

the ordinary limit of the left diagram below, which amounts to three

ordinary pullbacks

P (f, g)
v //

u

��

λ

  

Z

g

��

P (f, g) //

��

P (X, g) //

��

Z

g

��
PX

∂+
//

∂−

��

X P (f,X) //

��

PX
∂+
//

∂−

��

X

Y
f
// X Y

f
// X

(1.200)

The dP1-category A has homotopy pullbacks if and only if it has

cocylindrical limits, i.e. the limits of all diagrams of the previous type.

The existence of all ordinary pullbacks in A is a stronger condition.

Standard homotopy pullbacks, when they exist ‘everywhere’, form a

functor A∧ → A defined on the cospans of A (i.e. the diagrams of A

based on the formal-cospan category ∧). Pasting works in the obvious

way, dualising Lemma 1.3.8.

The construction of the homotopy pullback P (f, g) in pTop (or dTop)

is obvious from the diagram above

P (f, g) = {(y, a, z) ∈ Y ×PX×Z | a(0) = fy, a(1) = gz}
⊂ Y ×PX×Z, (1.201)

with the preorder (or d-structure) of a regular subobject of the product

Y ×PX×Z.
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Recall that the structure of PX is described in 1.1.4 for pTop and

in (1.117) for dTop; in the first case PX = X↑I is the set of increasing

paths a : ↑I → X, with the compact-open topology and the pointwise

preorder.

In pTop• (pointed preordered spaces) or dTop• (pointed d-spaces),

one gets again the object (1.201), pointed at the triple (y0, ω0, z0) formed

of the base points of Y, PX and Z; of course, ω0 = 0x0
is the constant

loop at the base point of X (1.126).

Similarly, in Cat, one obtains the usual construction of the comma

category (f ↓ g) [M3], with objects (y, a, z) where y ∈ Y (i.e. y is an

object of Y ), z ∈ Z and a : f(y) → g(z) is a map of X. In Cat•
(pointed small categories) one gets the same comma category pointed at

the obvious object (y0, 0x0
, z0), with 0x0

the identity of x0.

1.8.2 Homotopical categories via cocylinders

We say that A is a dP1-homotopical category if it is a dP1-category with

all h-pullbacks and an initial object ⊥. In the rest of this section, we

assume that this is the case.

Now, every object X has a unique morphism iX : ⊥ → X. The initial

object is automatically 2-initial and we can assume that R(⊥) = ⊥. A

map X → Y which factors through ⊥ will be said to be co-constant, and

an object X is future co-contractible (resp. past co-contractible) if there

is a map p : X → ⊥ and a homotopy 1X → iXp (resp. iXp→ 1X).

Every dP1-category with a terminal object and ordinary pullbacks is

dP1-homotopical.

The non-pointed dI1-categories pTop,dTop,Cub,Cat considered in

the previous section are also dP1-homotopical. But we have already

noted that their initial object - the ‘empty object’, in the appropriate

sense - is an absolute initial object: every morphism X → ⊥ is invertible

(in fact, the identity of X = ⊥, in all these cases). It follows that the

only (future or past) co-contractible object is the initial object itself and

the fibre sequence of every map degenerates (cf. 1.8.5). As in classical

algebraic topology, one should rather consider the corresponding pointed

categories (pTop•, etc.) to find non-trivial fibre sequences.

But of course there exist non-pointed dP1-homotopical categories with

non-trivial fibre sequences, for instance the opposite categories A∗ =

pTop∗, dTop∗, etc. with path functor P = I∗ : A∗ → A∗. Differential

graded algebras give a more natural example, which will be studied in

Chapter 5.
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A dP1-homotopical functor

K = (K, i, k) : A→ X (i : KR→ RK, k : KP → PK),

is a strong dP1-functor (Section 1.2.6) between dP1-homotopical cate-

gories which preserves the initial object and h-pullbacks (see the dual

notion in 1.7.0).

1.8.3 Cocones and loop objects

Let A be always a dP1-homotopical category.

(a) A map f : X → Y has an upper mapping cocone E+f = P (f, iX), or

upper h-kernel, defined as the left h-pullback below; its structural maps

are u = hker+(f) : E+f → X and the upper co-vertex v+ : E+f → ⊥;

they come with a homotopy γ : fu→ iv+ : E+f → X

E+f
v+ //

u
��

⊥
i
��

E−f
u //

v−
��

X

f
��

γ

GG

γ

GG

X
f
// Y ⊥

i
// Y

(1.202)

The upper mapping cocone is a functor E+ : A2 → A. Symmetrically,

there is a lower mapping cocone E−f = P (iX , f), equipped with a lower

co-vertex v−; it is defined as the right h-pullback above, and (E−f)op =

E+(fop).

(b) Every object X has an upper cocone E+X = E+(idX) = P (idX, iX)

and a lower cocone E−X = E−(idX) = P (iX , idX). They determine

each other, by R-duality: (E−X)op = E+(Xop).

(c) Finally, the loop object

ΩX = E+(iX) = E−(iX) = P (iX , iX),

is an upper and a lower cocone, at the same time

ΩX
v+ //

v−

��

⊥
i
��ω

HH

⊥
i
// X

(1.203)

The loop object has thus a structural homotopy ω : iXv
− → iXv

+ :

ΩX → X, universal within homotopies A →1 X whose faces are co-

constant. It forms a functor Ω: A → A which commutes with the

reversor: (ΩX)op = Ω(Xop).
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If the initial object is absolute, all these notions become trivial: E±f,

E±X, and ΩX always coincide with the initial object itself.

1.8.4 Examples of cocones and loop objects

In pTop• and dTop•, the object X, pointed at x0, has the following

upper cocone

E+(X) = P (idX, iX)

= {(x, a) ∈ X×PX | a(0) = x, a(1) = x0} ⊂ X×PX, (1.204)

with the structure of a regular subobject of X×PX, and in particular

the same base point: (x0, 0x0).

The lower cocone E−(X) = P (iX , idX) and the loop object Ω(X) are

E−(X) = {(x, a) ∈ X×PX | a(0) = x0, a(1) = x},
Ω(X) = P (iX , iX) = {a ∈ PX | a(0) = x0 = a(1)} ⊂ PX.

(1.205)

In Cat• one gets similar comma categories.

As in 1.7.4, we can note that in pTop• and dTop• (but not in Cat•)

the loop object ΩX can also be obtained as the following pullback

ΩX //

��

E+X

u−

��
E−X

u+

// X

(1.206)

1.8.5 Fibre sequences

Dualising 1.7.7, every map f : X → Y has a lower differential d =

d−(f) : ΩY → E−f and a lower (fibre) comparison h = h−(f) : ΩY →
E+v, with values in the upper cocone of v = hker−(f).

In the reduced lower fibre diagram of f , all squares commute, except

(possibly) the ]-marked one

ΩX
Ωf //

]

ΩY
d //

h
��

E−f
v // X

f // Y

ΩX
d′
// E+v

v′
// E−f

v
// X

f
// Y

(1.207)

v = hker−(f), d = d−(f), v′ = hker+(v), d′ = d+(v).
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Dualising 1.7.8, the map f : X → Y has a natural lower fibre sequence

...Ω2Y
Ωd// ΩE−f

Ωv// ΩX
Ωf// ΩY

d // E−f
v // X

f // Y (1.208)

formed by its lower h-kernel v, its lower differential d and the loop func-

tor.

Dualising 1.7.9, this sequence can be linked to a sequence of iterated h-

kernels of f , where each map is, alternately, the lower or upper h-kernel

of the following one

... ΩE−f
Ωv //

k3 �� ]

ΩX
Ωf //

k2
�� ]

ΩY
d //

k1
��

E−f
v // X

f // Y

... E+v3 v4
// E−v2 v3

// E+v
v2
// E−f

v1
// X

f
// Y

(1.209)

This will be called the lower fibre diagram of f . Again, the squares

marked with ] do not commute, generally.

By R-duality, we have the upper fibre sequence of f (and an upper

fibre diagram)

...Ω2Y
Ωd// ΩE+f

Ωv// ΩX
Ωf// ΩY

d // E+f
v // X

f // Y (1.210)

v = hker+(f), d = d+(f).

(Again, if the initial object is absolute, the fibre sequence of every

map becomes trivial: all the objects at the left of X in the diagrams

above coincide with the initial object.)

One can find in [G3], 3.7, a ‘concrete’ motivation for using, alter-

nately, lower and upper h-kernels. Working in Top•, we showed that

a uniform use of lower h-kernels in the second row of diagram (1.209)

would give a homotopically anti-commutative diagram, with respect to

loop-reversion. Thus, in a non-reversible situation, the diagram would

get ‘out of control’.

1.8.6 Pointed homotopical categories.

The results of Section 1.3, for dI1-homotopical categories, and the pre-

ceding ones, for the dP1-homotopical case, can be combined in a useful

way in the pointed case, i.e. when the terminal and initial objects coin-

cide, yielding the zero object > = ⊥ = 0.
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We say that A is a pointed dIP1-homotopical category if it is a dIP1-

category (Section 1.2.2), has all h-pushouts and h-pullbacks, and a zero

object 0.

Then, after the adjunction I a P , we also have canonical adjunctions

Cα a Eα, Σ a Ω (α = ±). (1.211)

Indeed, a map C−X → Y amounts to a morphism f : X → Y together

with a homotopy ϕ : f → 0: X → Y , and corresponds thus to a map

X → E−Y . Similarly, a map ΣX → Y amounts to an endohomotopy

ϕ : 0→ 0: X → Y , and to a map X → ΩY .

Obvious examples of (non-reversible) pointed dIP1-homotopical cate-

gories are pTop•, dTop•, Cub•, cSet•, Cat•. Directed chain complexes

will be studied in Section 2.1.

1.8.7 The fibre-cofibre sequence

Let A be again a pointed dIP1-homotopical category. Putting together

the previous results, every map f : X → Y has a natural lower fibre-

cofibre sequence, unbounded in both directions

... Ω2Y
Ωd // ΩE−f

Ωv // ΩX
Ωf // ΩY

d // E−f
v // X

f

tt
Y

u
// C−f

d
// ΣX

Σf
// ΣY

Σu
// ΣC−f

Σd
// Σ2X ...

v = hker−(f), u = hcok−(f). (1.212)

It is formed by the lower h-kernel v and the lower h-cokernel u of f ,

their differentials and the action of the adjoint functors Σ a Ω.

This sequence can be linked to a sequence of iterated h-kernels and

h-cokernels of f (again of alternating type, lower and upper), forming

the lower fibre-cofibre diagram of f

... ΩY
d //

k1
��

E−f
v // X

f // Y
u // C−f

d // ΣX ...

... E+v
v2
// E−f

v1
// X

f
// Y

u1

// C−f
u2

// C+u ...

h1

OO
(1.213)

We end this section by writing down the dual of Lemma 1.3.8, and

then applying it to Cat.
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1.8.8 Pasting Lemma for h-pullbacks

Let A be a dP1-category and let λ, µ, ν be h-pullbacks, as in the dia-

gram below. Then, there is a comparison map i : Z → Y defined by the

universal properties of λ, µ and such that:

pp′i = p′′, q′i = q′′, µ◦i = 0hq′′ , (1.214)

Z
p′′ //

q′′

��

νpp

A

Y
p′ //

q′

��
µoo

X
p //

q

�� λ
oo

A

f
��

D D
h
// B

g
// C

1.8.9 Homotopy pullbacks of categories

Also as a preparation for Chapter 3, we remark that the necessity of no-

tions of directed homotopy in Cat already appears in the general theory

of categories, for instance in the diagrammatic properties of (co)comma

squares. (This motivation mostly makes sense for a reader already ac-

quainted with these constructions and their importance in category the-

ory; it is not necessary for the sequel.)

We have already observed that, in Cat, a comma square X = (f ↓ g)

is the h-pullback of the functors f, g (Section 1.8.1). Consider now the

pasting of two comma squares X = (f ↓ g), Y = (q ↓ h), as in 1.8.8,

and the ‘global’ comma Z = (f ↓ gh).

The comparison functor i given by the previous lemma is computed

as follows (with obvious notation: a ∈ A, d ∈ D, the morphism u is in

C)

i : Z → Y, i(a, d;u : f(a)→ gh(d)) =

= (a, h(d), d;u : f(a)→ gh(d), 1h(d)).
(1.215)

It is a full embedding, and is not an equivalence of categories, gener-

ally. In fact, Z is a full reflective subcategory of Y (Section A3.4), with

reflector p and unit η

p : Y → Z, p(a, b, d;u : f(a)→ g(b); v : b→ h(d)) =

= (a, d; g(v)◦u : f(a)→ gh(d)),

η : 1→ ip, η(a, b, d;u, v) = (1a, v, 1d) :

(a, b, d;u, v)→ (a, hd, d; g(v)◦u, 1hd).

(1.216)
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(This is in accord with a stronger Pasting Theorem for h-pullbacks,

whose dual will be given later, in a suitable setting: Theorem 4.6.2.)

Reversing the ‘direction’ of these comma categories (X = (g ↓ f), Y =

(h ↓ q), Z = (gh ↓ f)), the global comma Z becomes a full coreflective

subcategory of Y . Similar results hold for other diagrammatic properties

of comma (or cocomma) squares. A general treatment should be based

on the universal properties of the latter, to take advantage of duality

and avoid the complicated construction of cocomma categories.

We should therefore be prepared to consider a full reflective or core-

flective subcategory Z ⊂ Y as ‘equivalent’ to Y , in some sense related to

directed homotopy in Cat. Indeed, being full reflective (resp. coreflec-

tive) subcategories of a common one will amount to the notion of ‘future

equivalence’ (resp. ‘past equivalence’) studied in Chapter 3, as a coher-

ent version of future (or past) homotopy equivalence in Cat. Future and

past equivalences are thus natural tools to describe the diagrammatic

properties of comma and cocomma categories.

1.9 Other topological settings

After Sections 1.1, 1.4 and 1.5, we discuss here other topological set-

tings for directed algebraic topology, at the light of some general, seem-

ingly reasonable requirements expounded in 1.9.0. Some of such settings

present problems for path-concatenation, like inequilogical spaces (Sec-

tion 1.9.1), c-sets (Section 1.9.4) and generalised metric spaces (Section

1.9.6). Others do not even satisfy the requirements of 1.9.0: for instance,

bitopological spaces lack a cocylinder functor (Section 1.9.5).

Locally preordered spaces, when defined in a convenient way (Section

1.9.3), give a good setting. But, as a disadvantage with respect to d-

spaces, they are not sufficiently ‘fine’ to establish a good relationship

with non-commutative geometry (Chapter 2).

1.9.0 General principles

The topological settings we are interested in will be constructed starting

from the category Top of topological spaces, and compared with it.

As we have already considered, Top is itself a reversible dIP1-category

(Section 1.2.2). This structure arises from the cartesian product and the

standard interval I = [0, 1] (with euclidean topology), an exponentiable

object, and yields the ordinary homotopies.
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Now, a ‘good topological setting’ A for directed algebraic topology

should satisfy some general principles:

(i) A is a (non-reversible) dIP1-category with all limits and colimits,

(ii) A is equipped with a forgetful strict dI1-functor U : A → Top,

which is automatically a lax dP1-functor (Section 1.2.6),

(iii) U has a right adjoint D′ : A→ Top, which is automatically a lax

dI1-functor, and can therefore be extended to homotopies (Section

1.2.6).

As a consequence, U preserves colimits, which means that A-colimits

are computed as in Top and provided with the suitable additional struc-

ture. On the other hand, classical algebraic topology can be viewed

within the directed one, via the right adjoint D′. The existence of a left

adjoint D a U would say that limits in A are also computed as in Top;

but D cannot be extended to homotopies.

We have already seen that such principles are satisfied by our basic

setting pTop (Section 1.1) as well as by the richer setting dTop (Sec-

tions 1.4, 1.5). Other settings, perhaps less convenient, will be briefly

examined below.

1.9.1 Inequilogical spaces

The category pEql of inequilogical spaces was introduced in [G11], as

a directed version of D. Scott’s equilogical spaces [Sc, BBS, Ro, G13].

Notwithstanding various points of interest, this setting will only be used

here in marginal way, because it makes concatenation complicated.

An object X = (X],∼X) of pEql is a preordered topological space X]

equipped with an equivalence relation ∼X . A morphism [f ] : X → Y is

an equivalence class of preorder-preserving continuous mappings X] →
Y ] which respect the given equivalence relations - such mappings being

equivalent if they induce the same mapping, modulo these relations. A

preordered topological space A is viewed as an inequilogical one with

the equality relation: A = (A,=).

This category pEql is cartesian closed. As for equilogical spaces, the

proof is not trivial, but we only need the fact that the directed interval
↑I = ↑[0, 1] is exponentiable. Now, as proved in [G11], Thm. 1.8, if

A = (A,=) is a preordered topological space with a locally compact,

Hausdorff topology and Y = (Y ],∼Y ) is any inequilogical space, the
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inequilogical exponential Y A is computed as:

Y A = ((Y ])A,∼E),

h′ ∼E h′′ if ( ∀ a ∈ A, h′(a) ∼Y h′′(a)),
(1.217)

where (Y ])A is the exponential in pTop (with compact-open topology

and pointwise preorder, cf. 1.1.3), and ∼E is the pointwise equivalence

relation of maps h : A→ Y ], made explicit above.

Thus pEql has a structure of cartesian dIP1-category. The directed

homology of inequilogical spaces was studied in [G11]. The forgetful

functor is

U : pEql→ Top,

X = (X],∼X) 7→ |X| = X]/ ∼X ,
(1.218)

where X]/ ∼X has the induced topology. Its right adjoint D′ : Top →
pEql equips a space with the indiscrete preorder and the equality rela-

tion. U does not have a left adjoint.

There are various models of the directed circle, all equivalent up to

‘local homotopy’ (see [G11]), but the simplest (or the nicest) is perhaps

the inequilogical space ↑S1

e = (↑R,≡Z), i.e. the quotient (in this cate-

gory) of the ordered topological line ↑R modulo the action of the group

Z ([G11], 1.7).

More generally, we have the inequilogical sphere

↑Sne = (↑Rn,∼n), (1.219)

where the equivalence relation∼n is generated by the congruence modulo

Zn and by identifying all points (t1, ..., tn) where at least one coordinate

belongs to Z.

The powers of this directed circle ↑S1

e in pEql give the inequilogical

tori (↑S1

e)
n = (↑Rn,≡ Zn), where directed paths have to turn ‘counter-

clockwise in each variable’.

1.9.2 Locally transitive spaces

The usual notions of topological space equipped with a ‘local preorder’

do not allow one to construct mapping cones and suspension, and are

thus inadequate to develop homotopy theory.

To show this, let us say that a locally transitive topological space, or

lt-pace X = (X,≺), is a topological space equipped with a precedence

relation ≺ which is reflexive and locally transitive, i.e. transitive on a

suitable neighbourhood of each point. (A similar, stronger notion was
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used in [FGR2, GG] and called a local order: the space is equipped with

an open covering and a coherent system of closed orders on such open

subsets; then, the join of such relations is locally transitive and gives

back the given orderings, by restriction.) A map f : X → Y is required

to be locally increasing, i.e. to preserve ≺ on some neighbourhood of

every x ∈ X. Their category will be written ltTop.

Note that on a given space, infinitely many precedence relations may

give equivalent lt-structures, isomorphic via the identity. This is a minor

problem: it can be mended, replacing the precedence relation by its

germ, or equivalence class, in the same way as a manifold structure is

often defined as an equivalence class of atlases; or it can be ignored, since

our mending would just replace ltTop with an equivalent category.

This category ltTop has obvious limits and sums, but not all colimits,

as proved in [G8], 4.6. The point is that an lt-space (X,≺) cannot have a

point-like vortex (Section 1.4.7): each point x ∈ X has a neighbourhood

V on which ≺ is transitive, so that any loop a : ↑I → V is necessarily

reversible. But, loosely speaking, a cone on a directed circle must have

a point-like vortex at its vertex.

The forgetful functor d : ltTop→ dTop is defined by taking as distin-

guished paths of an lt-space X the locally increasing paths a : ↑[0, 1]→
X, on the ordered interval. By compactness of [0, 1] and local transitiv-

ity of ≺, this amounts to a continuous mapping, preserving precedence

on each subinterval [ti−1, ti] of a suitable decomposition 0 = t0 < t1 <

... < tn = 1.

Now, the directed circle ↑S1 is of locally transitive type, i.e. it can

be obtained as d(S1,≺) with some obvious precedence relation (not

uniquely determined). But the higher directed spheres ↑Sn are not of

lt-type, for n > 2, because they have a point-like vortex.

1.9.3 Locally preordered spaces

There are better ways of localising preorders, studied in a recent paper

by S. Krishnan [Kr].

The main subject of this paper is a ‘stream’, which consists of a topo-

logical space X with a ‘circulation’, i.e. a family ≺= (≺U ) of preorder

relations, one on each open subset U of X, which satisfies the following

cosheaf condition:

(i) if U =
⋃
i Ui is a union of open subsets of X, the preorder ≺U is the

join of the preorders ≺Ui .
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Actually we prefer a weaker notion, called a ‘precirculation’ in [Kr]

and a local preorder here, where (i) is replaced with a weaker copresheaf

condition:

(ii) if U ⊂ V and x ≺U x′, then x ≺V x′.

In fact, this notion has a better relationship with pTop: every pre-

ordered space has a local preorder, defined by restricting its relation to

the open subsets; but this family need not satisfy the cosheaf condition.

A locally preordered topological space, or lp-space, will be a topological

space X equipped with a local preorder. An lp-map f : X → Y will

be a continuous mapping between lp-spaces which preserves the local

preorder, in the sense that, for every U open in X and V open in Y , if

f(U) ⊂ V and x ≺U x′, then f(x) ≺V f(x′). This defines the category

lpTop. (Maps of streams are defined in the same way, in [Kr].)

Both notions, streams and lp-spaces, yield a ‘good topological set-

ting’ for directed algebraic topology, in the sense of 1.9.0. (The left and

right adjoint to the forgetful functor lpTop → Top are defined as for

preordered spaces.) But none of them is adequate to establish a relation-

ship with non-commutative geometry, as will be developed with cubical

sets and d-spaces, in the next chapter: the quotient of the ordered line
↑R modulo the action of a dense subgroup, in both the previous frame-

works, is an indiscrete topological space with the indiscrete preorder.

1.9.4 Sets with distinguished cubes

The category cSet of sets with distinguished cubes, or c-sets, has been

introduced in 1.6.8. It is complete and cocomplete, and has a cartesian

dIP1-structure defined by the obvious directed interval ↑I, which is here

the set I equipped with the presheaf of increasing continuous mappings

In → I.

The forgetful functor

U : cSet→ Top, (1.220)

equips a c-set L with the cubical topology, i.e. the finest topology making

all distinguished cubes In → L continuous (as for the functor d : cSet→
dTop defined in 1.6.8).

The adjoints D a U a D′ are obvious: for a topological space S,

the c-set DS is equipped with the constant cubes of S, and D′S with all

the continuous ones. Finally, U is a strict dI1-functor, since it preserves

products and satisfies U(↑I) = I.



1.9 Other topological settings 103

This setting has some disadvantages for directed homotopy: the ob-

vious paths (and homotopies), based on ↑I, cannot be concatenated

because the distinguished cubes are not assumed to be closed under the

various concatenation procedures. But, for directed homology, c-sets

offer the same advantages as cubical sets, with respect to d-spaces (see

2.2.5, 2.2.6).

1.9.5 Bitopological spaces

A bitopological space (a notion introduced by J.C. Kelly [Ky]) is a set

equipped with a pair of topologies X = (X, τ−, τ+), which we will call

the past and the future topology, respectively. Their category bTop,

with the obvious maps - continuous with respect to past and future

topologies, separately - has all limits and colimits, calculated as in Set

and, separately, on past and future topologies (calculated in Top). The

reversor turns past into future, and vice versa.

The forgetful functor lpTop → bTop is easily defined. Given an lp-

space X (Section 1.9.3), a fundamental system of past or future neigh-

bourhoods at x0 arises from any fundamental system V of open neigh-

bourhoods of the original topology, letting (for (V ∈ V)

V − = {x ∈ V | x ≺V x0}, V + = {x ∈ V | x0 ≺V x}. (1.221)

↑I inherits thus the left- and right-euclidean topologies.

Problems for establishing directed homotopy in bTop originate from

pathologies of (say) left-euclidean topologies; in fact, for a fixed Haus-

dorff space A, the product −×A preserves quotients (if and) only if A is

locally compact ([Mi], Thm. 2.1 and footnote (5)). Thus, the cylinder

endofunctor −×↑I in bTop does not preserve colimits and has no right

adjoint: the path-object is missing (and homotopy pullbacks as well,

while homotopy pushouts have poor properties; cf. [G7]).

1.9.6 Metrisability

Directed spaces can be defined by ‘asymmetric distances’. A generalised

metric space X in the sense of Lawvere [Lw1], called here a directed

metric space or δ-metric space, is a set X equipped with a δ-metric

δ : X×X → [0,∞], satisfying the axioms

δ(x, x) = 0, δ(x, y) + δ(y, z) > δ(x, z). (1.222)

This structure is natural within the theory of enriched categories, as
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showed in [Lw1]; see also Section 6.1. (If the value ∞ is forbidden, δ is

usually called a quasi-pseudo-metric, cf. [Ky]; but including it has various

structural advantages, e.g. the existence of all limits and colimits.)

δMtr will denote the category of such δ-metric spaces, with (weak)

contractions f : X → Y , satisfying the condition δ(x, x′) > δ(f(x), f(x′)).

Limits and colimits exist and are calculated as in Set.

A product
∏
iXi has the l∞-type δ-metric (always defined because∞

is included):

δ(x,y) = sup δi(xi, yi) (x = (xi), y = (yi)). (1.223)

An equaliser has the restricted δ-metric. A sum
∑
iXi has the obvious

δ-metric (which needs ∞ also in the binary case):

δ((x, i), (y, i)) = δi(x, y), δ((x, i), (y, j)) =∞ (i 6= j). (1.224)

A coequalisers has the δ-metric induced on a quotient X/R:

δ(ξ, η) = infx(
∑
j δ(x2j−1, x2j))

(x = (x1, ..., x2p); x1 ∈ ξ; x2jRx2j+1; x2p ∈ η).
(1.225)

The opposite δ-metric space R(X) = Xop has the opposite δ-metric,

δop(x, y) = δ(y, x). A symmetric δ-metric (δ = δop) is the same as an

écart in Bourbaki [Bk].

A δ-metric space X = (X, δ) has an associated bitopological space

(X, τ−, τ+). At the point x0 ∈ X, the past topology τ− (resp. the future

topology τ+) has a canonical system of fundamental neighbourhoods

consisting of the past discs D− (resp. future discs D+) centred at x0

D−(x0, ε) = {x ∈ X | δ(x, x0) < ε},
D+(x0, ε) = {x ∈ X | δ(x0, x) < ε} (ε > 0).

(1.226)

This describes a forgetful functor to bitopological spaces

δMtr→ bTop, (X, δ) 7→ (X, τ−, τ+). (1.227)

Homotopies of δ-metric spaces will be studied in Chapter 6, where we

also construct a forgetful functor δMtr→ dTop which uses a ‘symmet-

ric’ topology, instead of the previous ones (Section 6.1.9).
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Directed homology and its relation with
noncommutative geometry

Homology theories of directed ‘spaces’ will take values in directed alge-

braic structures. We will use preordered abelian groups, letting the pre-

order express most (not all) of the information codified in the original

distinguished directions. One could also use abelian monoids, following

a procedure developed by A. Patchkoria [P1, P2] for the homology semi-

module of a ‘chain complex of semimodules’, but this would give here a

lesser information (see 2.1.4).

Directed homology of cubical sets, the main subject of this chapter,

has interesting features, also related to noncommutative geometry.

Indeed, it may happen that the quotient S/∼ of a topological space

has a trivial topology, while the corresponding quotient of its singular

cubical set �S keeps a relevant topological information, identified by

its homology and agreeing with the interpretation of such ‘quotients’

in noncommutative geometry. This relationship, briefly explored here,

should be further clarified.

Let us start from the classical results on the homology of an orbit

space S/G, for a group G acting properly on a space S; these results can

be extended to free actions if we replace S with its singular cubical set

and take the quotient cubical set (�S)/G (Corollary 2.4.4 and Theorem

2.4.5). Thus, for the group Gϑ = Z + ϑZ (ϑ irrational), the orbit space

R/Gϑ has a trivial topology (the indiscrete one), but can be replaced

with a non-trivial cubical set, X = (�R)/Gϑ, whose homology is the

same as the homology of the group Gϑ ∼= Z2, and coincides with the

homology of the torus T2 (see (2.75)). Algebraically, all this is in accord

with Connes’ interpretation of R/Gϑ as a ‘noncommutative space’, i.e.

a noncommutative C∗-algebra Aϑ [C1, C2, C3, Ri1, Bl]; however, our
↑Hn(X) has a trivial preorder, for n > 0, independently of ϑ.

To enhance this similarity, one can modify the quotient (�R)/Gϑ,

105
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replacing �R with the cubical set �↑R of all order-preserving maps

In → R. Algebraically, the homology groups are unchanged, but now
↑H1((�↑R)/Gϑ) ∼= ↑Gϑ as a (totally) ordered subgroup of R (Theorem

2.5.8): thus the irrational rotation cubical sets Cϑ = (�↑R)/Gϑ have

the same classification up to isomorphism (Theorem 2.5.9) as the C∗-

algebras Aϑ up to strong Morita equivalence [PV, Ri1]: ϑ is determined

up to the action of the group PGL(2,Z).

This example shows that the ordering of directed homology can carry

a much finer information than its algebraic structure. Furthermore,

a comparison with the stricter classification of the algebras Aϑ up to

isomorphism (Section 2.5.1) shows that cubical sets provide a sort of

‘noncommutative topology’, without the metric character of noncom-

mutative geometry (cf. 2.5.2). To take into account also this aspect,

one should move to the richer domain of weighted algebraic topology

(Chapter 6).

The reader can have a quick overview of these motivations, reading the

Sections 2.5.1-2.5.3, on rotation structures and foliations of tori; Section

2.5 contains other results on higher dimensional tori.

This chapter follows rather closely the paper [G12], except for the last

section which is new. It defines a directed reduced homology theory on a

dI1-homotopical category, by three axioms based on: homotopy invari-

ance, stability under suspension and exactness on the cofibre sequence

of a map.

2.1 Directed homology of cubical sets

Combinatorial homology of cubical sets is a simple theory, with evident

proofs. We study here its enrichment with a natural preorder: the items

of the cubical set generate the positive chains, and positive cycles induce

positive homology classes.

2.1.1 Directed chain complexes

Given a cubical set X, we begin by enriching the usual chain complex of

abelian groups Ch+(X) with an order on each component; the boundary

homomorphisms will not preserve this order relation, but a chain mor-

phism f] : Ch+(X)→ Ch+(Y ) induced by a map f : X → Y will preserve

it. Motivated by all this, we define the category dCh+Ab of directed

chain complexes of abelian groups (indexed on natural numbers).

Let us start from the category pAb of preordered abelian groups: an
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object ↑L is an abelian group equipped with a preorder λ 6 λ′ preserved

by the sum; or, equivalently, with a submonoid, the positive cone L+ =

{λ ∈ L | λ > 0}. A morphism is a preorder-preserving homomorphism.

Plainly, the category pAb has all limits and colimits, computed as in

Ab and equipped with the required preorder. It is enriched on abelian

monoids and has finite biproducts (A4.6). Notice also that a bijective

morphism (which is mono and epi) need not be an isomorphism.

The symmetric monoidal closed structure of abelian groups can be

easily lifted to pAb: the positive cone of ↑L ⊗ ↑M is the submonoid

generated by the tensors λ⊗ µ, for λ ∈ L+, µ ∈M+, while the internal

hom Hom(↑M, ↑N) is the abelian group Hom(M,N) of all algebraic

homomorphisms, with positive cone given by the increasing ones

(Hom(↑M, ↑N))+ = pAb(↑M, ↑N)

= {f ∈ Hom(M,N) | f(M+) ⊂ N+}. (2.1)

The unit of the tensor product is the ordered group of integers, ↑Z.

The forgetful functor pAb→ Ab, written ↑L 7→ L, has left adjoint ↑dA
and right adjoint ↑cA, respectively enriching an abelian group A with

the discrete order (A+ = {0}) or with the chaotic preorder (A+ = A).

On the other hand, the forgetful functor

pAb(↑Z,−) = (−)+ : pAb→ Set

represented by the monoidal unit ↑Z has (only) a left adjoint

↑Z.(−) : Set→ pAb, S 7→ ↑Z.S. (2.2)

Here, the free ordered abelian group ↑Z.S is the usual free abelian

group ZS, of formal Z-linear combinations of elements of S, with positive

cone consisting of the submonoid NS of positive combinations (with

coefficients in N).

We now introduce the category dCh+Ab of directed chain complexes

of abelian groups. An object ↑A = ((↑An), (∂n)) is a chain complex of

abelian groups, where every component is a preordered abelian group,

but the differentials are just algebraic homomorphisms, not assumed to

preserve the preorder (the dot-marked arrow below is meant to recall

this fact)

∂n : ↑An ·→ ↑An−1. (2.3)

A chain morphism f = (fn) : ↑A → ↑B between directed chain com-

plexes is a chain morphism in the usual sense, where every component

fn : ↑An → ↑Bn preserves preorders (i.e. lives in pAb).
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Again, the category dCh+Ab has all limits and colimits, is enriched

on abelian monoids and has finite biproducts (Section A4.6).

The directed homology of a directed chain complex is defined as a

sequence of preordered abelian groups

↑Hn : dCh+Ab→ pAb, (2.4)

where ↑Hn(↑A) is the ordinary homology group Ker∂n/Im∂n+1, equipped

with the preorder induced by ↑An on this subquotient. Notice that, even

when ↑An is ordered, the induced preorder need not be antisymmetric.

Similarly, we have the category of directed cochain complexes of abel-

ian groups, dCh+Ab, and its directed cohomology functor

↑Hn : dCh+Ab→ pAb.

Directed homotopies in dCh+Ab are not needed now; their d-structure

will be studied in Section 4.4.

2.1.2 Directed homology of cubical sets

Let us start by recalling the usual construction of the homology groups

of cubical sets. Every cubical set X determines a collection

DegnX =
⋃
i Im(ei : Xn−1 → Xn), (2.5)

of subsets of degenerate elements (with Deg0X = ∅); this collection is

not a cubical subset (unless X is empty), but satisfies weaker properties

(for all i = 1, ..., n)

x ∈ DegnX ⇒ (∂αi x ∈ Degn−1X or ∂−i x = ∂+
i x),

ei(Degn−1X) ⊂ DegnX.
(2.6)

The cubical set X determines a (normalised) chain complex of free

abelian groups

Chn(X) = (ZXn)/(ZDegnX) ∼= ZXn (Xn = Xn \DegnX),

∂n(x̂) =
∑
i,α(−1)i+α(∂αi x)̂ (x ∈ Xn),

(2.7)

where ZS is the free abelian group on the set S, and x̂ is the class of

the n-cube x up to degenerate cubes; but we shall generally write the

normalised class x̂ as x, identifying all degenerate cubes with 0. (The

first property in (2.6) shows that ∂n(x̂) is well defined.)

Coming now to our enrichment, each component Chn(X) can be or-

dered by the positive cone of positive chains NXn, and will be written
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as ↑Chn(X) when thus enriched; notice that the positive cone is not

preserved by the differential ∂n : ↑Chn(X) ·→ ↑Chn−1(X), which is just

a homomorphism of the underlying abelian groups (as stressed, again,

by marking its arrow with a dot).

On the other hand, a morphism of cubical sets f : X → Y induces a se-

quence of order-preserving homomorphisms f]n : ↑Chn(X)→ ↑Chn(Y ).

We have thus defined a covariant functor

↑Ch+ : Cub→ dCh+Ab, (2.8)

with values in the category dCh+Ab of directed chain complexes of

abelian groups, defined above (Section 2.1.1).

This functor gives the directed homology of a cubical set, as a sequence

of preordered abelian groups

↑Hn : Cub→ pAb, ↑Hn(X) = ↑Hn(↑Ch+X), (2.9)

where ↑Hn(↑Ch+X) (defined in 2.1.1) is the ordinary homology of the

underlying chain complex, equipped with the preorder induced by the

ordered group ↑Chn(X) on the subquotient Ker∂n/Im∂n+1.

When we forget preorders, the usual chain and homology functors will

be written as usual

Ch+ : Cub→ Ch+Ab, Hn : Cub→ Ab. (2.10)

We will also apply the functors ↑Ch+ and ↑Hn to a c-set L (Section

1.6.8), by letting them act on the cubical set cL of distinguished cubes

of L

↑Ch+(L) = ↑Ch+(cL), ↑Hn(L) = ↑Hn(cL). (2.11)

2.1.3 Preordered coefficients

The (obvious) symmetric monoidal closed structure of preordered abel-

ian groups has been recalled in 2.1.1. Let ↑L be a preordered abelian

group; the functors − ⊗ ↑L : pAb → pAb and Hom(−, ↑L) : pAb∗ →
pAb have obvious extensions to dCh+Ab.

Using these tools, we get the directed combinatorial homology of cu-

bical sets, with coefficients in the preordered abelian group ↑L
↑Ch+(−; ↑L) : Cub→ dCh+Ab,

↑Ch+(X; ↑L) = ↑Ch+(X)⊗ ↑L,
↑Hn(−; ↑L) : Cub→ pAb,

↑Hn(X; ↑L) = ↑Hn(↑Ch+(X; ↑L)),

(2.12)
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and the directed combinatorial cohomology

↑Ch+(−; ↑L) : Cub∗ → dCh+Ab,

↑Ch+(X; ↑L) = Hom(↑Ch+(X), ↑L),

↑Hn(−; ↑L) : Cub∗ → pAb,

↑Hn(X; ↑L) = ↑Hn(↑Ch+(X; ↑L)).

(2.13)

Therefore, ↑Hn(X) = ↑Hn(X; ↑Z) will also be called directed combi-

natorial homology with ordered integral coefficients; below, we generally

consider this case, but the extension to arbitrary preordered coefficients

is easy.

The algebraic part of the universal coefficient theorems holds, with

the usual proof; the preorder aspect should be examined, but we shall

restrict to considering rational and real coefficients. First, it is easy to

verify that, for the ordered group of rationals ↑Q, the canonical algebraic

isomorphism

↑Hn(X)⊗ ↑Q→ ↑Hn(X; ↑Q), [z]⊗ λ 7→ [z ⊗ λ], (2.14)

which obviously preserves preorder, also reflects it. In fact, a positive

chain in ↑Chn(X; ↑Q) can always be written as c = λ.c′ where λ > 0

is rational and c′ is a positive chain with integral coefficients; further, if

c is a cycle, also c′ is, and [c] = [c′] ⊗ λ belongs to the positive cone of
↑Hn(X)⊗ ↑Q.

As a consequence, the same property holds for the ordered group ↑R
of real numbers: it suffices to take a positive basis of the reals on the

rationals.

But one can also give a more elementary argument. A positive chain

in ↑Chn(X; ↑R) can be rewritten as a finite linear combination c =∑
λici where the λi > 0 are real numbers, linearly independent on the

rationals, and all ci are positive chains with integral coefficients; since

each boundary λi(∂nci) still has coefficients in λiQ, we arrive at the

same conclusion as above: if c is a cycle, so are all ci and [c] =
∑

[ci]⊗λi
belongs to the positive cone of ↑Hn(X)⊗ ↑R.

2.1.4 Elementary computations

The homology of a sum X =
∑
Xi is a direct sum ↑HnX =

⊕
i↑HnXi

(and every cubical set is the sum of its connected components, 1.6.2).

It is also easy to see that, if X is connected (non empty), then



2.1 Directed homology of cubical sets 111

↑H0(X) ∼= ↑Z; the isomorphism is induced by the augmentation ∂0 :
↑Ch0X = ↑ZX0 → ↑Z, which takes each vertex x ∈ X0 to 1 ∈ Z.

Thus, for every cubical set X

↑H0(X) = ↑Z.Π0X, (2.15)

is the free ordered abelian group generated by the homotopy set Π0X

(Section 1.6.2).

In particular, ↑H0(↑s0) = ↑Z2. Now, it is easy to see that, for n > 0

↑Hn(↑sn) = ↑Z, (2.16)

is the group of integers with the natural order: a normalised n-chain ku

(where u is the n-dimensional generator of ↑sn, as in 1.6.4) is positive

when k > 0 (and is always a cycle).

Similarly, one proves that the n-dimensional elementary torus ↑tn =

(↑s1)⊗n has directed homology:

↑Hk(↑tn) = ↑Z(nk), (2.17)

where a power of ↑Z has the product order.

For instance, for k = 1, a normalised 1-chain can be written as follows

(where u is the 1-dimensional generator of ↑s1 and ∗ its unique vertex)

h1(u⊗ ∗ ⊗ ...⊗ ∗) + ...+ hn(∗ ⊗ ...⊗ ∗ ⊗ u) (hi ∈ Z), (2.18)

and is positive when all its coefficients hi are > 0. Again, it is always a

cycle, because so is u.

On the other hand, the ordered sphere ↑on (cf. 1.6.4) has ↑Hn(↑on)

= ↑dZ, with the discrete order: the positive cone is reduced to 0. In

fact, a normalised n-chain hu′ + ku′′ (notation of 1.6.4) is a cycle when

h+ k = 0, and a positive chain for h > 0, k > 0. (Notice that a directed

homology with values in monoids, defined along the same lines as in

Patchkoria [P1, P2] for his notion of ‘chain complex of semimodules’,

would give here the positive cone of ↑dZ, which is null, missing the

existence of non-positive cycles.)

The graded preordered abelian group of a cubical set X will also be

written as a formal polynomial

↑H•(X) =
∑
i σ

i.↑Hi(X), (2.19)

whose coefficients are preordered abelian groups, while the ‘indetermi-

nate’ σ displays the homology degree. One can think of σi as a power of

the suspension operator of chain complexes, acting here on a preordered
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abelian group, embedded in dCh+Ab (in degree 0): then the expres-

sion (2.19) is a direct sum of graded preordered abelian groups (each

of them concentrated in one degree). Notice also that the direct sum

of graded preordered abelian groups amounts to the sum of the corre-

sponding polynomials, computed - in the obvious way - by means of the

direct sum of their coefficients.

In this notation, the directed homology of the elementary torus ↑tn =

(↑s1)⊗n, computed above, becomes the polynomial

↑H•(↑tn) = (↑Z + σ.↑Z)⊗n

= ↑Z + σ.↑Z(n1) + σ2.↑Z(n2) + ...+ σn.↑Z.
(2.20)

2.1.5 Relative directed homology

Relative homology of cubical sets is defined in the usual way.

A cubical pair (X,A) consists of a cubical set X and a cubical subset

A ⊂ X; a morphism f : (X,A) → (Y,B) is a map f : X → Y which

sends A into B. An (elementary) left relative homotopy f : f− →L f
+ :

(X,A) → (Y,B) is a map f : X → PY with ∂αf = fα, which sends A

into PB; it can be described as a family of mappings of sets fn : Xn →
Yn+1 which send An into Bn+1 and satisfy the equations of (1.152).

The embedding i : A→ X induces a map i] : ↑Ch+A→ ↑Ch+X of di-

rected chain complexes, which is also injective (a cube in A is degenerate

in X if and only if it is already so in A). We obtain the relative directed

chains of (X,A) by the usual short exact sequence of chain complexes,

interpreted in dCh+Ab

0→ ↑Ch+A→ ↑Ch+X → ↑Ch+(X,A)→ 0 (2.21)

i.e. letting each component ↑Chn(X,A) have the induced preorder (it is

again a free ordered abelian group). Now, the relative directed homology

is the homology of the quotient

↑Hn(X,A) = ↑Hn(↑Ch+(X,A)). (2.22)

The exact sequence of the pair (X,A) comes from the exact homology

sequence of (2.21), with differential ∆n[c] = [∂nc]; the latter need not

preserve the preorder (and its arrow is dot-marked)

... . // ↑HnA // ↑HnX // ↑Hn(X,A) .∆ // ↑Hn−1A ...

... . // ↑H0A // ↑H0X // ↑H0(X,A) // 0
(2.23)
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(For pairs of pointed cubical sets, there is a more effective way of

defining relative directed homology, based on the upper or lower mapping

cone of the embedding; algebraically, the result is the same but the new

preorder is different and preserved by the differential. See 2.3.7.)

Obviously, ↑Ch+(X, ∅) = ↑Ch+(X) and ↑Hn(X, ∅) = ↑Hn(X).

More generally, given a cubical triple (X,A,B), consisting of cubical

subsets B ⊂ A ⊂ X, the snake lemma gives a short exact sequence of

chain complexes

0→ ↑Ch+(A,B)→ ↑Ch+(X,B)→ ↑Ch+(X,A)→ 0

providing the exact homology sequence of the triple.

Tensoring by ↑L our chain complexes (with free ordered components),

one gets relative directed homology with arbitrary coefficients.

2.1.6 Cohomology

The (normalised) cochain complex ↑Ch+(X; ↑L) = Hom(↑Ch+(X); ↑L),

of a cubical set X, with coefficients in a preordered abelian group ↑L
(Section 2.1.3) has a simple description

Chn(X; ↑L) = {λ : Xn → L | λ(DegnX) = 0},
(dnλ)(a) =

∑
i,α(−1)i+αλ(∂αi a) (a ∈ Xn+1),

(2.24)

with components preordered by the cones of positive cochains, λ : Xn →
L+, again not preserved by the differential.

Forgetting preorders and assuming that L is a ring, the cochain com-

plex Ch+(X;L) has a natural structure of differential graded coalgebra,

by the cup product (cf. [HW], 9.3)

(λ ∪ µ)(a) =
∑
HK(−1)ρ(HK)λ(∂−Ha).µ(∂+

Ka)

(λ ∈ Chp(X;L), µ ∈ Chq(X;L), a ∈ Xp+q),
(2.25)

where (H,K) varies among all partitions of {1, ..., n} in two subsets of

p and q elements, respectively, ρ(HK) is the class of this permutation,

∂−Ha is the lower H-face of a and ∂+
Ka its upper K-face. Thus, H•(X;L) is

a graded algebra, isomorphic to H•(RX;L) (and graded commutative).

This definition shows that the product of positive cochains need not

be positive. Moreover, the graded commutativity of H•(X;L) (for a

commutative ring L) says that positive cohomology classes can hardly

be closed under product.

For an actual counterexample, we use graded commutativity in odd

degree, where [λ]∪ [µ] = −[µ]∪ [λ], looking for a case where cohomology
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is ordered (not just preordered) and [λ], [µ], [λ]∪ [µ] are strictly positive

(whence [µ] ∪ [λ] is not).

As we have seen in 2.1.4, the torus ↑t2 = ↑s1 ⊗ ↑s1 has one 0-cube

(∗), two non degenerate 1-cubes (u ⊗ ∗ and ∗ ⊗ u) and one non degen-

erate 2-cube (u⊗ u), which provide the positive generators of ↑H•(↑t2).

Similarly, in cohomology, we have an ordered object

↑H•(↑t2) = ↑Z + σ.↑Z2 + σ2.↑Z, (2.26)

and the positive generators in degree 1, 2 come from the following cocy-

cles (zero elsewhere)

λ(u⊗ ∗) = 1, µ(∗ ⊗ u) = 1, (λ ∪ µ)(u⊗ u) = 1. (2.27)

2.2 Main properties of the directed homology of cubical sets

The new aspects of directed homology deal, of course, with the homol-

ogy preorder. We prove that it is preserved and reflected by excision

(Theorem 2.2.3), preserved by tensor product (Theorem 2.2.4), but not

preserved by the differential of the Mayer-Vietoris exact sequences (The-

orem 2.2.2).

We also define here the directed homology of d-spaces, using their

directed singular cubical set. In this case, the preorder is only relevant

in degree 1 (Sections 2.2.5-2.2.7), in accord with fact that the directed

structure of d-spaces is essentially one-dimensional (as already remarked

in 1.1.5).

2.2.1 Theorem (Homotopy invariance)

The homology functor ↑Hn : Cub → pAb is invariant for elementary

left (or right) homotopies: given a left homotopy f : f− →L f
+ : X → Y ,

then ↑Hn(f−) = ↑Hn(f+). Similarly for relative homology and elemen-

tary left (or right) relative homotopies (Section 2.1.5).

As a consequence, the functor ↑Hn is invariant up to homotopy con-

gruence, and a fortiori up to coarse d-homotopy equivalence (Section

1.3.3).

Proof We can forget about preorders, since the thesis is merely alge-

braic: ↑Hn(f−) = ↑Hn(f+). However, we write down the proof because

the homology theory of cubical sets is much less known than that of

simplicial sets.
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By (1.152), the left homotopy f : f− →L f
+ : X → Y satisfies

fn : Xn → Yn+1, ∂αi+1fn = fn−1∂
α
i ,

∂α1 fn = fα, fnei = ei+1fn−1 (α = ±; i = 1, ..., n),
(2.28)

and gives rise to a homotopy of the associated (normalised, non directed)

chain complexes

f]n : ChnX → Chn+1Y, f]n(DegnX) ⊂ Degn+1Y,

∂n+1f]n = ∂+
1 f]n − ∂

−
1 f]n −

∑
iα(−1)i+a ∂αi+1f]n

= f+
n − f−n − f]n−1 ∂n.

(2.29)

The relative case is similar. It will be useful to note that the thesis

also holds for a generalised left homotopy, replacing the condition fnei =

ei+1fn−1 with fn(DegnX) ⊂ Degn+1Y .

2.2.2 Theorem (The Mayer-Vietoris sequence)

Let the cubical set X be covered by its subobjects U, V , i.e. X = U ∪V .

Then we have an exact sequence

... // ↑Hn(U ∩ V )
(i∗,j∗)// ↑HnU ⊕ ↑HnV

[u∗,−v∗] // ↑Hn(X) .
∆n // ↑Hn−1(U ∩ V ) // ...

(2.30)

with the obvious meaning of brackets.

The maps u : U → X, v : V → X, i : U ∩ V → U , j : U ∩ V → X are

inclusions and the connective ∆ (which need not preserve preorder) is:

∆n[c] = [∂na], c = a+ b (a ∈ ↑Chn(U), b ∈ ↑Chn(V )). (2.31)

The sequence is natural, for a cubical map f : X → X ′ = U ′ ∪ V ′,
which restricts to U → U ′, V → V ′.

Proof The proof is similar to the topological one, simplified by the fact

that here no subdivision is needed.

Given two cubical subsets U, V ⊂ X, their union U ∪ V (resp. in-

tersection U ∩ V ) just consists of the union (resp. intersection) of all

components. Therefore, ↑Ch+ takes subobjects of X to directed chain

subcomplexes of ↑Ch+X, preserving joins and meets

↑Ch+(U ∪ V ) = ↑Ch+U + ↑Ch+V,

↑Ch+(U ∩ V ) = ↑Ch+U ∩ ↑Ch+V.
(2.32)
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Now, it is sufficient to apply the algebraic theorem of the exact ho-

mology sequence to the following sequence of directed chain complexes

0 // ↑Ch+(U ∩ V )
f] // ↑Ch+U ⊕ ↑Ch+V

g] // ↑Ch+(X) // 0

f = (i, j), g = [u,−v]. (2.33)

Its exactness needs one non-trivial verification. Take a ∈ ↑ChnU ,

b ∈ ↑ChnV and assume that u](a) = v](b); therefore, each cube re-

ally appearing in a (and b) belongs to U ∩ V ; globally, there is (one)

normalised chain c ∈ ↑Chn(U ∩ V ) such that i](c) = a, i](c) = b.

2.2.3 Theorem and Definition (Excision)

Let a cubical set X be given, with subobjects B ⊂ Y ∩A. The inclusion

map i : (Y,B)→ (X,A) is said to be excisive whenever Yn\Bn = Xn\An,

for all n. Or equivalently:

Y ∪A = X, Y ∩A = B (2.34)

in the lattice of subobjects of X.

Then the inclusion i induces isomorphisms in homology, preserving

and reflecting preorder.

Proof After (2.32), the proof reduces to a Noether isomorphism for

directed chain complexes

↑Ch+(Y,B) = (↑Ch+Y )/(Ch+(Y ∩A))

= (↑Ch+Y )/(Ch+Y ∩ Ch+A) ∼= (↑Ch+Y + ↑Ch+A)/(Ch+A)

= ↑Ch+(Y ∪A)/(Ch+A) = ↑Ch+(X,A).

2.2.4 Theorem (The homology of a tensor product)

Given two cubical sets X,Y , there is a natural isomorphism and a nat-

ural monomorphism

↑Ch+(X)⊗ ↑Ch+(Y ) = ↑Ch+(X ⊗ Y ),

↑H•(X)⊗ ↑H•(Y ) �→ ↑H•(X ⊗ Y ).
(2.35)
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Proof It suffices to prove the first part, and apply the Künneth formula.

First, the canonical (positive) basis of the free ordered abelian group

↑Chp(X)⊗ ↑Chq(Y )

is Xp×Y q (as in 2.1.2, with Xp = Xp \ DegpX). Recall now that the

set (X⊗Y )n is a quotient of the set
∑
p+q=nXp×Yq modulo an equiva-

lence relation which only identifies pairs where a term is degenerate (see

(1.137)); moreover, a class x ⊗ y is degenerate if and only if x or y is

degenerate (see (1.138)).

Therefore, the canonical positive basis of ↑Chn(X ⊗ Y ) is precisely

the sum (disjoint union) of the preceding sets Xp×Y q, for p + q = n.

We can identify the ordered abelian groups

↑Chn(X ⊗ Y ) =
⊕
p+q=n ↑Chp(X)⊗ ↑Chq(Y ),

respecting the canonical positive bases.

Finally, the differential of an element x⊗ y, with (x, y) ∈ Xp×Y q, is

the same in both chain complexes∑
i,α (−1)i+α ∂αi (x⊗ y) =∑

i6p,α (−1)i+α (∂αi x)⊗ y +
∑
j6q,α (−1)p+j+α x⊗ (∂αj y)

= (∂px)⊗ y + (−1)p x⊗ (∂qy).

2.2.5 Directed homology of d-spaces

We end this section by defining directed homology for d-spaces. In

this setting, where the directed structure is essentially one-dimensional

(being defined by distinguished paths, i.e. 1-cubes), we will see that

preorder is only relevant in ↑H1.

First, let us recall a well-known fact: if S is a topological space, its

singular homology can be defined by the singular cubical set �S (as for

instance in Massey’s text [Ms])

Hn(S) = Hn(�S). (2.36)

The equivalence with the simplicial definition can be proved by acyclic

models, see [HW].

Of course, we can equip these groups with the preorder ↑Hn(S) =
↑Hn(�S), but this would have no interest whatsoever. In fact, ↑H0(�S)

has an order generated by the homology classes of points (cf. (2.15)),
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which conveys no information; and we prove below that, for n > 1, the

preorder of ↑Hn(�S) is chaotic (Corollary 2.2.7).

More interestingly, starting from a d-space S, we define its directed

singular homology by letting ↑Hn act on the singular cubical set ↑�S ⊂
�S (see (1.162))

↑Hn : dTop→ pAb, ↑Hn(S) = ↑Hn(↑�S). (2.37)

Here, the preorder is relevant in degree 1, but becomes chaotic for

n > 2 (Corollary 2.2.7).

The proof of the first fact, for Top, will be based on the presence

in this category of the maps of reversion and lower connection (Section

1.1.0)

r : I→ I, r(t) = 1− t (reversion),

g− : I2 → I, g−(t1, t2) = max(t1, t2) (lower connection).
(2.38)

The proof of the second fact, for dTop, will be based on transposition

(which can only act on dimension > 2) and, again, lower connection

(which also preserves the order)

s : ↑I2 → ↑I2
, s(t1, t2) = (t2, t1) (transposition). (2.39)

All this is proved below, in the more general situation of c-sets (Propo-

sition 2.2.6(b), (c)). It could be further extended to abstract cubical sets

equipped with symmetries and connections (cf. [GM]) but we prefer to

avoid this heavy structure.

2.2.6 Proposition (Symmetry versus preorder)

We use the same notation as above (Section 2.2.5).

(a) Let K be a cubical set and n > 1. Suppose that for every n-cube

a ∈ Kn there exists some n-cube a′ such that the chain a+a′ ∈ ↑Chn(K)

is a boundary. Then ↑Hn(K) has a chaotic preorder.

(b) Let X be a c-set and n > 1. The following conditions imply that
↑Hn(X) (defined in 2.1.2) has a chaotic preorder:

• the set cnX is closed under pre-composition with the involution r×
In−1 : In → In,

• if a ∈ cnX, then a.((g−(r×I))×In−1) ∈ cn+1X.

(Actually, the first condition is redundant, as will be evident from the

proof.)
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(c) Let X be a c-set and n > 2. The following conditions imply that
↑Hn(X) has a chaotic preorder:

• the set cnX is closed under pre-composition with the involution s×
In−2 : In → In,

• if a ∈ cnX, then a.((g−×In−1)(I×s×In−2)) ∈ cn+1X.

(Again, the first condition is redundant.)

Proof (a) Every n-cycle
∑
iλi.ai is equivalent modulo boundaries to a

cycle
∑
iµi.bi where all coefficients are > 0, replacing λi.ai with (−λi).a′i

when λi < 0. Thus, all homology classes in ↑Hn(K) are positive. (Note

that the hypothesis is only possible for n > 0, unless K is empty.)

The rest of the proof ensues from this point, making use of the fol-

lowing (easy) computation of differentials:

∂((g−(r×I))×In−1) = id + r×In−1,

∂((g−×In−1)(I×s×In−2)) = −id− s×In−2.
(2.40)

(b) For every distinguished n-cube a : In → X, the cubes

a′ = a.(r×In−1) : In → X,

a′′ = a.((g−(r×I))×In−1) : In+1 → X,
(2.41)

are also distinguished. Since, by (2.40), ∂na
′′ = a+ a′ in ↑Chn(X), the

thesis follows from (a).

(c) For every distinguished n-cube a : In → X, the cubes

a′ = a.(s×In−2) : In → X,

a′′ = a.((g−×In−1)(I×s×In−2)) : In+1 → X,
(2.42)

are distinguished. Now, ∂na
′′ = −a − a′ and the thesis follows again

from (a).

2.2.7 Corollary (Chaotic preorders)

If S is a d-space, then the directed singular homology ↑Hn(S) =
↑Hn(↑�S) (defined in 2.2.5) has a chaotic preorder for all n > 2.

If S is a topological space, this holds for all n > 1.

Proof Follows from the points (c) and (b) of the previous proposition.



120 Directed homology and noncommutative geometry

2.3 Pointed homotopy and homology of pointed cubical sets

Pointed suspension and the pointed cofibre sequence have a good rela-

tionship with directed pointed homology; the latter can also be viewed

as a form of reduced homology, well adapted to preorder - while the

ordinary reduced homology is not.

2.3.1 The interest of pointed objects in the directed case

We have introduced in 1.6.9 the category Cub• of pointed cubical sets,

whose homotopy and homology will be studied below. Working on such

objects with directed algebraic tools one often gets better results than

with the corresponding unpointed ones (while, forgetting about direc-

tions, we would get equivalent solutions).

First, from the point of view of directed homotopy theory, the advan-

tage is evident from the following example: within cubical sets, suspen-

sion gives rise to the ordered spheres Σn(s0) = ↑on (1.182), while we

show below (Section 23.2) that, within pointed cubical sets, (pointed)

suspension gives the elementary directed spheres: Σn(s0, 1) = (↑sn, ∗),
which are more interesting. Note that their classical geometric realisa-

tions are homeomorphic spaces.

Second, from the point of view of directed homology theory, let us com-

pare reduced homology (of unpointed objects) and pointed homology (of

the pointed ones). Classically, one introduces the reduced homology of a

cubical set (or a topological space) X as the kernel of the homomorphism

induced by the terminal map X → {∗}

H̃n(X) = Ker(Hn(X)→ Hn({∗})). (2.43)

Reduced homology has a suspension isomorphism

hn : H̃n(X)→ H̃n+1(Σ(X)), (2.44)

and yields, for every map f : X → Y , an exact cofibre sequence

... H̃n(X)
f∗n // H̃n(Y )

u∗n // H̃n(C+f) .
dn // H̃n−1(X)

... H̃0(X)
f∗0 // H̃0(Y )

u∗0 // H̃0(C+f) // 0.
(2.45)

Here, u : Y → C+f is the upper homotopy cokernel of f , while the

differential comes from the differential d(f) : C+f → ΣX of the cofibre

sequence of f (Section 1.7.8)

dn = (hn−1)−1(d(f))∗n : H̃n(C+f)→ H̃n(ΣX)→ H̃n−1(X), (2.46)



2.3 Pointed homotopy and homology of cubical sets 121

(which amounts to (hn−1)−1 when Y = {∗} and C+f ∼= ΣX).

One can obtain similar results with the pointed homology of pointed

cubical sets (or pointed topological spaces), which can be defined, very

simply, as a particular case of relative homology

Hn(X,x0) = Hn(X, {x0}) ∼= H̃n(X). (2.47)

Algebraically, the two approaches are more or less equivalent - even

if the latter has some formal advantage: pointed homology (of pointed

objects) preserves sums while reduced homology (of unpointed objects)

does not.

But, introducing preorders, reduced homology and pointed homology

give different results, and the latter behaves much better.

First, ↑H̃0(X) has a trivial preorder, the discrete one, since the pos-

itive cone
∑
λi[xi] (λi ∈ N) of ↑H0(X) has a null trace on Ker(H0(X)

→ Z. This is not true for pointed homology (see (2.58)).

Second, pointed suspension and pointed homology will yield an iso-

morphism of preordered abelian groups (see 2.3.5).

2.3.2 Pointed homotopies

Let us recall (from 1.6.9) that, in the category Cub• of pointed cubical

sets, limits and quotients are computed as for cubical sets and pointed

in the obvious way, whereas sums are quotients of the corresponding

unpointed sums, under identification of the base points (as for pointed

sets).

The (elementary, left) pointed cylinder is

I : Cub• → Cub•, I(X,x0) = (IX/I{x0}, [0⊗ x0]),

∂α : (X,x0)→ I(X,x0), ∂α(x) = [α⊗ x] (α = 0, 1),

e : I(X,x0)→ (X,x0), e[u⊗ x] = e1(x).

(2.48)

Its right adjoint, the (elementary, left) pointed cocylinder, is

P : Cub• → Cub•,

P (Y, y0) = (PY, ω0), ω0 = e1(y0) ∈ Y1.
(2.49)

An (elementary, left) pointed homotopy f : f− →L f+ : (X,x0) →
(Y, y0) is a map f : I(X,x0) → (Y, y0) with f∂α = fα, or, equivalently,

a map f : (X,x0) → P (Y, y0) with ∂αf = fα, which - as we have seen
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in (1.152) - amounts to a family

fn : Xn → Yn+1,

∂αi+1fn = fn−1∂
α
i , ∂α1 fn = fα,

ei+1fn−1 = fnei, f0(x0) = ω0 (α = ±; i = 1, ..., n).

(2.50)

The (left) pointed upper cone C+(X,x0) is a quotient of the pointed

cylinder

(X,x0)
p //

∂+

��

>

v+

��

C+(X,x0) =

(IX)/(I{x0} ∪ ∂+X).

I(X,x0)
γ
// C+(X,x0)

(2.51)

The (left) pointed suspension is the quotient

Σ(X,x0) = (IX)/(∂−X ∪ I{x0} ∪ ∂+X). (2.52)

Thus, the pointed suspension of (s0, 0) yields the elementary directed

circle ↑s1

• •

• •

1⊗u
OO

(2.53)

and, more generally

(↑sn, ∗) = Σn(s0, 0). (2.54)

2.3.3 Pointed homology

A pointed cubical set (X,x0) naturally gives a directed chain complex
↑Ch+(X,x0).

Its higher components, for n > 0, coincide with the unpointed ones,
↑Chn(X), while the 0-component is the free preordered abelian group

generated by the pointed set (X,x0), so that the base point is annihilated

↑Ch0(X,x0) = ↑Z(X0, x0) = (↑ZX0)/(Zx0). (2.55)

The functor ↑Z(−,−) which we are applying is left adjoint to the

forgetful functor

pAb→ Set•, A 7→ (A+, 0).
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Moreover, we can identify the directed chain complex ↑Ch+(X,x0)

with the corresponding relative complex

↑Ch+(X, {x0}) = ↑Ch+(X)/↑Ch+({x0}).

We have thus the pointed directed homology of a pointed cubical set,

a particular case of relative directed homology

↑Hn : Cub• → pAb, ↑Hn(X,x0) = ↑Hn(↑Ch+(X,x0))

= ↑Hn(↑Ch+(X, {x0})) = ↑Hn(X, {x0}).
(2.56)

On the other hand, it is also true that relative homology of cubical sets

is determined by pointed homology. In fact, the projection p : (X,A)→
(X/A, {∗}) induces an isomorphism p] of directed chain complexes and

isomorphisms p∗n in directed homology

p] : ↑Ch+(X,A) → ↑Ch+(X/A, {∗}),
p∗n : ↑Hn(X,A) ∼= ↑Hn(X/A, ∗).

(2.57)

Pointed homology only differs from the unpointed one in degree zero,

where

↑H0(X,x0) ∼= ↑Z.π0(|X|, x0) (2.58)

is the free ordered abelian group generated by the pointed set of con-

nected components of (X,x0), or equivalently by the (unpointed) set of

components different from the component of the base point.

A pair ((X,x0), (A, x0)) of pointed cubical sets (with x0 ∈ A ⊂ X) has

a relative homology which coincides with the unpointed one (in every

degree)

↑Hn((X,x0), (A, x0)) = ↑Hn(↑Ch+(X,x0)/Ch+(A, x0))

= ↑Hn(X,A).
(2.59)

The exact homology sequence of this pair is just the homology sequence

of the triple (X,A, {x0}) of cubical sets (see 2.1.5).

2.3.4 Theorem (Homotopy invariance)

The pointed homology functor ↑Hn : Cub• → pAb is invariant for

elementary left (or right) pointed homotopies (Section 2.3.2): given

f : f− →L f
+ : X → Y , then ↑Hn(f−) = ↑Hn(f+).

Proof Follows from the invariance of relative homology (Theorem 2.2.1),

since pointed homology is a particular instance of relative homology
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(see (2.56)) and a left pointed homotopy is the same as a left relative

homotopy (Section 2.1.5) between pointed cubical sets.

2.3.5 Theorem (Homology of a suspension)

There is a natural isomorphism of preordered abelian groups

hn : ↑Hn(X,x0) → ↑Hn+1(Σ(X,x0)),

[
∑
k λkxk] 7→ [

∑
k λk〈u⊗ xk〉] (n > 0),

(2.60)

where 〈...〉 denotes an equivalence class in the suspension Σ(X,x0) as a

quotient of I(X,x0), and u is the generator of the elementary interval
↑i.

In particular, one finds again the ordered homology groups ↑Hn(↑sn) =
↑Z, for n > 0; cf. 2.1.4.

Proof First, let us note that, for x ∈ Xn, we have the following relation

in ↑Chn+1(Σ(X,x0))

∂〈u⊗ x〉 = 〈1⊗ x− 0⊗ x〉 −
∑
i,α(−1)i+α〈u⊗ ∂αi x〉

= −〈u⊗ ∂x〉.
(2.61)

Now, the isomorphism of the thesis is induced by the following inverse

isomorphisms of preordered abelian groups, which anti-commute with

differentials

fn : ↑Chn(X,x0)→ ↑Chn+1(Σ(X,x0)),

f(x) = 〈u⊗ x〉 (x ∈ Xn),

∂f(x) = ∂〈u⊗ x〉 = −〈u⊗ ∂x〉 = −f(∂x), f(x0) = 〈u⊗ x0〉 = 0,

f(eky) = 〈u⊗ eky〉 = 〈ek+1(u⊗ y)〉 = 0 (for n > 0, y ∈ Xn−1);

gn : ↑Chn+1(Σ(X,x0))→ ↑Chn(X,x0),

g〈u⊗ x〉 = x, g∂〈u⊗ x〉 = −g〈u⊗ ∂x〉 = −∂x = −∂g〈u⊗ x〉.

2.3.6 Theorem (The homology cofibre sequence of a map).

Given a map f : (X,x0)→ (Y, y0) of pointed cubical sets, there is a ho-

mology upper cofibre sequence (obtained from the upper cofibre sequence
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of f , in 1.7.8) which is exact and natural, with preorder-preserving ho-

momorphisms:

... ↑Hn(X,x0)
f∗n // ↑Hn(Y, y0)

u∗n // ↑Hn(C+f, [y0])
dn //

↑Hn−1(X,x0) // ... // ↑H0(C+f, [y0]) // 0,

u = hcok+(f),

dn = (hn−1)−1(d+(f))∗n : ↑Hn(C+f)→ ↑Hn−1(X,x0).
(2.62)

The same holds for the lower cofibre sequence.

Proof All the homomorphisms above are preorder-preserving, also be-

cause of the previous result on suspension (Theorem 2.3.5).

The rest will be proved showing that our sequence amounts to the

homology sequence of the pair (C, j(X,x0)) of pointed cubical sets (Sec-

tion 2.3.3), where C = I(f, id(X,x0)) is a mapping cylinder (Section

1.3.5) in Cub• and j is the embedding of (X,x0) into its upper basis

j : (X,x0)→ I(X,x0)→ I(f, id(X,x0)), j(x) = [x, 1].

Indeed, the pointed homology ↑Hn(C+f, [y0]) coincides with the rela-

tive directed homology ↑Hn(C, j(X,x0)) (by (2.57)). Moreover (X,x0)

is isomorphic to (jX, [y0]), while (Y, y0) is past homotopy equivalent to

(C, [y0]), actually a past deformation retract (Section 1.3.1)

i : (Y, y0) ⊂ (C, [y0]),

p : (C, [y0])→ (Y, y0), p[x, t] = f(x), p[y] = y,

ψ : ip→ 1C , ψ([x, t], t′) = [x, tt′], ψ([y], t′) = y.

2.3.7 Upper relative pointed homology

For a pair ((X,x0), (A, x0)) of pointed cubical sets, one can also define

an upper (or lower) relative pointed homology, which - for preorder - be-

haves better than the relative directed homology ↑Hn((X,x0), (A, x0)) =
↑Hn(X,A), already considered above (in (2.59)).

By definition, the upper (or lower) relative pointed homology of our

pointed pair is based on the upper (or lower) pointed cone of the embed-

ding j : (A, x0)→ (X,x0)

↑Hα
n ((X,x0), (A, x0)) = ↑Hn(Cα((A, x0)→ (X,x0))) (α = ±). (2.63)



126 Directed homology and noncommutative geometry

Using the homology upper (or lower) cofibre sequence of the embed-

ding j (Theorem 2.3.6), we get an exact sequence with a differential

which does preserve preorder (and can reflect it, or not, according to

cases, see the example below):

... ↑Hn(A, x0)
j∗n // ↑Hn(X,x0)

u∗n// ↑Hα
n ((X,x0), (A, x0))

dn //

... ↑Hn−1(A, x0) // ... // ↑Hα
0 ((X,x0), (A, x0)) // 0,

u = hcok+(j). (2.64)

2.3.8 An elementary example

Consider the pointed pair (↑i, s0), with (unwritten) base point at 0 and

inclusion j : s0 → ↑i. The cones of j are:

v+ v+ 0
w2 // 1

0
w1

// 1

w2

OO

v− v−

w1

OO

(2.65)

C+(j) C−(j) ∼= ↑o1.

The upper and lower homology of the pointed pair (↑i, s0) are the

group of integers (generated by the homology class of the chain w defined

below), with the natural or discrete order, respectively:

↑H+
1 (↑i, s0) = ↑Z[w], w = w1 + w2 (a positive chain),

↑H−1 (↑i, s0) = ↑dZ[w], w = w1 − w2 (a chain).
(2.66)

Therefore:

(a) in the sequence of upper relative homology, the differential preserves

order and also reflects it:

d1 : ↑H+
1 (↑i, s0)→ ↑H0(s0, 0),

d1 : ↑Z[w]→ ↑Z[1], d1([w]) = [1];
(2.67)

(b) in the sequence of lower relative homology, the differential preserves

order but does not reflect it:

d1 : ↑H−1 (↑i, s0)→ ↑H0(A, 0),

d1 : ↑dZ[w]→ ↑Z[1], d1([w]) = [1].
(2.68)
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Finally in the exact sequence of ordinary (unpointed) relative homol-

ogy of the pair (↑i, s0), the differential does not even preserve the order

relation:

∆1 : ↑H1(↑i, s0)→ ↑H0(s0),

∆1 : ↑Z[u]→ ↑Z{[0], [1]}, ∆1([u]) = [1]− [0].
(2.69)

2.4 Group actions on cubical sets

The classical theory of proper actions on topological spaces, culminating

in a spectral sequence, is extended here to free actions on cubical sets.

G is a group, written in additive notation (independently of commuta-

tivity). The action of an operator g ∈ G on an element x is written as

x+ g.

2.4.1 Basics

Take a cubical set X and a group G acting on it, on the right. In

other words, we have an action x + g (for x ∈ Xn, g ∈ G) on each

component, consistently with faces and degeneracies (or, equivalently, a

cubical object in the category of G-sets).

Plainly, there is a cubical set of orbits X/G, with components Xn/G

and induced structure; and a natural projection p : X → X/G in Cub.

One says that the action is free if G acts freely on each component,

i.e. the relation x = x + g, for some x ∈ Xn and g ∈ G implies g = 0.

This is equivalent to saying that G acts freely on the set of vertices X0

(because x = x+ g implies that their first vertices coincide).

It is now easy to extend to free actions on cubical sets the classical

results of actions of groups on topological spaces ([M1], IV.11), which

hold for groups acting properly on a space, a much stronger condition

than acting freely on the space (it means that every point has an open

neighbourhood U such that all subsets U+g are disjoint). Note, however,

that all results below which involve the homology of the group G ignore

preorder, necessarily (cf. 2.5.6).

Of course, an action of G on a c-set (X, cX) (Section 1.6.8) is defined

to be an action on the set X coherent with the structural presheaf cX:

for every distinguished cube x : In → X, all mappings x + g are also

distinguished. Thus, for a topological space S, a G-action on the space

gives an action on the c-set S� = (|S|,�S) and on the cubical set �S.
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2.4.2 Lemma (Free actions)

(a) If G acts freely on the cubical set X, then ↑Ch+(X) is a complex

of free right G-modules, and one can choose a (positive) basis Bn ⊂ Xn

of ↑Chn(X) which projects bijectively onto Xn/G, the canonical basis of
↑Chn(X/G).

(b) Moreover, if ↑L is a preordered abelian group, viewed as a trivial

G-module, then the canonical projection p : X → X/G induces an iso-

morphism of directed (co)chain complexes, and hence an isomorphism

in (co)homology

p] : ↑Ch+(X)⊗G ↑L→ ↑Ch+(X/G; ↑L),

p∗n : Hn(↑Ch+(X)⊗G ↑L)→ ↑Hn(X/G; ↑L),

p] : ↑Ch+(X/G; ↑L)→ HomG(↑Ch+(X), ↑L),

p∗n : ↑Hn(X/G; ↑L)→ Hn(HomG(↑Ch+(X), ↑L).

(2.70)

Proof This Lemma adapts [M1], IV.11.2-4. It is sufficient to prove (a),

which implies (b).

The action of G on Xn extends to a right action on the free abelian

group ZXn, which is consistent with faces and degeneracies and pre-

serves the canonical basis; it induces thus an obvious action on ↑Chn(X)

= ↑Z.Xn, consistent with the positive cone and the differential

(
∑
λixi) + g =

∑
λi(xi + g), ∂(

∑
λixi) + g = ∂(

∑
λixi + g).

Thus ↑Chn(X) is a complex of G-modules, whose components are

preordered G-modules. Take now a subset B0 ⊂ X0 choosing exactly one

point in each orbit; then B0 is a G-basis of ↑Ch0(X). Letting Bn ⊂ Xn

be the subset of those non-degenerate n-cubes x whose ‘initial vertex’

∂−1 ...∂
−
n x belongs to B0, we have more generally a G-basis of ↑Chn(X)

which satisfies our requirements.

2.4.3 Theorem (Free actions on acyclic cubical sets)

Let X be an acyclic cubical set (which means that it has the homology of

the point). Let G be a group acting freely on X and L an abelian group

with trivial G-structure.

Then, with respect to coefficients in L and forgetting preorder (cf.

2.5.6), the combinatorial (co)homology of the cubical set of orbits is

isomorphic to the (co)homology of the group G:

H•(X/G;L) ∼= H•(G;L), H•(X/G;L) ∼= H•(G;L). (2.71)
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Proof As in [M1], IV.11.5, the augmented sequence

...→ Ch1(X)→ Ch0(X)→ Z→ 0

is exact, since X is acyclic.

By 2.4.2(a), this sequence forms a G-free resolution of the G-trivial

module Z. Therefore, applying the definition of the group homology

Hn(G;L) and the isomorphism (2.70), we get the thesis for homology

(and similarly for cohomology)

Hn(G;L) = Hn(Ch+(X)⊗G L) ∼= Hn(X/G;L).

2.4.4 Corollary (Free actions on acyclic spaces)

Let S be an acyclic topological space (with the singular homology of the

point) and G a group acting freely on it.

Then H•((�S)/G) ∼= H•(G), and ↑Hn((�S)/G) has a chaotic pre-

order for n > 1. The same holds in cohomology.

Proof It suffices to apply the preceding theorem to the singular cubical

set �S of continuous cubes of S. This cubical set has the same homology

as S, and G acts obviously on it, by (x+ g)(t) = x(t) + g (for t ∈ In).

Moreover, the action is free because it is on the set of vertices, S. Fi-

nally, the remark on the preorder of ↑Hn((�S)/G) follows from 2.2.6(b).

2.4.5 Theorem (The spectral sequence of a G-free cubical set)

Let X be a connected cubical set, G a group acting freely on it and L a

G-module. Then there is a spectral sequence

E2
p,q = Hp(G;Hq(X;L)) ⇒p Hn(X/G;L). (2.72)

Proof This result extends Corollary 2.4.4, without assuming X acyclic.

It will not be used below.

The proof is the same as in [M1], XI.7.1, where X is a path-connected

topological space with a proper G-action. One computes the terms E2
p,q

of the two spectral sequences of the double complex of components

Kpq = L⊗ Chp(X)⊗G Bq(G),
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where B•(G) is a G-free resolution of Z as a trivial G-module. The

argument depends on the fact that Ch+(X) is a chain complex of free

G-modules with Ch+(X) ⊗G L ∼= Ch+(X/G;L), which is also true in

our case (Lemma 2.4.2).

2.5 Interactions with noncommutative geometry

We compute now the directed homology of various cubical sets, which

simulate - in a natural way - ‘virtual spaces’ of noncommutative geome-

try, the irrational rotation C*-algebras Aϑ and noncommutative tori of

dimension > 2; ϑ is always an irrational real number.

The classification of our irrational rotation cubical sets Cϑ (Section

2.5.2) will be based on the order of ↑H1(Cϑ), much as the classification

of the C*-algebras Aϑ (up to Morita equivalence) is based on the order

of K0(Aϑ).

These results, which first appeared in [G12], show that the preorder

structure of directed homology can carry a much stronger information

than the algebraic structure.

2.5.1 Rotation algebras

Let us begin by recalling some well-known ‘noncommutative spaces’.

First, take the topological line R and its additive subgroup Gϑ = Z+

ϑZ, acting on the line by translations. Since ϑ is irrational, Gϑ is a dense

subgroup of the real line; therefore, in Top, the orbit space R/Gϑ =

S1/ϑZ is trivial: an uncountable set with the indiscrete topology.

Second, consider the Kronecker foliation F of the torus T2 = R2/Z2,

with slope ϑ (explicitly recalled below, in 2.5.3), and the set T2
ϑ =

T2/ ≡F of its leaves. It is well known, and easy to see, that the sets

R/Gϑ and T2
ϑ have a canonical bijective correspondence (cf. 2.5.3).

Again, ordinary topology gives no information on T2
ϑ since the quotient

T2/ ≡F in Top is indiscrete.

In noncommutative geometry, both these sets are ‘interpreted’ as the

(noncommutative) C*-algebra Aϑ generated by two unitary elements

u, v under the relation vu = exp(2πiϑ).uv. Aϑ is called the irrational

rotation C*-algebra associated with ϑ, or also a noncommutative torus

[C1, C2, C3, Ri1, Bl]. Both its complex K-theory groups are two-

dimensional.

An interesting achievement of K-theory, which combines results of

Pimsner-Voiculescu [PV] and Rieffel [Ri1], classifies these algebras. In
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fact, it is proved that K0(Aϑ) ∼= Z + ϑZ as an ordered subgroup of R,

and that the traces of the projections of Aϑ cover the set Gϑ ∩ [0, 1].

It follows that Aϑ and Aϑ′ are isomorphic if and only if ϑ′ ∈ ±ϑ + Z

([Ri1], Thm. 2) and strongly Morita equivalent if and only if ϑ and ϑ′

are equivalent modulo the fractional action (on the irrationals) of the

group GL(2,Z) of invertible integral 2×2 matrices ([Ri1], Thm. 4)(
a b

c d

)
.t =

at+ b

ct+ d
(a, b, c, d ∈ Z; ad− bc = ±1), (2.73)

(or, equivalently, modulo the action of the projective general linear group

PGL(2,Z) on the projective line).

Since GL(2,Z) is generated by the matrices

R =

(
0 1

1 0

)
, T =

(
1 1

0 1

)
, (2.74)

the orbit of ϑ is its closure {ϑ}RT under the transformations R(t) = t−1

and T±1(t) = t± 1 (which act on R \Q).

A similar result, based on the 1-cohomology of an associated etale

topos, can be found in [Ta].

We show now how one can obtain similar results with cubical sets

naturally arising from the previous situations: the point is to replace a

topologically-trivial orbit space S/G with the corresponding quotient of

the singular cubical set �S, which identifies the cubes In → S modulo

the action of the group G.

2.5.2 Irrational rotation structures

(a) As a first step in this route, instead of considering the trivial quotient

R/Gϑ of topological spaces, we replace R with the singular cubical set

�R (on which Gϑ acts freely) and consider the cubical set (�R)/Gϑ.

Or, equivalently, we replace R with the c-set R� = (|R|,�R) (1.164)

and take the quotient R�/Gϑ, i.e. the set R/Gϑ equipped with the pro-

jections of the (continuous) cubes of R. (In fact, if the cubes x, y : In →
R coincide when projected to R/Gϑ, their difference g = x−y : In → R

takes values in the totally disconnected subset Gϑ ⊂ R, and is constant;

therefore, x and y also coincide in (�R)/Gϑ.)

Then, applying Corollary 2.4.4, we find that the c-set R�/Gϑ (or the

cubical set (�R)/Gϑ) has the same homology as the group Gϑ ∼= Z2,

which coincides with the ordinary homology of the torus T2

H•(R�/Gϑ) = H•(Gϑ) = H•(T
2) = Z + σ.Z2 + σ2.Z; (2.75)
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(the second ‘equality’ follows, for instance, from the classical version of

Theorem 2.4.3 ([M1], IV.11.5), applied to the proper action of the group

Z2 on the acyclic space R2). We also know that directed homology

only gives the chaotic preorder on ↑H1(R�/Gϑ) (again by 2.4.4). In

cohomology, we have the same graded group.

Algebraically, all this is in accord with the K-theory of the rota-

tion algebra Aϑ, since both Heven(R�/Gϑ) and Hodd(R�/Gϑ) are two-

dimensional.

(b) But a much more interesting result (and accord) can be obtained

with the c-structure ↑R� of the line given by topology and natural order,

where cn(↑R�) is the set of continuous order-preserving mappings In →
R. The quotient

Cϑ = ↑R�/Gϑ = ↑S1
�/ϑZ (2.76)

will be called an irrational rotation c-set and we want to classify its

isomorphism classes, for ϑ /∈ Q.

(We have already used the symbol Cϑ for the cubical set (�↑R)/Gϑ,

which consists precisely of the distinguished cubes of the c-set ↑R�/Gϑ
which we are considering now. But there is no real need of introduc-

ing different symbols for these two closely related structures, which, by

definition, have the same directed homology.)

We prove below (Theorems 2.5.8, 2.5.9) that ↑H1(↑R�/Gϑ) ∼= ↑Gϑ,

as an ordered subgroup of the line and that the c-sets Cϑ have the same

classification up to isomorphism as the rotation algebras Aϑ up to strong

Morita equivalence: while the algebraic homology of Cϑ is the same as

in (a), independent of ϑ, the (pre)order of directed homology determines

ϑ up to the equivalence relation ↑Gϑ ∼= ↑Gϑ′ , which amounts to ϑ and

ϑ′ being conjugate under the action of the group GL(2,Z).

Note that the stronger classification of rotation algebras up to iso-

morphism (recalled in 2.5.1) has no analogue here: cubical sets lack the

‘metric information’ contained in C*-algebras. This can be recovered

in a richer setting, in the domain of weighted algebraic topology (see

Chapter 6).

The irrational rotation d-space

Dϑ = ↑R/Gϑ = ↑S1/ϑZ, (2.77)

i.e. the quotient in dTop of the directed line modulo the action of the

group Gϑ, would give the same classification as Cϑ. This could be

proved here, with the directed homology of d-spaces. But we will get



2.5 Interactions with noncommutative geometry 133

this result for free from the richer classification of w-spaces mentioned

above (Section 6.7.6).

2.5.3 The noncommutative two-dimensional torus.

Consider now the Kronecker foliation F of the torus T2 = R2/Z2, with

irrational slope ϑ, and the set T2
ϑ = T2/ ≡F of its leaves. The foliation

F is induced by the following foliation F̂ = (Fλ) of the plane

Fλ = {(x, y) ∈ R2 | y = ϑx+ λ} (λ ∈ R). (2.78)

Therefore ≡F is induced by the following equivalence relation ≡ on

the plane (containing the congruence modulo Z2)

(x, y) ≡ (x′, y′) ⇔ y + k − ϑ(x+ h) = y′ + k′ − ϑ(x′ + h′) (2.79)

for some h, k, h′, k′ ∈ Z.

Now, we replace the set T2
ϑ with the quotient c-set T2

�/≡F , i.e. the

set T2
ϑ equipped with the projection of the cubes of the torus (or of

the plane). This is proved below to be isomorphic to the previous c-set

K = R�/Gϑ (Section 2.5.2(a)), whose directed (co)homology has been

computed above, in accord (algebraically) with the complex K-theory

groups of Aϑ.

Indeed, the isomorphism we want can be realised with two inverse

c-maps i′ : K → T2
ϑ and p′ : T2

ϑ → K, respectively induced by the fol-

lowing maps (in Top) :

i : R→ R2, i(t) = (0, t),

p : R2 → R, p(x, y) = y − ϑx.
(2.80)

First, the induction on quotients is legitimate because, for t ≡ t+h+kϑ

in R and (x, y) ≡ (x′, y′) in R2 (as in (2.79))

i(t+ h+ kϑ) = (0, t+ h+ kϑ) ≡ (1, t+ ϑ) ≡ (0, t) = i(t),

p(x, y)− p(x′, y′) = (y − ϑx)− (y′ − ϑx′)
= k′ − ϑh′ − k + ϑh ∈ Z + ϑZ.

Second, pi = idR, while i′p′ = id(T2
ϑ) because

ip(x, y) = (0, y − ϑx) ≡ (x, y) (y − ϑx− ϑ.0 = y − ϑx).

Finally, the following diagram shows that i′, p′ preserve distinguished
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cubes, since i and p preserve singular cubes

In
a // R

i //

��

R2

p
oo

��

In
boo

R/Gϑ K
i′ // R2/≡
p′
oo T2

ϑ

2.5.4 Higher foliations of codimension 1

(a) Extending 2.5.2(a) and 2.5.3, take an n-tuple of real numbers ϑ =

(ϑ1, ..., ϑn), linearly independent on the rationals, and consider the ad-

ditive subgroup

Gϑ =
∑
j ϑjZ ∼= Zn, (2.81)

which acts freely on R. (The previous case corresponds to the pair

(ϑ1, ϑ2) = (1,−ϑ), the minus sign being introduced to simplify the com-

putations below.)

Now, the c-set R�/Gϑ has the homology (or cohomology) of the n-

dimensional torus Tn (notation as in 2.1.4)

H•(R�/Gϑ) = H•(Gϑ) = H•(T
n)

= Z + σ.Z(n1) + σ2.Z(n2) + ...+ σn.Z.
(2.82)

Again, this coincides with the homology of a c-set Tn
�/≡F arising from

the foliation F of the n-dimensional torus Tn = Rn/Zn induced by the

hyperplanes
∑
j ϑjxj = λ of Rn. (In the previous proof, one can replace

the maps i, p of (2.80) with i(t) = (t/ϑ1, 0, ..., 0) and p(x1, ..., xn) =∑
j ϑjxj .)

(b) Extending now 2.5.2(b) (and Theorem 2.5.8), the c-set ↑R�/Gϑ has

a more interesting directed homology, with a total order in degree 1:

↑H1(↑R�/Gϑ) = ↑Gϑ = ↑(
∑
j ϑjZ) (G+

ϑ = Gϑ ∩R+). (2.83)

2.5.5 Higher foliations

As a further generalisation of 2.5.4(a), let us replace the hyperplane∑
j ϑjxj = 0 with a linear subspace H ⊂ Rn of codimension k (0 < k <

n), such that H ∩ Zn = {0}.
Let F̂ be the foliation of Rn whose leaves are all the (n−k)-dimensional

planes H+x, parallel to H. These can be parametrised letting x vary in

some convenient k-dimensional subspace transverse to H; equivalently,
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choose a projector e : Rn → Rn with H = Ker(e) and an epi-mono

(linear) factorisation of e through Rk

Rn p // Rk i // Rn ip = e, pi = id, (2.84)

so that the leaves Fλ of F̂ are bijectively parametrised by p on Rk

Fλ = {x ∈ Rn | p(x) = λ} (λ ∈ Rk).

The projection Rn → Tn = Rn/Zn is injective on each leaf Fλ (be-

cause Ker(p) ∩ Zn = H ∩ Zn = {0}). Therefore, F̂ induces a foliation

F of Tn of codimension k, and an equivalence relation ≡F (namely, to

belong to the same leaf). The set of leaves Tn/ ≡F can be identified

with the quotient Rn/≡, modulo the equivalence relation ≡ generated

by the congruence modulo Zn and the equivalence relation x ≡̂ y of the

original foliation (i.e. p(x) = p(y)):

x ≡ x′ in Rn ⇔ p(x)− p(x′) ∈ p(Zn). (2.85)

Note that Gp = p(Zn) is an additive subgroup of Rk isomorphic to

Zn, because Ker(p) ∩ Zn = {0}, again. Now, we are interested in the

c-set Tn�/≡F , isomorphic to Rn
�/≡. Because of (2.85), the maps p, i in

(2.84) induce a bijection of sets

Rn/≡
p′ // Rk/Gp

i′ // Rn/≡

and an isomorphism of c-sets

Tn
�/ ≡F ∼= Rn

�/ ≡ ∼= Rk
�/Gp.

Since the cubical set �Rk is acyclic and Gp ∼= Zn, we conclude by

2.4.3 (together with its classical version) that the homology of Tn
�/ ≡F

is the same as the ordinary homology of the torus Tn (cf. 2.1.4)

H•(T
n
�/ ≡F ) = H•(R

k
�/Gp) = H•(Gp) = H•(T

n). (2.86)

It should be interesting to compare these results with the analysis of the

general n-dimensional noncommutative torus AΘ [Ri2]. This is the C*-

algebra generated by n unitary elements u1, ..., un under the relations

ukuh = exp(2πi.ϑhk).uhuk given by an antisymmetric matrix Θ = (ϑhk);

it has the same K-groups as Tn.
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2.5.6 Remarks

The previous results also show that it is not possible to preorder group-

homology so that the isomorphism H•(G) ∼= H•(X/G) (in (2.71)) be

extended to ↑H•(X/G): a group G can act freely on two acyclic cubical

sets Xi producing different preorders on the groups ↑Hn(Xi/Gϑ).

In fact, it is sufficient to take Gϑ = Z + ϑZ, as above, and re-

call that ↑H1(R�/Gϑ) has a chaotic preorder (Corollary 2.4.4) while
↑H1(↑R�/Gϑ) = ↑Gϑ is totally ordered (Theorem 2.5.8).

We end this section by proving the main results on the directed ho-

mology of the rotation c-set Cϑ = ↑R�/Gϑ, already announced in 2.5.2.

2.5.7 Lemma

Let ϑ, ϑ′ be irrationals. Then Gϑ = Gϑ′ , as subsets of R, if and only if

ϑ′ ∈ ±ϑ+ Z. Moreover the following conditions are equivalent

(a) ↑Gϑ ∼= ↑Gϑ′ as ordered groups,

(b) ϑ and ϑ′ are conjugate under the action of GL(2,Z) (Section 2.5.1),

(c) ϑ′ belongs to the closure {ϑ}RT of {ϑ} under the transformations

R(t) = t−1 and T±1(t) = t± 1.

Further, these conditions imply the following one (which will be proved

to be equivalent to them in 2.5.9)

(d) ↑R�/Gϑ ∼= ↑R�/Gϑ′ as c-sets.

Note. The equivalence of the first three conditions is well known,

within the classification of the C*-algebras Aϑ up to strong Morita equiv-

alence.

Proof First, if Gϑ = Gϑ′ , then ϑ = a + bϑ′ and ϑ′ = c + dϑ, whence

ϑ = a+ bc+ bdϑ and d = ±1; the converse is obvious.

We have already seen, in 2.5.1, that (b) and (c) are equivalent, because

the group GL(2,Z) is generated by the matrices R, T (see (2.74)), which

give the transformations R(t) = t−1 and T k(t) = t + k, on R \ Q (for

k ∈ Z).

To prove that (c) implies (a) and (d), it suffices to consider the cases

ϑ′ = ϑ + k and ϑ′ = ϑ−1. In the first case, ↑Gϑ and ↑Gϑ′ coincide (as

well as their action on ↑R�); in the second, the isomorphism of c-sets

f : ↑R� → ↑R�, f(t) = |ϑ|.t,

restricts to an isomorphism f ′ : ↑Gϑ → ↑Gϑ′ , obviously consistent with
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the actions (f(t + g) = f(t) + f ′(g)), and induces an isomorphism
↑R�/Gϑ → ↑R�/Gϑ′ .

We are left with proving that (a) implies (c). Let us begin noting that

any irrational number ϑ defines an algebraic isomorphism Z2 ∼= Gϑ,

which becomes an order isomorphism for the following ordered abelian

group ↑ϑZ2

↑ϑZ2 → Gϑ, (a, b) 7→ a+ bϑ,

(a, b) >ϑ 0 ⇔ a+ bϑ > 0.

Conversely, the number ϑ is (completely) determined by this order,

as an upper bound in R

ϑ = sup{−a/b | a, b ∈ Z, b > 0, (a, b) >ϑ 0}. (2.87)

Take now an algebraic isomorphism f : Z2 → Z2. Since GL(2,Z) is

generated by the matrices R and T , this isomorphism can be factorised

as f = fn...f1, with factors fR, f
k
T

fR(a, b) = (b, a), fkT (a, b) = (a+ kb, b).

Let us replace ϑ with a positive representative in {ϑ}RT , which leaves
↑ϑZ2 invariant up to isomorphism. Then fR (resp. fkT ) is an order iso-

morphism ↑ϑZ2 → ↑ζZ2 with ζ = R(ϑ) (resp. ζ = T−k(ϑ)), still belong-

ing to {ϑ}RT

(a, b) >ϑ 0 ⇔ a+ bϑ > 0 ⇔ b+ aϑ−1 > 0

⇔ (b, a) >ζ 0 (ζ = ϑ−1),

(a, b) >ϑ 0 ⇔ a+ bϑ > 0 ⇔ a+ kb+ b(ϑ− k) > 0

⇔ (a+ kb, b) >ζ 0 (ζ = ϑ− k).

Thus, f = fn...f1 can be viewed as an isomorphism ↑ϑZ2 → ↑ζZ2

where ζ belongs to the closure {ϑ}RT .

Finally, given two irrational numbers ϑ, ϑ′, an isomorphism ↑Gϑ ∼=
↑Gϑ′ yields an isomorphism ↑ϑZ2 → ↑ϑ′Z2; but we have seen that

the same algebraic isomorphism is an order isomorphism ↑ϑZ2 → ↑ζZ2

where ζ belongs to the closure of {ϑ}; by (2.87), ϑ′ = ζ and the thesis

holds.

2.5.8 Theorem (The homology of irrational rotation c-sets)

The c-set ↑R� (Section 2.5.2(b)) is acyclic.

The directed homology of the irrational rotation c-set Cϑ = ↑R�/Gϑ
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is the homology of T2, with a total order on ↑H1 and a chaotic preorder

on ↑H2

↑H1(Cϑ) = ↑Gϑ = ↑(Z + ϑZ) (G+
ϑ = Gϑ ∩R+),

↑H2(Cϑ) = ↑cZ,
(2.88)

and obviously ↑H0(Cϑ) = ↑Z.

The first isomorphism above has a simple description on the positive

cone Gϑ ∩R+

j : ↑Gϑ → ↑H1(Cϑ), j(ρ) = [paρ] (ρ ∈ Gϑ ∩R+),

aρ : I→ R, aρ(t) = ρt,
(2.89)

where p : ↑R� → ↑R�/Gϑ is the canonical projection.

Proof First, let us consider the c-subset ↑[x,+∞[ of ↑R� (for x ∈ R)

and the following left homotopy f of cubical sets (cf. (1.152); noting

that it does preserve directed cubes)

fn : cn(↑[x,+∞[)→ cn+1(↑[x,+∞[),

fn(a)(t1, ..., tn+1) = x+ t1.(a(t2, ..., tn+1)− x),

∂αi+1fn = fn−1∂
α
i , fnei = ei+1fn−1.

Computing its faces in direction 1, f is a homotopy from the map f− =

∂−1 f , which is constant at x, to the identity f+ = ∂+
1 f = id↑[x,+∞[.

This proves that every c-set ↑[x,+∞[ is past contractible (to its mini-

mum x), hence acyclic. Since cubes of ↑R� have a compact image in

the line, it follows easily that also ↑R� is acyclic.

Now, Theorem 2.4.3 proves that the cubical homology of ↑R�/Gϑ
coincides, algebraically, with the homology of the group Gϑ, or equiva-

lently of the torus T2. It also proves that H1(Cϑ) is generated by the

homology classes [pa1] and [paϑ]. Since [paρ+ρ′ ] = [paρ] + [paρ′ ], the

mapping j in (2.89) is an algebraic isomorphism. By construction, it

preserves preorders, and we still have to prove that it reflects it.

To simplify the argument, a 1-chain z of ↑R� which projects to a cycle

p](z) in Cϑ, or a boundary, will be called a pre-cycle or a pre-boundary,

respectively. (Note that, since p] is surjective, the homology of Cϑ is

isomorphic to the quotient of pre-cycles modulo pre-boundaries.)

Let z =
∑
iλiai be a positive pre-cycle, with all λi > 0; let us call

the sum λ =
∑
iλi its weight. We have to prove that z is equivalent

to a positive combination of pre-cycles of type aρ (ρ ∈ G+
ϑ ), modulo

pre-boundaries.
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Let us decompose z = z′ + z′′, putting in z′ all the summands λiai
which are pre-cycles themselves, and replace any such ai, up to pre-

boundaries, with aρi (see (2.89)), where ρi = ∂+ai − ∂−ai ∈ G+
ϑ . If

z′′ = 0 we are done, otherwise z′′ = z − z′ is still a pre-cycle; let us act

on it. Reorder its paths ai so that a1 (the first) has a minimal coefficient

λ1 (strictly positive); since ∂+a1 has to annihilate in ∂p](z
′), there is

some ai (i > 1) with ∂+a1 − ∂−ai ∈ Gϑ. By a Gϑ-translation of ai
(leaving pai unaffected), we can assume that ∂−ai = ∂+a1, and then

replace (modulo pre-boundaries) λ1a1 + λiai with λ1â1 + (λi − λ1)ai
where â1 = a1 ∗ ai is a concatenation (and λi − λ1 > 0). Now, the new

weight is λ− λ1 < λ, strictly less than the previous one.

Continuing this way, the procedure ends in a finite number of steps;

this means that, modulo pre-boundaries, we have modified z into a pos-

itive combination of pre-cycles of the required form, aρ.

Finally, we already know that the group ↑H2(Cϑ) = Z gets the chaotic

preorder, by 2.2.6(c).

2.5.9 Theorem (Classifying the irrational rotation c-sets)

The c-sets Cϑ = ↑R�/Gϑ and Cϑ′ are isomorphic if and only if the

ordered groups ↑Gϑ and ↑Gϑ′ are isomorphic, if and only if ϑ and ϑ′

are conjugate under the action of GL(2,Z) (see (2.73)), if and only if

ϑ′ belongs to the closure {ϑ}RT (see (2.74)).

Proof Follows immediately from Lemma 2.5.7 and Theorem 2.5.8, which

gives the missing implication of the lemma: if our c-sets are isomorphic,

also their ordered groups ↑H1 are, whence ↑Gϑ ∼= ↑Gϑ′ .

2.6 Directed homology theories

We briefly consider directed homology for inequilogical spaces (Section

2.6.1), and its ‘defective’ character with respect to preorder, as for d-

spaces (cf. 2.2.5-2.2.7).

We end with the axioms for a perfect directed homology theory, which

have already been verified above for pointed cubical sets. In stronger

settings, we will be able to reduce this axiomatic system to a simpler,

equivalent one (Theorem 4.7.6).
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2.6.1 Directed singular homology of inequilogical spaces

For the category pEql of inequilogical spaces (Section 1.9.1), we have

a directed singular homology, defined in a similar way as for d-spaces

(Section 2.2.5)

↑� : pEql→ Cub, ↑�nX = pEql(↑In, X),

↑Hn : pEql→ pAb, ↑Hn(X) = ↑Hn(↑�X).
(2.90)

Of course, ↑In is now viewed in pEql: the ordered n-cube ↑In with

the equality relation.

This theory has been studied in [G11], showing interactions with non-

commutative geometry similar to those of Section 2.5.

As for cubical sets, homotopy invariance holds; there is an exact

Mayer-Vietoris sequence, whose differential does not preserve preorders

(cf. 2.2.2), while excision gives an isomorphism of preordered abelian

groups (cf. 2.2.3).

Furthermore, as for d-spaces, the existence of the transposition sym-

metry s : ↑I2 → ↑I2
and of the lower connection g− : I2 → I entails the

fact that the preorder of ↑Hn(X) is always chaotic, for n > 2 (Proposi-

tion 2.2.6(c)). As a consequence, also here suspension cannot agree with

the preorder of homology.

As shown in [G11], 3.5, the directed homology of the inequilogical

spheres ↑Sne (see (1.219)) yields the usual algebraic groups. Their ↑H0

is always ↑Z, for n > 0, and:

↑H1(S
1

e) = ↑Z.

But, for all n > 2, ↑Hn(S
n

e ) is the group of integers with the chaotic

preorder.

As we have seen, these drawbacks are directly related to the fact that

the transposition symmetry s subsists in pEql: as for d-spaces, the

directed structure of inequilogical spaces distinguishes directed paths in

an effective way, but can only distinguish higher cubes through directed

paths; this is not sufficient to get good results for ↑Hn, with n > 1.

2.6.2 Axioms for directed homology

A theory of (reduced) directed homology on a dI1-homotopical category

A, with values in the category pAb of preordered abelian groups (Sec-

tion 2.1.1), will be a pair ↑H = ((↑Hn), (hn)) subject to the following

axioms.
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(dhlt.0) (naturality) The data consist of functors ↑Hn and natural trans-

formations hn involving the suspension Σ of A

↑Hn : A→ pAb, hn : ↑Hn → ↑Hn+1Σ (n ∈ Z). (2.91)

↑Hn is called a (reduced) homology functor; the preorder-preserving

homomorphism associated to a map f is generally written as f∗n =
↑Hn(f), or just f∗.

(dhlt.1) (homotopy invariance) If there is a homotopy f → g in A, then

f∗n = g∗n (for all n).

(dhlt.2) (algebraic stability) Every component

hnX : ↑HnX → ↑Hn+1(ΣX)

is an algebraic isomorphism (of abelian groups).

(dhlt.3) (exactness) For every f : X → Y in A and every n, the following

sequence is exact in pAb

↑HnX
f∗ // ↑HnY

u∗ // ↑HnC
−f

δ∗ // ↑HnΣX
(Σf)∗// ↑HnΣY (2.92)

where u : Y → C−f is the lower homotopy cokernel of f and δ =

d−f : C−f → ΣX denotes the differential of the corresponding Puppe

sequence (Section 1.7.8).

Then, the exactness of the corresponding upper sequence of f comes

from the exactness of the lower sequence of fop, see (1.192). Notice that

the components hnX : ↑HnX → ↑Hn+1ΣX are algebraic isomorphisms

which preserve preorder but need not reflect it.

If the dI1-structure of A is concrete (Section 1.2.4), with represen-

tative object E, the homology theory ↑Hn is said to be ordinary if it

satisfies a further axiom

(dhlt.4) (dimension) ↑Hn(E) = 0, for all n 6= 0.

In this case, ↑H0(E) is called the preordered (abelian) group of coeffi-

cients.

Forgetting everything about preorders, we get the classical notion of

a (reduced) homology theory on A.
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2.6.3 Homology sequences and perfect theories

As a consequence of these axioms, every map f : X → Y has a lower

(and an upper) exact homology sequence of preordered abelian groups

... ↑Hn(X)
f∗ // ↑Hn(Y )

u∗ // ↑Hn(C−f) .
dn // ↑Hn−1(X)

... ↑H0(X) // ↑H0(Y ) // ↑H0(C−f) // 0.
(2.93)

The differential dn is the following algebraic homomorphism (which

need not preserve preorders)

dn = (hn−1X)−1.(d−f)∗n : ↑Hn(C−f)→ ↑Hn(ΣX) ·→ ↑Hn−1(X).

Exactness of (2.93) (a merely algebraic condition) is proved by the

following diagram with exact rows

↑HnX
f∗ // ↑HnY

u∗ // ↑HnC
−f

δ∗ //

dn %%

↑HnΣX // ↑HnΣY

↑Hn−1X
f∗

//

h

OO

↑Hn−1Y

h

OO

(2.94)

We speak of a perfect theory of directed homology when the com-

ponents hnX also reflect preorder, i.e. are isomorphisms in pAb, or

equivalently:

(dhlt.2′) (full stability) hn : ↑Hn → ↑Hn+1Σ: A → pAb is a functorial

isomorphism.

Then also the differentials dn and the exact homology sequence (2.93)

are in pAb.

2.6.4 Examples

We have encountered only one perfect directed homology theory, the

directed homology of pointed cubical sets (Section 2.3.3), with respect

to the left d-structure of Cub•, defined by the left cylinder (Section

2.3.2). The axioms have already been verified: homotopy invariance in

Theorem 2.3.4, stability in Theorem 2.3.5, exactness in Theorem 2.3.6.

(The right d-structure gives the same results.)

This theory is ordinary, with ordered integral coefficients: ↑H0(s0, 0) =
↑Z. As in 2.1.3, one can deduce a perfect theory with coefficients in an
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arbitrary preordered abelian group ↑L

↑Ch+(−; ↑L) : Cub• → dCh+Ab,

↑Ch+(X,x0; ↑L) = ↑Ch+(X,x0)⊗ ↑L,
↑Hn(−; ↑L) : Cub• → pAb,

↑Hn(X,x0; ↑L) = ↑Hn(↑Ch+(X,x0; ↑L)).

The reduced directed homology ↑H̃n : Cub → pAb, defined in 2.3.1,

is a directed homology theory for cubical sets, and likely a perfect one,

but its preorder is far less interesting in low degree: cf. 2.3.1.

The reduced homology of d-spaces (Section 2.2.5) and inequilogical

spaces (Section 2.6.1), and their pointed analogues, are non-perfect di-

rected homology theories.

2.6.5 The singular cubical set

Let A be a concrete dI1-category, with (representable) forgetful functor

U = A(E,−) : A → Set. We have already seen that the object I =

I(E) acquires the structure of a dI1-interval (Section 1.2.4). Its faces,

degeneracy and reflection are written also here as:

∂α : E −→←−−→ I : e, r : I→ Iop (α = ±).

But actually we have a cocubical object in A, extending the left dia-

gram above

I(n) = In(E), ∂αi = Ii−1∂αIn−i : I(n−1) → I(n),

ei = Ii−1eIn−i : I(n) → I(n−1), (α = ±; i = 1, ..., n).
(2.95)

Therefore, applying the contravariant functor A(−, X) : A∗ → Set,

every object X has a cubical set �X of singular cubes, of which points

and paths form the components of degree 0 and 1, respectively

�nX = A(I(n), X),

∂αi X = A(∂αi , X), eiX = A(ei, X).
(2.96)

This defines a functor � : A→ Cub, which one can use to define the

singular directed homology of A

↑Hn : A→ pAb, ↑Hn(X) = ↑Hn(�X). (2.97)

If, moreover, A is a pointed category, then every hom-set A(A,X) can be
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pointed at the zero-map, yielding contravariant functors A(−, X) : A∗ →
Set•. Now, the cocubical object (2.95) yields functors

A→ Cub•,

which can be composed with the directed homology of pointed cubical

sets (Section 2.3.3), a perfect theory.
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Modelling the fundamental category

In classical algebraic topology, homotopy equivalence between ‘spaces’

gives rise to a plain equivalence of their fundamental groupoids; there-

fore, the categorical skeleton provides a minimal model of the latter.

But the study of homotopy invariance in directed algebraic topology

is far richer and more complex. Our directed structures have a funda-

mental category ↑Π1(X), and this must be studied up to appropriate

notions of directed homotopy equivalence of categories, which are more

general than categorical equivalence.

We shall use two (dual) directed notions, which take care, respec-

tively, of variation ‘in the future’ or ‘from the past’: a future equivalence

in Cat is a future homotopy equivalence (Section 1.3.1) satisfying two

conditions of coherence; it can also be seen as a symmetric version of an

adjunction, with two units. Its dual, a past equivalence, has two counits.

Then we study how to combine these two notions, so to take into ac-

count both kind of invariance. Minimal models of a category, up to these

equivalences, are then introduced to better understand the ‘shape’ and

properties of the category we are analysing, as well as of the process it

represents.

Within category theory, the study of future (and past) equivalences

is a sort of ‘variation on adjunctions’: they compose as the latter (Sec-

tion 3.3.3) and, moreover, two categories are future homotopy equivalent

if and only if they can be embedded as full reflective subcategories of

a common one (Theorem 3.3.5); therefore, a property is invariant for

future equivalences if and only if it is preserved by full reflective embed-

dings and by their reflectors.

After introducing the fundamental category of a d-space in Section 3.2,

Section 3.3 introduces and studies future and past equivalences. Then,

in the next three sections, we combine such equivalences, dealing with

145
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injective and projective models. Section 3.7 investigates future invariant

properties, like future regular points and future branching ones.

In the next two sections, these properties are used to define and study

pf-spectra, which give a minimal injective model and an associated pro-

jective one. In Section 3.9, we compute these invariants for the fun-

damental category of various ordered spaces (or preordered, in 3.9.5).

Hints to possible applications outside of concurrency can be found in

Section 3.9.9.

The material of this Chapter essentially comes from [G8, G14]. A

study of higher fundamental categories, begun in [G15, G16, G17], is

still at the level of research and will not be dealt with here.

3.1 Higher properties of homotopies of d-spaces

After the basic properties of the cylinder and path functors of dTop,

developed in Section 1.5, we examine here their higher structure, which

will be used below to define the fundamental category of a d-space. This

structure will be formalised in an abstract setting for directed algebraic

topology, in Chapter 4.

3.1.1 An example

An elementary example will give some idea of the analysis which will

be developed in this chapter. Let us consider the ‘square annulus’

X ⊂ ↑[0, 1]2 represented below, i.e. the ordered compact subspace of

the standard ordered square ↑[0, 1]2, which is the complement of the

open square ]1/3, 2/3[2 (marked with a cross)

X L L′

x

x′

× ×
•

•

OO OO
(3.1)

As we will see, the fundamental category C = ↑Π1(X) has some arrow

x → x′ provided that x 6 x′ and both points are in L or L′ (the

closed subspaces represented above). Precisely, there are two arrows

when x 6 p = (1/3, 1/3) and x′ > q = (2/3, 2/3) (as in the second figure

above), and one otherwise. (This evident fact can be easily proved with
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a ‘van Kampen’ type theorem, using precisely the subspaces L,L′; see

3.2.7(f)).

Thus, the whole category C is easy to visualise and ‘essentially repre-

sented’ by the full subcategory E on four vertices 0, p, q, 1 (the central

cell does not commute)

E F P

× × ×

•

•

•

•

•

•

•

•

0

p

q

1

p

1

0

q

??

OO OO

??

OO
//

//
OO

(3.2)

But E is far from being equivalent to C, as a category: C is already

a skeleton, in the ordinary sense (Section 3.6.1), and one cannot reduce

it up to category equivalence. On the other hand, it obviously contains

a huge amount of redundant information, which we want to reduce to

some essential model.

The procedure which we are to establish, in order to model C, begins

by determining the least full reflective subcategory F of C, so that F is

future equivalent to C and minimal as such; in this example, its objects

are a future branching point p (where one must choose between differ-

ent ways out of it) and a maximal point 1 (where one cannot further

progress); they form the future spectrum sp+(C) = {p, 1}. Similarly, we

determine the past spectrum P , i.e. the least full coreflective subcategory,

whose objects form the past spectrum sp−(C) = {0, q}.
E is now the full subcategory of C on sp(C) = sp−(C)∪sp+(C), called

the spectral injective model of X. It is a minimal embedded model, in a

sense which will be made precise.

The situation can now be analysed as follows, in E:

• the action begins at 0, from where we move to p,

• p is an (effective) future branching point, where we have to choose

between two paths,

• which join at q, an (effective) past branching point,

• from where we can only move to 1, where the process ends.

An alternative description will be obtained with the associated projec-

tive model M , the full subcategory of the category C2 (of morphisms of

C) on the four maps λ, µ, σ, τ - obtained from a canonical factorisation
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of the composed adjunction P � C � F (cf. 3.5.7)

E M

× × ×

0

p

q

1

0

p

q

1

λ

µ

σ τ

λ

σ

τ

µ

??

OO OO

??

OO

OO OO

OO

OO

??

??

OO
OO

//

OO
//

(3.3)

These two representations are compared in 3.6.2, 3.6.4 and Section

3.9. A pf-spectrum (when it exists) is an effective way of constructing

a minimal embedded model; it also gives a projective model (cf. 3.8.5,

3.8.8).

This study has similarities with other recent ones, using categories

of fractions [FRGH] or generalised quotients of categories [GH], for the

same goal: to construct a ‘minimal model’ of the fundamental category;

the models obtained in these two papers are often similar to the projec-

tive models considered here. See also [Ra2].

Notice: as already warned at the end of 1.2.1, one should not confuse

the ‘reflector’ p : C → C0 of a full reflective subcategory C0 ⊂ C (left

adjoint to the inclusion functor) with the ‘reflection’ of a cylinder (or

cocylinder) functor, which is a natural transformation r : IR → RI (or

r : RP → PR).

3.1.2 Directed homotopy invariance

Let us summarise the problem we want to analyse.

In Algebraic Topology, the fundamental groupoid Π1(X) of a topo-

logical space is homotopy invariant in a clear sense: a homotopy ϕ :

f → g : X → Y gives an isomorphism of the associated functors f∗, g∗ :

Π1(X) → Π1(Y ), so that a homotopy equivalence X ' Y yields an

equivalence of groupoids Π1(X)'Π1(Y ). Thus, a 1-dimensional homo-

topy model of the space is its fundamental groupoid, up to groupoid-

equivalence; if we want a minimal model, we can always take a skeleton

of the latter (choosing one point in each path component of the space).

In directed algebraic topology, homotopy invariance requires a deeper

analysis. A d-space has a fundamental category ↑Π1(X), and a homo-

topy ϕ : f → g : X → Y only gives a natural transformation between
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the associated functors

ϕ∗ : f∗ → g∗ : ↑Π1(X)→ ↑Π1(Y ),

ϕ∗x = [ϕ(x,−)] : f(x)→ g(x) (x ∈ X),
(3.4)

which, generally, is not invertible, because the paths ϕ(x,−) : ↑I → Y

need not be reversible.

Thus, a future homotopy equivalence of spaces only becomes a future

homotopy equivalence of categories.

Ordinary equivalence of categories (Section A1.5) is not, by far, suffi-

cient to ‘link’ categories having - loosely speaking - the same aspect; and

the problem of defining and constructing minimal models is important,

both theoretically, for directed algebraic topology, and in applications.

3.1.3 The higher structure of the cylinder

The directed interval ↑I = ↑[0, 1] has a rich structure in pTop and

dTop, which extends the basic structure already seen in Chapter 1, for

preordered spaces (Section 1.1.4) and d-spaces (Section 1.5.1). (From a

formal point of view, the extended structure will be defined and studied

in Section 4.2).

Thus, after faces (∂−, ∂+), degeneracy (e) and reflection (r), we have a

second-order structure which applies to the standard square ↑I2
, namely

two connections or main operations (g−, g+) and a transposition (s) - as

already considered in Top (Section 1.1.0)

{∗}
∂α // // ↑I
e
oo ↑I2gαoooo ↑I r // ↑Iop ↑I2 s // ↑I2

∂α(∗) = α, g−(t, t′) = max(t, t′), g+(t, t′) = min(t, t′),

r(t) = 1− t, s(t, t′) = (t′, t).
(3.5)

(Recall that the reflection is expressed via the reversor R : dTop →
dTop, R(X) = Xop yielding the opposite d-space, with the reversed

distinguished paths.)

As a consequence, the (directed) cylinder endofunctor

I : dTop→ dTop, I(−) = −×↑I, (3.6)

has natural transformations, written as above

1
∂α // // I
e
oo I2

gαoo oo IR
r // RI I2 s // I2 (3.7)
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linked by algebraic equations which will be considered later (Section

4.2.1).

Consecutive homotopies will be pasted via the concatenation pushout

of the cylinder functor (cf. Lemma 1.4.9)

X
∂+
//

∂−

��

IX

c−

��

c−(x, t) = (x, t/2),

IX
c+
// IX c+(x, t) = (x, (t+ 1)/2).

(3.8)

3.1.4 The higher structure of the path functor

As a consequence of Theorem 1.4.8, the directed interval ↑I is exponen-

tiable: the cylinder functor I = −×↑I has a right adjoint, the (directed)

path functor, or cocylinder P . Explicitly, in this functor

P : dTop→ dTop, P (Y ) = Y
↑I, (3.9)

the d-space Y ↑I is the set of d-paths dTop(↑I, Y ), equipped with the

compact-open topology (induced by the topological path-space P (UY ) =

Top(I, UY )) and the following d-structure.

A path

c : I→ dTop(↑I, Y ) ⊂ Top(I, UY ),

is directed if and only if, for all increasing maps h, k : I→ I, the conse-

quent path t 7→ c(h(t))(k(t)) is in dY . Notice that P 2(Y ) = Y ↑I
2

, by

the closure of adjunction under composition.

The lattice structure of ↑I in dTop gives - contravariantly - a dual

structure on P ; its natural transformations, mate to the transformations

of I (Section A5.3), are denoted as the latter, but go in the opposite

direction

1
e
// P

∂αoooo
gα //// P 2 RP

r // PR P 2 s // P 2 (3.10)

∂α(a) = a(α), e(x)(t) = x,

g−(a)(t, t′) = a(max(t, t′)), g+(a)(t, t′) = a(min(t, t′)),

r(a)(t) = a(1− t), s(a)(t, t′) = a(t′, t).

Again, the concatenation pullback (the object of pairs of consecutive
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paths) can be realised as PY

PY
c+ //

c−

��

PY

∂−

��

c−(a)(t) = a(t/2),

PY
∂+

// Y c+(a)(t) = a((t+ 1)/2).

(3.11)

We defer to the end of this section the (easy) verification that (3.11)

is indeed a pullback (Lemma 3.1.7(b)). One can also deduce this fact

from general results on ‘mates’ and (co)limits (Section A5.4).

3.1.5 Concatenation of paths

Recall that, in a d-space X, a path is a map a : ↑I → X and amounts

to a distinguished path of the structure, i.e. an element of dX (Section

1.4.6). Their concatenation is the usual one, described in 1.4.6: given a

consecutive path b

(a+ b)(t) =

{
a(2t) for 0 6 t 6 1/2,

b(2t− 1), for 1/2 6 t 6 1.
(3.12)

The concatenation of paths is actually ‘written’ inside the concatena-

tion pullback (3.11).

Let us also recall that the path a : ↑I→ X is said to be reversible (see

(1.108)) if also (−a)(t) = a(1−t) is a directed path in X, or equivalently

if a : I∼ → X is a d-map on the reversible interval (Section 1.4.4(c)).

Such paths are closed under concatenation.

Since concatenation is not (strictly) associative, and the constant

paths 0x : x → x are not neutral for it, we need 2-dimensional homo-

topies of paths, which will be analysed in the next section.

3.1.6 Homotopies of d-spaces

As we have already seen in Section 1.2, a (directed) homotopy ϕ : f →
g : X → Y is defined as a d-map ϕ̂ : IX = X×↑I→ Y whose two faces,

∂α(ϕ) = ϕ̂.∂α : X → Y are f and g, respectively. Equivalently, it is

a map X → PY = Y ↑I, with faces as above. A path is a homotopy

between two points, a : x→ x′ : {∗} → X.

After trivial homotopies, reflection of homotopies (Section 1.2.1) and

whisker composition of maps and homotopies (Section 1.2.3), we also
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have the concatenation of (consecutive) homotopies: ϕ + ψ : f → h,

defined in the usual way, by means of the concatenation pushout (3.8)

(ϕ+ ψ)c− = ϕ, (ϕ+ ψ)c+ = ψ (∂+ϕ = ∂−ψ),

(ϕ+ ψ)(x, t) =

{
ϕ(x, 2t), for 0 6 t 6 1/2,

ψ(x, 2t− 1), for 1/2 6 t 6 1.
(3.13)

The endofunctors I and P can be extended to homotopies, via their

transposition: for ϕ : f → g : X → Y , let

(Iϕ)̂ = I(ϕ̂).sX : I2(X)→ I(Y ),

(Pϕ)̂ = sY.P (ϕ̂) : P (X)→ P 2(Y ),

(Iϕ)̂ (∂−IX) = (ϕ̂×↑I).(X×s).(X×↑I×∂−)

= (ϕ̂×↑I).(X×∂−×↑I) = f×↑I = I(f).

(3.14)

More formally, this comes from the fact that the cylinder functor

I : dTop → dTop is a strong dI1-functor (see 1.2.6) via the natural

transformations i = r−1 : RI → IR and s : I2 → I2 (see 4.1.5).

Recall that a homotopy of d-spaces ϕ : f → g : X → Y is said to be

reversible (Section 1.5.2) if also the mapping (−ϕ)(x, t) = ϕ(x, 1− t) is

a d-map X×↑I→ Y . This gives a directed homotopy

−ϕ : g → f : X → Y,

not to be confused with the reflected homotopy ϕop : gop → fop : Xop →
Y op (1.38), which always exist.

3.1.7 Lemma (From pushouts to pullbacks)

(a) Let us assume that the left diagram below is a pushout in dTop,

preserved by all products X×−

A
f //

g

��

B

h

��

Y A Y B
f∗oo

C
k
// D Y C

g∗

OO

Y D
k∗
oo

h∗

OO

(3.15)

If its objects A,B,C,D have a locally compact Hausdorff topology, and

Y is an arbitrary d-space, the contravariant functor Y (−) transforms the

pushout into a pullback, the right square above.

(b) (Concatenation pullback for the cocylinder of d-spaces) The diagram

(3.11) is a pullback.
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Proof (a) It is an easy consequence of Theorem 1.4.8 on exponentiable

d-spaces.

Given two maps u : X → Y B , v : X → Y C in dTop such that f∗u =

g∗v, the exponential law yields two maps u′ : X×B → Y , v′ : X×C → Y

such that u′(X × f) = v′(X × g); by hypothesis, there is one map

w′ : X×D → Y such that w′(X×h) = u′ and w′(X×k) = v′. Which means

precisely one map w : X → Y D which solves the pullback-problem:

h∗w = u, k∗w = v.

(b) Apply the previous point to the standard concatenation pushout

(1.106), which pastes two copies of ↑I one after the other; the preserva-

tion hypothesis holds, by 1.4.9.

.

3.2 The fundamental category of a d-space

We introduce the fundamental category of a d-space. Computations are

based on a van Kampen-type theorem (Theorem 3.2.6), similar to R.

Brown’s version for the fundamental groupoid of spaces [Br].

3.2.1 Double homotopies and 2-homotopies

A (directed) double homotopy of d-spaces is a map

Φ: X×↑I2
= I2X → Y,

(or, equivalently, X → P 2Y ). Roughly speaking, double homotopies

(and double paths, in particular) behave as in Top, as long as we work

on the ordered square ↑I2
via increasing maps.

The second order cylinder I2X = X×↑I2
has four 1-dimensional faces,

written

∂α1 = I∂α = (X×∂α)×↑I : IX → I2X, ∂α1 (x, t) = (x, α, t),

∂α2 = ∂αI = (X×↑I)×∂α : IX → I2X, ∂α2 (x, t) = (x, t, α).
(3.16)

Thus, a double homotopy Φ: X×↑I2 → Y has four faces, which will

be drawn as below

∂α1 (Φ) = Φ.∂α1 = Φ.(X×∂α×↑I),

∂α2 (Φ) = Φ.∂α2 = Φ.(X×↑I×∂α),
(3.17)
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f
∂−2 (Φ)//

∂−1 (Φ)
��

h

∂+
1 (Φ)

��

•
1 //

2

��k
∂+
2 (Φ)

// g

The faces are homotopies linking the four vertices, the maps f =

∂−∂−1 (Φ) = ∂−∂−2 (Φ), etc.

The concatenation, or pasting, of double homotopies in direction 1

or 2 is defined as usual (under the obvious boundary conditions) and

satisfies a strict middle-four interchange property

(A+1 B) +2 (C +1 D) = (A+2 C) +1 (B +2 D), (3.18)

• //

��
A

• //

��
B

•

��

•
1 //

2
��• //

��
C

• //

��
D

•

��
• // • // •

In particular, a (directed) 2-homotopy

Φ: ϕ→ ψ : f → g : X → Y

is a double homotopy whose faces ∂α1 are degenerate, while the faces ∂α2
are ϕ,ψ (the symmetric choice is equivalent, by transposition)

f
ϕ //

0f

��

g

0g

��

∂−2 (Φ) = ϕ, ∂+
2 (Φ) = ψ,

Φ ∂−ϕ = f = ∂−ψ, ∂+ϕ = g = ∂+ψ,

f
ψ
// g ∂−1 (Φ) = 0f , ∂+

1 (Φ) = 0g.

(3.19)

Such particular double homotopies are closed under pasting in both

directions (also because 0f+0f = 0f ). The preorder ϕ �2 ψ (i.e. there is

a 2-homotopy ϕ→ ψ) spans an equivalence relation '2; two homotopies

which satisfy the relation ϕ '2 ψ are said to be 2-homotopic.

3.2.2 Constructing double homotopies

(a) Two ‘horizontally’ consecutive homotopies

ϕ : f− → f+ : X → Y, ψ : h− → h+ : Y → Z,
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can be composed, to form a double homotopy Φ = ψ◦ϕ

h−f−
h−◦ϕ //

ψ◦f−

��

h−f+

ψ◦f+

��

(ψ◦ϕ)̂ = ψ̂.(ϕ̂×↑I) :

ψ◦ϕ X×↑I2 → Z,

h+f−
h+◦ϕ

// h+f+

(3.20)

∂α1 (Φ) = ψ.(ϕ∂α×↑I) = ψ◦fα, ∂α2 (Φ) = ψ.(ϕ×∂α) = hα◦ϕ.

Notice that, together with the whisker composition in 1.2.3, this is

a particular instance of the cubical enrichment given by the cylinder

functor: composing a p-uple homotopy Φ: IpX → Y with a q-uple ho-

motopy Ψ: IqY → Z gives a (p+ q)-uple homotopy Ψ◦Φ = Ψ.IqΦ. (In

the cocylinder approach, one would have: Ψ◦Φ = P pΨ.Φ.)

(b) Acceleration. For every homotopy ϕ : f → g, there are acceleration

2-homotopies

Θ′ : 0f + ϕ→ ϕ, Θ′′ : ϕ→ ϕ+ 0g, (3.21)

but not the other way round: slowing down conflicts with direction.

To construct them, it suffices to consider the particular case ϕ = id↑I
(and compose it with an arbitrary homotopy); thus, Θ′′ : ↑I2 → ↑I is

defined as follows

f
ϕ //

0f
��

g

0g

��

ϕ = id↑I, f = ∂−, g = ∂+,

Θ′′ ϕ(t) = t, (ϕ+ 0g)(t) = min(2t, 1),

f
ψ+0

// g Θ′′(t, t′) = (1− t′).t+ t′.min(2t, 1).

(3.22)

In fact, Θ′′ is an affine interpolation (in t′) from ϕ to ϕ + 0g; since

ϕ(t) 6 (ϕ + 0g)(t), the mapping Θ′′ preserves the order of the square

and is a d-map ↑I2 → ↑I.

(c) Folding. A double homotopy Φ: A×↑I2 → X with faces ϕ,ψ, σ, τ

(as below) gives rise to a 2-homotopy Ψ, by pasting Φ with two double

homotopies of connection (denoted by ])

f
0f //

0f ��
]

f
σ //

ϕ
�� Φ

h
ψ //

ψ
��

]

g

0g
��

f
ϕ
// k

τ
// g

0g
// g

(3.23)

Ψ: (0f + σ) + ψ → (ϕ+ τ) + 0g : f → g.
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(Together with accelerations and Theorem 3.2.4, this will show that

σ+ψ '2 ϕ+ τ , in the equivalence relation defined at the end of 3.2.1.)

3.2.3 The fundamental category

Directed paths (reviewed in 3.1.5) will now be considered modulo 2-

homotopy, i.e. homotopy with fixed endpoints.

A double path in X is a d-map A : ↑I2 → X. It is the elementary

instance of a double homotopy (Section 3.2.1), defined on the point, and

the previous results apply; its four faces are paths in X, linking four

vertices. A 2-path is a double path whose faces ∂α1 are degenerate, that

is a 2-homotopy A : a �2 b : x→ x′ between its faces ∂α2 , which have the

same endpoints. A class of paths [a] up to 2-homotopy is a class of the

equivalence relation'2 spanned by the preorder �2 (Section 3.2.1).

The fundamental category ↑Π1(X) of a d-space has for objects the

points of X; for arrows [a] : x→ x′ the 2-homotopy classes of paths from

x to x′, as defined above. Composition - written additively - is induced

by concatenation of consecutive paths, and identities are induced by

degenerate paths

[a] + [b] = [a+ b], 0x = [e(x)] = [0x]. (3.24)

We prove below that ↑Π1(X) is indeed a category and that the obvious

action on arrows defines a functor ↑Π1 : dTop → Cat, with values in

the category of small categories

↑Π1(f)(x) = f(x), ↑Π1(f)[a] = f∗[a] = [fa]. (3.25)

The fundamental category of X is linked to the fundamental groupoid

of the underlying space UX, by the obvious comparison functor

↑Π1(X)→ Π1(UX), x 7→ x, [a] 7→ [[a]],

which is the identity on objects and sends 2-homotopy classes of (di-

rected) paths in X to 2-homotopy classes of paths UX. This functor

need not be full (obviously) nor faithful (see 3.2.8). Of course, if X is

a topological space with the natural d-structure, which distinguishes all

paths (i.e. X = D′UX), then ↑Π1(X) = Π1(UX).
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3.2.4 Theorem (The fundamental category)

(a) For every d-space X, ↑Π1(X) is a category and the previous formulas

(3.25) do define a functor, which preserves sums and products. The

opposite d-space gives the opposite category, ↑Π1(RX) = (↑Π1(X))op.

(b) If a : x → x′ is a reversible path (Section 1.4.6), its class [a] is an

invertible arrow in ↑Π1(X).

(c) The functor ↑Π1 : dTop → Cat is homotopy invariant, in the fol-

lowing sense: a homotopy ϕ : f → g : X → Y induces a natural trans-

formation (i.e. a directed homotopy of categories, see 1.1.6)

ϕ∗ : f∗ → g∗ : ↑Π1(X)→ ↑Π1(Y ),

ϕ∗(x) = [ϕ(x)] : f(x)→ g(x),
(3.26)

where ϕ(x) is the path in Y given by the representative map X → PY .

Therefore, ↑Π1 transforms a future equivalence of d-spaces into a future

equivalence of categories. (The latter will be studied in the next section.)

(d) A reversible homotopy ϕ induces an invertible transformation ϕ∗.

Therefore ↑Π1 transforms a reversible homotopy equivalence of d-spaces

into an equivalence of categories.

Proof (a) Composition is well defined, in (3.24). In fact, given 2-

homotopies A : a �2 a
′ : x→ x′ and B : b �2 b

′ : x′ → x′′, the pasting

A+1 B : a+ b �2 a
′ + b′ : x→ x′′,

shows that [a + b] = [a′ + b′]. The general case, for the equivalence

relation ' 2, follows by taking, in A or B, a trivial 2-homotopy and

applying transitivity.

In ↑Π1(X), constant paths yield (strict) identities, because of the

acceleration 2-homotopies 0x + a→ a→ a+ 0′x (see (3.21)).

Associativity, on three consecutive paths a, b, c in X, follows from

considering a 2-homotopy, constructed as follows, pasting double paths

obtained from degeneracies and connections (all of them are denoted

with ])

B : (0 + a) + (b+ c)→ (a+ b) + (c+ 0), (3.27)
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x
0 //

0
��

]

x
a //

a
��

]

y
b //

0��
]

z
c //

0
��

]

w

0
��

x a //

0
��

]

y 0 //

0��
]

y b //

b��
]

z c //

0
��

]

w

0
��

x a //

0
��

]

y b //

0��
]

z 0 //

0
��

]

z c //

c
��

]

w

0
��

x
a
// y

b
// z

c
// w

0
// w

(3.28)

The argument is concluded by two other 2-homotopies, which come

forth from accelerations and cannot be pasted with the previous 2-

homotopy B, because of conflicting directions

A : (0 + a) + (b+ c)→ a+ (b+ c), C : (a+ b) + c→ (a+ b) + (c+ 0).

The fact that a d-map f : X → Y gives a well-defined transformation
↑Π1(f)[a] = [fa] is also obvious: a 2-homotopy A : a �2 a′ gives a

2-homotopy fA : fa �2 fa
′.

We have thus a functor ↑Π1. Its preservation of sums and cartesian

products is proved in the same (easy) way as in the ordinary case.

(b) The reversible path a can be interpreted as a d-map I∼ → X, defined

on the reversible interval I∼ (Section 1.4.6). The double path

x′
0 //

−a
��

x′

0
��

A A = ag−.(I∼×r) : I∼2 → X,

x
a
// x′

is directed with respect to the reversible structures; in fact, given two

piecewise monotone real functions h, k, also h ∨ k is so (if h is increas-

ing and k decreasing on some interval [t0, t1], and h(t) = k(t) at some

intermediate point, then h∨k coincides with k on [t0, t], with h on [t, t1]).

Finally, by folding (Section 3.2.2(c)), and recalling that ↑I has a finer

structure than I∼, we get a 2-path showing that −a+ a '2 0

A′ : ↑I2 → I∼2 → I∼ → X, A′ : 0→ (−a+ a) + 0: ↑I→ X.

(c) The naturality of the transformation associated to ϕ : f → g on

the arrow [a] : x → x′ in ↑Π1(X) amounts to the relation [fa] + [ϕ(x′)]

= [ϕ(x)] + [ga]. This follows from the existence of the double path

Φ = ϕ◦a (cf. 3.2.2(a)), together with folding (cf. 3.2.2(c)) and the previous
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arguments

f(x)
fa //

ϕ(x)
��

ϕ◦a

f(x′)

ϕ(x′)
��

Φ = ϕ◦a = ϕ.(a×↑I),

g(x)
ga
// g(x′) fa+ ϕ(x′) '2 ϕ(x) + ga.

(3.29)

(d) Is a straightforward consequence of (b) and (c).

3.2.5 Homotopy monoids

The fundamental monoid ↑π1(X,x) of the d-space X at the point x is the

monoid of endo-arrows [c] : x → x in ↑Π1(X). It yields a functor from

the category dTop• of pointed d-spaces (Section 1.5.4) to the category

of monoids

↑π1 : dTop• →Mon, ↑π1(X,x) = ↑Π1(X)(x, x), (3.30)

which is strictly homotopy invariant: a pointed homotopy ϕ : f → g :

(X,x) → (Y, y) has, by definition, a trivial path at the base point

(ϕ(x) = 0y), whence f∗ = g∗ (see (3.29)).

Similarly, we have a functor from the slice category dTop\S0 of bi-

pointed d-spaces (Section 5.2)

↑π1 : dTop\S0 → Set, ↑π1(X,x, x′) = ↑Π1(X)(x, x′), (3.31)

which is strictly homotopy invariant, up to bipointed homotopies (leaving

fixed each base point).

One can view (3.30) and (3.31) as representable homotopy functors

(Section 1.5.3) on dTop• and dTop\S0, which accounts for their strict

invariance. Moreover, both can be computed by the methods developed

below for ↑Π1X. (For the homotopy structure of slice categories see

Chapter 5.)

The existence of a reversible path from x to x′ implies that their

fundamental monoids are isomorphic (by 3.2.4(b)); without reversibility,

this need not be true (cf. 3.2.8). However, in a homogeneous d-space,

where the group Aut(X) acts transitively, all ↑π1(X,x) are isomorphic;

this applies, for instance, to the directed circle ↑S1, whose only reversible

paths are the constant ones.
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3.2.6 Pasting Theorem

(’Seifert - van Kampen’ for fundamental categories of d-spaces) Let X

be a d-space; let X1, X2 be two d-subspaces, and X0 = X1 ∩X2.

(a) If X = int(X1) ∪ int(X2), the following diagram of categories and

functors (induced by inclusions) is a pushout in Cat

↑Π1X0
u1 //

u2
��

↑Π1X1

v1
��

↑Π1X2 v2
// ↑Π1X

(3.32)

(b) More generally, the same fact holds if there exist two d-subspaces

wi : Yi ⊂ Xi with retractions pi : Yi → Xi (d-maps with piwi = idYi; no

deformation is required) such that:

X = int(Y1) ∪ int(Y2), p1 and p2 coincide on Y0 = Y1 ∩ Y2. (3.33)

Proof (a) We shall use the n-ary concatenation of consecutive d-paths,

written a1 + ...+ an (Section 1.4.0).

Let C be a small category (in additive notation, again) and take two

functors Fi : ↑Π1Xi → C which coincide on ↑Π1X0 (F1u1 = F2u2); we

have to prove that they have a unique ‘extension’ F : ↑Π1X → C.

On the objects, this is obvious since |X| = |X1| ∪ |X2| and |X0| =

|X1| ∩ |X2|.
Let then a : x → y : {∗} → X be a path. By the Lebesgue covering

lemma, there is a finite decomposition 0 < 1/n < 2/n... < 1 of the

standard interval such that each subinterval [(i−1)/n, i/n] is mapped by

a into X1 or X2 (possibly both); let us call it a suitable decomposition

for our data. Thus, a = a1 + ... + an where each ai : [0, 1] → X is

a directed path (by partial increasing reparametrisation) contained in

some Xki (with ki = 1, 2), hence a d-path there. Define

F [a] = Fk1 [a1] + ...+ Fkn [an] ∈ C(F (x), F (x′)).

First, this morphism F [a] does not depend on the choice of ki: if

Im(ai) ⊂ X1 ∩X2 = X0, then F1u1 = F2u2 shows that F1[ai] = F2[ai].

Second, F [a] does not depend on the choice of n: if also m gives a

suitable partition, one can use the partition arising from mn to prove

that they give the same result.

Third, F [a] does not depend on the representative path a. It is suf-

ficient to show this for a second path a′ : x → x′, linked to the first
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by a 2-path A : a → a′; in other words, A : ↑I2 → X has degenerate

1-faces, and 2-faces coinciding with a, a′. Again by the Lebesgue cover-

ing lemma, applied to the compact metric square [0, 1]2, there is some

integer n > 0 such that each elementary square

[(i− 1)/n, i/n]×[(j − 1)/n, j/n] (i, j = 1, ..., n),

is mapped by A into X1 or X2. A can be obtained as an ‘(n×n)-pasting’

of its reparametrised restrictions to these squares, Aij : ↑I2 → Xk(i,j) ⊂
X

A = (A11 +1 A21 +1 ...+1 An1) +2 ...+2 (A1n +1 A2n +1 ...+1 Ann).

Every 2-cube B = Aij yields, by folding (Section 3.2.2(c)), a 2-

homotopy relation in Xk(i,j)

∂−2 B + ∂+
1 B '2 ∂−1 B + ∂+

2 B. (3.34)

Therefore, using the fact that all the 1-directed faces on the boundary

(namely ∂−1 A1i, ∂
+
1 Ani) are degenerate, and the coincidence of faces

between contiguous little squares, we can gradually move from a to a′

F [a] = Fk(1,1)[∂
−
2 A11] + ...+ Fk(n,1)[∂

−
2 An1]

= Fk(1,1)[∂
−
2 A11] + ...+ Fk(n,1)[∂

−
2 An1] + Fk(n,1)[∂

+
1 An1]

(by degeneracy)

= Fk(1,1)[∂
−
2 A11] + ...+ Fk(n,1)[∂

−
1 An1] + Fk(n,1)[∂

+
2 An1]

(by (3.34))

= Fk(1,1)[∂
−
2 A11] + ...+ Fk(n,1)[∂

+
1 An−1,1] + Fk(n,2)[∂

−
2 An2]

(by contiguity)

= ... = Fk(1,2)[∂
−
2 A21] + ...+ Fk(n,2)[∂

−
2 An1]

= ... = Fk(1,n)[∂
−
n An1] + ...+ Fk(n,n)[∂

−
n An1] = F [a′].

Thus, F : ↑Π1X → C is also well defined on arrows. To show that

it preserves composition just note that, if two consecutive d-paths a, b

have a suitable decomposition on n subintervals, then a + b inherits a

suitable decomposition a+b = a1 + ...+an+b1 + ...+bn which keeps the

original paths apart. Finally, the uniqueness of the functor F is obvious.

(b) By (a), the square which comes from Y0, Y1, Y2, and Y = X is a

pushout of categories.

Also the inclusion w0 : X0 ⊂ Y0 has a retraction p0, the common

restriction of p1 and p2 to Y0. Therefore, all wi and pi form a retraction
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in the category of commutative squares of dTop

w = (w0, w1, w2, idX) : X→ Y : 2×2→ dTop,

p = (p0, p1, p2, idX) : Y → X : 2×2→ dTop (pw = idX).

The functor ↑Π1 takes all this into a retraction in the category of

commutative squares of Cat

w∗ : ↑Π1X � ↑Π1Y : p∗.

Since ↑Π1Y is a pushout, also its retract ↑Π1X is (as can be easily

checked, or seen in [Br], 6.6.7).

3.2.7 Elementary computations

Say that a d-spaceX is 1-simple if its fundamental category is a preorder,

or equivalently if ↑Π1X = cat(X,�), the category associated with the

path preorder of X. In other words, (↑Π1X)(x, x′) has precisely one

arrow when x � x′, and no arrows otherwise.

(a) Every convex subspace X of Rn, with the order structure induced

by ↑Rn, is 1-simple. More generally, the same fact holds for a subspace

X of Rn such that, whenever x 6 x′ in X, the line segment joining x, x′

is contained in X.

In fact, if x 6 x′ in X, there is a d-path in X from x to x′ along that

segment, e.g. the affine interpolation a(t) = (1− t).x+ t.x′ (the converse

being obvious). Moreover, given two increasing paths a, b : ↑I→ X from

x to x′, we can always replace them with 2-homotopic paths a′ �2 b
′: we

replace the first with a′ = 0x+a �2 a, the second with b′ = b+0x′ �2 b.

Then, the interpolation 2-path

A(t, t′) = (1− t′).a′(t) + t′.b′(t),

preserves the order of ↑I2
and provides a directed 2-homotopy A : a′ → b′

which stays in the convex subset X.

Note that we have actually constructed three directed 2-homotopies:

a′ = 0x + a→ a, b→ b′ = b+ 0x′ , a′ → b′,

and that two paths with the same endpoints are ‘rarely’ linked by a ‘one

step’ directed 2-homotopy a→ b. Furthermore, in an ordered topological

space, one can have two directed 2-homotopies a→ b→ a only if a = b.
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(b) It follows that a d-space X is certainly 1-simple whenever the fol-

lowing condition holds: if x′ � x′′, then the d-subspace

{x ∈ X | x′ � x � x′′},

is isomorphic to some convex d-subspace of ↑Rn.

(c) The following objects are 1-simple: any interval of ↑R; any product

of such in ↑Rn; the preordered subspaces V,W ⊂ ↑R2 considered in

(1.80); any ‘fan’ formed by the union of (finitely or infinitely many) line

segments or half-lines spreading from a point, in some ↑Rn. (Here, one

should not confuse the path-order with the order induced by ↑Rn, which

is coarser and of less interest.)

(d) We consider now some elementary cases which are not 1-simple,

starting from the directed circle ↑S1. Let us apply the ‘van Kampen’

Theorem (Theorem 3.2.6(a)) in the obvious way: choose two arcs X1, X2

isomorphic to ↑I, which satisfy the hypothesis, with X0
∼= ↑I + ↑I.

The resulting pushout in Cat shows that ↑Π1↑S1 is the subcategory of

the groupoid Π1S
1 formed by the classes of anticlockwise paths (with

respect to the embedding in the oriented plane). In particular, each

monoid ↑π1(↑S1, x) is isomorphic to the additive monoid N of natural

numbers.

(e) Consider now the ordered circle ↑O1 ⊂ R×↑R (see (1.103)); let us

write x− = (0,−1) and x+ = (0, 1) the minimum and maximum, and

a, b : x− → x+ the two obvious d-paths moving around the left and right

half-circles. Applying ‘van Kampen’, we get that there are precisely two

arrows [a] 6= [b] from x− to x+

↑Π1↑O1(x−, x+) = {[a], [b]}.

Moreover, if x 6= x− or x′ 6= x+, there is precisely one arrow from x

to x′ when x ≺ x′ and they both lie either in the left or in the right

half-circle, none otherwise. This can also be proved directly, noting that

any d-path in ↑O1 stays either in the left half-circle or in the right one.

(f) Finally, for the ‘square annulus’ X = ↑[0, 1]2 \ ]1/3, 2/3[2 (Section
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3.1.1)

X L L′

x

x′

× ×
•

•

OO OO
(3.35)

applying the ‘van Kampen’ theorem to the closed subspaces L,L′ (which

are 1-simple), we find the description of the fundamental category ↑Π1(X)

given above: there is some arrow x → x′ provided that x 6 x′ and

both points are in L or L′. Precisely, there are two of them when

x 6 p = (1/3, 1/3) and x′ > q = (2/3, 2/3) (as in the second figure

above), and one otherwise.

(The fact that L and L′ are 1-simple - if not accepted as obvious - can

also be proved with ‘van Kampen’ and point (a).)

3.2.8 Remarks

For a future (or past) homotopy equivalence p : X → Y , the induced

functor p∗ : ↑Π1X → ↑Π1Y need not be full nor faithful (even when p is

a strong future deformation retraction, as defined in 1.3.1).

For the first case, just consider the fact that ↑I is future contractible

to 1, and yet ↑Π1(↑I) = cat(I,6) keeps the information of the (path)

order; thus p∗ : ↑Π1(↑I)→ ↑Π1{1} is not full.

The failure of faithfulness can give rise to even more unusual effects:

(i) a future contractible object X can have loops c which are not

homotopically trivial ([c] 6= 0),

(ii) such loops are then annihilated by the deformation retraction p : X

→ {∗} (p∗ is not faithful),

(iii) such loops are ‘loop-homotopic’ to the constant loop, without being

2-homotopic to it.

In fact, take the disc with the structure X = C+(S1) (see (1.110)),

which is future contractible to its centre 0 = v+, and recall that any

path in this d-space moves towards the centre, in the weak sense.

Any concentric circle C inherits the natural structure of S1, and no

path in X between two of its points can leave it; thus, the restriction

of ↑Π1X to the points of C coincides with the fundamental groupoid of
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the circle and has d-loops c : S1 → X with [c] 6= 0. Any deformation

ϕ : X×↑I → X with ϕ(x, 0) = x, ϕ(x, 1) = v+ yields a loop-homotopy

ϕ.(c×↑I) : S1×↑I → X from c to 0v+ . Note also that, if c is a loop

at x0, the homotopy class of the path a = ϕ.(x0,−) : x0 → v+ is not

cancellable in ↑Π1X (it is not a monomorphism): [c] + [a] = [a].

Similar arguments allow us to completely determine the fundamen-

tal category of C+(S1): from each point to the origin 0 = v+ there is

precisely one arrow (this will also follow from 3.3.6: v+ must be a ter-

minal object in ↑Π1X). On the other hand, if ||x1|| > ||x2|| > 0 (in the

euclidean norm of the disc) there are infinitely many arrows x1 → x2,

determined by their ‘winding number’ around the origin (an integer)

(↑Π1X)(x1, x2) = Π1S
1(q(x1), q(x2)),

where q(x) = x/||x||. There are no other arrows. Concatenation of maps

x1 → x2 → x3 (with ||x1|| > ||x2|| > ||x3|| > 0) works by adding the

winding numbers - and is trivially determined when x3 = 0.

The fundamental category of C+(↑S1) has a similar description, with

winding numbers in N.

All these remarks show that the fundamental category contains infor-

mation which can disappear modulo future or past homotopy equivalence

(and even more modulo coarse d-homotopy). This is why, in the next

sections, we will study finer equivalence relations, taking into account at

the same time past and future.

Thus, the minimal injective model of ↑Π1(C+(S1)), in 3.6.6, will be a

small, countable model on two objects (the vertex and any other point),

but will keep all the relevant information.

3.3 Future and past equivalences of categories

A future equivalence of categories (defined in 3.3.1) is a coherent in-

stance of a future homotopy equivalence of categories, and a symmetric

version of the notion of adjunction. It is meant to identify future in-

variant properties. Directed homotopy equivalence of categories is thus

introduced in two dual forms, future and past equivalences, which will

be combined in the next sections to give a finer analysis.

A motivation for the study of these relations, based on comma cate-

gories, has already been given in 1.8.9. Future equivalence tends to be of

little relevance when applied to the usual (large) categories of structured

sets, since all categories with a terminal object are future equivalent (to

the terminal category 1, see 3.3.6). However, standard constructions
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performed on such categories, like comma categories, can give rise to

categories without a terminal object - for which the results of 1.8.9 may

be relevant.

In the rest of this chapter we will generally use the usual ‘multiplica-

tive’ notation for composition in categories and, as a consequence, for

vertical composition of natural transformations.

3.3.0 Review of directed homotopy in Cat

Let us recall - with a few additions - the basic notions of directed ho-

motopy in Cat, introduced in 1.1.6 and based on its cartesian closed

structure. (We shall occasionally use the same notions for large cate-

gories.)

The reversor R(X) = Xop takes a category to the opposite one. The

directed interval ↑i = 2 = {0 → 1} is a cartesian dIP1-interval (Section

1.2.5); it is equipped with the obvious faces ∂± : 1 → 2, defined on the

terminal category 1 = {∗}, and the reflection isomorphism r : 2 → 2op.

The cylinder functor is IX = X×2, with right adjoint, PY = Y 2 (the

category of morphisms of Y ).

A (directed) homotopy ϕ : f → g : X → Y is the same as a natural

transformation between functors, and their concatenation is by vertical

composition, strictly associative and unitary.

A point x : 1 → X of a small category X ‘is’ an object of the latter,

which we write as x ∈ X. A (directed) path a : 2→ X from x to x′ is an

arrow a : x→ x′ of X, and amounts to a homotopy a : x→ x′ : 1→ X;

their concatenation is by composition in X. A reversible path is an

isomorphism. A double path 2×2→ X is a commutative square, while

a 2-path A : a→ a′ is necessarily degenerate, with a = a′.

Therefore ↑Π1X, defined as above for d-spaces, just coincides with X,

and ↑Π1f = f , for every (small) functor f .

The existence of a map x → x′ in X (a path) produces the path

preorder x � x′ (x reaches x′) on the points of X; the resulting path

equivalence relation, meaning that there are maps x � x′, will be writ-

ten as x 'x′ . For the path preorder, a point x is

• maximal if it can only reach the points 'x,

• a maximum if it can be reached from every point of X.

(The latter is the same as a weak terminal object, and is only deter-

mined up to path equivalence.) If the category X ‘is’ a preorder, the

path preorder coincides with the original relation.
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3.3.1 Future equivalences

According to a general definition in directed homotopy theory (Section

1.3.1), a future homotopy equivalence (f, g;ϕ,ψ) between the categories

X,Y consists of a pair of functors and a pair of natural transformations

(i.e. directed homotopies), the units

f : X � Y : g ϕ : 1X → gf, ψ : 1Y → fg, (3.36)

which go from the identities of X,Y to the composed functors.

This four-tuple will be called a future equivalence if it is coherent, i.e.

satisfies:

fϕ = ψf : f → fgf, ϕg = gψ : g → gfg (coherence). (3.37)

In Cat, we shall only use such ‘coherent’ equivalences, which would

be too restricted for d-spaces. (Note that these coherence conditions are

not required for homotopy equivalence of ordinary spaces, and only one

coherence condition is required for strong deformation retracts.)

A property (making sense in a category, or for a category) will be said

to be future invariant if it is preserved by future equivalences. Some ele-

mentary examples will be discussed in 3.3.8, and other more interesting

ones in Section 3.7.

A future equivalence is a ‘symmetric variation’ of the notion of ad-

junction, and some aspects of the theory will be similar. However, in a

future equivalence, f need not determine g (see (3.3.9)). Our data give

rise to two natural transformations between hom-functors (which will

often be used implicitly in what follows)

Φ: Y (fx, y)→ X(x, gy), Φ(b) = gb.ϕx,

Ψ: X(gy, x)→ Y (y, fx), Ψ(a) = fa.ψy.
(3.38)

One can also note that an adjunction f a g with invertible counit

ε : fg ∼= 1 amounts to a future equivalence with invertible unit ψ = ε−1;

this case, a split future equivalence, will be treated later (Section 3.3.4).

A future equivalence (f, g;ϕ,ψ) will be said to be faithful if the func-

tors f and g are faithful and, moreover, all the components of ϕ and ψ

are epi and mono. (Motivations for the latter condition will arise in 3.3.4

and Theorem 3.3.5.) The next lemma (similar to classical properties of

adjunctions) will prove that it suffices to know that one of the following

equivalent conditions holds:

(i) all the components of ϕ and ψ are mono,

(ii) f and g are faithful and all the components of ϕ and ψ are epi.
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Plainly, all future homotopy equivalences between preordered sets

(viewed as categories) are coherent and faithful. There are non-faithful

future equivalences where all unit-components are epi (see 3.3.9(d)).

A faithful future equivalence between balanced categories (where every

map which is mono and epi is an isomorphism) is an equivalence of cat-

egories. But a faithful future equivalence can link a balanced category

with a non-balanced one (see (3.4.7)).

Dually, a past equivalence has natural transformations - called counits

- in the opposite direction, from the composed functors to the identities

f : X � Y : g ϕ : gf → 1, ψ : fg → 1,

fϕ = ψf : fgf → f, ϕg = gψ : gfg → g (coherence).
(3.39)

An adjoint equivalence of categories (Section A1.5) is at the same time

a future and a past equivalence. Future equivalences will be shown to

be related to reflective subcategories and idempotent monads (Section

3.3.4); they will generally be given ‘priority’ over the dual case, which is

related to coreflective subcategories and comonads.

We will see that each of these two notions of directed homotopy equiv-

alence distinguishes new ‘shapes’, in Cat. Each of them is weaker than

ordinary equivalence, which corresponds to reversible homotopies, based

on the groupoid i (1.30). But each of them implies ordinary homotopy

equivalence of the classifying spaces, the geometric realisations of the

simplicial nerves (which is a non-directed notion).

Indeed, a natural transformation ϕ : f → g : C → D gives, under the

nerve functor N : Cat → Smp with values in the category of simpli-

cial sets, a simplicial homotopy Nϕ : Nf → Ng : NC → ND (because

N(C×2) = NC×N2 and N2 is the simplicial interval {0→ 1}); then,

by ordinary geometric realisation, Nϕ yields a homotopy between the

classifying spaces of C and D. (See [My], Section 16; [Cu], 1.29).

3.3.2 Lemma (Cancellation properties of future equivalences)

Let (f, g;ϕ,ψ) be a future equivalence (Section 3.3.1).

(a) If all the components ϕx : x → gfx are mono, then all of them are

epi and f is a faithful functor.

(b) The natural transformation ϕ is invertible if and only if all its com-

ponents are split mono; in this case f is right adjoint to g, full and

faithful.
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(c) If g is faithful and all the components of ϕ are epi, then f preserves

all epis.

(d) If gf is faithful and all the components of ϕ are epi, then they are

also mono.

(e) The conditions (i) and (ii) of 3.3.1 are equivalent; when they hold,

f and g preserve all epis.

Proof (a) Assume that all the components ϕx are mono, and take two

arrows a1, a2 with ai.ϕx = a

x
ϕx //

a
##

gfx
ϕgfx //

ai

��
gfa

%%

gfgfx

gfai

��
x′

ϕx′
// gfx′

Since ϕgf = gfϕ (by coherence) we have ϕx′.ai = gfai.ϕgfx =

gf(ai.ϕx) = gf(a), and - cancelling ϕx′- we deduce that a1 = a2. Now,

the faithfulness of gf (hence of f) works as in adjunctions: given ai : x→
x′ with gfa1 = gfa2, we get ϕx′.a1 = gfai.ϕx = ϕx′.a2 and we cancel

ϕx′.

(b) The first assertion follows from (a). Then, assuming that ϕ is invert-

ible, we have an adjunction g a f with an invertible counit ϕ−1 : gf → 1,

which implies that f is full and faithful (Section A3.3(d)).

(c) Assume that g is faithful and that all the components of ϕ are epi.

Given an epimorphism a : x → x′, we have that gfa.ϕx = ϕx′.a is also

epi, whence gf(a) is epi, and finally f(a) is too.

(d) Assume that gf is faithful and that all the components of ϕ are epi.

Let ϕx.ai = a : x′ → gfx; then gfai.ϕx
′ = ϕx.ai = a; cancelling ϕx′ we

have gfa1 = gfa2, and a1 = a2.

(e) The equivalence of (i) and (ii) follows from (a) and (d); the last point

from (c).

3.3.3 The relation of future equivalence

Future equivalences can be composed (much in the same way as adjunc-

tions, cf. A3.3(b)), which shows that being future equivalent categories

is an equivalence relation. This depends on the fact that Cat is a 2-

category, and cannot be extended to dh1-categories.
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Indeed, given (f, g;ϕ,ψ), as in (3.36), and a second future equivalence

h : Y � Z : k, ϑ : 1Y → kh, ζ : 1Z → hk,

hϑ = ζh : h→ hkh, ϑk = kζ : k → khk,

their composite will be:

hf : X � Z : gk, gϑf.ϕ : 1→ gk.hf, hψk.ζ : 1→ hf.gk. (3.40)

Its coherence is proved by the following computation, where fgϑ.ψ =

ψkh.ϑ

hf(gϑf.ϕ) = h(fgϑf.fϕ) = h(fgϑf.ψf) = h(fgϑ.ψ)f,

(hψk.ζ)hf = (hψkh.ζh)f = (hψkh.hϑ)f = h(ψkh.ϑ)f.

This composition is easily seen to be associative, with obvious identi-

ties.

Faithful future equivalences are closed under composition. Indeed,

using the form 3.3.1(ii), it suffices to note that the general component

g(ϑfx).ϕx is epi (also because g preserves epis, by 3.3.2(e)).

Two categories will be said to be past and future equivalent if they

are both past equivalent and future equivalent. Generally, one needs

different pairs of functors for these two notions (see 3.3.7); finer rela-

tions, where the past and future structure are linked together, will be

introduced later and give more interesting results. Marginally, we also

consider coarse equivalence of categories, as the equivalence relation gen-

erated by past equivalence and future equivalence.

3.3.4 Full reflective subcategories as future retracts

We deal now with a special case of future equivalence, which is important

for its own sake, but will also be shown to generate the general case, in

the next theorem.

A split future equivalence of F into X (or of X onto F ) will be a

future equivalence (i, p; 1, η) where the unit 1→ pi is an identity

i : F � X : p, η : 1X → ip (the main unit),

pi = 1F , pη = 1p, ηi = 1i (p a i).
(3.41)

We also say that F is a future retract of X. Recall that the notion

of a strong future deformation retract, as defined in 1.3.1 (in any dI1-

category) only requires one coherence condition, namely ηi = 1i, and

therefore is weaker than the present notion.
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In (3.41), the functor p is left adjoint to i, which is full and faith-

ful. (Note also that (i, p; 1, η) is a split mono in the category of future

equivalences, with retraction (p, i; η, 1).)

As in 3.3.1, we say that this future equivalence is faithful - and that

F is a faithful future retract of X - if all the components of η are mono;

because of the adjunction, this is equivalent to saying that p is faithful

(and implies that all the components of η are epi).

The structure we are considering means that the category F is (iso-

morphic to) a full reflective subcategory of X, i.e. that there is a full

embedding i : F → X with a left adjoint p : X → F . Then p is essen-

tially determined by i, and - via the universal property of the unit - can

always be constructed so that the counit pi→ 1F be an identity, as we

are assuming.

Equivalently, one can assign a strictly idempotent monad (e, η) on X

e : X → X, η : 1X → e, ee = e, eη = 1e = ηe. (3.42)

Indeed, given (i, p; η), we take e = ip; given (e, η), we factor e = ip

splitting e through the subcategory F of X formed of the objects and

arrows which e leaves fixed.

Dually, a split past equivalence, of P into X (or of X onto P ) is a

past equivalence (i, p; 1, ε) where the counit pi→ 1P is an identity

i : P � X : p, ε : ip→ 1X (the counit),

pi = 1P , pε = 1p, εi = 1i (i a p).
(3.43)

This amounts to saying that i(P ) is a full coreflective subcategory of

X (with a choice of the coreflector making the unit 1→ pi an identity);

P will also be called a past retract of X.

3.3.5 Theorem

(Future equivalence and reflective subcategories)

(a) A future equivalence (f, g;ϕ,ψ) between X and Y (Section 3.3.1)

has a canonical factorisation into two split future equivalences

X
i // W
p
oo

q // Y
j
oo (η : 1W → ip, η′ : 1W → jq), (3.44)

so that X and Y are full reflective subcategories of W .

(It is a mono-epi factorisation in the category of future equivalences,

through a sort of ‘graph’ of (f, g;ϕ,ψ)).
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(b) Two categories are future equivalent if and only if they are full re-

flective subcategories of a third.

(c) Two categories are faithfully future equivalent if and only if they are

faithful future retracts of a third.

(d) A property is future invariant if and only if it is preserved by all em-

beddings of full reflective subcategories and by their reflectors. Similarly

in the faithful case.

Proof (a). First, we construct the category W .

(i) An object is a four-tuple (x, y;u, v) such that:

u : x→ gy (in X), v : y → fx (in Y ), gv.u = ϕx, fu.v = ψy,

x
u //

ϕx ""

gy

gv

��

y
v //

ψy ""

fx

fu
��

gfx fgy

(3.45)

(ii) A morphism is a pair (a, b) : (x, y;u, v)→ (x′, y′;u′, v′) such that:

a : x→ x′ (in X), b : y → y′ (in Y ), gb.u = u′.a, fa.v = v′.b,

x
u //

a
��

gy

gb
��

y
v //

b
��

fx

fa
��

x′
u′
// gy′ y′

v′
// fx′

(3.46)

Then, we have a split future equivalence of X into W :

i : X � W : p, η : 1W → ip,

i(x) = (x, fx;ϕx, 1fx), i(a) = (a, fa),

p(x, y;u, v) = x, p(a, b) = a,

η(x, y;u, v) = (1x, v) : (x, y;u, v) → (x, fx;ϕx, 1fx).

(3.47)

The correctness of the definitions is easily verified, as well as the co-

herence conditions: pi = 1W , pη = 1p, ηi = 1i (in particular, i is well

defined because the given equivalence is coherent.)

Symmetrically, there is a split future equivalence of Y into W :

j : Y � W : q, η′ : 1W → jq,

j(y) = (gy, y; 1gy, ψy), j(b) = (gb, b),

q(x, y;u, v) = y, q(a, b) = b,

η′(x, y;u, v) = (u, 1y) : (x, y;u, v)→ (gy, y; 1gy, ψy).
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Finally, composing the two equivalences (3.44), as defined in (3.40),

gives back the original future equivalence (f, g;ϕ,ψ)

qi(x) = f(x), qi(a) = f(a),

pη′i(x) = pη′(x, fx;ϕx, 1fx) = p(ϕx, 1fx) = ϕx.

Now, (b) follows immediately from (a).

For (c), it suffices to modify the previous construction: if (f, g;ϕ,ψ) is

faithful, we use the full subcategory W0 ⊂ W on the objects (x, y;u, v)

where u and v are mono. Then, the functor i take values in W0 (as i(x) =

(x, fx;ϕx, 1fx)); we restrict p, η and get a future retract which is faithful,

since the general component η(x, y;u, v) = (1x, v) is obviously mono.

Symmetrically for j, q, η′. (One can also use a smaller full subcategory

W1, requiring that u, v be mono and epi).

Finally, (d) is an obvious consequence.

3.3.6 Definition and Proposition (Strong contractibility)

The category X will be said to be strongly future contractible if it satis-

fies the following equivalent conditions:

(a) the terminal object 1 (i.e. the singleton category {∗}) is a strong

future deformation retract of X (i.e. we have functors t : 1 � X : p

and a natural transformation η : 1X → tp such that ηt = 1t),

(b) X is future equivalent to 1 (i.e. with the previous notations, we also

have pη = 1p),

(c) X has a terminal object.

The fact that X be future contractible (Section 1.3.2), i.e. future ho-

motopy equivalent to 1 (without requiring coherence) is a strictly weaker

condition.

Symmetrically, a category is strongly past contractible if and only if

it has an initial object.

Proof (a) ⇒ (b). The remaining coherence condition pη = 1: p→ p :

X → 1 is automatically satisfied. (In other words, 1 is a 2-terminal

object in Cat.)

(b) ⇒ (c). A future equivalence t : 1 � X : p necessarily splits,

with unit pt = 1; thus t : 1 → X is right adjoint to p and preserves the

terminal object. (More analytically: every object x has a map ηx : x→
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t(∗); and indeed a unique one: given a : x → t(∗), the naturality of η,

together with the condition ηi = 1, implies that a = ηx.)

(c) ⇒ (a). If X has a terminal object, we have a strong future

deformation retract t : 1 � X : p, where ηx : x → t(∗) is the unique

map to the terminal object of X.

As to the last assertion, the idempotent two-element monoid M =

{1, a}, viewed as a category on one formal object ∗, has no terminal

object but is future contractible, with η(∗) = a.

3.3.7 Other notions of contractibility

Faithful strong contractibility is much more restrictive than strong con-

tractibility. In fact, the functor p : X → 1 is faithful if and only if

each hom-set of X has at most one element, which means that X ‘is’ a

preordered set. Therefore, a category is faithfully strongly future con-

tractible - i.e. faithfully future equivalent to 1 - if and only if it is a

preordered set with a maximum; and dually for the past.

Finally, a category is past and future strongly contractible (i.e. past

and future equivalent to 1) if and only if it has an initial and a termi-

nal object. Then, the future embedding (t : 1 → X) and the past one

(i : 1 → X) can only coincide if X has a zero object (this will amount

to contractibility for the finer relation of injective equivalence studied

later, see 3.6.4).

Marginally, we also use the notion of coarse contractibility, meaning

coarse equivalent to 1 (Section 3.3.3). Examples for all these cases will

be considered in 3.3.9.

The future cone C+X, obtained by freely adding a terminal object to

the category X, is future strongly contractible; it is also past strongly

contractible if and only if X is past strongly contractible or empty.

3.3.8 Lemma (Maximal points)

The following properties of an object x ∈ X are future invariant:

(a) x is the terminal object of the category X,

(b) x is a weak terminal object of X, i.e. a maximum for the path pre-

order � (Section 3.3.0),

(c) x is maximal in X, for the path preorder,

(d) x does not reach a maximal point z.
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Proof Let f : X � Y : g be a future equivalence of small categories.

(a) Follows immediately from 3.3.6: if we compose the future equiva-

lence t : 1 � X : p produced by the terminal object x with the future

equivalence X � Y , we get a composite ft : 1 � Y : pg, which shows

that ft(∗) = f(x) is terminal in Y .

(b) If x is a maximum in X, then, for every y ∈ Y : g(y) � x and

y � fg(y) � f(x).

(c) Let x be maximal in X, and f(x) � y in Y . Then x � gf(x) � g(y)

and all these points are equivalent, whence f(x)' fg(y). But f(x) �
y � fg(y) and y'f(x).

(d) Since z is maximal, from z � gf(z) we deduce that z ' gf(z).

Therefore, if f(x) � f(z) in Y , we have x � gf(x) � gf(z) ' z, and

x � z in X.

3.3.9 Elementary examples

(a) Let us begin by some examples consisting of finite or countable or-

dered sets.

For preordered sets, viewed as categories, a future equivalence con-

sists of a pair of preorder-preserving mappings f : X � Y : g such that

1X 6 gf and 1Y 6 fg, and is necessarily faithful. We already know

that future contractibility (necessarily strong) means having a maxi-

mum. Therefore:

• • // • • // • // • // • // • (past and future contractible)

•

��
•

��
• // • • // • . . . • // • // • // • (just future contractible)

•

@@

• • •

• //
@@

• • //
@@

��
• //
@@

• • // • // • // •. . . (just past contractible)

•

• // • // • // •
��

• //

33

++

• • // • . . . • // • // • // •. . . (just coarse-contractible).

• •

MM
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(b) Consider again (as in the third set of examples, above) the ordered

set n of natural numbers, as a category. (Not to be confused with the

monoid N, a quite different category on one object.) There are future

equivalences

f : n � n : g, f(x) = x, g(x) = max(x, x0),

ϕ(x) = ψ(x) : x 6 g(x),

where x0 ∈ n is arbitrary (and coherence automatically holds, since our

categories are preorders).

This proves that, in a future equivalence, the functor f does not de-

termine g. Note also (in relation with a previous result, 3.3.2(b)) that

all components ψ(x) are mono and epi, but g is not full, i.e. does not

reflect the preorder (when x0 > 0).

(c) Now we consider some finite categories, generated by the directed

graphs drawn below; the cross-marked cells do not commute and these

categories are not preorders. The category represented in (3.48)

• // • // • // • // •
��

0 //

00

..

a × b // 1

• // • // • // • // •

FF (3.48)

is (faithfully) future equivalent to the first of the following list, past

equivalent to the second, past and future equivalent to the third and

coarse-equivalent to the last

0 // &&
88a × 1 0

&&
88× b // 1

0 // &&
88a × b // 1 0

&&
88× 1

This shows a situation of interest in concurrency (see, for instance,

[FGR1, FGR2]). There is a given starting point 0, which is minimal

(Section 3.3.0), but not initial nor the unique minimal point (generally);

and a given ending point 1, which is maximal. Moreover:

- 0 is also a future branching point, where one has to choose among

different ways of going forward; being such is a future invariant property

(as will be proved in Theorem 3.7.7);
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- a is a deadlock, i.e. a maximal unsafe vertex (from where one cannot

reach 1); this is again a future invariant property, as already proved in

3.3.8(d);

- b is a minimal unreachable vertex (which cannot be reached from 0);

being such is a past invariant property (according to the dual of 3.3.8);

- 1 is a past branching point, preserved by past equivalences (Theorem

37.7).

The ‘past and future model’ above preserves all these properties, while

the coarse one only says that there are two paths from 0 to 1.

(d) Finally, the following category (described by generators and rela-

tions)

0
h //

h′ &&

a

u
��
v
��

k′

&&

uh = vh = h′,

b
k

// 1 ku = kv = k′,

(3.49)

has an initial object (0) and a terminal one (1): it is past and future

strongly contractible, but not faithfully so. Note also that, in the future

contraction, all the components x→ 1 of the unit are epimorphisms.

3.4 Bilateral directed equivalences of categories

We have already considered categories which are ‘separately’ past and

future equivalent (e.g. in 3.3.7). However, an unrelated pair formed of a

past equivalence and a future equivalence between the same categories

is not an effective tool.

A better system, which we call a pf-equivalence, consists of a past and

a future equivalence which share one functor. A particular case has been

studied in category theory: essential localisations (Section 3.4.7).

In this section, g− and g+ denote functors; connections are not used.

3.4.1 Pf-equivalences

Let X,Y be (small) categories. A pf-equivalence from X to Y will be a

pair formed of a past equivalence (f, g−; εX , εY ) and a future equivalence

(f, g+; ηX , ηY ) sharing the same functor f : X → Y , and also satisfying
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a further pf-coherence condition (3.51) which links the two pairs:

f : X → Y, g−, g+ : Y → X,

εX : g−f → 1X , εY : fg− → 1Y ,

fεX = εY f : fg−f → f, εXg
− = g−εY : g−fg− → g−,

ηX : 1X → g+f, ηY : 1Y → fg+,

fηX = ηY f : f → fg+f, ηXg
+ = g+ηY : g → g+fg+,

(3.50)

g−
g−ηY //

ηXg
−

��

g−fg+

εXg
+

��
= (pf-coherence).

g+fg−
g+εY

// g+

(3.51)

This yields a natural transformation, the comparison from past to

future

g : g− → g+ : Y → X, g = εXg
+.g−ηY = g+εY .ηXg

−, (3.52)

which, when convenient, will be seen as a functor g : Y → X2 with values

in the category of morphisms of X

g : Y → X2, gy : g−y → g+y, g(b) = (g−b, g+b). (3.53)

A pf-equivalence will often be written in one of the follwing forms

f : X ←−−→←− Y, f : X ←−−→←− Y : gα,

leaving the rest understood.

It will be said to be faithful if both the past and the future equivalence

which compose it are faithful. By 3.3.1, this is the case if and only if

our data satisfy these equivalent conditions:

(i) all the components of ηX , ηY are mono and all the components of

εX , εY are epi,

(ii) the functors f, g−, g+ are faithful; all the components of ηX , ηY are

epi and all the components of εX , εY are mono.

Two dual types of pf-equivalences, where g−, g+ are ‘split’ adjoint to

f , will be treated below.
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3.4.2 Composition of pf-equivalences

A pf-equivalence is not a symmetric structure. But they compose, by

the composition of past equivalences and future equivalences (Section

3.3.3).

Thus, given f : X ←−−→←− Y : gα (as in (3.50)) and a second pf-equivalence

h : Y ←−−→←− Z : k−, k+,

σY : k−h→ 1Y , σZ : hk− → 1Z ,

ζY : 1Y → k+h, ζZ : 1Z → hk+,

(3.54)

their composite is:

hf : X ←−−→←− Z : gαkα (α = ±),

εX .g
−σY f : g−k−.hf → g−f → 1X ,

σZ .hεY k
− : hf.g−k− → hf.g−k− → 1Z , . . .

(3.55)

The following diagram shows that coherence holds (functors are re-

placed with dots, in the labels of arrows)

g−k−
.ζZ // g−k−hk+ .ηY . //

.ηY .

��

g−k−hfg+k+

.σY .

��
g−k−

.ηY . //

ηX . ���

g−fg+k−
.ζZ//

εX .��

g−fg+k−hk+ .σY . //

εX .��

g−fg+k+

εX .

��

g+fg−k−
.εY .

//

.ζY . ��

g+k−
.ζZ //

.ζY . ���

g+k−hk+

.σY .��
g+k+hfg−k−

.εY .
// g+k+hk−

.σZ
// g+k+ g+k+

In fact, the outer square commutes, because all the inner ones do,

either by pf-coherence of the data (when marked with a box) or by

middle-four interchange.

In particular, the commutativity of the right upper square comes from

applying middle-four interchange twice:

g−k−hk+ .ηY . //

.ηY .

��

.σY . ''

g−k−hfg+k+

.σY .

��

g−k+

.ηY .

((
g−fg+k−hk+

.σY .
// g−fg+k+
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3.4.3 Lemma (Pf-coherence)

In a pf-equivalence f : X ←−−→←− Y : gα, the condition of pf-coherence is

redundant (i.e. follows from the other axioms) whenever f is faithful or

surjective on objects.

Proof Indeed, post- and pre-composing the diagram (3.51) with the

functor f , we get two diagrams whose commutativity follows from the

other coherence conditions, together with middle-four interchange

fg−
fg−ηY //

fηXg
−

��

εY
&&

fg−fg+

fεXg
+

��

g−f
g−ηY f //

ηXg
−f

��

εX
&&

g−fg+f

εXg
+f

��
1Y

ηY
&&

1X

ηX
&&

fg+fg−
fg+εY

// fg+ g+fg−f
g+εY

// g+f

(3.56)

Since a faithful functor is left-cancellable with respect to parallel natu-

ral transformations (fϕ = fψ implies ϕ = ψ), while a functor surjective

on objects is right-cancellable, the thesis follows.

3.4.4 Injections and projections

(a) A pf-equivalence f : X ←−−→←− Y : gα will be called a pf-injection, or

pf-embedding, if the functor f is a full embedding (i.e. full, faithful and

injective on objects). Pf-embeddings compose, with the composition of

pf-equivalences (Section 3.4.2); they will give rise to the notion of an

‘injective model’ of a category (Section 3.5.1).

It is easy to see that a pf-embedding f : X ←−−→←− Y : gα amounts to

these three functors together with the two natural transformations at Y ,

satisfying the conditions below

εY : fg− → 1Y (the main counit),

ηY : 1Y → fg+ (the main unit),

fg−εY = εY fg
−, fg+ηY = ηY fg

+.

(3.57)

In fact, these data can be uniquely completed to a pf-injection: there

is a unique natural transformation ηX : 1X → g+f (the secondary unit)

such that fηX = ηY f : f → fg+f (because the latter transformation

lives in the full image of f in Y , i.e. the full subcategory of Y determined

by the objects which are reached by the functor f). The coherence

relation ηXg
+ = g+ηY comes from cancelling f in f(ηXg

+) = ηY fg
+ =

f(g+ηY ). Similarly, there is one εX : g−f → 1X such that fεX = εY f
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(and it is coherent with εY ). Finally, the global pf-coherence condition

(3.51) automatically holds, by the previous lemma.

(b) A pf-equivalence f : X ←−−→←− Y : gα will be called a pf-surjection if

the functor f is surjective on objects, and a pf-projection if, moreover,

the associated functor g : Y → X2 (3.53) is a full embedding. The latter

structure will give a ‘projective model’ of the category X (Section 3.5.1).

We already know that, in a pf-surjection, pf-coherence is automatic

(Lemma 3.4.3); it is also obvious that the transformations at Y are

determined by the transformations atX (since εY f = fεX , ηY f = fηX),

but here it seems to be less easy to deduce the former from the latter.

3.4.5 Theorem (The middle model)

A pf-equivalence f : X ←−−→←− Y : gα has an associated pf-surjection and

an associated pf-injection

p : X ←−−→←− Z : rα, i : Z ←−−→←− Y :hα, (3.58)

where f = ip. This determines Z (the middle model), i and p up to

category isomorphism; and one can always take for Z the full subcategory

of Y on the objects fx (x ∈ X). Moreover, if the given pf-equivalence is

faithful, so are the two associated ones.

(In general, this is not a factorisation: the composition of these two

pf-equivalences does not give back the original one. Furthermore, the pf-

surjection need not be a pf-projection, but this will be true in the cases

of interest, below.)

Proof Let us write the units and counits of f : X ←−−→←− Y : gα as in

(3.50). The functor f : X → Y has an essentially unique factorisation

f = ip where p is surjective on objects and i : Z → Y is a full embedding:

take as Z the full image of f (cf. 3.4.4).

Then, we define four functors (α = ±)

rα = gαi : Z → X, hα = pgα : Y → Z, (3.59)

so that:

rαp = gαf, ihα = fgα,

prα = pgαi = hαi, rαhα = gαipgα = gαfgα.

(Here we can already note that rαhα need not be gα.) Now, for the
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pf-injection (i, hα), we only need to observe that the original natural

transformations εY , ηY work as main counit and unit (cf. (3.57))

εY : ih− = fg− → 1Y , ηY : 1Y → ih+ = fg+,

since we already know that they commute with ih− = fg− and ih+ =

fg+, respectively.

On the other hand, the first pf-equivalence (p, rα) is completed with

the natural transformations

εX : r−p = g−f → 1X , ηX : 1X → r+p = g+f,

εZ : pr− → 1Z , iεZ = εY i : ipr
− = fg−i→ i,

ηZ : 1Z → pr+, iηZ = ηY i : i→ ipr+i = fg+i,

where εX , ηX are the original ones; εZ is a restriction of εY (justified by

the fact that εY i : fg
−i = ipr → i lives in the full subcategory Z); and,

similarly, ηZ is a restriction of ηY .

Its coherence is deduced below, in brackets, from the analogous prop-

erties of the original data (recall that the pf-coherence relation need not

be checked, by Lemma 3.4.3)

pεX = εZp (ipεX = fεX = εY f = εY ip = iεZp),

εXr
− = r−εZ (εXr

− = εXg
−i = g−εY i = g−iεZ = r−εZ),

pηX = ηZp (ipηX = fηX = ηY f = ηY ip = iηZp),

ηXr
+ = r+ηZ (ηXr

+ = ηXg
+i = g+ηY i = g+iηZ = r+ηZ).

Finally, let us assume that the original pf-equivalence is faithful (Sec-

tion 3.4.1). We know that all the components of ηX , ηY are mono,

whence this is also true of the components of iηZ = ηY i, and then of the

ones of ηZ , because i is faithful. Dually for counits.

3.4.6 Split pf-injections

A split pf-injection, or adjoint reflexive graph, will be a pf-equivalence

i : E ←−−→←− X : pα where the natural transformations εE : p−i→ 1E and

ηE : 1E → p+i are identities. We show below that this essentially means

that E is a full subcategory, reflective and coreflective, of X.

In fact, a split pf-injection consists of three functors i : E ←−−→←− X : pα
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and two natural transformations ε and η such that:

i : E → X, p+ a i a p−,

ε : ip− → 1X (the past counit),

η : 1X → ip+ (the future unit),

p−i = 1E = p+i, p−ε = 1, εi = 1, p+η = 1, ηi = 1.

(3.60)

Note that i is a full embedding (because the adjunction p+ a i has an

invertible counit, η−1
E ), so that we do have a pf-injection. Furthermore,

the functor i essentially determines the rest of the structure: it embeds

E as a full subcategory, reflective and coreflective, with reflector p+ and

coreflector p−. Conversely, given a full subcategory E ⊂ X, which is

reflective and coreflective, we can always choose the reflector so that the

counit be an identity, and the coreflector so that the unit be an identity.

Because of pf-coherence, there is a canonical comparison p : p− → p+

from the right adjoint to the left:

p = p−η = p+ε : p− → p+ : X → E

(η.ε = ip−η = ip+ε : ip− → ip+).
(3.61)

The equations in brackets follow from middle-four interchange or

(3.56), and can also be useful.

Examples related to the present notions will be given in Section 3.6.

Forgetting about smallness, there is an elegant example in homological

algebra which presents homology in a symmetric way. Start from the

embedding i : G•Ab → Ch•Ab of (unbounded) graded abelian groups

into chain complexes, as complexes with a null differential. The left and

right adjoints are computed on a chain complex A = (A•, ∂•), as

p+A = Cok(∂•) = A•/∂•(A•), p−A = Ker(∂•). (3.62)

Now, the graded group H•(A) can be defined as the image of the

comparison pA : p−A→ p+A.

3.4.7 Split pf-projections

The dual notion of split pf-projection is well-known in category theory:

it has been studied under the name of essential localisation [KL, BK],

or ‘unity and identity of adjoint opposites’ [Lw2].

It can be presented as a pf-equivalence p : X ←−−→←− M : iα where

the natural transformations εM : pi− → 1M and ηM : 1M → pi+ are
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identities. The structure consists thus of three functors (p, i−, i+) and

two natural transformations satisfying:

p : X →M, i− a p a i+,

ε : i−p→ 1X (the past counit),

η : 1X → i+p (the future unit),

pi− = 1M = pi+, pε = 1, εi− = 1, pη = 1, ηi+ = 1.

(3.63)

Thus, p is surjective on objects (and maps as well), so that pf-coherence

is automatic (by Lemma 3.4.3) and we have a pf-equivalence, actually a

pf-surjection, which we prove below to be a pf-projection (Proposition

3.4.8).

Again, by pf-coherence, we have one comparison i : i− → i+

i = ηi− = εi+ : i− → i+ : M → X,

(η.ε = ηi−p = εi+p : i−p→ i+p).
(3.64)

Examples will be given in Section 3.6. But we can already note that

(forgetting about smallness) the forgetful functor p : Top → Set from

topological spaces to sets has such a structure, with left (resp. right)

adjoint provided by the discrete (resp. indiscrete) topology

p : Top ←−−→←− Set : iα, i− a p a i+ (ε : i−p→ 1, η : 1→ i+p),

(so that Set is a faithful projective model of Top, as defined in 3.5.1).

3.4.8 Proposition (Split pf-projections)

The structure described in (3.63) is a pf-projection (Section 3.4.4(b)).

Proof We have already observed that p is surjective on objects, so that

our data define a pf-equivalence, and actually a pf-surjection (Section

3.4.4(b)).

Moreover, the embeddings i− and i+ are full and faithful, because the

past unit and the future counit are invertible. (Here, one may recall

that, starting from a pair of adjunctions i− a p a i+ in a 2-category, it

is well-known - but not obvious - that the unit of the first adjunction is

invertible if and only if the counit of the second is; cf. [KL], Prop. 2.3.)

Thus, the comparison i : M → X2 is also an embedding. To prove

that i is full, take a morphism in X2, from iy to iy′; since i− and i+ are
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full, this morphism can be written as the commutative square below

i−y
iy //

i−b′

��

i+y

i+b′′

��
i = ηi− = εi+.

i−y′
iy′
// i+y′

(3.65)

Applying p, and noting that the natural transformation pi is the iden-

tity, we deduce that b′ = b′′. Calling b : y → y′ this morphism of M , the

given square is i(b) : iy → iy′.

3.4.9 Two structural pf-equivalences

(a) Every category X has a structural split pf-injection into its category

of morphisms X2, determined by the cocylinder structure of the latter

(or, equivalently, by the structure of 2 as a reflexive graph in Cat)

e : X ←−−→←− X2 : ∂−, ∂+, (3.66)

e(x) = 1x : x→ x; ∂α(a : x− → x+) = xα (α = ±),

ε(a : x− → x+) = (1, a) : 1x− → a (the counit),

η(a : x− → x+) = (a, 1) : a→ 1x+ (the unit),

∂ = id: X2 → X2 (the comparison).

(b) Dually, there is a structural split pf-projection from X×2 onto X,

determined by the cylinder structure of X×2

e : X×2 ←−−→←− X : ∂−, ∂+, (3.67)

e(x, α) = x; ∂α(x) = (x, α) (α = 0, 1),

ε(x, α) = (x, 0→ α) : (x, 0)→ (x, α) (the counit),

η(x, α) = (x, α→ 1) : (x, α)→ (x, 1) (the unit),

∂ = id: X×2→ X×2 (the comparison).

3.5 Injective and projective models of categories

Injective and projective models, defined in 3.5.1, will be the main tool

of this section. A pf-presentation of a category, formed of a past and a

future retract (Section 3.5.2), yields both an injective model (Theorem

3.5.3) and a projective one (Theorem 3.5.7), for the given category.
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3.5.1 Main definitions

(a) Let i : E ←−−→←− X be a pf-embedding, i.e. a pf-equivalence where i is

a full embedding (Section 3.4.4(a)). In this situation, we say that E is

an injective model of X, and that X is injectively modelled by E.

Two categories will be said to be injectively equivalent if they can be

linked by a finite chain of pf-embeddings, forward or backward. Faithful

pf-injections (Section 3.4.1) give raise to faithful injective models and

faithfully injectively equivalent categories.

(b) Similarly, a surjective model M of X is given by a pf-surjection

p : X ←−−→←− M : rα, i.e. a pf-equivalence where p is surjective on objects

(Section 3.4.4(b)).

More particularly (and more interestingly), a projective model M of X

is given by a pf-projection p : X ←−−→←− M : rα, i.e. a pf-surjection where

the associated functor r : M → X2 is a full embedding (Section 3.4.4(b)).

Such a model will generally be seen as a full subcategory r : M → X2.

The projective equivalence relation is generated by pf-projections. The

faithful case is defined analogously.

In the rest of this section, the faithful case will generally be inserted

in square brackets.

3.5.2 Pf-presentations

We now introduce another structure which combines past and future

notions, and will be shown to give rise to an injective model (Theorem

3.5.3) and a projective one (Theorem 3.5.7).

A [faithful] pf-presentation of the category X will be a diagram con-

sisting of a [faithful] past retract P and a [faithful] future retract F of

X

P
i− // X
p−
oo

p+ // F
i+
oo (3.68)

ε : i−p− → 1X (p−i− = 1, p−ε = 1, εi− = 1),

η : 1X → i+p+ (p+i+ = 1, p+η = 1, ηi+ = 1),

so that P is a full coreflective subcategory ofX, while F is a full reflective

subcategory.

We have thus two split adjunctions i− a p−, p+ a i+; and a composed

one, from P to F , which no longer splits, with the following counit and
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unit

p+i− a p−i+,

p+εi+ : p+i−.p−i+ → p+i+ = 1F , p−ηi− : 1P = p−i− → p−i+p+i−.

3.5.3 Theorem and Definition

(Pf-presentations and injective models)

Given a [faithful] pf-presentation of the category X (written as above,

in (3.68)), let E be the full subcategory of X on ObP ∪ ObF and u its

embedding in X.

(a) These data can be uniquely completed to a diagram with four com-

mutative squares (adding the functors jα, qα of the lower row)

P
i− // X

p+ //

p−
oo F

i+
oo X

r−

��
r+

��
P

j− // E
q+ //

q−
oo

u

OO

F
j+
oo E

OO

(3.69)

Moreover:

(b) there is a unique natural transformation εE : j−q− → 1E such that

uεE = εu;

(c) there is a unique natural transformation ηE : 1E → j+q+ such that

uηE = ηu;

(d) these transformations make the lower row a [faithful] pf-presentation

of E;

(e) letting rα = jαpα : X → E (α = ±), we get a [faithful] pf-embedding

(u, r−, r+; εE , ε, ηE , η) u : E → X,

and E will be called the [faithful] injective model generated by the given

[faithful] pf-presentation of X.

(f) The functors urα : X → X are idempotents, with ur−ε = 1ur− =

ur−ε and ur+η = 1ur+ = ur+η.

Proof

(a) We (must) take j+ : F ⊂ E (so that uj+ = i+) and q+ =

p+u : E → F ; dually j− : P ⊂ E and q− = p−u : E → P .

Now, we prove (b) to (d), completing the lower row of diagram (3.69)

to a pf-presentation of E, as stated. On the right-hand side, we already
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know that q+j+ = p+uj+ = p+i+ = 1F . Moreover, all the components

of ηu : u→ i+p+u : E → X belong to the (full) subcategory E, because

both its functors take values there (since i+p+u = uj+q+); there is thus

a unique natural transformation ηE : 1E → j+q+ such that uηE = ηu,

and it is easy to verify that ηEj
+ = 1 and q+ηE = 1.

(e) We complete the pf-embedding letting rα = jαpα : X → E, and

observe that:

ur+ = uj+p+ = i+p+, r+u = j+p+u = j+q+.

Therefore, we can take the natural transformation

η : 1X → i+p+ = ur+,

as main unit (cf. (3.57)) of the pf-embedding u : E ←−−→←− X : rα; the

secondary unit is ηE , by (c); similarly for counits. Finally, point (f) is a

straightforward consequence of iαpα = urα.

[The faithful case is proved in the same way. Point (d) requires a

specific argument: we know that all the components of η are mono,

whence the same holds for the components of uηE = ηu, and also for

the ones of ηE , since u is faithful; dually for counits.]

3.5.4 Comments

Given a pf-presentation of the category X, with the same notation as in

3.5.3

(a) composing the future equivalences F � X � E, one gets the pair

j+ : F � E : q+;

(b) composing the future equivalences F � E � X, one gets the pair

i+ : F � X : p+;

and symmetrically for the past retracts.

On the other hand, the future equivalence u : E � X : r+ is not the

composition of the future equivalences E � F � X (in general): the

image of i+q+ : E → X is F , instead of E.

3.5.5 Factorisation of adjunctions

We have already seen, in Theorem 3.3.5, that a future equivalence has

a canonical factorisation into a future section followed by a future re-

traction. Similarly, we show now that an adjunction has a canonical
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factorisation into a past section (the embedding of a full coreflective

subcategory) followed by a future retraction (the reflector onto a full

reflective subcategory).

This factorisation is implicitly considered in Gray [Gy2] (see I,1.11-

12). In the category of adjunctions, this factorisation is functorial (cf.

[JT, GT]) and mono-epi, but we shall not need these facts.

Let f : X � Y : g be an adjunction, with unit η : 1→ gf and counit

ε : fg → 1. We shall factorise it through the following comma category,

the graph of the adjunction

W = (X ↓ g) = (f ↓ Y ), (3.70)

where we identify an object (x, y;u : x→ gy) of (X ↓ g) with the corre-

sponding (x, y; v : fx→ y) in (f ↓ Y ). The factorisation is obvious

X
i− // W

p+ //

p−
oo Y

i+
oo i− a p−, p+ a i+, (3.71)

i−(x) = (x, fx; ηx : x→ gfx) = (x, fx; 1fx),

p−(x, y; v : fx→ y) = x,

εW : i−p− → 1W ,

εW (x, y; v : fx→ y) = (1x, v) : (x, fx; 1fx)→ (x, y; v),

i+(y) = (gy, y; 1gy) = (gy, y; εy : fgy → y),

p+(x, y;u : x→ gy) = y,

ηW : 1W → i+p+,

ηW (x, y;u : x→ gy) = (u, 1y) : (x, y;u)→ (gy, y; 1gy).

In fact, composing these split adjunctions we get back the original

one:

p+i−(x) = fx, p−i+(y) = gy,

(p−ηW i
−)(x) = p−ηW (x, fx; ηx) = p−(ηx, 1y) = ηx,

(p+εW i
+)(y) = p+εW (gy, y; εy) = p+(1x, εy) = εy.

Functoriality can be easily checked, starting from a commutative square

of adjunctions (whose rows are already factorised)

X
i− //

h
��

W
p+ //

p−
oo

r
��

Y
i+
oo

k
��

X ′
j− //

h′

OO

W ′
q+ //

q−
oo

r′

OO

Y ′

j+
oo

k′

OO
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i− a p−, p+ a i+, f = p+i− a g = p−i+,

h a h′, k a k′,

j− a q−, q+ a j+, f ′ = q+j− a g′ = q−j+.

One defines the functors r, r′ as follows

r : W →W ′, r′ : W ′ →W,

r(x, y; v : fx→ y) = (hx, ky; kv : f ′hx = kfx→ ky),

r′(x′, y′;u′ : x′ → g′y′) = (h′x′, k′y′;h′u′ : h′x′ → h′g′y′ = gk′y′).

and constructs an adjunction r a r′ which gives commutative squares

in the factorisation above.

3.5.6 Faithful adjunctions

We shall say that the adjunction f a g is faithful if the functors f, g are

faithful, or - equivalently - if the components of ε are epi and the com-

ponents of η are mono (Section A3.3). Obviously, faithful adjunctions

compose.

Now, we can adapt the previous result, obtaining a similar factorisa-

tion into a faithful past section followed by a faithful future retraction.

We restrict W to its full subcategory W0 (the faithful graph) of objects

(x, y;u : x→ gy) = (x, y; v : fx→ y) such that:

• u : x→ gy is mono and the corresponding v : fx→ y is epi.

Indeed, the functor i− (resp. i+) take values in W0, because every

ηx is mono and corresponds to 1fx (resp. every 1gy corresponds to εy,

which is epi). Moreover, the restricted adjunctions are faithful, because

the components of εW (x, y; v) = (1x, v) and ηW (x, y;u) = (u, 1y) on the

objects of W0 are, respectively, epi and mono.

3.5.7 Theorem and Definition

(Pf-presentations and projective models)

(a) Given a pf-presentation of the category X (with notation as in (3.68)),

there is an associated projective model M of X, constructed as follows

P
i− // X

p+ //

p−
oo

f
��

F
i+

oo X

��

X

��
P

j− // W
q+ //

q−
oo F

j+
oo W

r−

OO

r+

OO

M

OO OO

(3.72)
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The lower row is the canonical factorisation (see (3.71)) of the com-

posed adjunction P � F , through its graph, the category W , which

(here) can be embedded as a full subcategory of X2

W = (P ↓ p−i+) = (p+i− ↓ F ) = (i− ↓ i+) ⊂ X2.

Then, there exists a pf-equivalence f : X ←−−→←− W : rα, with

rαf = iαpα, jα = fiα, (3.73)

which inherits the counit ε from the adjunction i− a p− and the unit η

from p+ a i+; its comparison r : W → X2 (cf. (3.52)) coincides with

the embedding (i− ↓ i+) ⊂ X2.

Finally, replacing W with its full subcategory M of all objects of type

fx (for x ∈ X) we have a projective model p : X ←−−→←− M : rα. The

adjunctions of the lower row can be restricted to M (since jα = fiα), so

that P and F are also, canonically, a past and a future retract of M .

(b) If the given pf-presentation of X is faithful, so is the associated

projective model p : X ←−−→←− M , and M is a full subcategory of the

faithful graph W0 ⊂W (Section 3.5.6).

Proof (a) The comma category W = (i− ↓ i+) is a full subcategory of

X2, because both iα are full embeddings; it has a canonical isomorphism

with the ‘graph’ (P ↓ p−i+) = (p+i− ↓ F )

(i− ↓ i+) → (P ↓ p−i+), (P ↓ p−i+) → (i− ↓ i+),

(x, y;w : i−x→ i+y) 7→ (x, y; p−w : x→ p−i+y),

(x, y;u : x→ p−i+y) 7→ (x, y; εi+y.i−u : i−x→ i+y),

p−(εi+y.i−u) = u, εi+y.i−p−w = w.εx = w.εi−p−x = w.

(3.74)

We define the three functors f : X ←−−→←− W : rα

f(x) = (p−x, p+x; ηx.εx : i−p−x→ i+p+x),

r−(x, y; w : i−x→ i+y) = i−x,

r+(x, y; w : i−x→ i+y) = i+y,

(3.75)

and observe that they satisfy the relations (3.73). Then, we complete

the pf-equivalence with the following counits and units (ε and η are the

‘original’ ones, in the pf-presentation of X):

εX = ε : r−f = i−p− → 1X , ηX = η : 1X → r+f = i+p+,

εW : fr− → 1W , ηW : 1W → fr+,
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εW (x, y;w : i−x→ i+y) =

(1x, p
+w) : (x, p+i−x; ηi−x : x→ i+p+i−x)→ (x, y;w : i−x→ i+y),

ηW (x, y;w : i−x→ i+y) =

(p−w, 1y) : (x, y;w : i−x→ i+y)→ (p−i+y, y; εi+y : i−p−i+y → y).

The coherence conditions are easily verified. Moreover, the com-

parison functor r : W → X2 (coming from the natural transforma-

tion r = εXr
+.r−ηW : r− → r+) coincides with the full embedding

(i− ↓ i+) ⊂ X2

r(x, y;w : i−x→ i+y) = εX i
+y.r−(p−w, 1y) = εi+y.i−p−w = w,

r(a, b) = (i−a, i+b).

The last assertion follows from Theorem 3.4.5 on the ‘middle model’,

since M ⊂W ⊂ X2 is also full in the latter.

(b) Assume that the given pf-presentation is faithful. Since the faith-

ful graph W0 has been defined, in 3.5.6, as a full subcategory of (P ↓
p−i+) = (p+i− ↓ F ), let us rewrite f via the identification (3.74)

f(x) = (p−x, p+x; ηx.εx : i−p−x→ i+p+x)

= (p−x, p+x; p−ηx : p−x→ p−i+p+x)

= (p−x, p+x; p+εx : p+i−p−x→ p+x).

(3.76)

Now, f(x) ∈ W0 because p−ηx is mono (so is ηx, by hypothesis, and

p− is a right adjoint), while the corresponding p+εx is epi (dually).

Moreover, restricting to M , the new units are component-wise mono

ηX(x) = ηx, ηW (f(x)) = (p−ηx, 1p+ x),

and the new counits are componentwise epi.

(Replacing W with W0 in the proof of (a), above, we would arrive at

the same result.)

3.5.8 From injective to projective models

In particular, a split injective model i : E ←−−→←− X : pα (Section 3.4.6)

has an associated projective model (which need not be split, cf. 3.6.5).

In fact, our structure gives a pf-presentation

E
i // X

p+ //

p−
oo E

i
oo ε : ip− → 1X , η : 1X → ip+, (3.77)

Since i : E → X is full (Section 3.4.6), the category W = (i ↓ i) ⊂ X2
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of the associated projective model can be identified with E2, and the

functor f : X →W (in (3.75)) with the comparison p : p− → p+, viewed

as a functor p : X → E2. The pf-equivalence between X and W = E2

(in (3.73)) becomes thus

p : X ←−−→←− E2 : rα, p(x) = (p−x, p+x; p+εx.p−ηx),

and restricts to a pf-projection p′ : X ←−−→←− M with values in the full

subcategory M ⊂ E2 whose objects are the morphisms px : p−x→ p+x.

(Example 3.6.5 will show that M can be a proper subcategory).

3.6 Minimal models of a category

In this section, pf-equivalences are used to analyse a category, via injec-

tive and projective models. The faithful case is considered at the end,

in 3.6.7.

3.6.1 Ordinary skeleta

Let us briefly review the usual, non-directed notion of a skeleton in

category theory (cf. [M3]). A category is said to be skeletal if it has a

unique object in each class of isomorphic objects; two equivalent skeletal

categories are necessarily isomorphic.

The skeleton of a category X is a skeletal category equivalent to the

former, determined up to isomorphism of categories. It always exists:

one can choose one object in each class of isomorphic objects (in X)

and take their full subcategory X0; then its embedding in X is faithful,

full and essentially surjective on objects, and therefore an equivalence of

categories (cf. A1.5). Two categories are equivalent if and only if their

skeleta are isomorphic; therefore, skeleta classify equivalence classes of

categories.

For our present analysis, it will be useful to note two facts. First, the

skeleton of a category X can also be defined as a category E such that:

(a) E has an ‘injective equivalence’ into X,

(b) every injective equivalence E′ → E is an isomorphism of categories,

where ‘injective equivalence’ denotes an equivalence of categories which

is injective on objects (and, necessarily, on maps).

Second, the uniqueness of the skeleton of a category X can be ex-

pressed as follows: given two skeleta i : E → X and j : E′ → X
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(c) there is a unique mapping u : ObE → ObE′ such that, for every

z ∈ E, i(z) ∼= ju(z) in X,

(d) for every choice of a family of isomorphisms λ(z) : i(z)→ ju(z), the

mapping u has a unique extension to a functor u : E → E′ making that

family a natural transformation λ : i→ ju.

Thus, the injective equivalence E → X of a skeleton is determined up

to a natural isomorphism, which is not unique.

3.6.2 Minimal models

(a) By definition, an injective model of the category X is given by a

pf-embedding i : E ←−−→←− X (Section 3.5.1). We say that E is a minimal

injective model of X if:

(i) E is an injective model of every injective model E′ of X,

(ii) every injective model E′ of E is isomorphic to E.

We say that it is a strongly minimal injective model if it also satisfies

the condition (i′), stronger than (i):

(i′) E is an injective model of every category injectively equivalent to

X (see 3.5.1).

Note that we are not requiring any consistency of the embeddings.

Thus, the minimal injective model of a category X is determined up to

isomorphism (when existing); but the isomorphism itself is generally un-

determined, and the pf-embedding E → X will not even be determined

up to isomorphism, as we will see in various examples (Sections 3.6.5

and 3.6.6).

Two categories having a common injective model are injectively equiv-

alent. Moreover, strongly minimal injective models classify injective

equivalence (when they exist): if the category X has a strongly min-

imal injective model E, then the category Y is injectively equivalent to

X if and only if E is also an injective model of Y (in which case, it is

also a strongly minimal injective model of the latter).

(b) Similarly, a projective model of X is given by a pf-projection p :

X ←−−→←− M (Section 3.5.1). We define a (strongly) minimal projective

model of X as above, in the injective case.

We shall see that the two notions are different: a category with ini-

tial and terminal object is always projectively contractible, while it is

injectively contractible if and only if it is pointed (Section 3.6.4). Other
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comparisons of these two kinds of models, after the hints already given

above (Section 3.1.1), will be seen in Section 3.9.

(c) Let us begin by considering the plain case of a groupoid X. Ev-

ery full subcategory E containing at least one object in each class of

isomorphic objects is an injective model (since the embedding can be

completed to an adjoint equivalence, which can be viewed as a past and

a future equivalence). Therefore, the ordinary skeleton of a groupoid is

its minimal injective model (and also its minimal projective model).

3.6.3 Lemma

Let i : E ←−−→←− X : rα be a pf-embedding (Section 3.4.4).

(a) The functor i preserves the initial and terminal object, while r− pre-

serves the initial one and r+ the terminal one. All of them preserve

the zero object (if any).

(b) The category E has an initial (resp. terminal, zero) object if and

only if X does.

Proof The first part of (a) follows from Lemma 3.3.8, as well as the fact

that i preserves the zero object. This also proves the ‘only if’ part of

(b).

Suppose now that X has an initial object 0 and a terminal one, 1.

Then r−(0) is initial and r+(1) is terminal in E; moreover ir−(0) ∼= 0

(because ir−(0) is initial in X) and ir+(1) ∼= 1, so that 0 ∼= 1 in X

if and only if r−(0) ∼= r+(1) in E (again because i is full and faithful).

3.6.4 Injective and projective contractibility

We say that a category X is injectively (resp. projectively) contractible

if it is injectively (resp. projectively) equivalent to 1.

Being injectively contractible is equivalent to each of the following

conditions:

(a) X is pointed (i.e. it has a zero object),

(b) 1 is a (split) injective model of X,

(c) 1 is a strongly minimal injective model of X.

Indeed, if X is injectively equivalent to 1 then it is pointed (because of

the previous lemma). If this is true, then we have functors i : 1 � X : p
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with p a i a p, so that 1 is a (split) injective model of X; and, in this

case, strong minimality is obvious. Finally, (c) trivially implies that X

is injectively equivalent to 1.

On the other hand, a category X with non-isomorphic initial and

terminal object is injectively modelled by the ordinal 2 = {0→ 1}, with

the obvious pf-embedding i : 2 ←−−→←− X : rα (not split)

r−(x) = 0; εE(z) : 0→ z, ε(x) : 0→ x,

r+(x) = 1, ηE(z) : z → 1, η(x) : x→ 1.

This is actually the strongly minimal injective model of X. Indeed,

again by the previous Lemma, every category injectively equivalent to

X has an initial and terminal object which are not isomorphic, and is

thus injectively modelled by 2. Second, any injective model E′ → 2 is

surjective on objects (and a full embedding), whence an isomorphism.

It is interesting to note that 2, the directed interval of Cat (Section

3.3.0) is not injectively contractible.

On the other hand, on the projective side, the existence of the initial

and terminal objects is necessary and sufficient to make a category X

projectively contractible, via the split pf-projection p : X ←−−→←− 1 : iα,

with i−(∗) = 0 and i+(∗) = 1.

In all these cases, the faithful notion of contractibility restricts the

categories X to preorders (as in 3.3.7).

3.6.5 The model of the ordered line

(Here, all the categories will be ordered sets, so that all coherence con-

ditions are automatically satisfied and all equivalences are faithful.) We

want to model the ordered real line r as a category; note that r is the

fundamental category of the ordered topological space ↑R.

The full subcategory z of integers is a split injective model of r, with

i : z ⊂ r and its adjoint retractions (p−i = id = p+i)

p−(x) = max{k ∈ z | k 6 x}, εx : ip−(x) 6 x, (i a p−),

p+(x) = min{k ∈ z | k > x}, ηx : x 6 ip+(x), (p+ a i),
(3.78)

consisting of the integral part p−(x) = [x] and of p+(x) = −[−x].

It is, in fact, a minimal injective model of r. For every injective

model u : E ←−−→←− r : rα, E is a subset of r with the induced preorder,

necessarily initial in r, i.e. unbounded below (since ur−(x) 6 x), and

final in r, i.e. unbounded above; choosing an arbitrary order-preserving
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embedding (xk)k∈z of z into E, unbounded both ways, we have again

a split pf-injection z → E (with right and left adjoint constructed as

above). Moreover, if E is an injective model of z, then it is unbounded

there and necessarily order-isomorphic to it.

Of course, r contains various minimal injective models, all isomorphic

but not isomorphically embedded (since the only isomorphisms of the

category r are the identities); e.g. 2z (properly contained in z) and 1/2+z

(disjoint from z).

By 3.5.8, the split pf-injection z→ r has an associated pf-equivalence

p : r ←−−→←− z2 : rα with values in the order category of pairs of integers

(k, k′) with k 6 k′

p(x) = (p−x, p+x), r−(k, k′) = k, r+(k, k′) = k′,

which - essentially - sends a real number to the least interval [k, k′]

with integral endpoints, containing it. Reducing the codomain of p to

the full subcategory z′ ⊂ z2 of pairs (k, k′) with k 6 k′ 6 k + 1, we

get the associated projective model p′ : r ←−−→←− z′, which is not split

(p′r−(k, k′) = (k, k)).

It is interesting to note that there is no split pf-projection p : r → z;

in fact, the pre-images of integers would form a sequence of disjoint

compact intervals Ik = p−1{k} = [i−(k), i+(k)], with Ik (strictly) pre-

ceding Ik+1; but such a sequence does not cover the line: it leaves gaps

]i+(k), i−(k + 1)[.

Injective models of trees will be considered later (Section 3.9.1).

3.6.6 The model of the directed circle

Consider now the fundamental category c = ↑Π1↑S1 of the directed

circle (cf. 3.2.7(d)), i.e. the subcategory of the fundamental groupoid

Π1(S1) of the circle containing all points and the homotopy classes of

those paths which move ‘anticlockwise’ in the oriented plane R2.

We prove now that the minimal injective model of c is its full sub-

category E = ↑π1(↑S1, x) at a(ny) point x, which we identify with the

additive monoid N of the natural numbers.

First, we show that the embedding i : E → c has a left and a right

adjoint, forming a split pf-injection

i : E → c, p+ a i a p−,

ε : ip− → 1c (past counit), η : 1c → ip+ (future unit).
(3.79)
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x• x

b

• x

c

• x

d

•

__ __ __

??

p−[b] = 1, p−[c] = 0, p−[d] = 1, p+[b] = 1, p+[c] = 1, p+[d] = 0.

Roughly speaking, both the functors p−, p+ : c→ E count the number

of times that a directed path a in ↑S1 crosses the point x, a number which

only depends on the homotopy class [a] in c, because of our restriction

on paths. But the precise definition is different: p−[a] is the number of

times that a reaches x from below, while p+[a] is the number of times

that a leaves x upwards (the examples above show the difference). Then,

the counit component εx′ : x→ x′ is the class of the ‘least anticlockwise

path’ from x to x′ (so that p−(εx′) = 0 is indeed the identity of the

monoid); and dually for ηx′ : x′ → x (now, p+(ηx′) = 0). The coherence

properties (3.60) hold.

Now, if E′ is an injective model of c (hence a full subcategory), the

full subcategory of E′ (and c) on some point x′ is pf-embedded in E′ as

above, and isomorphic to E; moreover, E - having just one object - is

the unique injective model of itself.

Similarly, one can prove that the minimal injective model of the funda-

mental category of the directed torus (↑S1)n is the fundamental monoid

at any point, isomorphic to Nn.

On the other hand, the projective model of c given by the split pf-

injection E → c is the full subcategory of the category E2 on the two

objects 0, 1: x → x (always identifying E = ↑π1(↑S1, x) = N); which

seems not to be of much interest.

Consider now the fundamental categories ↑Π1(C+(S1)) and
↑Π1(C+(↑S1)), described in 3.2.8. One easily concludes that, in both

cases, a minimal injective model is given by the full subcategory on two

points, the terminal object v+ and any other, x 6= v+.

3.6.7 Minimal faithful models

The terminology of this section can be adapted to the faithful case (Sec-

tion 3.5.1) in the obvious way, for the injective and the projective case.

For instance, we say that E is a minimal faithful injective model of X if:
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(i) E is a faithful injective model of every faithful injective model E′

of X,

(ii) every faithful injective model E′ of E is isomorphic to E.

If X is balanced, every faithful pf-embedding i : E → X is essentially

surjective on objects (each component ηx : x → ir+x being an isomor-

phism), whence an equivalence of categories. Therefore, the minimal

faithful injective model of X is simply its skeleton. (But note that the

fundamental categories of the d-spaces which we are considering are of-

ten not balanced, cf. Section 3.9.)

A category can have a minimal injective model and a different minimal

faithful injective model. For instance, the well-known category ∆+ of

finite ordinals (the site of augmented simplicial sets), being skeletal and

balanced, is already a minimal faithful injective model (of itself), while

its minimal injective model is 2 (Section 3.6.4); the same happens with

the category of finite cardinals (and all mappings).

3.7 Future invariant properties

We investigate now various properties, of morphisms and objects, which

are invariant under future (or past) equivalence. They arise from ‘branch-

ing’ or ‘non-branching’ properties, and will be used in the following sec-

tions to identify and construct minimal models of categories.

Most of the material of this section comes from [G14], but the present

definition of the ‘future regularity equivalence’ x ∼+ x′ (Definition 3.7.6)

is finer, and many parts have been modified according to this. In the

applications below, this modification gives better results in some cases

(e.g. in 3.9.7), and the same results in most cases.

3.7.1 Future regularity

A morphism a : x → x′ in X will be said to be V+-regular if it satisfies

condition (i), O+-regular if it satisfies (ii), and future regular if it satisfies

both:

(i) given a′ : x → x′′, there is a commutative square ha = ka′ (V+-

regularity),

(ii) given ai : x
′ → x′′ such that a1a = a2a, there is some h such that

ha1 = ha2 (O+-regularity),
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x
a //

a′

��

x′

h

��
x

a // x′
a1 //
a2
// x′′

h // •

x′′
k
// •

(3.80)

We will see that these properties are closed under composition (Lemma

3.7.2). In a category with finite colimits or with a terminal object, all

morphisms are future regular. In a preordered set, all arrows are O+-

regular, and future regularity coincides with V+-regularity. (The rela-

tionship of these notions with filtered categories is dealt with in 3.7.4.)

On the other hand, we shall say that the map a is V+-branching if it

is not V+-regular; that it is O+-branching if it is not O+-regular; that is

a future branching morphism if it falls into at least one of the previous

cases, i.e. if it is not future regular. In the category represented below,

on the left, the morphism a is V+-branching and O+-regular, while on

the right a is O+-branching and V+-regular

x
a //

a′

��

x′ x
a //

b   

x′

a1

��
a2

��
(b = a1a = a2a).

x′′ x′′

(3.81)

Dually, we have V−-regular, O−-regular, past regular morphisms and

the corresponding branching morphisms.

3.7.2 Lemma (Future regular morphisms)

(a) V+-regular, O+-regular and future regular morphisms form (wide)

subcategories, which contain all the isomorphisms.

(b) If a composite ba is V+-regular, then the first map a is also.

(c) If a composite ba is O+-regular, then the second map b is also.

(d) If ba is V+-regular (resp. future regular) and a is O+-regular, then

b is V+-regular (resp. future regular).

(Recall that a subcategory is said to be wide if it contains all the objects

of the given category.)

Proof Take two consecutive morphisms in X, a : x→ x′ and b : x′ → x′′.

First, let us consider the property of V+-regularity. It is plainly con-

sistent with composition. On the other hand, if ba is V+-regular also
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a is: for every a′ : x → x there is a commutative square h(ba) = ka′,

which can be rewritten as (hb).a = ka′.

Second, let us consider O+-regularity. If a and b are so (and com-

posable), take two maps bi : x
′′ → x such that b1(ba) = b2(ba); by

O+-regularity of a there is some h such that h(b1b) = h(b2b); then, by

O+-regularity of b, there is some k such that khb1 = khb2. On the other

hand, if the composite ba is O+-regular, also b is: if b1b = b2b, then

b1(ba) = b2(ba) and there is some h such that hb1 = hb2.

Finally, for (d), it is sufficient to prove the first case, since the second

will then follow from (c). Take a map b′ : x′ → x; since ba is V+-regular,

there are maps c, c′ such that c(ba) = c′(b′a), i.e. (cb)a = (c′b′)a. But a

is O+-regular, hence there is some d such that d(cb) = d(c′b′)

x
a // x′

b //

b′

��
?

x′′

c

��
x

c′
// •

d
// •

and the maps dc, dc′ solve our problem.

3.7.3 Theorem (Future equivalence and regular morphisms)

Consider a future equivalence f : X � Y : g, with units ϕ : 1 → gf ,

ψ : 1→ fg.

(a) All the components ϕx and ψy are future regular morphisms.

(b) The functors f and g preserve V+-regular, O+-regular and future

regular morphisms.

(c) The functors f and g preserve V+-branching, O+-branching and

future branching morphisms (i.e. reflect V+-regular, O+-regular and

future regular morphisms).

Proof The index i always takes values 1, 2.

(a) Take a component ϕx : x → gfx. Then, a map a : x → x′ gives the

left commutative diagram, showing that ϕx is V+-regular

x
ϕx //

a

��

gfx

gfa

��

x
ϕx //

a
""

gfx
ϕgfx //

ai

��
gfa

$$

gfgfx

gfai

��
x′

ϕx′
// gfx′ x′

ϕx′
// gfx′

(3.82)
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Moreover, given ai : gfx→ x′ such that ai.ϕx = a, the right diagram

shows that ϕx′ coequalises a1 and a2: from ϕgf = gfϕ we deduce

ϕx′.ai = gfai.ϕgfx = gf(ai.ϕx) = gf(a).

(b) Suppose that a : x → x′ is V+-regular in X; we must prove that

fa : fx → fx′ is also, in Y . Given b : fx → y, we can form the left

commutative diagram in X, and then the right one, in Y

x
a //

ϕx

��

x′

h′

��

fx
fa //

b

��

ψfx=fψx

$$

fx′

fh′

��

gfx

gb

��

fgfx

fgb
��

gy
h
// x′′ y

ψy
// fgy

fh
// fx′′

Second, suppose that a : x→ x′ is O+-regular in X. Given two maps

bi : fx
′ → y such that bi.fa = b, we have (on the left, below): gbi.ϕx

′.a =

gbi.gfa.ϕx = gb.ϕx. Therefore, there exists an h in X such that the

composite h.gbi.ϕx
′ does not depend on i (see the left diagram below)

x
a //

gb.ϕx !!

x′

gbi.ϕx
′

��

fx
fa //

b ##

fx′
ψfx′

fϕx′
//

bi
��

fgfx′

fgbi��
gy

h
// x′′ y

ψy
// fgy

fh
// fx′′

Then, in the right diagram above, the composite

fh.ψy.bi = fh.fgbi.ψfx
′ = f(h.gbi.ϕx

′),

in Y , does not either depend on i.

(c) First, given a : x → x′ in X, suppose that fa is V+-regular (in Y );

we must prove that a is also. Given a′ : x → x′′, we can form the right

commutative diagram in Y , and then the left one, in X

x
a //

a′

��

ϕx

##

x′

ϕx′

��

fx
fa //

fa′

��

fx′

k′

��
gfx

gfa //

gfa′

��

gfx′

gk′

��

fx′′
k
// y

x′′
ϕx′′
// gfx′′

gk
// gy

Second, let us suppose that fa is O+-regular in Y ; given two maps
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ai : x
′ → x′′ such that ai.a = a′, there is some k such that k.fai = k′, in

the right diagram; and then, on the left, (gk.ϕx′′).ai = g(k.fai).ϕx
′ =

gk′.ϕx′ is independent of i

x
a //

a′   

x′
ϕx′ //

ai
��

gfx′

gfai
��

gk′

""

fx
fa //

fa′ ""

fx′

fai
��

k′

!!
x′′

ϕx′′
// gfx′′

gk
// gy fx′′

k
// y

3.7.4 Regular and branching points

We now consider properties of points of a category X, which will be

proved to be future invariant (Theorem 3.7.7). (We have already seen a

few, concerning maximal points, in 3.3.8.)

A point x will be said to be V+-regular if it satisfies (i), O+-regular if

it satisfies (ii), future regular if it satisfies both:

(i) every arrow starting from x is V+-regular (equivalently, two arrows

starting from x can always be completed to a commutative square),

(ii) every arrow starting from x is O+-regular (equivalently, given an

arrow a : x→ x′ and two arrows ai : x
′ → x′′ such that a1a = a2a,

there exists an arrow h such that ha1 = ha2).

It is easy to verify that x is future regular in X if and only if the

comma-category (x ↓ X) of arrows starting from x is filtered ([M3],

IX.1); but this will not be used here.

We shall say that x is a V+-branching point in X if it is not V+-regular

(i.e. if there is some arrow starting from x which is V+-branching); that

x is an O+-branching point if it is not O+-regular; that x is a future

branching point if it falls into at least one of the previous cases, i.e. if it

is not future regular.

Dually, we have the notions of V−-, O−- and past regular (resp. branch-

ing) point in X.

3.7.5 Lemma

Given a map a : x→ x′ in a category X

(a) if the point x is O+-regular (resp. future regular) so is x′,

(b) if the point x′ and the map a are V+-regular, also x is.
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Proof (a) Take a map b : x′ → x′′. Since x is O+-regular (resp. future

regular), the same is true of the maps a : x → x′ and ba : x → x′′, and

therefore of b (by 3.7.2(c), (d)).

(b) Take two maps ai : x→ xi; since a is V+-regular, one can form two

commutative squares bia = ciai; since x′ is V+-regular, we can add a

commutative square d1b1 = d2b2

•
c1 // •

d1

%%
x a //

a1
88

a2 &&

x′
b1

99

b2

&&

•

•
c2
// •

d2

99

Finally, the maps dici form a commutative square with the initial

ones, ai.

3.7.6 Definition (Future regularity equivalence)

For a category X, the future regularity equivalence relation x ∼+ x′ in

ObX is defined as follows:

(i) there exists in X a zig-zag x→ x1 ← x2 . . . xn−1 ← x′ of future

regular maps,

(ii) the points x, x′ are of the same V+-type (regular or branching) and

of the same O+-type.

(In [G14], only (i) is considered.) The future regularity class of an

object x will be written as [x]+.

It will be useful to note that each of the following conditions implies

x ∼+ x′ (by the previous lemma)

(iii) x is future regular and there is a map x→ x′,

(iv) x is O+-regular, x′ is future regular and there is a future regular

map x→ x′.

On the other hand, the category drawn in the second diagram of (3.81)

shows a future regular map b : x→ x′′ going from an O+-branching point

to a future regular one.

Note now that, in the fundamental category of the square annulus

(Section 3.1.1), the starting point 0 is V+-branching, but the choice

between the different paths starting from it can be deferred, while at

the point p the choice must be made. To distinguish these situations,

we will say that a future branching point x is effective when every future
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regular map x→ x′ reaching a point in the same future regularity class

(i.e. of the same V+- and O+-type) is a split monomorphism.

(One might expect to find here an isomorphism instead of a split

monomorphism, but the present formulation has various advantages:

e.g. it is future invariant, see 3.7.7, and works well in 3.8.2(d). For

the fundamental categories of preordered spaces, studied in Section 3.9,

the two conditions are equivalent, since there a split monomorphism is

always invertible.)

Dually, one has the past regularity equivalence relation ∼−, with past

regularity classes [x]−, and effective past branching points.

3.7.7 Theorem (Future equivalence and branching points)

The following properties of a point are future invariant (i.e. preserved

by each functor of a future equivalence):

(a) being a V+-regular, or an O+-regular, or a future regular point,

(b) being a V+-branching, or an O+-branching, or a future branching

point, or an effective one (Definition 3.7.6).

Proof Let f : X � Y : g be a future equivalence, with units ϕ : idX →
gf and ψ : idY → fg.

(a) Let us take a point x which is V+-regular in X, and prove that every

Y-arrow b : fx → y is V+-regular. Indeed, the map a = gb.ϕx : x →
gy is V+-regular, whence also fa is (by Theorem 3.7.3); but fa =

fgb.fϕx = fgb.ψfx = ψy.b, whence also the ‘first map’ b is V+-regular

(by 3.7.2(b)).

We assume now that x is O+-regular, and prove that every Y -map

b : fx → y is also. Now, the composite gb.ϕx : x → gy is O+-regular in

X, whence the ‘second map’ gb is O+-regular (Lemma 3.7.2(c)), and b

itself is O+-regular in Y (by the reflection property 3.7.3(c)).

(b) We take a point x in X such that fx is V+-regular (i.e. not V+-

branching) and prove that also x is. For every a : x→ x′ in X, fa : fx→
fx′ is V+-regular in Y ; but then a is V+-regular in X, by the reflection

property 3.7.3(c). The same holds replacing the prefix V+with O+.

Now, let x be an effective future branching point and b : fx → y a

future regular map between points of the same V+- and O+-type. Then,

we have already proved that also x and gy have the same V+- and O+-

type. Moreover, the morphism a = gb.ϕx : x → gy is future regular
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(by composition), whence a is a split mono and also fa is; but fa =

fgb.fϕx = fgb.ψfx = ψy.b, whence also b is a split monomorphism.

.

3.7.8 Theorem (Future regularity equivalence)

A future equivalence f : X � Y : g induces a bijection between the quo-

tients (ObX)/ ∼+ and (ObY )/ ∼+ (of the set of objects, up to future

regularity equivalence).

In other words:

(i) the functors f and g preserve and reflect the future regularity equiv-

alence relation ∼+,

(ii) for every x in X and y in Y , x ∼+ gfx and y ∼+ fgy.

Proof Point (ii) and the preservation property in (i) follow from 3.7.3

and 3.7.7.

Therefore, we have induced mappings ObX/ ∼+� ObY/ ∼+, which

are inverses, by (ii). This implies the reflection property in (i).

3.8 Spectra and pf-equivalence of categories

We now define the future and the past spectrum of a category, and show

that, when they exist, they are, respectively, its least full reflective and

its least full coreflective subcategory. Their join forms the pf-spectrum,

which is a strongly minimal injective model of the original category (The-

orem 3.8.8) and classifies injective equivalence (Theorem 3.8.7). The

pf-spectrum also yields a projective model (Section 3.8.5).

3.8.0 Least future retracts

By a replete subcategory of a category X we will mean a full subcategory

which is closed (in X) under isomorphic copies of objects. If C is a full

subcategory, its replete closure C ′ in X has the same skeleton.

Within full subcategories of X, we define the preorder of essential

inclusion C ≺ D by the inclusion C ′ ⊂ D′ of their replete closures

(which reduces to C ⊂ D, when X is skeletal - as will often be the

case in our applications). We are interested in the least full reflective

subcategory, or least future retract F of X, for this preorder. If it exists,

its replete closure is strictly determined as the least replete reflective
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subcategory of X (with respect to inclusion); and a category Y is future

equivalent to X if and only if F is also a future retract of Y (by Theorem

3.3.5). Similarly for full coreflective subcategories.

One could define the future skeleton of X as the skeleton of the least

future retract of X. Rather than developing this notion, we shall study a

stronger one, called ‘future spectrum’, which will be easier to determine

and yield the same results in the examples of Section 3.9.

The categories r and c have minimal future retracts, but do not have

a least one (Sections 3.6.5 and 3.6.6).

The ordered set of (replete) reflective subcategories of a category was

investigated in [Ke3] (see also its references). But these results, being

based on the existence of limits in the original category, are of interest for

the ‘ordinary’ categories of structured sets, rather than for the categories

studied here.

3.8.1 Spectra

Recall that we have defined, in the set of objects ObX, the equivalence

relation x ∼+ x′ of future regularity, with equivalence classes [x]+ (Def-

inition 3.7.6).

A future spectrum sp+(X) of the category X will be a subset of objects

such that:

(sp+.1) sp+(X) contains precisely one object, written sp+(x), in every

future regularity class [x]+,

(sp+.2) for every x ∈ X there is precisely one morphism ηx : x→ sp+(x)

in X,

(sp+.3) every morphism a : x → sp+(x′) factorises as a = h.ηx, for a

unique h : sp+(x)→ sp+(x′).

The full subcategory of X on the set of objects sp+(X), written

Sp+(X) (with a capital letter), will also be called the future spectrum of

X. The second and third conditions above can be equivalently written

as:

(sp+.2′) for every x ∈ X, sp+(x) is the terminal object of the full sub-

category on [x]+,

(sp+.3′) for every x ∈ X, ηx : x → sp+(x) is a universal arrow (Section

A1.9) from the object x to the inclusion functor i : Sp+(X)→ X.

We shall prove that the future spectrum (when it exists) is the least

future retract (Theorem 3.8.2), that it is determined up to a canonical
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isomorphism, and that the same is true of its embedding in the given

category (Lemma 3.8.4). Therefore, the future spectrum is more strictly

determined than the ordinary skeleton.

Dually we have the past spectrum sp−(X) and its full subcategory

Sp−(X). The categories r and c, considered in 3.6.5, 3.6.6, do not have

a future or past spectrum. Indeed, all their maps are future regular, and

all objects form a unique future regularity class, which has no terminal

object; and dually, their objects form a unique past regularity class,

which has no initial object. It is also easy to see that a category has

future spectrum 1 if and only if it is future equivalent to 1, if and only

if it has a terminal object (Section 3.3.6).

3.8.2 Theorem (Properties of the future spectrum)

Let F = Sp+(X) be a future spectrum of the category X and i : F → X

its inclusion.

(a) F is a future retract of X, with an essentially unique retraction p

and unit η:

i : F � X : p, η : 1X → ip : X → X. (3.83)

(b) F is the least future retract of X, with respect to essential inclu-

sion (of full subcategories, 3.8.0). It is a skeletal category, whose only

endomorphisms are the identities.

The inclusion i : F → X preserves and reflects future regularity of

maps and points.

(c) Replacing some objects of sp+(X) with isomorphic copies, the new

subset is still a future spectrum of X.

(d) Every point of sp+(X) is either maximal in X (Section 3.3.0) or an

effective future branching point (Definition 3.7.6).

Proof (a) The inclusion i : Sp+(X) → X has a left adjoint p : X →
Sp+X), with ip = sp+, because of (sp+.3′). Moreover, for x0 ∈ Sp+(X),

the counit εx0 : x0 = pi(x0)→ x0 is necessarily the identity, by (sp+.2).

It follows that ηi = 1 and pη = 1.

(b) Let (j, q; ζ) : G→ X be a future retract of X; we want to prove that

Sp+(X) is contained in the replete closure of G. Take an object x0 ∈
Sp+(X); then x = jqx0 ∼+ x0 (Theorem 3.7.8), whence sp+(x) = x0

and the left composite below is the identity, by (sp+.2):

ηx.ζx0 : x0 → x→ x0, e = ζx0.ηx : x→ x0 → x
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Now, for the right composite e, we have e.ζx0 = ζx0 = 1x.ζx0; since

the unit-component ζx0 : x0 → jqx0 is a universal arrow from x0 to the

full embedding j : G→ X (see A3.1), it follows that e = 1x.

Moreover, Sp+(X) is skeletal by (sp+.1) and has no endomorphisms,

except the identities, by (sp+.2). The last assertion follows from 3.7.3,

3.7.7.

(c) Obvious. (This point is inserted for future convenience.)

(d) Let x0 ∈ sp+(X) be not maximal for the path preorder in X, and

let us prove that x0 is a future branching point in X. By hypothesis,

there is some arrow a : x0 → x in X with no arrows backwards; since x0

is terminal in its future regularity class, these points cannot be equiva-

lent under future regularity, and x0 cannot be future regular (Definition

3.7.6(iii)).

Finally, as to effectiveness, let b : x0 → x be a future regular map with

x ∼+ x0; then ηx.b = idx0, whence b is a split mono.

3.8.3 Lemma (Characterisation of future spectra)

The following conditions on a functor i : F → X are equivalent:

(a) the functor i is an embedding and i(F ) is a future spectrum of X;

(b) the category F has precisely one object in each future regularity class;

the functor i is a future retract, i.e. it has a left adjoint p : X → F

with pi = 1F as counit; moreover the unit-component x → ip(x) is

the unique X-morphism with these endpoints;

(c) the category F has precisely one object in each future regularity class

and only one endomorphism for each object; the functor i can be ex-

tended to a future equivalence i : F � X : p, whose unit-component

x→ ip(x) is the unique X-morphism with these endpoints.

Note. The form (c) is appropriate to link future spectra and future

equivalences, cf. 3.8.7(a).

Proof Identifying F with Sp+(x) and i with the inclusion, the fact that

(a) implies (b) and (c) has already been proved in 3.8.2(a). Then (c)

implies (b): for every x0 ∈ F , x0 ∼+ pi(x0) (by 3.7.8) whence x0 =

pi(x0) and the unit-component x0 → pi(x0) (of the future equivalence)

is necessarily an identity. Finally, (b) implies (a): letting sp+(x) = ip(x),

the universal property of the unit of an adjunction gives (sp+.3).
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3.8.4 Lemma (Uniqueness of future spectra, I)

Let i : F → X and j : G → X be embeddings of future spectra of the

category X.

(a) For every x0 ∈ F there is a unique u(x0) in G such that i(x0) ∼=
ju(x0) in X. Furthermore, there is a unique morphism λx0 : i(x0)→
ju(x0) in X, and it is invertible.

(b) The mapping u : ObF → ObG so defined has a unique extension to

a functor u : F → G making the family (λx0) into a natural trans-

formation λ : i→ ju : F → X; the latter is invertible.

Note. A more complete uniqueness result will be given in 3.8.9.

Proof Obvious.

3.8.5 Spectral presentations

The spectral pf-presentation of X (cf. 3.5.2) will be a diagram of functors

and natural transformations satisfying the following conditions

P
i− // X

p+ //

p−
oo F

i+
oo (3.84)

ε : i−p− → 1X , p−i− = 1, p−ε = 1, εi− = 1,

η : 1X → i+p+, p+i+ = 1, p+η = 1, ηi+ = 1,

(i) P is the past spectrum and F the future spectrum of X,

(ii) given x ∈ ObP and x′ ∈ ObF , if x ∼= x′ in X then x = x′ (linked

choice condition).

Such a presentation exists if and only if X has a past spectrum and

a future one, since the linked-choice condition can always be realised

replacing each object of P with its isomorphic copy in F , if any (Theorem

3.8.2(c)). The set of objects given by this linked choice will be called

the pf-spectrum of X, or spectral model

sp(X) = ObP ∪ObF = sp−(X) ∪ sp+(X). (3.85)

The full subcategory Sp(X) on these objects will also be called the

pf-spectrum of X. We prove below that it is well determined, in the

same form of future spectra (Lemma 3.8.4); and we shall prove that it

is a strongly minimal injective model (Theorem 3.8.8); it is not a split

injective model (Section 3.4.6), in general.
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The projective model X → M which is associated to the spectral pf-

presentation (as in 3.5.7) will be called the spectral projective model of

X.

3.8.6 Theorem (Uniqueness of pf-spectra)

Two pf-spectra, i : E ⊂ X and j : E′ ⊂ X, are given.

(a) For every x0 ∈ E there is a unique u(x0) in E′ such that i(x0) ∼=
ju(x0) in X; and then there is a unique morphism λx0 : i(x0)→ ju(x0)

in X, which is invertible.

(b) The mapping u : ObE → ObE′ so defined has a unique extension

to a functor u : E → E′ making the family (λx0) into an (invertible)

natural transformation λ : i→ ju : E → X (see the left diagram below)

E
i //

u
��

λ
pp

X P
i− //

u−

��

E

u

��

F
i+oo

u+

��
E′

j
// X P ′

j−
// E′ F ′

j+
oo

(3.86)

(c) Let P, F be, respectively, the past and the future spectrum of X giving

rise to E; and similarly P ′, F ′ for E′.

Their embeddings and the functor u give the commutative right dia-

gram above, where u− and u+ are the isomorphisms resulting from the

uniqueness of these directed spectra of X (Lemma 3.8.4).

Proof (a) We already know (by Lemma 3.8.4(a)) that, if the point x0

belongs to P (resp. F ), there is a unique u−(x0) in P ′ (resp. u+(x0) in

F ′) such that x0
∼= uα(x0) in X (α = ±); moreover, if x0 is in P ∩ F ,

then u−(x0) ∼= x0
∼= u+(x0), whence u−(x0) = u+(x0), because of

the linked-choice condition in E′. We have thus a unique object u(x0)

consistent with the right diagram above.

We also have (again by Lemma 3.8.4(a)) a unique map λx0 : i(x0)→
ju(x0) in X, which is an isomorphism.

The points (b) and (c) follow now easily.

3.8.7 Theorem (Preservation of future spectra and pf-spectra)

(a) If f : X � Y : g is a future equivalence and i : F → X is the em-

bedding of a future spectrum, then fi : E → Y is also.
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(b) A pf-embedding preserves and reflects pf-spectra. More precisely,

assuming that the category X has a pf-spectrum i : E ⊂ X, we have the

following results (with E0 = ObE):

(i) given a pf-embedding u : X → Y , the set of objects u(E0) is the

pf-spectrum of Y ,

(ii) given a pf-embedding v : Y → X, the set of objects v−1(E0) is the

pf-spectrum of Y .

(c) If the category X has a pf-spectrum E, then X is injectively equiva-

lent to a category Y if and only if E is also a pf-spectrum of Y .

Proof (a) The units of the future equivalence will be written as ϕ : 1→
gf and ψ : 1→ fg.

Let us use the characterisation of embeddings of future spectra in

Lemma 3.8.3(c), taking into account the fact that future equivalences

compose (Section 3.3.3). Let p : X → F be the retraction and η : 1→ ip

the unit at F (Theorem 3.8.2(a)).

We know that F has one object in each future regularity class and

only one endomorphism for every object. It remains to show that, for

every y ∈ Y , the composed unit η′y = fηgy.ψy : y → fipgy is the unique

morphism between these points.

Let x = ipgy ∈ i(F ) and note that the composite ηgfx.ϕx : x →
gfx → ipgfx is the identity, because x and ipgfx are equivalent up

to future regularity, in i(F ). Take now any map b : y → fx in Y ; by

naturality of ψ we have a commutative (solid) diagram

y
ψy //

b ��

fgy

fgb
��

fηgy

&&
fx

ψfx
// fgfx

fηgfx
// fx

(3.87)

where the lower row is the identity, because of the previous remark

and because ψfx = fϕx. Also the right triangle commutes, since

ηgfx.gb : gy → x must coincide with ηgy : gy → ipgy = x. Finally,

we have the thesis: b = fηgy.ψy.

(b) Point (i) follows from (a). As to point (ii), Y is past and future

equivalent to X, whence it also has a past and a future spectrum, and

therefore a pf-spectrum H0, preserved by the pf-embedding Y → X.

Since the pf-spectrum of X is determined up to isomorphism, v(H0)

coincides with E0 up to isomorphic copies of objects. Since v is a full
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embedding, it follows that v−1(E0) coincides with H0 up to isomorphic

copies of objects, and v−1(E0) is also a pf-spectrum of Y .

(c) Is a straightforward consequence of (b).

3.8.8 Theorem (Spectra and injective models)

Given a pf-presentation of the category X, let E be the injective model

generated by this presentation, as defined in 3.5.3. Then:

(a) the pf-presentation of X is spectral if and only if the same holds for

the pf-presentation of E, in (3.69);

(b) in this case, E = sp(X) is a strongly minimal injective model of X.

Proof (a) Follows immediately from 3.8.7(b).

(b) Assume that the given pf-presentation is spectral, and let us show

that E is a strongly minimal injective model of X. Given a category Y

injectively equivalent to X, we know (Theorem 3.8.7(c)) that E is an

injective model of Y . Secondly, given an injective model v : E′ → E,

we have to prove that v is surjective on objects, hence an isomorphism.

Indeed, we have a composed pf-embedding E′ → X, therefore v must

reach an isomorphic copy of every object of P and F , whence every

object of E, by the linked-choice condition (Section 3.8.5).

3.8.9 Theorem (Uniqueness of future spectra, II)

Two future spectra of the category X are given, as future retracts:

i : F � X : p, j : G � X : q

η : 1X → ip, η′ : 1X → jq.
(3.88)

(a) We have: qip = q and qη = 1q; dually, pjq = p and pη′ = 1p.

(b) There is a unique functor u : F → G such that up = q, namely

u = qi, and it is an isomorphism.

(c) There is a unique natural transformation λ : i→ ju : F → X, namely

λ = η′i, and it is invertible

X
p // F

i //

u
��

λ
pp

X

X
q
// G

j
// X
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Note. This is a second statement on the uniqueness of future spectra,

after Lemma 3.8.4. It is more complete than the first, being based on the

whole structure of a future spectrum as a future retract; yet, it seems

to be less useful than the first.

Proof (a) To prove that qip = q, let us begin by noting that this is true

on every object x ∈ X, because ip(x) ∼+ x (by 3.7.8) and qip(x) = q(x).

Now, the natural transformation qη : q → qip has general component

qη(x) : qx → qipx = qx; but there is a unique map from qx to itself, in

the future spectrum G, namely the identity of qx. It follows that qip = q

is also true on maps, and qη = 1q.

(b) Uniqueness is plain: up = q implies u = qi. Existence follows from

point (a): taking u = qi : F → G, we have up = qip = q. Symmetrically,

there is a unique functor v : G→ F such that vq = p; and then u and v

are inverses.

(c) We do have a natural transformation λ = η′i : i → jqi = ju. Its

component λ(x0) : i(x0) → jqi(x0) is the unique X-morphism between

such objects (because they are future regular equivalent and the second

is in G). But there is also a unique X-morphism backwards jqi(x0) →
i(x0), because i(x0) is in F ; and their composites must be identities.

3.9 A gallery of spectra and models

After considering pf-spectra of preorders (Section 3.9.1), we will con-

struct the pf-spectrum of the fundamental category of various ordered

topological spaces, and of one preordered space (Section 3.9.5). All these

pf-spectra yield faithful injective models, except in 3.9.8. We end with

a few hints on applications (Section 3.9.9).

Speaking of branching points, the term ‘effective’ will generally be

understood (cf. 3.7.6), unless we want to stress this fact.

In this section, the arrows of a fundamental category are denoted by

Greek letters α, β, γ, ...

3.9.1 Future spectra of preorders

Let C be a preorder category. All morphisms in C are O+-regular (Sec-

tion 3.7.1), so that future regularity coincides with V+-regularity and is

always faithful. Explicitly, the arrow x ≺ x′ is future regular in C if,
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whenever x ≺ x′′ there exists some upper bound for x′ and x′′, i.e. some

object x which follows both.

In this case, the existence (and choice) of a future spectrum sp+(C)

(which is necessarily faithful) amounts to these conditions:

(i) each future regularity class of objects [x]+ has a maximum (deter-

mined up to the equivalence relation ' of mutual precedence),

and we choose one, called max[x]+ (of course, if C is ordered, the

choice is determined),

(ii) if x ≺ x′ in C, then max[x]+ ≺ max[x′]+.

Every finite tree C has a spectrum. Indeed, C is past contractible,

with its root 0 as a past spectrum: P = {0}; its future spectrum F

can be obtained omitting any point which has precisely one immediate

successor. In the example below (ordered rightward), the points of the

future spectrum are marked with a bigger bullet; the spectral injective

model E = P ∪ F is shown on the right

C E
0
• • • •

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(3.89)

The associated projective model, the full subcategory E′ ⊂ E2 on the

objects 0 ≺ y (y ∈ F ), is isomorphic to F (and not isomorphic to E,

unless 0 ∈ F ).

3.9.2 Modelling an ordered space

In the sequel, we will generally consider ordered topological spaces X

(equipped with the associated d-structure) with minimum (0) and max-

imum (1) and study the pf-spectrum of the fundamental category C =
↑Π1(X).

The latter inherits a privileged ‘starting point’ 0, which is a minimal

point of C (but not necessarily the unique one, cf. 3.9.6) and a privileged

‘ending point’ 1, which is maximal in C. Furthermore, recall that C is

skeletal (when X is ordered), so that the future spectrum - if it exists -

is the least full (i.e. replete) reflective subcategory of C, and is strictly

determined as a subset of C. Objects of C (i.e. points of X) will be

denoted by letters x, a, b, c...; arrows of C (i.e. ‘homotopy classes’ of

paths of X) by Greek letters α, β, γ...
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Consider, in the category pTop, the compact ordered space X in the

left figure below: a subspace of the standard ordered square ↑[0, 1]2

obtained by taking out two open squares (marked with a cross)

X E M Z

×

×

×

× ×

×

•

•

•

• •

•

•

• • • •

• • •

• • •

0

c′

a′

a

c

1

b′

b
0

1

??

OO

OO OO //
??

OO

OOOO
// // //

// //

// //

OO OO OO

OO OO OO
OO OO OO

(3.90)

The fundamental category C = ↑Π1(X) is easy to determine (see

3.2.6, 3.2.7).

We shall prove that its pf-spectrum is the full subcategory E, on eight

vertices (where the two cells marked with a cross do not commute, while

the central one does), that the associated projective model is M (see

3.9.3) and that the category Z is just a coarse model (of C,E and M).

First, we show that the category C = ↑Π1(X) has a past spectrum

P F

×

×

×

×

•

• •

•

•

•

•

•

0

a c

b

c′

a′

b′

1

//

OO

//

OO
(3.91)

In fact, there are four past regularity classes of objects, each having

an initial object:

[c]− = {x | x > c} (unmarked),

[a]− = {x | x > a} \ [c]−, (marked with dots),

[b]− = {x | x > b} \ [c]− (marked with dots),

[0]− = X \ ([c]− ∪ [a]− ∪ [b]−) (unmarked).
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Notice that a, b, c are effective V−-branching points, while 0 is the

global minimum (for the path order), weakly initial in C.

These four points form the past spectrum sp−(C) = {0, a, b, c}, as

is easily verified with the characterisation 3.8.3(b): take the full sub-

category P ⊂ C on these objects (represented in the same picture), its

embedding i− : P ⊂ C and the projection p− sending each point x ∈ C
to the minimum of its past regularity class. Now i− a p−, with a

counit-component ε(x) : i−p−(x) → x which is uniquely determined in
↑Π1(X), since - within each of the four zones described above - there is

at most one homotopy class of paths between two given points.

Symmetrically, we have the future spectrum: the full subcategory

F ⊂ C in the right figure above, on the following four objects (each of

them being a maximum in its future regularity class):

• 1 (the global maximum of X, weakly terminal in C);

• a′, b′, c′ (V+-branching points).

The projection p+ (left adjoint to i+ : F ⊂ C) sends each point x ∈ C
to the maximum of its future regularity class (i.e. the lowest distin-

guished vertex p+(x) > x); the unit-component η(x) : x → i+p+(x) is,

again, uniquely determined in ↑Π1(X).

Globally, we have constructed a spectral pf-presentation of C (Section

3.8.5); this generates the skeletal injective model E, as the full subcate-

gory of C on sp(C) = {0, a, b, c, a′, b′, c′, 1}. The full subcategory Z ⊂ E
on the objects 0, 1 is isomorphic to the past spectrum of F , as well as

to the future spectrum of P , hence coarse equivalent (Section 3.3.3) to

C and E.

Comments. The pf-spectrum E provides a category with the same past

and future behaviour as C. This can be read as follows, in (3.90):

(a) the action begins at the ‘starting point’ 0, the minimum of X, from

where we can only move to c′;

(b) c′ is an (effective) V+-branching point, where we choose: either the

upper/middle way or the lower/middle one;

(c) the first choice leads to a′, a further V+-branching point where we

choose between the upper or the middle way; similarly, the second

choice leads to the V+-branching point b′, where we choose between

the lower or the middle way (which is the same as before);

(d) the routes of the first bifurcation considered in (c) join at a, those

of the second at b (V−-branching points);
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(e) the two resulting routes come together at c (the last V−-branching

point);

(f) from where we can only move to the ‘ending point’ 1, the maximum

of X.

The ‘coarse model’ Z only says that in C there are three homotopically

distinct ways of going from 0 to 1, and loses relevant information on the

branching structure of C.

The projective model is studied below.

3.9.3 The projective model

For the same category C = ↑Π1(X), the spectral projective model M ,

represented in the right figure below, is the full subcategory of C2 on

the 9 arrows displayed in the left figure

α

β

γ

γ′
δ

δ′

σ′′ σ σ′

α

β

γ

γ′
δ

δ′σ′′

σ

σ′ α γ σ′

γ′ σ δ

σ′′ δ′ β

M

×

×

×

× ×

×
OO OO

//

// //

// //

// //

OO OO OO

OO OO OO

(3.92)

The projection f(x) = (p−x, p+x; p−ηx) (see (3.76)), from X = ObC

to ObM ⊂ MorC, has thus nine equivalence classes, analytically defined

in (3.93) and ‘sketched’ in the middle figure above (the solid lines are

meant to suggest that a certain boundary segment belongs to a certain

region, as made precise below); in each of these regions, the morphism
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f(x) is constant, and equal to α, β, ...

f−1(α) = [0, 1/5]2, (closed in X),

f−1(β) = [4/5, 1]2 (closed in X),

f−1(γ) = ]1/5, 3/5]× [0, 1/5],

f−1(γ′) = [0, 1/5]× ]1/5, 3/5],

f−1(δ) = [4/5, 1]× [2/5, 4/5[,

f−1(δ′) = [2/5, 4/5[ × [4/5, 1],

f−1(σ) = X∩ ]1/5, 4/5[2 (open in X),

f−1(σ′) = X ∩ (]3/5, 1]× [0, 2/5[) (open in X),

f−1(σ′′) = X ∩ ([0, 2/5[ × ]3/5, 1]) (open in X).

(3.93)

The interpretation of the projective model M is practically the same

as above, in 3.9.2, with some differences:

(i) in M there is no distinction between the starting point and the

first future branching point, nor between the ending point and the

last past branching point;

(ii) the different paths produced by the obstructions are ‘distinguished’

in M by three new intermediate objects: σ, σ′, σ′′.

Note also that - here and in many cases - one can also embed M in C,

by choosing a suitable point of a suitable path in each homotopy class

α, β, ...; but there is no canonical way of doing so.

In order to compare the injective model E and the projective model

M , the examples below (in 3.9.4) will make clear that distinguishing

0 from c′ (or c from 1) carries some information (like distinguishing

the initial from the terminal object, in the injective model 2 of a non-

pointed category having both, cf. 3.6.4). According to applications, one

may decide whether this information is useful or redundant.

3.9.4 Variations

(a) Consider the previous ordered space X (Section 3.9.2) together with

the spaces X ′ and X ′′, obtained by taking out, from the ordered square
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↑[0, 1]2, two open squares placed in different positions, ‘at’ the boundary

X X ′ X ′′

×

×

×

×

×

×

(3.94)

E E′ E′′

×

×

×

×

×

××
•

•

•

• •

•

•

•

•

•

• •

•

•

• •

•

• •

•

•
0

c′

c

1

0

c

1

0

1

??

??

OO

??

//

OO

//

(3.95)

The pf-spectra E,E′ and E′′ distinguish these situations: in the sec-

ond case the starting point 0 is an effective future branching point, and

we must make a choice from the very beginning (either the upper/middle

way or the middle/lower one); in the last case, this remains true and

moreover the ending point is an effective past branching point. The pro-

jective models of these three spectra coincide (with the category M of

3.9.3).

(b) The following examples show similar situations, with a different in-

jective (and projective) model. We start again from a (compact) ordered

space Xi ⊂ ↑[0, 1]2, obtained by taking out two open squares

X1 P1 E1 Z1

×

×

×

×

×

×

•

•

•

•

•

•

•

•

•

•

0

a

b

0
a′

a
b′

b

1

0

1

GG
77

GG
77

??

??

??

OO OO

OO OO

(3.96)
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X2 P2 E2 Z2

×

×

×

×

×

×

•

•

•

•

•

•

•

•

•

0

a

b

0
a′

a
b′

b
1

0

1

GG ??
44 77

77

OO OO OO

(3.97)

In both cases, the past spectrum of the fundamental category Ci =
↑Π1(Xi) is the full subcategory Pi on three objects: 0 (the minimum)

and a, b (V−-branching points), as shown above. The future spectrum is

symmetric to the past one. The pf-spectrum, generated by the previous

presentation, is the full subcategory Ei on the pf-spectrum sp(Ci) =

{0, a, b, a′, b′, 1}. Coarse models of Ci are given by the categories Zi
generated by the graphs above; in particular, Z1 has four arrows from 0

to 1.

The categories E1, E2 are not isomorphic, as more clearly shown below

b′
**
44× b // 1 b′

**
44× b // 1

0 // a′
**
44× a

OO

0 // a′

OO

**
44× a

OO

E1 E2

3.9.5 A preordered space

The compact space X ⊂ I2 represented below (non monometrically) is

now equipped with the preorder: (x, y) ≺ (x′, y′) defined by the rela-

tion y 6 y′. Thus, all points having the same vertical coordinate are

equivalent.

The fundamental category C = ↑Π1(X) is no longer skeletal. Let

us choose m = (1/2, 0) as a minimum of X (weakly initial in C) and
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m′ = (1/2, 1) as a maximum

X P E Z

×

×

×

×

×

×

•

•

•

•

•

•

•

•

•

•

m

a

b

m

m′

0

1

OO OO

OO OO

OO

OO

OO

OO OO

OO OO

OO OO

OO OO

(3.98)

Now, the past spectrum of the fundamental category C = ↑Π1(X)

is the full subcategory P ⊂ C on three objects: m (a minimum),

a = (1/2, 2/5) and b = (1/2, 4/5) (V−-branching points), as in the

second figure above; of course, all of them can be equivalently moved,

horizontally.

The future spectrum is symmetric to the past one: a′ = (1/2, 1/5),

b′ = (1/2, 3/5) and m′. The pf-spectrum is the full subcategory E on

these six points (or any equivalent sextuple). It is isomorphic to the

pf-spectrum E1 of (3.96).

3.9.6 The Swiss flag

Let us come back to ordered spaces. The following situation is often

analysed as a basic one, in concurrency: the ‘Swiss flag’ X ⊂ ↑[0, 1]2.

See [FGR2, FRGH, GG, Go] for a description of ‘the conflict of resources’

which it depicts in the theory of concurrent systems, and [FRGH], p. 84,

for an analysis of the fundamental category which leads to a ‘category

of components’ similar to the projective model that we get below (in

(3.101))

X E Z

×

•

• •

••

• •

••

•

0

a

d

d′

b′

a′ c′
b

c
1

0

1

??

??

OO OO
(3.99)
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Working as above, the fundamental category C = ↑Π1(X) has an

injective model E and a coarse model Z. In fact, the past spectrum is

the full subcategory P ⊂ C represented below

P F

× ×

•

• •

••

• •

••

•

0

a′ c′

bc

a

d

d′

b′

1

OO

//

OO

//

(3.100)

Its set of objects sp−(C) = {0, a′, b, c, c′} contains two minimal points

0, a′ which are not comparable in the path-preorder of X and C, so that

the starting point 0 is not a minimum for this preorder; the remaining

points b, c, c′ are V−-branching. Similarly, the future spectrum Sp+(C)

is the full subcategory F ⊂ C in the right figure above, on the set of

objects sp+(C) = {a, d, d′, b′, 1}.
The pf-spectrum of C is the full subcategory category E on sp(C) =

sp−(C) ∪ sp+(C).

The spectral projective model M is shown below, under the same

conventions as in (3.92)

× × ×

σ′

σ′′

σ′

σ′′ α γ σ′′

γ′ µ
ν δ

σ′ δ′ β

OO OO

??

??
// //

//
//

// //

OO OO
OO

OO OO OO

(3.101)
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3.9.7 A three-dimensional case

Consider now the ordered compact space X ⊂ ↑[0, 1]3 represented below

(the complement of the cube ]1/3, 2/3[2 × ]2/3, 1] in ↑I3
)

X E

0

b

a
1

•

•

• •

0 a b

1

h

h′
u v

(uh = vh = h′)

OO
//
��

// //

�� �� ��
(3.102)

Then the category C = ↑Π1(X) is strongly past contractible: 0 is

the initial object and past spectrum; it has future spectrum F formed

of three points: 1 (the maximum, weakly terminal), a (an O+-branching

point), b (a V+-branching point). The pf-spectrum is the category E,

embedded as the full subcategory on the objects 0, a, b, 1.

(Here, the simpler definition of future regularity equivalence given in

[G14] would yield a less neat analysis. In fact, since all the morphisms

0 → x are future regular, all points of C would be equivalent in that

sense, and C would have no future spectrum: F would just be a future

retract of C, and E an injective model.)

3.9.8 Faithful and non faithful spectra

The situation is very different for the ordered compact space X ⊂ ↑[0, 1]3

of the figure below (taking out an open cube in central position)

X

0

a
a′

b

b′

1

•

•
•

•
•

• X = ↑[0, 1]3 \A

A = ]1/3, 2/3[3.

OO
//
��

(3.103)

The fundamental category C = ↑Π1(X) has an initial and a terminal

object, 0 and 1. Therefore, C has pf-spectrum 2 (Section 3.6.4), which

is not a faithful model: indeed, C is not a preorder, since the set C(x, y)
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contains two arrows when (among other cases)

x < y, a < x < a′, b < y < b′, x3, y3 ∈ ]1/3, 2/3[,

a = (0, 0, 1/3), a′ = (1/3, 1/3, 2/3),

b = (2/3, 2/3, 1/3), b′ = (1, 1, 2/3).

Various proposals have been suggested to analyse such situations, ei-

ther by a finer analysis of the fundamental category, via categories of

fractions [FRGH] and generalised quotients [GH, G18], or by introduc-

ing and modelling the fundamental 2-category [G15]. Yet the problem of

finding a good solution seems still to be open.

3.9.9 Some hints on applications

Applications of directed algebraic topology to concurrency are well de-

veloped; the interested reader can begin from the references cited in

Section 1 of the Introduction and see how the examples of this section

can be interpreted in this domain. Here we want to hint at other possi-

bilities, like the analysis of traffic networks, space-time models, directed

images and biological systems. .

(a) We begin by developing an example similar to that of Section 2 of

the Introduction. Consider the subspace X ⊂ R× [−1, 1] obtained by

taking out two open squares (marked with a cross)

X

p
× ×• • • • • • • •

a1 a b c d d1 d2

. . . . . .//

OO

(x, y) 6 (x′, y′) ⇔ |y′ − y| 6 x′ − x. (3.104)

It is equipped with the above order relation, whose ‘cone of the future’

at a point p is shown on the right.

First, this ordered space can be viewed as representing a stream with

two islands; the stream moves rightward, with velocity v. The order

expresses the fact that the observer can move, with respect to the stream,
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with an upper bound for scalar velocity, so that the composed velocity

v′′ can at most form an angle of 45◦ with the direction of the stream.

Secondly, one can view the coordinate x as time, the coordinate y

as position in a 1-dimensional physical medium and the order as the

possibility of going from (x, y) to (x′, y′) with velocity 6 1 (with respect

to a ‘rest frame’, linked to the medium). The two forbidden squares

are now linear obstacles in the medium, with a limited duration in time

(first expanding and then contracting).

The fundamental category ↑Π1(X) reveals obstructions (islands, tem-

porary obstacles...). A minimal injective model E of the fundamental

category is given by the full subcategory on the points marked above,

in (3.104). E is generated by the following countable graph (under no

conditions)

. . . a2
// a1

// a // // b // c //// d // d1
// d2 . . . (3.105)

The analysis is similar to that of (3.96). Moving the obstructions, one

can get results similar to other previous cases (Section 3.9.2, etc.); the

fundamental category will distinguish whether these obstructions occur

one after the other (as above) or ‘sensibly’ at the same time (as in 3.9.2).

(b) Finally, we observe that the analysis of a category by minimal past

and future models, as developed here, is closely related to notions re-

cently introduced by A.C. Ehresmann [Eh], and used in a series of pa-

pers with J.P. Vanbremeersch for modelling biosystems, neural systems,

etc. Clearly, such relationship arises from the common aim of studying

non-reversible actions.

First, a past retract P of a category X (i.e. a full coreflective sub-

category) is a particular case of a corefract, as defined in [Eh], 1.2: a

full weakly coreflective subcategory. Second, one can show that the past

spectrum P of a category X having no O−-branchings is necessarily a

root of X, as defined in [Eh], Section 2.

In fact, the function sp− : ObX → ObP and the counit εx : sp−(x)→
x yield an X-cylinder X → P , as defined in [Eh], 1.1. Now, to prove

that every P -cylinder (F, f) : P → P is the identity, it suffices to show

that F (x) ∼− x, for all x in P , so that the map fx : F (x)→ x must be

the identity (because P is a past spectrum). First, fx is V−-regular in

P , by definition of P -cylinder, and in X as well (the embedding P ⊂ X
being a past equivalence). Second, fx is O−-regular, by hypothesis.
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Finally, if x is past regular, so is F (x), by 3.7.5(a); otherwise, x must

be V−-branching, which implies that F (x) is also, by 3.7.5(b).

In this section, all the examples of 3.9.2-3.9.6 fall into this situation:

their past spectrum is a root and their future spectrum a coroot. On the

other hand, the second example of (3.81) - also present in 3.9.7 - shows

a category having an O+-branching; it is easy to see that its future

spectrum is not a coroot. The categories r, c, whose minimal injective

model is studied in 3.6.5-3.6.6, have no root nor coroot, as well as no

past nor future spectrum.
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Higher directed homotopy theory
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Settings for higher order homotopy

This chapter is a complete reworking of previous settings, which were

mostly - not exclusively - aimed at the reversible case; they have been

developed in various papers, in particular [G1, G3, G4].

Starting from the basic settings of Chapter 1, we arrive in Sections 4.1,

4.2 at the notion of a ‘symmetric dIP4-homotopical category’ (Section

4.2.6), through various steps, called dI2 and dI3-category (or dI2 and

dI3-homotopical category) and their duals, dP2-category, etc. (possibly

symmetric).

Special care is given to single out the results which hold in the inter-

mediate settings, and in particular do not depend on the transposition

symmetry: we have already remarked that its presence has both advan-

tages and drawbacks (Section 1.1.5).

Some basic examples are dealt with in Sections 4.3 and 4.4; many oth-

ers will follow in Chapter 5. Thus, dTop, dTop• (pointed d-spaces) and

Cat are symmetric dIP4-homotopical categories. On the other hand, the

category of reflexive graphs is just dIP2-homotopical (Section 4.3.3), and

the category Cub of cubical sets is just dIP1-homotopical, under two iso-

morphic structures for left and right homotopies (Section 4.3.4). Chain

complexes on an additive category form a symmetric dIP4-homotopical

category, which is regular and reversible; directed chain complexes have

a regular dIP4-homotopical structure, which lifts the previous one but

is no longer symmetric nor reversible (Section 4.4).

In the rest of this chapter we work out the general theory of dI2, dI3

and dI4-categories. In Section 4.5 we construct the homotopy 2-category

Ho2(A) and the fundamental category functor ↑Π1 : A → Cat, for a

dI4-category A. In Sections 4.6-4.8 we deal with higher properties of

homotopy pushouts and cofibre sequences; we also examine the cone

functor and the monad structure which it inherits from the cylinder.

231
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We end in Section 4.9, studying the reversible case. This has peculiar

properties, which will also be of interest for non-reversible structures, in

the relative settings of Section 5.8. Under some additional hypotheses,

a reversible dI4-homotopical category can be given a structure of ‘cofi-

bration category’ in the sense of Baues (Theorem 4.9.6), which is a non

selfdual version of Quillen’s model categories.

We will see in the next chapter (Section 5.8) how one can study the

higher properties of directed homotopy in ‘defective’ cases, like cubical

sets and directed chain complexes, by a relative setting consisting of a

forgetful functor with values in a stronger framework.

4.1 Preserving homotopies and the transposition symmetry

We begin to study higher properties of directed homotopy, assuming

that cylindrical colimits are preserved by the cylinder functor I (Sec-

tion 4.1.2) and that a transposition symmetry is given (Section 4.1.4).

In the presence of the latter, the cylinder functor acts on homotopies

and the preservation of cylindrical colimits becomes equivalent to the

preservation of h-pushouts.

4.1.0 The basic setting

Let us recall, from Chapter 1, that a dI1-category A = (A, R, I, ∂α, e, r)

comes equipped with a reversor (an involutive covariant endofunctor)

R : A→ A, (R(X) = Xop, R(f) = fop), (4.1)

and a cylinder endofunctor I : A→ A, with faces ∂α, degeneracy e and

reflection r

∂α : 1 −→←−−→ I : e, r : IR→ RI (α = ±). (4.2)

These data must satisfy the axioms

e∂α = 1: idA→ idA, RrR.r = 1: IR→ IR,

Re.r = eR : IR→ R, r.∂−R = R∂+ : R→ RI.
(4.3)

A homotopy ϕ : f− → f+ : X → Y is defined as a map ϕ : IX → Y

with ϕ.∂αX = fα (and the map can be written as ϕ̂ to distinguish it

from the homotopy which it represents). Whisker composition k◦ϕ◦h is

defined by (k◦ϕ◦h)̂ = k.ϕ.Ih (for h : X ′ → X and k : Y → Y ′, see 1.2.3).
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Each map f : X → Y has a trivial endo-homotopy, 0f : f → f , repre-

sented by f.eX = eY.If : IX → Y . Each homotopy ϕ : f → g : X → Y

has a reflected homotopy

ϕop : gop → fop : Xop → Y op, (ϕop)̂ = R(ϕ̂).r : IRX → RY,

(ϕop)op = ϕ, (0f )op = 0(fop), (k◦ϕ◦h)op = kop◦ϕop◦hop.
(4.4)

We also recall, from 1.7.0, that a dI1-homotopical category is a dI1-

category with all h-pushouts (Section 1.3.5) and a terminal object >.

The dual notions of dP1-category and dP1-homotopical category can

be found in 1.2.2 and 1.8.2; the self-dual cases of dIP1-category and

pointed dIP1-homotopical category in 1.2.2 and 1.8.6.

4.1.1 Double homotopies and 2-homotopies

Let A be a general dI1-category. Double homotopies behave much as in

dTop, in Section 3.2.

The second order cylinder I2X has four (1-dimensional) faces, written

∂α1 = I∂α : IX → I2X, ∂α2 = ∂αI : IX → I2X. (4.5)

A double homotopy is a map Φ: I2X → Y ; it has four faces, which

are ordinary homotopies

∂α1 (Φ) = Φ.∂α1 = Φ.I∂α, ∂α2 (Φ) = Φ.∂α2 = Φ.∂αI, (4.6)

f
∂−2 (Φ)//

∂−1 (Φ)
��

Φ

h

∂+
1 (Φ)

��

•
1 //

2

��k
∂+
2 (Φ)

// g

Moreover, Φ has four vertices, the maps ∂−∂−1 (Φ) = f = ∂−∂−2 (Φ),

etc. Again, we can write Φ̂ : I2X → Y when we want to distinguish the

map from the double homotopy which it represents.

Two ‘horizontally’ consecutive d-homotopies

ϕ : f− → f+ : X → Y, ψ : g− → g+ : Y → Z,
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can be composed, to form a double homotopy ψ◦ϕ

h−f−
h−◦ϕ //

ψ◦f−

��

h−f+

ψ◦f+

��

(ψ◦ϕ)̂ = ψ̂.(ϕ̂×↑I) :

ψ◦ϕ I2X → Z.

h+f−
h+◦ϕ

// h+f+

(4.7)

Together with the whisker composition, in 1.2.3, this is a particular

instance of the cubical enrichment produced by the (co)cylinder functor,

see (1.44).

A (directed) 2-homotopy Φ: ϕ→ ψ : f → g : X → Y will be a double

homotopy whose faces ∂α1 are degenerate, while the faces ∂α2 are ϕ,ψ (the

symmetric choice becomes equivalent in the presence of a transposition,

see 4.1.4)

f
ϕ //

0f

��

g

0g

��

∂−2 (Φ) = ϕ, ∂+
2 (Φ) = ψ,

Φ ∂−ϕ = f = ∂−ψ, ∂+ϕ = g = ∂+ψ,

f
ψ
// g ∂−1 (Φ) = 0f , ∂+

1 (Φ) = 0g.

(4.8)

Using the natural transformation

r2 = rI.Ir : I2R→ RI2, (double reflection of I2), (4.9)

a double homotopy Φ: I2X → Y has a double reflection, which works

on faces as below

Φop : I2(Xop)→ Y op, (Φop)̂ = R(Φ̂).r2 : I2RX → RY, (4.10)

f
ϕ //

σ
��

h

τ

��

gop ψop

//

τop

��

kop

σop

��
Φ Φop

k
ψ
// g hop

ϕop
// fop

(A simple reflection in one direction is only possible in the reversible

case, see 4.9.1.) In particular, a 2-homotopy Φ: ϕ→ ψ : f → g : X → Y

yields a 2-homotopy

Φop : ψop → ϕop : gop → fop : Xop → Y op. (4.11)
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4.1.2 The main preservation property

Let A be a dI1-homotopical category. We have seen, in 1.3.5, that the

h-pushout of a span (f, g) in A can be described as the ordinary colimit

of the left diagram below, called the cylindrical colimit of (f, g)

X
g //

∂+

��

Z

v

��

IX
Ig //

I∂+

��

IZ

Iv

��

X
∂− //

f

��

IX

λ̂

!!

IX
I∂−//

If

��

I2X

Iλ̂

##
Y

u
// I(f, g) IY

Iu
// I(I(f, g))

(4.12)

We say that the cylinder functor I : A → A preserves cylindrical

colimits (as colimits) if, for every span (f, g) in A, the right diagram

above is also a colimit - a property already considered in 1.7.1 for strong

dI1-functors.

Notice that the second diagram is not the cylindrical colimit of the

maps (If, Ig): the latter would require the faces ∂α(IX) of the object

IX, instead of the faces I∂α(X) which occur above. Indeed, we will

need the presence of a transposition to convert the faces ∂α1 = I∂α into

the faces ∂α2 = ∂αI, and the colimit above into a cylindrical colimit (see

4.1.5).

4.1.3 Theorem (The higher property of h-pushouts)

Let A be a dI1-homotopical category and assume that the cylinder func-

tor I : A→ A preserves all cylindrical colimits (Section 4.1.2).

Then every h-pushout A = I(f, g) also satisfies a 2-dimensional uni-

versal property, concerned with two maps a, b, two homotopies σ, τ and

a double homotopy Φ (Section 4.1.1) with the following boundaries

Y
u

##

au //

bu

↓σ // W

λ

��

auf
aλ //

σf ��

avg
τg
��X

f
;;

g ##

A
a //
b
// W Φ

buf
bλ
// bvg

Z
v

;;
av //

bv

↓τ // W

(4.13)
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a, b : A→W, σ : au→ bu, τ : av → bv, Φ: I2X →W,

∂−1 (Φ) = Φ.(I∂−X) = σ◦f, ∂−2 (Φ) = Φ.(∂−IX) = a◦λ, ...

Then there is some homotopy ϕ : a→ b such that ϕ◦u = σ, ϕ◦v = τ ;

and there is precisely one which also satisfies the condition ϕ.I(λ̂) = Φ.

Proof By hypothesis, the cylinder functor I : A → A preserves the

colimit on the left diagram of (4.12), and yields the colimit on the right,

in the same diagram.

Using the latter, we can factor the cocone (W ;σ.If,Φ, τ.Ig) through

the universal cocone (IA; Iu, I(λ̂), Iv). There is thus precisely one map

ϕ : IA→W such that

ϕ◦u = ϕ.Iu = σ, ϕ◦v = ϕ.Iv = τ, ϕ.I(λ̂) = Φ.

Moreover, its lower face ∂−ϕ = ϕ.∂−A is a (and the upper one is b)

because

ϕ.∂−A.u = ϕ.Iu.∂−X = ∂−σ = au,

ϕ.∂−A.v = ϕ.Iv.∂−X = ∂−τ = av,

ϕ.∂−A.λ̂ = ϕ.I(λ̂).∂−IX = Φ.∂−(IX) = a◦λ.

4.1.4 Symmetric dI1-categories

A symmetric dI1-category (A, R, I, ∂α, e, r, s) is a dI1-category equipped

with a natural transformation s : I2 → I2, called transposition, which

satisfies the conditions:

ss = 1, Ie.s = eI, s.I∂α = ∂αI, Rs.r2 = r2.sR, (4.14)

where r2 = rI.Ir : I2R→ RI2 is the double reflection of I2 (cf. (4.9)).

This basic transposition generates higher transpositions

si = In−1−1sIi−1 : In → In (for i = 1, ..., n− 1),

and an action of the symmetric group Sn on the power In of the cylinder

endofunctor. This action motivates the term ‘symmetric’, which in the

following terminology about dI-, dP-, dIP-categories can always be re-

placed with ‘permutable’. (See the discussion of symmetries in directed

algebraic topology, in 1.1.5.)
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Dually, a symmetric dP1-category (A, R, P, ∂α, e, r, s) is a dP1-category

equipped with a transposition s : P 2 → P 2 satisfying the conditions:

ss = 1, s.eP = Pe, ∂αP.s = P∂α, r2.sR = Rs.r2, (4.15)

where r2 = Pr.rP : RP 2 → P 2R is now the double reflection of P 2.

A symmetric dIP1-category is a dIP1-category equipped with trans-

positions of the cylinder and cocylinder which are mates (Section A5.3)

and satisfy the equivalent conditions (4.14), (4.15).

A symmetric dI1-homotopical category is a symmetric dI1-category

with a terminal object > and all cylindrical colimits, preserved by I

(Section 4.1.2). By extending I to homotopies (in 4.1.5), the last prop-

erty will be equivalently expressed saying that A has all h-pushouts,

preserved by I.

Let A be a symmetric monoidal category with reversor; the unit ob-

ject is E. We have seen, in 1.2.5, that a dI1-interval I has a structure

consisting of four maps

∂α : E −→←−−→ I : e, r : I→ Iop (α = ±). (4.16)

satisfying the conditions (1.48). This gives rise to a symmetric monoidal

dI1-structure on the category A (Section 1.2.5)

I(X) = X ⊗ I, ∂αX = X ⊗ ∂α : X → IX,

eX = X ⊗ e : IX → X, rX = Xop ⊗ r : IRX → RIX.
(4.17)

It is now straightforward to verify that this structure is symmetric

in the present sense, with transposition retrieved from the symmetry

s(X,Y ) : X ⊗ Y → Y ⊗X of the tensor product

sX = X ⊗ s(I, I) : X ⊗ I⊗ I→ X ⊗ I⊗ I. (4.18)

4.1.5 Cylinder functor and homotopies

Let A be a symmetric dI1-category (Section 4.1.4). The existence of the

transposition s : I2 → I2 allows us to define I on homotopies.

In fact, I : A→ A becomes a strong dI1-functor (Section 1.2.6), when

equipped with the natural transformations i = r−1 : RI → IR and

s : I2 → I2 which make the following diagrams commute (because of
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the axioms on r, s, in (4.14))

I
∂αI //

I∂α ""

I2 eI //

s

��

I IRI
Ii //

rI
��

I2R
sR // I2R

Ir
��

I2

Ie

<<

RI2

Rs
// RI2

iI
// IRI

Therefore, as in (1.11) for Top, we define I on the homotopy ϕ : f− →
f+ : X → Y , letting

(Iϕ)̂ = I(ϕ̂).sX : I2X → IY,

(I(ϕ̂).sX) . ∂α(IX) = I(ϕ̂).I(∂αX) = Ifα.
(4.19)

As a consequence, I also preserves future and past homotopy equiva-

lences.

Applying Lemma 1.7.1, it follows that, in a symmetric dI1-category

(Section 4.1.4), the cylinder functor preserves an h-pushout if and only

if it preserves the corresponding cylindrical colimit as a colimit (Section

4.1.2). This is always the case in a symmetric dI1-homotopical category

(Section 4.1.4).

4.1.6 Theorem (The h-pushout functor on homotopies)

We already know that, if A is a dI1-homotopical category, the double

mapping cylinder I(f, g) gives a functor A∨ → A, where ∨ is the

formal-span category (Section 1.3.7), as expressed in the left diagram

below (with I(f, g) = A, I(f ′, g′) = A′

Y
u

((
y

��

Y
u

((
η

��

λ �� λ ��X

f 44

g ((
x

��

A

h

��

X

f 44

g ((
ξ

��

A

ϕ

��

Z v

44

z

��

Z v

44

ζ

��

Y ′
u′

((
Y ′

u′

((
λ′ �� λ′ ��

X ′
f ′

44

g′ ((
A′ X ′

f ′
44

g′ ((
A′

Z ′ v′

44

Z ′ v′

44

(4.20)

Now, if A is a symmetric dI1-homotopical category, the homotopy

pushout carries coherent triples of homotopies to homotopies.

Precisely, let a coherent triple of homotopies (ξ, η, ζ) be assigned, as

in the right cube above (where the double arrow labelled ξ stands for
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ξ : x→ x′ : X → X ′, and so on)

(ξ, η, ζ) : (x, y, z)→ (x′, y′, z′) : (f, g)→ (f ′, g′),

ξ : x→ x′, η : y → y′, ζ : z → z′,

f ′◦ξ = η◦f, g′◦ξ = ζ ◦g,

(4.21)

Then, there is some homotopy ϕ : h → h′ : I(f, g) → I(f ′, g′) which

completes the cube in a coherent way

ϕ : h→ h′, ϕ◦u = u′◦η, ϕ◦v = v′◦ζ, (4.22)

and ϕ is uniquely determined if we also ask that ϕ.I(λ̂) = λ′.I(ξ̂).sX.

Proof Let us define h = I(x, y, z) and h′ = I(x′, y′, z′) as in 1.3.7. The

thesis follows from the 2-dimensional property of the h-pushout λ of

(f, g), with respect to the following double homotopy (Theorem 4.1.3)

Φ = λ′.I(ξ̂).sX : I2X → I2X → IX ′ → A′,

Y
u

!!

hu //

h′u

↓u′η // A′

λ

��

auf
hλ //

u′ηf
��

hvg

v′ζg
��

X

f
==

g !!

A
h //
h′

// A′ Φ

h′uf
h′λ

// h′vg

Z

v

>>

hv //

h′v

↓v′ζ // A′

∂−1 (Φ) = u′f ′◦ξ = u′◦η◦f, ∂−2 (Φ) = λ′◦x = h◦λ, ...

There is thus some homotopy ϕ : h → h′ such that ϕ ◦u = u′ ◦ η,

ϕ◦v = v′ ◦ζ; and there is precisely one which also satisfies ϕ.I(λ̂) = Φ.

4.1.7 Theorem

(Homotopy invariance of the cone and suspension functors)

Let A be a symmetric dI1-homotopical category (Section 4.1.4).

(a) We use the notation of 1.7.2 for the upper cone functor C+ : A→ A,

in the diagram below: u denotes the lower basis, v+ the upper vertex and

γ the structural homotopy. Then, for every homotopy ϕ : f → g : X → Y
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there is some homotopy ψ : C+[f ]→ C+[g] : C+X → C+Y such that

X
id //

p

��

X

u

��

f //

g

↓ϕ // Y

u

��

ψ◦uX = uY ◦ϕ,

γ





ψ◦v+X = 0.

>
v+
// C+X

//
↓ψ // C

+Y

(4.23)

Moreover, ψ is uniquely determined if we also ask that ψ.I(γX) =

γY.I(ϕ̂).sX.

As a consequence, the cone functors Cα : A→ A preserve future and

past homotopy equivalences.

(b) Given a homotopy ϕ : f → g, there is some homotopy ψ : Σf → Σg

(and precisely one such that ψ.I(evX) = evY .(I(ϕ̂).sX). Again, the

suspension functor Σ preserves future and past homotopy equivalences.

Proof Both results are a straightforward consequence of the previous

theorem (i.e. 4.1.6), which describes the action of the h-pushout functor

on homotopies. In case (a), one lets Z be the terminal object (and

modifies notation).

4.1.8 External transposition

Let A be a dI1-category. When the transposition s : I2 → I2 is missing,

one often has an external transposition pair (S, s : SISI → ISIS), as

happens for cubical sets (see (1.134) and (1.155), for the path functor)

and directed chain complexes (see 4.4.5).

This pair consists of an involutive endofunctor S : A→ A, the trans-

poser, and of a natural transformation s : SISI → ISIS, the external

transposition, which satisfy the following axioms (again, s is invertible,

with s−1 = SsS)

RS = SR, SsS.s = 1, (4.24)

I
S∂αSI//

IS∂αS ""

SISI
SISe//

s
��

SIS SISIR
SISr//

sR
��

SISRI
SrSI// SRISI

Rs
��

ISIS
eSIS

::

ISISR
ISrS
// ISRIS

rSIS
// RISIS
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This yields an associated S-opposite cylinder SIS, with structure:

S∂αS, SeS, SrS.

An S-opposite homotopy ψ : f− →S f
+ : X → Y is a map ψ : SIS(X)

→ Y with faces ψ.S∂αS = fα. Each original homotopy ϕ : f− →
f+ : X → Y defines an S-opposite homotopy ψ : Sf− →S Sf

+ : SX →
SY , as follows:

ψ = Sϕ : SIS(SX)→ SY,

Sϕ.(S∂αS(SX)) = S(ϕ.∂αX) = Sfα.
(4.25)

This approach gives an effective framework for left and right homo-

topies in non-symmetric dI1-categories, like cubical sets and directed

chain complexes (Section 4.4.5). But it is not clear if the external trans-

position can be of further help in studying homotopy theory.

4.2 A strong setting for directed homotopy

We arrive, through various intermediate steps, at the notion of a sym-

metric dIP4-homotopical category (Section 4.2.6).

4.2.1 Connections and transposition

A dI2-category A = (A, R, I, ∂α, e, r, gα) is equipped with a reversor

R : A→ A (an involutive covariant endofunctor, as usual) and a cylinder

endofunctor I : A → A, with two faces ∂α, a degeneracy e (as in the

dI1-case) and two additional natural transformations, called the lower

and upper connection g−, g+ (or higher degeneracies)

1
∂α //// I
e
oo I2

gαoo oo r : IR→ RI (α = ±). (4.26)

This structure has to satisfy the following axioms (which include the

axioms of dI1-categories)

e∂α = 1, egα = e.Ie (= e.eI) (degeneracy),

gα.Igα = gα.gαI (associativity),

gα.I∂α = 1 = gα.∂αI (unit),

gβ .I∂α = ∂αe = gβ .∂αI (absorbency; α 6= β),

RrR.r = 1, Re.r = eR,

r.∂−R = R∂+, r.g+R = Rg−.r2 (reflection).

(4.27)
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Also here r2 = rI.Ir : I2R→ RI2 is the double reflection of I2, defined

in (4.9).

A dI2-category is reversible if R is the identity (so that I becomes an

involutive diad on A, see 1.1.8).

A symmetric dI2-category A = (A, R, I, ∂α, e, r, gα, s) is a dI2-category

equipped with a transposition s : I2 → I2 satisfying the following con-

ditions

s.s = 1, Ie.s = eI, s.I∂α = ∂αI,

Rs.r2 = r2.sR, gα.s = gα,
(4.28)

where, after the conditions of symmetric dI1-categories (Section 4.1.4),

we are requiring that the connections be invariant under s.

It will be useful to note that, in a dI2-category, the connections

gαX : I2X → IX make the lower basis ∂− : X → IX of the cylin-

der a past deformation retract (Section 1.3.1), and the upper basis

∂+ : X → IX a future deformation retract, with the same retraction

e : IX → X

∂α : X −→←−−→ IX : e

e∂− = idX, g− : id(IX)→ ∂−e : IX → IX,

e∂+ = idX, g+ : ∂+e→ id(IX) : IX → IX.

(4.29)

Furthermore, the maps gαX : I2X → X and the higher degeneracies

IeX, eIX : I2X → IX can be viewed as double homotopies, with the

following faces, where ∂ : ∂− → ∂+ : IX → X is the structural homo-

topy, represented by 1IX (cf. (1.82)) and 0 = ∂αe : ∂α → ∂α is a trivial

homotopy

∂−
∂ //

∂
��

g−

∂+

0
��

∂−
0 //

0
��

g+

∂−

∂
��

∂−
0 //

∂
��

Ie

∂−

∂
��

∂−
∂ //

0
��

eI

∂+

0
��

∂+
0
// ∂+ ∂−

∂
// ∂+ ∂+

0
// ∂+ ∂−

∂
// ∂+

(4.30)

For d-spaces, connections and transposition have already been defined

(in 3.1.3), in the same way as for topological spaces

gα : I2X → IX, gα(x, t, t′) = (x, gα(t, t′)) (connections),

s : I2X → I2X, s(x, t, t′) = (x, t′, t) (transposition),
(4.31)

using the similar maps on the powers of the directed interval: g−(t, t′) =

max(t, t′), g+(t, t′) = min(t, t′), s(t, t′) = (t′, t).

We say that A is a (symmetric) dI2-homotopical category if:

(i) it is a (symmetric) dI2-category with terminal object >,
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(ii) it has all cylindrical colimits (Section 1.3.5), which are preserved

by the functor I, as colimits.

We have seen that, in the symmetric case, condition (ii) amounts to

the preservation of h-pushouts by the cylinder functor (Section 4.1.5).

Dually one defines (symmetric) dP2-categories and (symmetric) dP2-

homotopical categories.

A dIP2-category can be equivalently defined as a dI2-category where

the cylinder functor has a right adjoint, or a dP2-category where the

path functor has a left adjoint.

4.2.2 Concatenation and dI3-categories

We introduce now a dI3-structure as a dI1-structure ‘with concatena-

tion’. The connections are not present here, but will be reinserted later,

in a stronger structure (Section 4.2.5).

In a dI1-category, the concatenation pushout J(X) = IX +X IX of

an object X, or J-pushout, is the pasting of two cylinders, one on top of

the other

X
∂+
//

∂−

��

IX

c−

��
IX

c+
// JX

(4.32)

A dI3-category

A = (A, R, I, ∂α, e, r, J, c),

will be a dI1-category (A, R, I, ∂α, e, r) which has all concatenation

pushouts J(X) = IX +X IX. Moreover, these are preserved by I (as

pushouts), and there is a natural transformation c : I → J , called con-

catenation, which satisfies the axiom:

c∂− = c−∂−, c∂+ = c+∂+, eJ .c = e, rJ .cR = Rc.r. (4.33)

The natural transformations eJ : J → 1 and rJ : JR → RJ which

intervene here are induced by the degeneracy e : I → 1 and the reflec-

tion r : IR → RI, respectively. Namely, they are both defined by the

universal property of a J-pushout, as follows:

eJ : JX → X, eJ .c− = eJ .c+ = e,

rJ : JRX → RJX, rJ .c−R = Rc+.r, rJ .c+R = Rc−.r.
(4.34)
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It follows that:

(RrJR).rJ = 1, ReJ .rJ = eJR. (4.35)

Note that JX automatically exists if A has h-pushouts, since JX can

be obtained as the h-pushout I(1X , ∂
+), or, equivalently, as I(∂−, 1X).

We already know that, in Top and dTop, one can take JX = IX

and c = 1, with c− given by the ‘first-half’ embedding of the standard

interval into itself, t 7→ t/2, and c+ by the ‘second-half’ embedding

(Sections 1.1.1 and 3.1.3). On the other hand, in Cat and for chain

complexes, JX is not isomorphic to IX (cf. Sections 4.3, 4.4).

Coming back to the general situation, we have a functor J : A → A

and two natural transformations c−, c+ : I → J , which give three faces

1→ J (lower, upper and middle face of J)

∂−− = c−∂−, ∂++ = c+∂+, ∂± = c+∂− = c−∂+. (4.36)

It will be useful to note that the functor J always preserves J-pushouts

- a straightforward consequence of a general lemma of category theory:

pushouts preserve pushouts (Lemma 4.2.9). Thus, J2X can equivalently

be expressed by the following pushouts

JX
∂+J //

∂−J
��

IJX

c−J
��

JX
J∂+
//

J∂−

��

JIX

Jc−

��
IJX

c+J

// J2X JIX
Jc+
// J2X

(4.37)

We say that A is a dI3-homotopical category if:

(i) it is a dI3-category with terminal object >,

(ii) it has all cylindrical colimits (Section 1.3.5), which are preserved

by the functor I as colimits.

Dually one defines dP3-categories and dP3-homotopical categories.

A = (A, R, P, ∂α, e, r,Q, c),

where Q(Y ) = PY ×Y PY denotes the concatenation pullback or Q-

pullback of the object Y

QY
c+ //

c−

��

PY

∂−

��
PY

∂+

// Y

(4.38)
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Q is called the functor of pairs of consecutive paths, and the transfor-

mation c : Q→ P is called path-concatenation.

Following once more a general pattern, we can define a dIP3-category

as a dI3-category where the functors I, J have right adjoints

I a P, J a Q. (4.39)

Indeed, once that they are equipped with all the natural transfor-

mations which are mate to the ones of the dI3-structure, the previous

square diagram (4.38) is automatically a pullback, as a consequence of

general facts on mates and (co)limits (Section A5.4).

4.2.3 Concatenating homotopies

In a dI3-category, the concatenation ϕ + ψ : f → h, or vertical compo-

sition of consecutive homotopies ϕ : f → g and ψ : g → h, is defined as

represented by the map

(ϕ+ ψ)̂ = (ϕ̂ ∨ ψ̂).c : IX → Y

(ϕ̂ ∨ ψ̂).c− = ϕ̂, (ϕ̂ ∨ ψ̂).c+ = ψ̂.
(4.40)

where ϕ̂ ∨ ψ̂ denotes the obvious morphism defined on the pushout JX

(as above, in the second line). By the previous axiom (4.33), this oper-

ation satisfies:

0f + 0f = 0f , (ϕ+ ψ)op = ψop + ϕop,

k(ϕ+ ψ)h = kϕh+ kψh.
(4.41)

In particular, c− and c+ are (represent) consecutive homotopies, with

concatenation c

c− : ∂−− → ∂±, c+ : ∂± → ∂++

c− + c+ = c : ∂−− → ∂++ : X → JX.
(4.42)

We say that A has a regular concatenation, or that it is a regular dI3-

category, if the concatenation of homotopies behaves categorically (as it

happens for chain complexes)

(ϕ+ ψ) + χ = ϕ+ (ψ + χ), 0f + ϕ = ϕ = ϕ+ 0g. (4.43)

Thus the dI3-category A, equipped with homotopies as 2-cells, whisker

composition and concatenation, becomes a sesquicategory (Section A5.1);

but, with respect to this structure, it also has a reflection.



246 Settings for higher order homotopy

We say that A is 2-regular if, moreover, these operations satisfy the

reduced interchange property (as it happens in Cat)

X

f //

g

↓ϕ // Y
h //

k

↓ψ // Z ψg.hϕ = kϕ.ψf, (4.44)

which is equivalent to saying that our sesquicategory is actually a 2-

category (Section A5.2).

In a dI3-category A, the existence of a homotopy f → g yields a

preorder relation f �1 g. If A is reversible (i.e. R is the identity), this

relation coincides with the homotopy congruence f ' 1 g which gives

the homotopy category Ho1(A) = A/'1 (Section 1.3.3).

The concatenations of double homotopies will be studied in Section

4.5.

4.2.4 Symmetric dI3-categories

A symmetric dI3-category

A = (A, R, I, ∂α, e, r, s, J, c), Ic.s = s′.cI : I2 → IJ, (4.45)

is, at the same time, a symmetric dI1 and a dI3-category, where concate-

nation is consistent with transposition, as expressed in the right-hand

equation above. Here, we are using a natural transformation

s′ : JI → IJ (IJ-transposition), (4.46)

which is defined component-wise (on the pushout J(IX)), by the (com-

mutative) left diagram below

IX
∂+I //

∂−I

��

1 ��

I2X
s

  

c−I

��

JX
J∂+

//

J∂−

��

1 !!

JIX
s′

  

Jc−

��

IX
I∂+

//

I∂−

��

I2X

Ic−

��

JX
∂+J //

∂−J

��

IJX

c−J

��

I2X
c+I //

s ��

JIX

s′   

JIX
Jc+ //

s′ !!

J2X

sJ   
I2X

Ic+
// IJX IJX

c+J

// J2X

(4.47)

Thus, in the presence of a transposition, the condition that I preserve

J-pushouts is equivalent to saying that this s′ is an isomorphism.
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On the other hand, the fact that J preserves J-pushouts (which is

always true, see 4.2.2) implies that we have a natural isomorphism

sJ : J2X → J2X (J-transposition), (4.48)

making the right diagram above commutative (since it is easy to verify

that its upper and left square commute, on the injections cα : IX →
JX).

4.2.5 dI4-categories

A dI4-category

A = (A, R, I, ∂α, e, r, gα, J, c, z), (4.49)

is a dI2 and a dI3-category with additional structure: a natural trans-

formation z : I2 → I, called acceleration, or left-unit comparison, which

provides a 2-homotopy from the homotopy 0 + ∂ : ∂− → ∂+ : X → IX

to the homotopy ∂ : ∂− → ∂+ : X → IX

∂−
0+∂ //

0
��

∂+

0
��

z.I∂− = ∂−e, z.I∂+ = ∂+e,

z

∂−
∂
// ∂+ z.∂−I = ∂−e+ ∂, z.∂+I = ∂.

(4.50)

Because of z, every homotopy ϕ : f → g has two acceleration 2-

homotopies

Θ′(ϕ) = ϕ.zX : 0f + ϕ→ ϕ,

Θ′′(ϕ) = (Θ′(ϕop))op : ϕ→ ϕ+ 0g,
(4.51)

(but not the other way round: slowing down conflicts with direction).

The second 2-homotopy is obtained by reflection of homotopies and dou-

ble reflection of 2-homotopies (cf. (4.11)).

In dTop, the component zX can be defined as X×ζ : I2X → IX, by

means of the following map ζ : ↑I×↑I → ↑I (the affine homotopy from

the path f = 0 + idI : ↑I→ ↑I to idI : ↑I→ ↑I)

∂−
0 //

0
��

∂−
∂ // ∂+

0
��

ζ(t, t′) = (1− t′).f(t) + t′.t,

ζ f(t) = max(0, 2t− 1).

∂−
∂

// ∂+

(4.52)

If, in A, homotopies have a regular concatenation (Section 4.2.3), the

homotopy 0 + ∂ : ∂− → ∂+ : X → IX coincides with ∂ : ∂− → ∂+
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and one can always take as z the trivial 2-homotopy ∂ → ∂, repre-

sented by zX = eIX : I2X → IX. With this choice, we say that

A = (A, R, I, ∂α, e, r, gα, s, J, c) is a regular dI4-category (and a 2-regular

dI4-category if, moreover, A is a 2-category, as specified in 4.2.3).

A symmetric dI4-category

A = (A, R, I, ∂α, e, r, gα, s, J, c, z)

is a dI4-category equipped with a transposition consistent with the dI2-

and dI3-structure (Sections 4.2.1 and 4.2.4).

Dually one defines a dP4-category

A = (A, R, P, ∂α, e, r, gα, Q, c, z)

and a symmetric dP4-category (which also has a transposition s : P 2 →
P 2). In both cases the structure contains the concatenation pullback, or

Q-pullback (Section 4.2.2) with a concatenation map c : Q → P and an

acceleration z : P → P 2.

A dIP4-category is a dI4-category whose endofunctors I, J have right

adjoints P,Q; then, these functors inherit a dP4-structure with the same

reversor and with natural transformations which are mates to the trans-

formations of I, J . Equivalently, a dIP4-category can also be defined

as a dP4-category whose endofunctors P,Q have left adjoints I, J . The

symmetric case is analogous.

4.2.6 Homotopical categories

We say that A is a (symmetric) dI4-homotopical category if:

(i) it is a (symmetric) dI4-category with terminal object >,

(ii) it has all cylindrical colimits (Section 1.3.5), which are preserved

by the functor I as colimits.

As we have already remarked in 4.2.2, condition (ii) implies, by itself,

the existence of J-pushouts (and the fact that they are preserved by I).

Dually one defines a (symmetric) dP4-homotopical category.

Finally, A is a (symmetric) dIP4-homotopical category if:

(i′) it is a (symmetric) dIP4-category (Section 4.2.5) with terminal

object > and initial object ⊥,

(ii′) it has all cylindrical colimits and cocylindrical limits (automati-

cally preserved by I and P , respectively, because of the adjunction

I a P ).
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If, in this case, A is pointed (i.e. has a zero object), we have further

adjunctions (see (1.211)), with α = ±

Cα a Eα (cone-cocone),

Σ a Ω (suspension-loops).
(4.53)

The category dTop of d-spaces is a symmetric dIP4-homotopical cat-

egory, which is complete and cocomplete.

In fact, it has all limits and colimits, and adjoint endofunctors I a P ,

J a Q. Furthermore, the cylinder has a symmetric dI4-structure, already

considered above, step-by-step, which is transferred to the path functor

along the adjunction (cf. 1.2.2, 4.2.2).

We also recall that the concatenation pushout J(X) = IX +X IX is

realised as JX = IX (cf. 1.4.6, 4.2.2); then cα : IX → JX is the ‘first-

half’ or ‘second-half’ embedding of the standard interval into itself, and

the concatenation map c : IX → JX is the identity.

Similarly the concatenation pullback Q(Y ) = PY ×Y PY (cf. 3.1.4)

is realised as QY = PY ; then, cα : QY → PY restricts a path to its

‘first-half’ or ‘second-half’, and the concatenation map c : QY → PY is

again the identity.

4.2.7 Functors and subcategories

Recall that a lax dI1-functor (Section 1.2.6) H = (H, i, h) : A→ X is a

functor H between dI1-categories, equipped with two natural transfor-

mations i, h, the comparisons, which satisfy the following conditions (so

that i is invertible):

i : RH → HR, h : IH → HI, (RiR).i = 1RH , (4.54)

H
∂αH //

H∂α $$

IH
eH //

h
��

H IRH
Ii //

rH
��

IHR
hR // HIR

Hr
��

HI
He

::

RIH
Rh
// RHI

iI
// HRI

Now, if A,X are symmetric dI4-categories, we say that H is a lax

symmetric dI4-functor if its comparisons are also consistent with the

remaining structural transformations of A,X (i.e. connections, transpo-

sition, concatenation and acceleration). Namely, the following diagrams
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must commute:

I2H
Ih //

gαH
��

IHI
hI // HI2

Hgα

��

I2H
Ih //

sH
��

IHI
hI // HI2

Hs
��

IH
h

// HI I2H
Ih
// IHI

hI
// HI2

(4.55)

IH
h //

cH
��

HI

Hc
��

I2H
Ih //

zH
��

IHI
hI // HI2

Hz
��

JH
h′
// HJ IH

h
// HI

(4.56)

In the left diagram of (4.56), we have used the J-comparison h′ : JH →
HJ of H, which is defined component-wise, on the J-pushout J(HX) of

X, by the following commutative diagram

HX
∂+H //

∂−H

��

1 &&

IHX

c−H

��

h

&&
HX

H∂+
//

H∂−

��

HIX

Hc−

��

IHX
c+H //

h &&

JHX
h′

&&
HIX

Hc+
// HJX

(4.57)

Dually, extending (1.59), one defines a lax symmetric dP4-functor

K = (K, i, k) : A → X between symmetric dP4-categories, with nat-

ural transformations i : KR → RK and k : KP → PK coherent with

the whole structure.

As in 1.2.6, a lax symmetric dI4-functor (H, i, h) : A → X between

symmetric dIP4-categories becomes automatically a lax symmetric dP4-

functor, with the inverse natural isomorphism i−1 : HR→ RH and the

comparison k : HP → PH which is mate to the comparison h : IH →
HI (Section A5.3). Then, (H, i, h, k) is called a lax symmetric dIP4-

functor.

The intermediate cases: dI2, dI3, dP2, dP3, dIP2, dIP3 (possibly

symmetric) are dealt with in the same way. In all cases, we speak of

strong (resp. strict) functors when all comparisons are invertible (resp.

identities).

The notion of a dI1-subcategory was defined in 1.2.1. A symmetric

dI4-subcategory A′ of a dI4-category A is a subcategory closed in A with
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respect to the whole structure (R, I, ∂α, e, r, gα, s, J, c, z), and amounts

to an inclusion A′ → A which is a strict symmetric dI4-functor. The

notions of (symmetric) dI2, dI3, dP2, dP3, dP4, dIP2, dIP3, dIP4-

subcategory or homotopical subcategory are defined in the same way.

4.2.8 The structure of the directed interval

In the symmetric monoidal case, the structures considered above can be

defined by the corresponding structures on a standard directed interval,

as we have already seen in 1.2.5 for dI1 and dIP1-categories.

Let A = (A,⊗, E, s) be a symmetric monoidal category with reversor

R : A → A (Section 1.2.5); again, we always omit the isomorphisms of

the monoidal structure, except the symmetry.

A symmetric dI2-interval I in A comes equipped with faces (∂α),

degeneracy (e), reflection (r), connections (gα) and the transposition

s = s(I, I) obtained from the symmetry of the tensor product

E
∂α // // I
e
oo I⊗ I

gαoooo r : I→ Iop, s : I⊗ I→ I⊗ I. (4.58)

These data must satisfy the ‘same’ axioms as the symmetric dI2-

cylinder (Section 4.2.1), conveniently rewritten (much as in (1.32) for

a closely related structure, the dioid): for instance, the associativity of

the connections, which is gα.Igα = gα.gαI for the cylinder, here be-

comes: gα.gα ⊗ I = gα.I⊗ gα.

When R = id, our structure is the same as a symmetric involutive

dioid, as defined in 1.1.7. (In the general case, a symmetric dI2-interval

could also be called a symmetric dioid with reflection.)

If the object I is exponentiable (A4.2) in A, we have, accordingly, a

monoidal dIP2-structure.

A dI3-interval I is a dI1-interval having a standard concatenation

pushout J, preserved by the tensor product, and a concatenation map c

which satisfies conditions similar to (4.33)

E
∂+
//

∂−

��

I

c−

��
c : I→ J.

I
c+
// J

(4.59)

Finally, a dI4-interval has both the preceding structures, with an ac-
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celeration map z : I2 → I so that the axioms (4.50), suitably rewritten,

hold.

When the objects I and J are exponentiable in A, we have, accord-

ingly, a monoidal dIP3-, or dIP4-structure, with the right adjoint func-

tors P,Q

I = −⊗ I a P = (−)I, J = −⊗ J a Q = (−)J. (4.60)

When the tensor product is the categorical product and s is the ordi-

nary transposition, all these structures are called cartesian, instead of

monoidal.

If the tensor product is not symmetric, we get, as in 1.2.5, a left

cylinder I⊗X and a right cylinder X ⊗ I defining two dI2-, or dI3-, or

dI4-structures. See the case of cubical sets, in 4.3.4.

4.2.9 Lemma (Pushouts preserve pushouts)

In a category A, we have a commutative diagram consisting of a span

of commutative cubes

B2

��

$$
A2

g2 //f2oo

��

$$
C2

��

##
B4

��

A4
g4 //f4oo

��

C4

��
B1

$$
A1

g1 //f1oo

$$
C1

##
B3 A3 g3

//
f3

oo C3

If the three squares of vertices Ai, Bi, Ci are pushouts and all four pairs

(fi, gi) of horizontal maps have a pushout (ki, hi), then the resulting new

square D = (Di) is a pushout

B2
k2 //

��

$$
D2

��

$$
C2

h2oo

��

##
B4

k4 //

��

D4

��

C4
h4oo

��
B1

k1 //

$$
D1

$$
C1

h1oo

##
B3

k3

// D3 C3
h3

oo

Formally, we are saying that, in the category A2×2 of commutative

squares, the pushout of a span of pushout-squares B ← A → C is a

pushout-square, provided it exists and is pointwise.
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Proof Straightforward.

4.3 Examples, I

We have seen that dTop is a symmetric dIP4-homotopical category. We

see now that the same is true of the category dTop• of pointed d-spaces,

and of Cat.

On the other hand, the category of reflexive graphs is just dIP2-

homotopical (Section 4.3.3), and the category Cub of cubical sets is

just dIP1-homotopical, under two isomorphic structures (Section 4.3.4).

We will see in Section 5.8 how one can study their higher properties of

directed homotopy, by a relative setting using d-spaces.

4.3.1 Pointed spaces with distinguished paths

We know that dTop is a cartesian symmetric dIP4-homotopical cate-

gory, which is complete and cocomplete (Section 4.2.6).

It is now easy to show that the category dTop• of pointed spaces with

distinguished paths is a pointed symmetric monoidal dIP4-homotopical

category, complete and cocomplete, with zero-object the (pointed) sin-

gleton {∗} and tensor product the smash product (1.122).

Extending what we have already seen, at the basic level (Section

1.5.5), the cocylinder structure of dTop• is that of dTop, enriched with

the obvious base-points. The cylinder structure is less simple, but can

be deduced from the previous one, by adjunction.

In particular, let us recall that the pointed cocylinder is just the or-

dinary cocylinder, pointed at the constant loop at the base point

P : dTop• → dTop•, P (Y, y0) = (PY, ω0), (ω0 = 0y0), (4.61)

while the cylinder functor

I : dTop• → dTop•, I(X,x0) = (IX/I{x0}, [x0, t]), (4.62)

is the quotient of the unpointed cylinder which collapses the fibre at the

base-point, I{x0} = {x0}×↑I.

The whole structure originates from the pointed directed interval
↑I• = (↑I + {∗}, ∗) (Section 1.5.4), via smash product and exponen-

tiation. Thus, I(X,x0) = (X,x0) ∧ ↑I•.
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4.3.2 Categories

We have already seen, in 1.2.2, that the category Cat of small categories

has a cartesian dIP1-structure, with reversor R(X) = Xop and a directed

interval consisting of the ordinal category ↑i = 2 = {0 → 1}. In this

structure, a path in X is an arrow, and a homotopy ϕ : f → g : X → Y is

a natural transformation. We show now that this structure is cartesian

dIP4-homotopical.

First, it is well-known that Cat is complete, cocomplete and cartesian

closed, with [X,Y ] = Y X the category of functors X → Y and their

natural transformations. The identity of the tensor product is the one-

point ordinal category 1 = {0}.
Now, the directed interval 2 is a symmetric dI4-interval (Section

4.2.8).

Its symmetric dI2-structure consists of the following functors (defined

by their action on the objects)

1
∂α // // 2
e
oo 22

gαoooo r : 2→ 2op, s : 22 → 22,

∂α(0) = α, g−(i, j) = max(i, j), g+(i, j) = min(i, j),

s(i, j) = (j, i), r(i) = 1− i (α, i, j = 0, 1).
(4.63)

Then, the standard concatenation pushout gives the ordinal 3, which

is equipped with the standard concatenation map c

1
∂+
//

∂−

��

2

c−

��

c : 2→ 3,

c(0→ 1) = 0→ 2.

2
c+
// 3

(4.64)

Altogether, we have a symmetric dIP4-structure, with cylinder I(X) =

X×2, cocylinder P (Y ) = Y 2, and the following concatenation pushout

and pullback

J(X) = X×3, cX = X×c : X×2→ X×3,

Q(Y ) = Y 3, cY = Y c : Y 3 → Y 2.
(4.65)

The effect of concatenation is simply the composition of consecu-

tive arrows (i.e. paths). Thus, the concatenation is regular, and in-

deed 2-regular (Section 4.2.3). Finally, Cat is a regular cartesian dIP4-

homotopical category (with trivial acceleration, see 4.2.5).
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4.3.3 Reflexive graphs

Let us consider now the category Gph of (small) reflexive graphs, or 1-

truncated cubical sets, or 1-truncated simplicial sets. To fix the notation,

an object is a diagram in Set

X0

∂α // // X1
e

oo ∂−e = 1 = ∂+e (α = −,+),

consisting of a set of vertices X0, a set of arrows (or edges) X1, the

domain and codomain mappings ∂−, ∂+, the degeneracy mapping e.

This category Gph will be equipped with the following symmetric

monoidal closed structure. The internal hom-functor [X,Y ] is given by

the reflexive graph consisting of morphisms of reflexive graphs X → Y ,

with their transformations. The tensor product X⊗Y is the subgraph of

X × Y containing all the objects (x, y) ∈ X0×Y0 and only those arrows

(u, v) ∈ X1×Y1 such that either u or v is degenerated (an identity).

Consider now the ordinal ↑i = 2 = {0 → 1} as a reflexive graph,

and a dI2-interval in (Gph,⊗); the description is the same as above (in

(4.63)), excepting the fact that the reflexive graph 2 ⊗ 2 has four non-

degenerate arrows (and lacks the diagonal (0, 0)→ (1, 1) of the category

2×2).

One obtains thus a symmetric monoidal dIP2-structure on Gph, with

IX = X⊗2 and PX = [2, X]. To assign a map IX → Y (orX → PY ) is

here equivalent to give a transformation ϕ : f− → f+ : X → Y between

two morphisms fα : X → Y of reflexive graphs.

There is no concatenation of paths and homotopies.

4.3.4 Cubical sets

As we have seen in Section 1.6, directed homotopy in the category Cub is

based on the directed interval ↑i (the cubical set freely generated by a 1-

cube u), and on the classical tensor product. The latter is not symmetric

(but induces the previous symmetric tensor product of reflexive graphs,

by 1-truncation).

Thus, we have a left dIP1-structure CubL defined by the left cylinder

functor I(X) = ↑i ⊗ X, and a right dIP1-structure CubR defined by

the right cylinder SIS(X) = X ⊗ ↑i. The analytic description of left

and right homotopies has been given in 1.6.5. The two structures are

isomorphic, under the transposer S : CubL → CubR, which reverses

the order of faces, and we only need to consider one of them.
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All the main enrichments of structure which we have considered in

the two previous sections cannot be performed here. The structure

CubL is not symmetric, but only has an external transposition (S, s) (see

(1.155)). There are no connections, since any morphism f : ↑i⊗ ↑i→ ↑i
must send the 2-cube u ⊗ u to a 2-cube of ↑i, necessarily degener-

ate in direction 1 or 2, and therefore cannot satisfy both equations

f.∂α1 = id = f.∂α2 (for a given α = ±). Finally, there is no concate-

nation of paths (i.e. edges), as in the 1-truncated case.

4.4 Examples, II. Chain complexes

Chain complexes on an additive category, with the usual homotopies,

form a symmetric dIP4-homotopical category, which is regular and re-

versible. Directed chain complexes have a regular dIP4-homotopical

structure, which lifts the previous one but is no longer symmetric nor

reversible.

4.4.1 Chain complexes

Let D be an additive category (Section A4.6). Recall that Ch•D denotes

the category of its unbounded chain complexesA = ((An), (∂n)), indexed

on Z, with the usual morphisms (of degree zero). We show that it is

a regular, reversible, symmetric dIP4-homotopical category. Of course,

homotopies are the usual ones and the basic structure is classical, but

the connections are less known.

Some general remarks on duality will reduce computations. Writing

X∗, f∗ the object and arrow corresponding to X and f in the opposite

category D∗, the anti-isomorphism

Ch•D→ Ch•(D
∗),

A = ((An), (∂n)) 7→ A′ = ((A∗−n, (∂
∗
−n+1)),

(4.66)

shows that (Ch•D)∗ is again a category of chain complexes (on D∗), and

allows one to get the cylinder functor I of Ch•D from the path functor

P ∗ of Ch•(D
∗)

I(A) = (P ∗(A′))′.

The same holds for cones, suspensions, h-pushouts. We also note that,

for a small category S, (Ch•D)S ∼= Ch•(D
S) is still a category of chain

complexes over an additive category. If D is complete, the same holds for

sheaves on a small site S : Shv(S,Ch•D) ∼= Ch•(Shv(S,D)) (cf. 5.1.3).
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A D-map between finite biproducts f :
⊕
Aj →

⊕
Bi of components

fij will be written ‘on formal variables’, as

f(x1, ..., xn) = (
∑
jf1j xj , ...,

∑
jfmj xj). (4.67)

This notation allows one to write computations as if D were a category

of modules. It can be formally justified by letting xj = prj :
⊕
Aj → Aj

be the j-th projection; then, (x1, ..., xn) - the morphism of components

x1, ..., xn - is the identity of
⊕
Aj , but also specifies the ‘name of the

variable’, for each Aj .

4.4.2 The path functor

To fix notation, a homotopy in Ch•D is written as

ϕ : f → g : A→ B, ϕ = (f, ϕ•, g), (4.68)

and satisfies

−f + g = ∂ϕ• + ϕ•∂ (−fn + gn = ∂n+1ϕn + ϕn−1∂n). (4.69)

The sequence ϕ• = (ϕn : An → Bn+1)n is a map of graded objects,

of degree 1, which will be called the centre of ϕ. We often write ϕ(a)

instead of ϕn(a), where a denotes the variable of An.

Such homotopies are produced by a path endofunctor P

(PA)n = An⊕An+1⊕An, ∂(a, h, b) = (∂a,−a−∂h+b, ∂b). (4.70)

P has a reversible regular symmetric dP4-structure (∂α, e, r, gα, s, c),

which can be written ‘on variables’, as specified above:

∂α : PA→ A, ∂α(a−, h, a+) = aα (faces),

e : A→ PA, e(a) = (a, 0, a) (degeneracy),

r : PA→ PA, r(a, h, b) = (b,−h, a) (reversion),

gα : PA→ P 2A,

g−(a, h, b) = (a, h, b; h, 0, 0; b, 0, b),

g+(a, h, b) = (a, 0, a; 0, 0, h; a, h, b) (connections),

s : P 2A→ P 2A, s(a, h, b; u, z, v; c, k, d)

= (a, u, c; h,−z, k; b, v, d) (transposition),

c : PA×A PA→ PA,

c((a, h, c), (c, k, d)) = (a, h+ k, d) (concatenation).

(4.71)

The second order structure, where P 2A intervenes, will be analysed

below (Section 4.4.3)
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By duality (Section 4.4.1), homotopies are also represented by a cylin-

der endofunctor I : Ch•D→ Ch•D

(IA)n = An ⊕An−1 ⊕An, ∂(a, h, b) = (∂a− h,−∂h, ∂b+ h). (4.72)

The unit and counit of the adjunction I a P are computed as follows:

η : 1→ PI, ε : IP → 1, (4.73)

ηn : An → (An⊕An−1⊕An)⊕ (An+1⊕An⊕An+1)⊕ (An⊕An−1⊕An),

ηn(a) = (a, 0, 0; 0, a, 0; 0, 0, a),

εn : (An⊕An+1⊕An)⊕ (An−1⊕An⊕An−1)⊕ (An⊕An+1⊕An)→ An,

εn(a, h, b; x, e, y; c, k, d) = a+ e+ d.

The structure of I can be obtained from the structure of P , in (4.71),

by duality or by adjunction, equivalently. P and I respectively preserve

the existing limits and colimits, and both preserve finite biproducts. All

this gives rise to the usual trivial homotopies, whisker composition and

concatenation of homotopies

0f = (f, 0, f), kϕh = (kfh, kϕ•h, kgh),

ϕ+ ψ = (f, ϕ• + ψ•, h) (for ϕ : f → g, ψ : g → h).
(4.74)

Concatenation is obviously regular (but not 2-regular): strictly asso-

ciative, with strict identities. Therefore, we do not have to introduce the

acceleration 2-homotopy z : P → P 2 (cf. 4.2.5). Notice, also, that the

concatenation of homotopies ϕ+ψ should not be confused with the sum

of their representative morphisms in the abelian group Ch•D(A,PB)

(the relation between these operations will be considered in 4.8.6).

Ch•D has thus a regular, reversible, symmetric dIP4 structure, which

is actually dIP4-homotopical. In fact, given two morphisms f : A → C

and g : B → C, the standard homotopy pullback P (f, g) is constructed

making use of the biproducts of D, as a simple extension of the con-

struction of PA:

(P (f, g))n = An ⊕ Cn+1 ⊕Bn,
∂(a, c, b) = (∂a,−fa− ∂c+ gb, ∂b).

(4.75)

Homotopy pushouts also exist, by duality. Notice that Ch•D need not

have all finite limits or colimits: these exist if and only if they exist in

D (cf. 1.3.5).
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4.4.3 The higher structure

We describe now, in detail, the second order structure of P , consisting

of its connections and transposition.

The second order path-object has the following components and dif-

ferential

(P 2A)n = (PA)n ⊕ (PA)n+1 ⊕ (PA)n = (4.76)

(An⊕An+1⊕An)⊕ (An+1⊕An+2⊕An+1)⊕ (An⊕An+1⊕An),

∂(a, h, b; u, z, v; c, k, d) =

(∂a,−a− ∂h+ b, ∂b;−a− ∂u+ c, z,−b− ∂v + d; ∂c,−c− ∂k + d, ∂d)

where z = −h+ u+ ∂z − v + k.

It is convenient to represent the variable ξ = (a, h, b; u, z, v; c, k, d)

of P 2A (in the sense of 4.4.1) as a square diagram, so that its faces

∂α1 = ∂αP and ∂α2 = P∂α show at the boundary of the square

a
u //

h
��

z

c

k
��

•
1 //

2
��b

v
// d

(4.77)

∂−1 (ξ) = ∂−P (ξ) = (a, h, b), ∂+
1 (ξ) = ∂+P (ξ) = (c, k, d),

∂−2 (ξ) = P∂−(ξ) = (a, u, c), ∂+
2 (ξ) = P∂+(ξ) = (b, v, d).

The connections g− and g+ can thus be represented according to their

geometrical meaning

g−(a, h, b) = (a, h, b;h, 0, 0; b, 0, b),

g+(a, h, b) = (a, 0, a; 0, 0, h; a, h, b),
(4.78)

a
h //

h
��

0

b

0
��

a
0 //

0
��

0

a

h
��

b
0
// b a

h
// b

Easy computations show that the connections satisfy ‘their’ axioms

(whose duals are written in 4.2.1); for most of them (except coasso-

ciativity) this is evident from the above representation. We only write

down the verification that g− commutes with the differential (letting
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h′ = −a− ∂h+ b):

g−∂(a, h, b) = g−(∂a, h′, ∂b) = (∂a, h′, ∂b;h′, 0, 0; ∂b, 0, ∂b),

∂g−(a, h, b) = ∂(a, h, b;h, 0, 0; b, 0, b)

= (∂(a, h, b);−(a, h, b)− ∂(h, 0, 0) + (b, 0, b); ∂(b, 0, b))

= (∂a, h′, ∂b;−a− ∂h+ b,−h+ 0 + h,−b+ b; ∂b,−b+ b, ∂b)

= (∂a, h′, ∂b;h′, 0, 0; ∂b, 0, ∂b).

Similarly, the transposition s : P 2A → P 2A comes from a symmetry

with respect to the ‘main diagonal’, as in Top, together with a sign-

change in the middle term

s(a, h, b; u, z, v; c, k, d) = (a, u, c; h,−z, k; b, v, d). (4.79)

a
u //

h
��

z

c

k
��

7→

a
h //

u

��
−z

b

v
��

b
v
// d c

k
// d

This representation makes evident that s satisfies ‘its’ axioms (Section

4.2.1, dualised): it is involutive, converts the horizontal faces into the

vertical ones, makes the connections gα commutative (gα.s = gα, since

gα in (4.78) is invariant under such symmetry and sign-change) and is

consistent with the degeneracy e.

Finally, in order to prove that s commutes with the differential ∂ of

P 2A, recall that the latter is computed in (4.76). This formula shows

that interchanging h/u, b/c, v/k, z/ − z in the original 9-tuple does

yield in the final result the interchanging of the terms of place 2/4, 3/7,

6/8 together with the sign-change in the middle term.

4.4.4 Positive chain complexes

The subcategory Ch+D of positive chain complexes (with An = 0 for

n < 0) has again homotopies defined as above. It is a symmetric dI4-

category, with a cylinder functor I ′ which is the restriction of the cylinder

I for unbounded complexes, considered above

I ′ : Ch+D→ Ch+D, (I ′A)n = An ⊕An−1 ⊕An. (4.80)

Assume now that the additive category D has kernels (and therefore

all finite limits). Then I ′ has a right adjoint P ′ : Ch+D→ Ch+D, which
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differs from P in degree 0:

(P ′A)n = An ⊕An+1 ⊕An (n > 0),

(P ′A)0 = Ker (∂PA0 : A0 ⊕A1 ⊕A0 → A0).
(4.81)

Indeed, in this hypothesis (existence of finite limits in D), the embed-

ding U : Ch+D→ Ch•D has a reflector F and a coreflector G

F : Ch•D→ Ch+D, (FA)n =

{
An, for n > 0,

0, for n < 0.
(4.82)

G : Ch•D→ Ch+D, (GA)n =


An, for n > 0,

Ker(∂0), for n = 0,

0, for n < 0.

(4.83)

Therefore, the adjunctions I a P and F a U a G

Ch+D
U // Ch•D
G
oo

I // Ch•D
P
oo

F // Ch+D
U
oo (4.84)

give a composed adjunction I ′ a P ′ (in Ch+D), with I ′ = FIU , P ′ =

GPU .

It follows that, for an additive category D with kernels, the category

Ch+D of positive chain complexes is a symmetric dIP4-homotopical

category. The embedding U : Ch+D→ Ch•D is a strict symmetric dI4-

functor and a lax symmetric dP4-functor; the comparison k : UP ′ → PU

comes from the embedding kA : UP ′A→ PUA (obtained as in 4.2.7).

4.4.5 Directed chain complexes

Take now the category dCh+Ab of directed (positive) chain complexes

of abelian groups, defined in 2.1.1 and recall that the differential is not

assumed to preserve preorders.

Here, we prefer to work with the unrestricted case, dCh•Ab. Let us

begin by recalling that this category has all limits and colimits and is

enriched on abelian monoids (Section 2.1.1).

The path and cylinder functor are defined as in Ch•Ab (Section 4.4.2)

(PA)n = An⊕An+1⊕An, ∂(a, h, b) = (∂a,−a− ∂h+ b, ∂b),

(IA)n = An⊕An−1⊕An, ∂(a, h, b) = (∂a− h,−∂h, ∂b+ h),
(4.85)

equipping each component with the obvious preorder, which makes it a
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biproduct of preordered abelian groups. The adjunction I a P lifts to

dCh•Ab, since its unit and counit (computed in (4.73)) preserve these

preorders.

The natural transformations ∂α, e, gα, c defined in (4.71) for the path

functor (and its powers) also preserve preorders and lift to dCh•Ab,

while this is not true of reversion and transposition (whose formulas

make use of opposites). The corresponding natural transformations of

the cylinder functor behave in the same way, of course.

In fact, the category dCh•Ab has a non-symmetric, non-reversible

dIP4-homotopical structure, which lifts that of Ch•Ab. This works

with a reversor R which reverses the preorder of every component of

odd degree (by a power of the involutive endofunctor R(X) = Xop of

pAb):

RA = ((RnAn), (∂n)), Rf = (Rnfn)n. (4.86)

Now, the reversion of chain complexes is replaced with a reflection

(or external reversion), which is defined by the same algebraic formula

but operates between chain complexes with modified preorders (and pre-

serves them):

(RPA)n = (RnAn)⊕ (RnAn+1)⊕ (RnAn),

(PRA)n = (RnAn)⊕ (Rn+1An+1)⊕ (RnAn),

r : RPA→ PRA, r(a, h, b) = (b,−h, a).

(4.87)

The forgetful functor dCh•Ab→ Ch•Ab is thus a strict dIP4-functor

(Section 4.2.7).

The transposition of chain complexes can also be replaced with an

external transposition having the same algebraic formula, but operating

between chain complexes with modified preorders (much in the same

way as already done for cubical sets, in 1.6.5).

To do this, we first define the transposer S which - in a directed chain

complex - reverses the preorder of each component of degree n such that

the integral part [n/2] is odd (i.e. n = 2, 3, 6, 7, 10, 11,... )

SA = ((SnAn), (∂n)), Sf = (Snfn)n (Sn = R[n/2]),

SS = 1, RS = SR.
(4.88)

The external transposition is now defined as the natural transforma-
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tion

s : PSPS → SPSP,

(PSPSA)n = (An ⊕RnAn+1 ⊕An) ⊕
(An+1 ⊕Rn+1An+2 ⊕An+1)⊕ (An ⊕RnAn+1 ⊕An),

(SPSPA)n = (An ⊕An+1 ⊕An) ⊕
(RnAn+1 ⊕RnAn+2 ⊕RnAn+1)⊕ (An ⊕An+1 ⊕An),

s(a, h, b; u, z, v; c, h, d) = (a, u, c; h,−z, k; b, v, d).

(4.89)

To compute the components above, use the fact that

[n/2] + [(n+ 1)/2] = n,

whence SnSn+1 = Rn and Sn+1Sn+2 = Rn+1.

4.4.6 Singular directed chains

The functor ↑Ch+ : dTop → dCh+Ab (Section 2.1.2) becomes a lax

dP1-functor (Section 1.2.6), via the natural transformations:

i : R↑Ch+(X)→ ↑Ch+(RX), i(a) = (−1)naop.rn,

k : ↑Ch+(PX)→ P↑Ch+(X), k(b) = (∂−b, b′, ∂+b),
(4.90)

where

• a : ↑In → X is a singular cube of X, and b : ↑In → PX of PX,

• rn : ↑In → (↑In)op reverses all coordinates, sending (ti) to (1− ti),
• b′ = ev.(b×↑I) : ↑In+1 → X corresponds to b in the cylinder-path

adjunction.

The coherence conditions are satisfied, i.e. the following diagrams com-

mute (with C+ = ↑Ch+):

C+

C+e //

eC+ ##

C+P
C+∂

α

//

k

��

C+ RC+P
iP //

Rk
��

C+RP
C+r // C+PR

kR
��

PC+

∂αC+

;;

RPC+
rC+

// PRC+
Pi
// PC+R

For the first triangle, recall that a degenerate cube gives a null (nor-

malised) chain. For the right-hand rectangle:

(kR.C+r.iP )(a : ↑In → PX) = (−1)nkR(rX.aop.rn)

= (−1)n((∂+a)op.rn, ev.((rX.aop.rn)×↑I), (∂−a)op.rn),
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(Pi.rC+.Rk)(a : ↑In → PX) = Pi(∂+a,−a′, ∂−a)

= ((−1)n(∂+a)op.rn,−(−1)n+1ev.(a×↑I)op.rn+1, (−1)n(∂−a)op.rn)

= (−1)n((∂+a)op.rn, (ev.(a×↑I))op.rn+1, (∂−a)op.rn),

and the two results coincide, since

ev.((rX.aop.rn)×↑I) = ev.(a×↑I)op.rn+1 : ↑In+1 → Xop.

4.4.7 The monoidal structure

Let now K be a commutative unital ring and D = K-Mod the cate-

gory of K-modules, with the usual tensor product ⊗ = ⊗K and inter-

nal hom-functor Hom = HomK . In this case the reversible symmetric

dIP4-structures of Ch•D and Ch+D are monoidal, i.e. produced by a

reversible symmetric dIP4-interval (Section 4.2.8).

Indeed, the category Ch•D of unbounded chain complexes (of K-

modules) has a classical symmetric monoidal closed structure ([EK], p.

558)

(A⊗B)n =
⊕
p (Ap ⊗Bn−p),

∂(a⊗ b) = (∂a)⊗ b+ (−1)|a|.a⊗ (∂b),
(4.91)

(Hom(A,B))n =
∏
p Hom(Ap, Bn+p),

(∂f)x = ∂(fx)− (−1)|f |.f(∂x),
(4.92)

whose identity is the complex K, concentrated in degree zero. (Here,

| − | denotes the degree of an element).

We obtain an interval-object I by setting I = I(K); it is a complex

concentrated in degrees 0 and 1

I0 = K ⊕K, I1 = K, ∂1(λ) = (−λ, λ), (4.93)

and it is easy to verify that, in this case (D = K-Mod), the cylinder

and path functor of Ch•D (Section 4.4.2) are given by

I(A) ∼= A⊗ I, P (A) ∼= Hom(I, A). (4.94)

Further the object I = I(K) has a structure of a reversible dI4-interval

in (Ch•D,⊗), coming from the reversible dI4-structure of I and the fact

that I2(K) = I(I(K)) ∼= I ⊗ I. Conversely, this structure on I defines

the structure of the functors I, P , according to the general procedure for

symmetric monoidal closed categories (Section 4.2.8).

The same argument applies to the category Ch+(K-Mod) of positive
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chain complexes of modules, with the appropriate monoidal closed struc-

ture. The latter can be expressed with the reflector F and coreflector

G (Section 4.4.4): the new tensor product is still computed as above, in

(4.91), but the new hom has a different formula in degree zero

(Hom+(A,B))0 =

Ker(∂0 : (
∏
p Hom(Ap, Bp)→

∏
p Hom(Ap, Bp−1)).

(4.95)

4.5 Double homotopies and the fundamental category

We begin now the general theory of dI2, dI3 and dI4-categories. Double

homotopies and 2-homotopies have been introduced in 4.1.1. We use

them to construct the homotopy 2-category Ho2(A) and the fundamen-

tal category functor ↑Π1 : A→ Cat, for a dI4-category A.

4.5.1 Concatenation of double homotopies

Let A be a dI3-category (Section 4.2.2), and recall that c : I → J denotes

the concatenation map.

The concatenation, or pasting, of double homotopies in direction 1, is

defined by means of the pushout I(JX) and the map Ic : I2X → IJX

A +1 B = (A ∨1 B).Ic : I2X → IJX → Y, (4.96)

where the double homotopies A,B are consecutive in direction 1 (∂+
1 A =

∂−1 B), and of course (A ∨1 B).Ic− = A, (A ∨1 B).Ic+ = B.

Similarly, the concatenation in direction 2 is defined by the J-pushout

J(IX) and the map cI : I2X → JIX, for two double homotopies which

are consecutive in direction 2

A +2 C = (A ∨2 C).cI : I2X → JIX → Y (∂+
2 A = ∂−2 C). (4.97)

We shall see that, in the presence of a transposition, these operations

can be obtained one from the other (Section 4.5.3). We also prove below

(Theorem 4.5.2) that these operations satisfy a (strict) middle-four in-

terchange property, which allows us to define the matrix concatenation

of four double homotopies Aαβ : I2X → Y , with faces as below[
A00 A10

A01 A11

]
= (A00 +1 A10) +2 (A01 +1 A11)

= (A00 +2 A01) +1 (A10 +2 A11),

(4.98)
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• //

��
A00

• //

��
A10

•

��
• //

��
A01

• //

��
A11

•

��

•
1 //

2
��• // • // •

Plainly, 2-homotopies (Section 4.1.1) are closed under concatenation

in both directions (also because 0f + 0f = 0f , strictly).

The preorder ϕ �2 ψ (i.e. there is a 2-homotopy ϕ → ψ) spans an

equivalence relation ' 2 ; two homotopies which satisfy the relation

ϕ'2 ψ are said to be 2-homotopic.

4.5.2 Theorem (Double concatenations)

Let A be a dI3-category.

(a) The two concatenation laws of double homotopies satisfy the middle-

four interchange property (4.98).

(b) J2X (expressed by each of the two pushouts (4.37)) is also the colimit

of the left diagram below

I2X IX
∂+
1oo ∂−1 // I2X I2X

c00

##

I2X
c10

{{
IX

∂+
2

OO

∂−2 ��

IX

∂+
2

OO

∂−2��

J2X

I2X IX
∂+
1

oo
∂−1

// I2X I2X
c01

;;

I2X
c11

cc (4.99)

with structural maps cαβ : I2X → J2X defined as:

cαβ = cβJ.Icα = Jcα.cβI : I2X → J2X (α, β = 0, 1). (4.100)

(As usual we use, according to convenience, the indices 0, 1 or −,+).

(c) The matrix concatenation (4.98) of all Aαβ can be computed as

Ac2 : I2X → Y , where A is the pasting of all Aαβ in the colimit (4.99)

and c2 : I2 → J2 is defined below

A : J2X → Y, A.cαβ = Aαβ (α, β = 0, 1), (4.101)

c2 = cJ.Ic = Jc.cI : I2X → J2X (double-concatenation). (4.102)

Proof Let us begin by considering the left diagram (4.99), and replace
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it with the left diagram below, which is commutative and equivalent to

the former diagram, as far as their colimits are concerned

I2X IX
I∂+
oo I∂−// I2X I2X

Ic−// IJX I2X
Ic+oo

IX

∂+I

OO

∂−I
��

X
∂+
oo ∂− //

∂+

OO

∂−

��

IX

∂+I

OO

∂−I
��

IX
c− //

∂+I

OO

∂−I
��

JX

∂+J

OO

∂−J
��

IX
c+oo

∂+I

OO

∂−I
��

I2X IX
I∂+

oo
I∂−
// I2X I2X

Ic−
// IJX I2X

Ic+
oo

(4.103)

Now, we form the right diagram above, replacing each row of the left

diagram with its colimit (IJX for the upper and lower rows, because

I preserves the J-pushout, by assumption). The colimit of the new

central column is the J-pushout of JX, as in the left pushout (4.37),

copied below

JX
∂+J //

∂−J
��

IJX

c−J
��

IJX
c+J

// J2X

All this proves that J2X is the colimit of (4.99), with structural maps

cαβ = cβJ.Icα : I2X → J2X.

It follows that:

(A00 +1 A10) +2 (A10 +1 A11)

= ((A00 ∨1 A10).Ic ∨2 (A10 ∨1 A11).Ic).cI

= ((A00 ∨1 A10) ∨2 (A10 ∨1 A11)).Jc.cI = Ac2,

where, as in (4.101), A : J2X → Y is the global pasting of all Aαβ .

The fact that Ac2 also coincides with the other expression, i.e.

(A00 +2 A10) +1 (A10 +2 A11),

is proved in the symmetric way: take the colimit of the columns of the

left diagram (4.103), then use the fact that J preserves J-pushouts and

that cαβ can equivalently be written as Jcα.cβI.

4.5.3 Transposition of concatenations

Let A be a symmetric dI3-category.

The 1-directed and 2-directed concatenations of double homotopies
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(Section 4.5.1) can be transformed one into the other, by means of the

transposition s

A+2 C = (As+1 Cs).s. (4.104)

To prove this formula, we use the IJ-transposition s′ : JI → IJ (Sec-

tion 4.2.4), which makes the left square below commutative

I2X
cI //

s
��

JIX
A∨2 C //

s′

��

Y

I2X
Ic

// IJX
As∨1 Cs

// Y

Also the right square commutes, as is detected by the structural maps

cαI : IX → JIX of the J-pushout on IX:

((As ∨1 Cs)s
′).cαI = (As ∨1 Cs).Ic

α.s = As.s = A = (A ∨2 C).cαI.

Finally, we have:

(As+1Cs).s = (As∨1Cs).Ic.s = (As∨1Cs).s
′.cI = (A∨2C).cI = A+2C.

4.5.4 Folding

Let A be a dI4-category. A double homotopy Φ: I2A → X with faces

σ, τ, ϕ, ψ, as below, gives rise to a 2-homotopy Ψ (often called a folding

of Φ), by pasting Φ with two double homotopies of connection (denoted

by ])

f

]

f
ϕ //

σ
��

Φ

h
τ //

τ

��
]

g

f
σ
// k

ψ
// g g

Ψ: (0f + ϕ) + τ → (σ + ψ) + 0g : f → g.

Combining this 2-homotopy with the accelerations (Section 4.2.5), we

get that ϕ + τ ' 2 σ + ψ. In the regular case we already have a 2-

homotopy Ψ: ϕ+ τ → σ + ψ : f → g.

There is a ‘weak’ converse: given a 2-homotopy Ψ: ϕ+τ → σ+ψ, one

can construct a double homotopy with faces 2-homotopic to σ, τ, ϕ, ψ, by

pasting Ψ with two double homotopies of connection and two degenerate

ones.
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4.5.5 The homotopy 2-category

Let A be a dI4-category. Recall that we write ϕ �2 ψ to mean that there

exists a 2-homotopy ϕ → ψ (Section 4.5.1), and ' 2 the equivalence

relation, called 2-homotopy equivalence, spanned by this preorder �2 .

We want now to construct a 2-category

Ho2(A) = A/'2 (the homotopy 2-category), (4.105)

equipping the category A with 2-cells [ϕ] : f → g, which are classes of

homotopies up to 2-homotopy equivalence.

Following the presentation of a 2-category in A5.2 (as a sesquicategory

satisfying the reduced interchange property) we define the concatenation

of 2-cells and the whisker composition of maps and 2-cells, in the obvious

way, which is easily seen to be legitimate

[ϕ] + [ψ] = [ϕ+ ψ], k◦[ϕ]◦h = [k◦ϕ◦h]. (4.106)

Now, associativity of the whisker composition - in the appropriate

sense - already holds at the level of homotopies (cf. (1.43)). We prove

in the next theorem that the remaining properties are satisfied in the

quotient A/'2.

4.5.6 Theorem (Weak regularity of concatenation)

In a dI4-category A, the concatenation of homotopies is associative and

has identities up to the 2-homotopy equivalence relation '2. The reduced

interchange property, between concatenation and whisker composition,

also holds up to '2.

As a consequence, Ho2(A) = A/'2 is a 2-category.

Proof First, we already know (from (4.51)) that a homotopy ϕ : f → g

has acceleration 2-homotopies 0f + ϕ→ ϕ→ ϕ+ 0g.

Moreover, given three consecutive homotopies ϕ : f → g, χ : g → h,

ψ : h → k, we can link the ternary concatenations ϕ + (χ + ψ) and

(ϕ+ χ) + ψ, by extending a procedure already used in the construction

of the fundamental category of a d-space (Theorem 3.2.4).

First, we construct a 2-homotopy

B : (0 + ϕ) + (χ+ ψ)→ (ϕ+ χ) + (ψ + 0), (4.107)

pasting in a suitable order the following double homotopies of degeneracy
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and connection

f
0 //

]

f
ϕ //

ϕ
��

]

g
χ //

]

h
ψ //

]

k

f ϕ //

]

g 0 //

]

g χ //

χ
��

]

h ψ //

]

k

f ϕ //

]

g χ //

]

h 0 //

]

h ψ //

ψ
��

]

k

f
ϕ
// g

χ
// h

ψ
// k

0
// k

Now, accelerations give 2-homotopies (which could only be pasted

with the previous one using reversion)

A : (0+ϕ)+(χ+ψ)→ ϕ+(χ+ψ), C : (ϕ+χ)+ψ → (ϕ+χ)+(ψ+0).

Finally, as to the reduced interchange property, take two ‘horizontally

consecutive’ homotopies ϕ,ψ

hf
h◦ϕ //

ψ◦f

��

hg

ψ◦g

��
X

f //

g

↓ϕ // Y
h //

k

↓ψ // Z ψ◦ϕ

kf
k◦ϕ

// kg

Then the double homotopy ψ ◦ϕ = ψ.(Iϕ) : I2X → Z has the faces

shown above, in diagram (4.7). By folding (Section 4.5.4), we get

ψg.hϕ '2 kϕ.ψf , and therefore [ψ]g.h[ϕ] = k[ϕ].[ψ]f .

4.5.7 The fundamental category in the concrete case

Recall that a concrete dI1-category is a dI1-category A equipped with

a reversive object E and a specified isomorphism E → Eop (Section

1.2.4). E is called the standard point, or free point of A. The associated

forgetful functor is U = | − | = A(E,−) : A → Set (represented by E)

and UR ∼= U .

Again, for the sake of simplicity, we identify E = Eop and UR = R.

Then, the object I = I(E) is a dI1-interval in A. A point of X is

an element x ∈ |X|, i.e. a map x : E → X, while a path in X is a map

a : I → X, defined on I = I(E), with endpoints xα = a∂α : E → X.

Every point x : E → A has a trivial path 0x = xe : I→ X.

We have defined, in 1.2.4, the fundamental graph ↑Γ1(X): its vertices
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are the points of X, its arrows [a] : x− → x+ are the classes of paths a

from x− to x+, up to the equivalence relation generated by homotopy

with fixed end-points.

Let now A be a concrete dI4-category, which means that it is a dI4-

category made concrete as above (by assigning E). The fundamental

reflexive graph ↑Γ1(X) will be called the fundamental category of X,

and written ↑Π1(X), when equipped with the composition law induced

by concatenation of consecutive paths, which we write additively

[a] + [b] = [a+ b].

This operation is well defined, and gives indeed a category, as fol-

lows straightforwardly from the homotopy 2-category Ho2(A) = A/'2

(Section 4.5.5)

↑Π1(X) = Ho2(A)(E,X). (4.108)

We have thus a functor ↑Π1 : A → Cat defined on a morphism

f : X → Y by:

↑Π1(f) = Ho2(A)(E, f) = f∗ : ↑Π1(X)→ ↑Π1(Y ),

↑Π1(f)(x) = f ◦x, ↑Π1(f)[a] = f∗[a] = [f ◦a].
(4.109)

It is actually a (representable) 2-functor ↑Π1 : Ho2(A) → Cat. A

homotopy ϕ : f → g : X → Y in A induces a natural transformation (a

directed homotopy of categories, 1.1.6)

↑Π1(ϕ) = Ho2(A)(E, [ϕ]) = ϕ∗ : f∗ → g∗ : ↑Π1X → ↑Π1Y,

ϕ∗(x) = [ϕ.Ix] : f ◦x→ g◦x,
(4.110)

where x : E → X is a point of X and an object of ↑Π1(X), while

ϕ.Ix : I → Y is a path in Y , and its 2-homotopy class [ϕ.Ix] is an

arrow in ↑Π1(Y ).

As a consequence, ↑Π1 : A → Cat preserves the homotopy preorder

f �1 g, future homotopy equivalence and future deformation retracts

(Section 1.3.1).

4.6 Higher properties of h-pushouts and cofibrations

We deal now with higher properties of homotopy pushouts, mostly in

dI2 and dI4-categories.

The reversible case is deferred to Section 4.9.
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4.6.1 Proposition (Special invariance)

(a) Let A be a dI1-category and consider an h-pushout I(f, g) = A

(see the diagram below, in the proof). If g is an isomorphism, then the

‘opposite’ morphism u : Y → A is a split monomorphism (the embedding

of a retract).

(b) If, moreover, A is dI2-homotopical, then u is the embedding of a

past deformation retract (Section 1.3.1). This extends a property of the

lower face of a cylinder ∂− : X → IX, already remarked in (4.29).

Proof (a) Let g′ = g−1 : Z → X. We define a left inverse h of u, applying

the first-order universal property of λ

h : A→ Y, hu = 1Y ,

hv = fg′ : Z → Y, hλ = 0f : huf → hvg.

(b) We can construct a homotopy uh→ 1A, applying the higher property

of λ (Theorem 4.1.3) to the left diagram below

Y

u
!!

u //

u

↓0 // A

λ

��

uf
uhλ=0 //

0
��

uf

λg′g=λ

��
X

f
==

g !!

A

h

aa

uh //
1
// A Φ

uf
λ
// vg

Z

g′
aa

v

==

uhv //

v

↓λg′ // A

This works with the upper connection Φ = λg+ : I2X → A shown in

the right-hand part.

4.6.2 Pasting Theorem for h-pushouts

Let A be a dI4-homotopical category and let λ, µ, ν be standard homotopy

pushouts

X
f //

x
��

Y
g //

y

��

Z

z

��

Z

b

��
A

u
//

λ //

B v //
w

++

µ //

C

A
a

//

ν 00

D

(4.111)

Then the canonical comparison k : C → D (constructed in the Pasting

Lemma 1.3.8) is a future homotopy equivalence (Section 1.3.1).
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More precisely, let us define w : B → D, k : C → D and k′ : D → C

by means of the universal property of λ, µ, ν, respectively (using also the

concatenation of homotopies, for k′)

w.u = a : A→ D, w.y = bg : Y → D,

w◦λ = ν : ax→ bgf,

k.v = w : B → D, k.z = b : Z → D,

k◦µ = 0: wy → bg,

k′.a = vu : A→ C, k′.b = z : Z → C,

k′◦ν = v◦λ+ µ◦f : vux→ zgf.

(4.112)

Then k, k′ form a future homotopy equivalence, with homotopies ϕ,ψ

which satisfy the following higher coherence relations (notice that we are

not saying that ψ◦v = 0):

ϕ : idD → kk′, ϕ◦a = 0a, ϕ◦b = 0b,

ψ : idC → k′k, ψ◦z = 0z,

ψ◦vu = 0vu, ψ◦vy = 0 + µ.

(4.113)

By reflection, if we reverse the direction of homotopies in diagram

(4.111), the pasting of the h-pushouts I(f, x) and I(g, y) is past homo-

topy equivalent to I(gf, x).

In other words, the comparison is a future homotopy equivalence when,

as in diagram (4.111), the cells λ, µ can be pasted according to the ‘order

of construction’ of the h-pushouts: first λ and then µ. We obtain a past

homotopy equivalence in the other case.

Proof This result, which strengthens the Pasting Lemma 1.3.8, will be

essential for the sequel, e.g. to prove the homotopical exactness of the

cofibre sequence, in Theorem 4.7.5(c). (It is an enrichment of a similar,

non-directed result in [G3], 3.4.)

First, the higher universal property of ν (in (4.13)) yields a homotopy

ϕ : idD → kk′ (with ϕ◦a = 0a, ϕ◦b = 0b), provided by the acceleration

double homotopy Θ′′ : ν → ν + 0 (4.51)

ax
ν //

0ax

��

bgf

0bgf
��

kk′a = kvu = a, kk′b = kz = b,

Θ′′ kk′◦ν = kv◦λ+ k◦µ◦f

kk′ax
kk′ν

// kk′bgf = w◦λ+ 0 = ν + 0.

(4.114)

Now, we make use of the higher universal property of λ to link the
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maps v, k′w : B → C. Consider the following three double homotopies

(acceleration, degeneracy and upper connection), labelled ]

vux
vλ //

0x

��

vyf

0f
��

(0+µ)f

��

# k′wu = ka = vu,

vux
vλ //

0x
��

vyf
0 //

0
��

vyf

µf
��

# # k′w◦λ = k′◦ν = v◦λ+ µ◦f.

k′wux
vλ
// vyf

µf
// k′wyf

Their pasting yields a homotopy ρ : v → k′w such that ρ ◦u = 0,

ρ◦y = 0 + µ. Finally, the higher property of µ gives rise to a homotopy

ψ : idC → k′k (such that ψ◦v = ρ, ψ◦z = 0), using a double homotopy

which results from degeneracy and lower connection

vy
µ //

0

��
ρy

��

zg

0g

��
# ρ◦y = 0 + µ,

vy
µ //

µ

��

zg

0g

��
# k′k◦µ = 0: k′wy → k′bg.

zg
k′kµ

// zg

4.6.3 Cofibrations and fibrations

Let us come back to the basic setting, to give some definitions which are

needed now: let A be a dI1-category or a dP1-category. (Actually, the

cylinder or cocylinder functor is not used here: a dh1-category would

suffice, see 1.2.9).

We say that a map u : X → A is an upper cofibration if (see the left

diagram below), for every object W and every map h : A → W , every

homotopy ψ : h′ = hu→ k′ can be ‘extended’ to a homotopy ϕ on A, so
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that ϕ◦u = ψ (and, in particular, ku = k′)

X

u

��

h′ //

k′

↓ψ // W X

u

��

h′ //

k′

↓ψ // W

A
h //

k

↓ϕ // W A
h //

k

↓ϕ // W

(4.115)

It is easy to verify that upper cofibrations are closed under compo-

sition and contain all isomorphisms. The R-dual notion, shown in the

right diagram above, will be called a lower cofibration: for every map

k : A → W and homotopy ψ : h′ → k′ = ku there is some homotopy ϕ

such that ϕ◦u = ψ. A bilateral cofibration has to satisfy both conditions.

(A motivation for the terms ‘upper’ and ‘lower’ comes from the faces of

the cylinder, see 4.6.6.)

On the other hand, by categorical duality, the left diagram below

shows the definition of an upper fibration f : X → B: for every map h

and homotopy ψ : fh → k′ there is some homotopy ϕ which lifts ψ, in

the sense that f ◦ϕ = ψ. The property of a lower fibration is shown on

the right hand

W
h //

k

↓ϕ // X

f

��

W
h //

k

↓ϕ // X

f

��
W

h′ //

k′

↓ψ // B W
h′ //

k′

↓ψ // B

(4.116)

4.6.4 Theorem (Pushouts of cofibrations as h-pushouts)

Let A be a dI2-homotopical category. Let f : X → Y be an upper cofi-

bration and g : X → Z any map, and assume that the ordinary pushout

V of f, g exists and is preserved by the cylinder functor. (This last fact

necessarily holds in the dIP2-homotopical case, when I is a left adjoint.)

Then the obvious comparison map k : A→ V from the h-pushout A =

I(f, g) to the ordinary pushout V , defined by the three equations below,
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is a future homotopy equivalence

Y

u
!!

u′

))
λ

��

ku = u′, kv = v′,

X

f
==

g !!

A k // V

k◦λ = 0: u′f → v′g.

Z

v

==

v′

55 (4.117)

In particular, taking Z = >, this shows that if f is an upper cofibra-

tion and the cokernel Cok(f) is preserved by the cylinder functor, the

comparison map u : C+f → Cok(f) is a future homotopy equivalence.

Proof The extension property of f ensures that the homotopy λ : uf →
vg can be extended to some homotopy ϕ : u → w : Y → A such that

ϕ◦f = λ and wf = vg, as in the left diagram below. This gives a new

commutative square wf = vg, which we factorise in the right diagram

through the pushout V , by a unique map h : V → A such that hu′ = w,

hv′ = v

X

f

��

uf //

vg

↓λ // A Y

u′ ""
w

**X

f ;;

g ##

V h // A

Y
u //

w

↓ϕ // A Z

v′
<<

v

44

We get a homotopy 1A → hk, applying the higher property of λ

(Theorem 4.1.3) to the left diagram below, and using a lower connection

in the right-hand part

Y
u

""

u //

w

↓ϕ // A

λ

��

uf
λ //

ϕf=λ
��

vg

0��X

f
<<

g ""

A
1 //
hk

// A ]

hkuf
hkλ=0

// hkvg

Z
v

<<

v //

v

↓0 // A

Finally, we want to construct a homotopy 1V → kh, making use of
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the fact that the ordinary pushout V is preserved by I

IY
Iu′

$$

kϕ // V

IX

If
::

Ig $$

IV
ψ // V k◦ϕ◦f = k◦λ = 0 = 0v′ ◦g.

IZ
Iv′

::

v′e

// V

Since the pair of homotopies k◦ϕ : u′ → kw and 0v′ : v
′ → v′ is coherent

with the maps f, g (as computed above), there is one morphism ψ : IV →
V such that ψ◦u′ = k◦ϕ and ψ◦v′ = 0v′ .

This morphism has the correct faces: embedding the original pushout

u′f = v′g into the pushout above by four lower faces ∂− we get that

ψ∂− = 1V . Similarly, using four upper faces ∂+ (and the equations

kw = khu′, v′ = kv = khv′) we get that ψ∂+ = kh.

4.6.5 Extended acceleration

The rest of this section is devoted to construct the usual factorisation

of a map via a cofibration. This can be obtained in a dI4-homotopical

category equipped with a stronger version of the acceleration z (Section

4.2.5), which is still automatic in the regular case. In the sequel, all this

part will only be used to establish a relationship with Baues ‘cofibration

categories’, in 4.9.6.

If A is a dI4-category, an extended acceleration will be a natural trans-

formation w : I2 → J with the following faces (see 4.2.2 for the structure

of J):

∂−−
c //

c− ��

∂++

0
��

w.I∂− = c−, w.I∂+ = ∂++e,

w

∂±
c+
// ∂++ w.∂−I = c, w.∂+I = c+.

(4.118)

(Given w, one can construct z : I2 → J by post-composing w with the

natural transformation (e∂−) ∨ idX : JX → IX.)

In this situation, every pair of consecutive homotopies ϕ : f → g,

ψ : g → h has two double homotopies, obtained from w and the map

ϕ ∨ ψ : JX → IX (on the pushout JX)

Θ′(ϕ,ψ) = (ϕ ∨ ψ).wX, Θ′′(ϕ,ψ) = (Θ′(ψop, ϕop))op, (4.119)
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f
ϕ+ψ //

ϕ

��
Θ′(ϕ,ψ)

h

0
��

f
ϕ //

0
��

Θ′′(ϕ,ψ)

g

ψ
��

g
ψ
// h f

ϕ+ψ
// h

The category dTop can be given this additional structure: the compo-

nent wX is defined as X×ω : I2X → IX, by means of the following map

ω : ↑I×↑I→ ↑I = ↑J (the affine deformation from the path idI : ↑I→ ↑I
to the path c+ : ↑I→ ↑I)

∂−
∂ //

c− ��

∂+

0
��

ω(t, t′) = (1− t′).t+ t′.(t+ 1)/2,

ω

∂±
c+
// ∂+ c−(t) = t/2, c+(t) = (t+ 1)/2.

If A has a regular concatenation of homotopies (Section 4.2.3), the

double homotopies (4.119) can be constructed using degeneracies and

connections (and one can also construct w in the same way)

f
ϕ //

ϕ

��
]

g
ψ //

0
��

]

h

0
��

f
ϕ //

0 ��
]

g
0 //

0
��

]

g

ψ
��

g
0
// g

ψ
// h f

ϕ
// g

ψ
// h

Dually one defines dP4-categories with extended acceleration.

4.6.6 Theorem (h-pushouts and cofibrations)

(a) Let A be a dI4-category with extended acceleration (Section 4.6.5).

In every h-pushout A = I(f, g) (as in the diagram below), the first ‘injec-

tion’ u : Y → A is a lower cofibration, while the second v : Z → A is an

upper cofibration. In particular, the lower face of a cylinder ∂− : X →
IX is a lower cofibration, and ∂+ : X → IX an upper one.

(a*) Let A be a dP4-category with extended acceleration. In every h-

pullback, the first ‘projection’ is a lower fibration, while the second is an

upper fibration. In particular, the lower face ∂− : PY → Y is a lower

fibration.

Proof It is sufficient to verify the second statement of (a). Take a map

h : A→W and a homotopy ψ : h′ = hv → k′. By the ordinary property
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of λ, there is precisely one map k : A→W such that

Y
u

��

hu

$$
λ

��

ku = hu, kv = k′,

X

f
??

g ��

A k // W

k◦λ = h◦λ+ ψ◦g : huf → k′g.

Z

v

??

k′

::

The higher property of λ (Theorem 4.1.3) yields now a homotopy

ϕ : h→ k such that ϕ◦v = ψ

Y
u

##

hu //

ku

↓0 // W

λ

��

huf
hλ //

0 ��

hvg

ψg��X

f
;;

g ##

A
h //
k

// W Φ

kuf
kλ
// kvg

Z
v

;;
h′ //

k′

↓ψ // W

The double homotopy Φ = Θ′′(h◦λ, ψ◦g) of the right diagram above

comes from the extended acceleration (4.119) and the relation k ◦λ =

h◦λ+ ψ◦g.

4.6.7 Theorem (Factorisations via (co)fibrations)

(a) Let A be a dI4-homotopical category with an extended acceleration

(Section 4.6.5). Every map f : X → Y has two canonical factorisations,

related by R-duality:

f = hv : X → I(f, 1)→ Y

(upper cofibration - past deformation retraction),
(4.120)

f = ku : X → I(1, f)→ Y

(lower cofibration - future deformation retraction).
(4.121)

(a*) Let A be a dP4-homotopical category with extended acceleration.

Every map f : X → Y has two canonical factorisations:

f = vh : X → P (f, 1)→ Y

(embedding of a past deformation retract - upper fibration),

f = uk : X → P (1, f)→ Y

(embedding of a future deformation retract - lower fibration),
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Proof It suffices to prove the first case of (a). In 4.6.1, take g = 1X
and consider the h-pushout A = I(f, 1), which yields the factorisation

(4.120). We already know, from 4.6.1, that h is a past deformation

retraction (and u the corresponding embedding). We also know, from

4.6.6(a), that the h-pushout ‘injection’ v : X → I(f, 1) is an upper cofi-

bration.

4.7 Higher properties of cones and Puppe sequences

In a symmetric dI4-homotopical category, the cofibre sequence of a map

has strong properties of ‘homotopical exactness’: it is homotopy equiv-

alent to a sequence of iterated mapping cones. This will be used to

simplify the exactness axiom of homology theories (Theorem 4.7.6).

The dI2-case is sufficient to obtain part of these results; this will be

relevant in the relative settings of Section 5.8. This material essentially

comes from [G3].

4.7.1 Theorem (The higher property of h-cokernels)

Let A be a dI2-homotopical category. Take a map f : X → Y and

its upper h-cokernel (C+f, u, v+, γ : uf → v+p). Take also two maps

a, b : C+f → W and a homotopy σ : au → bu : Y → W , as in the left

diagram below

X
f //

p

��

Y

u
��

au //

bu

↓σ // W X
f //

p

��

Y

u
��

au //

bu

↓σ // W

γ



>
v+
// C+f

a //

b
// W >

v−
//

γ 00

C−f
a //

b
// W

(4.122)

If the following three coherence conditions hold (the fourth is a conse-

quence)

aγ = σf, bγ = 0buf , av+ = bv+ (buf = bv+p = av+p), (4.123)

there is some homotopy ϕ : a→ b extending σ on u (i.e. such that ϕu =

σ).

By reflection duality, let us consider the right diagram above, where

(C−f, v−, u, γ : v−p→ uf)

is the lower h-cokernel of f , and assume that:

aγ = 0auf , bγ = σf, av− = bv− (auf = av−p = bv−p). (4.124)
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Then there is some homotopy ϕ : a→ b extending σ on u.

Note. The construction of ϕ requires the connections: g− in the first

case, g+ in the second.

Proof In the first case, we apply Theorem 4.1.3 to the homotopies

σ : au → bu and τ = 0: av → bv, letting Φ: I2X → W be defined as

Φ = aγ.g− = σf.g−. The faces of Φ are indeed as required:

auf
aγ //

σf
��

avp

0
��

Φ

buf
0
// bvp

4.7.2 The suspension functor

Let us recall, from 1.7.2, that in a dI1-homotopical category A, the

suspension ΣX is an upper and a lower cone, at the same time, with an

upper and a lower vertex, v+ and v−

X
pX //

pX

��

>

v+

��

ΣX = I(pX , pX)

= C+(pX) = C−(pX),

>
v−
//

evX 11

ΣX R.Σ = Σ.R.

(4.125)

The suspension is equipped with a homotopy (suspension evaluation)

evX : v−pX → v+pX : X → ΣX, (4.126)

which is universal for homotopies between constant maps.

As a particular case of the h-pushout functor (Section 1.3.7), the sus-

pension Σ is an endofunctor of A: given f : X → Y , the suspended map

Σf : ΣX → ΣY is the unique morphism which satisfies the conditions

Σf.v− = v−, Σf.v+ = v+, (Σf)◦evX = evY ◦f. (4.127)

4.7.3 Lemma (The comparison map)

(a) In a dI4-homotopical category A, the lower comparison map of

f : X → Y

k−(f) : C+u− → ΣX, u− = hcok−f, (4.128)
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defined in (1.185) is a future homotopy equivalence, while the upper com-

parison map (1.189) is a past homotopy equivalence:

k+(f) : C−u+ → ΣX, u+ = hcok+f. (4.129)

(a*) In a dP4-homotopical category A, the lower comparison map h−(f) :

ΩY → E+v− of the lower fibre diagram of f (in (1.209), with v− =

hker−f) is a future homotopy equivalence, while the upper compari-

son map h+(f) : ΩY → E−v+ is a past homotopy equivalence (with

v+ = hker+f).

Proof The first statement is a particular case of the Pasting Theorem

for h-pushouts (Theorem 4.6.2), letting A = Z = > in (4.111). The

others follow by reflection or categorical duality.

4.7.4 Lemma (The comparison square)

If A is dI2-homotopical, the lower comparison square of f , defined in

(1.186), is homotopically commutative. More precisely, there exists a

homotopy

ψ : d2 → Σf.k1 : C+u→ ΣY, (4.130)

X
f // Y

u // C−f
d // ΣX

Σf // ΣY

X
f
// Y

u1

// C−f
u2

// C+u
d2

//

k1

OO

ψnn

ΣY

u = u1 = hcok−(f), u2 = hcok+(u), k1 = k−(f).

By reflection duality, the upper comparison square of f has a homo-

topy in the opposite direction

ψ : Σf.k1 → d2 : C−u→ ΣY, (4.131)

X
f // Y

u // C+f
d // ΣX

Σf // ΣY

ψ

��X
f
// Y

u1

// C+f
u2

// C−u
d2

//

k1

OO

ΣY

u = u1 = hcok+(f), u2 = hcok−(u), k1 = k+(f).
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Proof First, we use the higher property (Theorem 4.7.1) of the lower

h-cokernel γ : v−p→ uf : X → C−f of f , to prove that the composition

Σf.d is homotopically null.

More precisely, there is a homotopy ϕ which extends the cell σ =

evY : v−.pY → v+pY : Y → ΣY on u

ϕ : v−.p(C−f)→ Σf.d : C−f → ΣY, ϕ.u = evY ,

X
f //

p

��

Y

u
��

v−p //

v+p

↓σ // ΣY

>
v−
//

γ 00

C−f
v−p //

Σf.d
// ΣY

v−Y.pC−f.u = v−Y.pY, Σf.d.u = Σf.v+X.pY = v+Y.pY.

In fact, the coherence conditions (4.124) follow from the definition of

d (in (1.183)) and Σf (in (4.127)):

v−Y.pC−f.γ = 0,

Σf.d.γ = Σf.evX = evY .f,

v−Y.pY.v− = v−Y = Σf.v−X = Σf.dv−.

Now the same extension property of Theorem 4.7.1, for the upper h-

cokernel γ′ : u2u → v+p of u, allows one to extend this cell ϕ : v−p →
Σf.d on u2, producing a cell

ψ : d2 → Σf.k1 : C+u→ ΣY, ψ.u2 = ϕ,

Y
u //

p

��

C−f

u2

��

v−p //

Σf.d

↓ϕ // ΣY d2u2 = v−.pC−f,

γ′

��>
v+
// C+u

d2 //

Σf.k1

// ΣY Σf.k1.u2 = Σf.d.

Here, the coherence conditions (4.123) follow from the definition of

k1 = k−(f) (in (1.185)) and d2 = d+(u) (in (1.188))

d2γ
′ = evY = ϕu,

Σf.k1.γ
′ = 0,

d2.v
+ = v+.pY = Σf.v+X = Σf.k1.v

+.
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One can notice that both connections gα have been used in the proof,

via Theorem 4.7.1.

4.7.5 Theorem (Higher properties of the cofibre diagram)

(a) If A is dI2-homotopical, each elementary square of the expanded

cofibre diagram of f (1.195) is either commutative up to a directed ho-

motopy, in a suitable direction, or the image of such a square under a

suitable power Σn of the suspension endofunctor

X
f // Y

u // C−f
d // ΣX

Σf // ΣY
Σu // ΣC−f

Σd // Σ2X...

(↖)

Y
u1

// C−f
u2

// C+u1
d2

//

k1

OO

ΣY
Σu1

//
↖ψ

↘

ΣC−f
Σd2

// ΣC+u1...

Σk1

OO

C−f
u2

// C+u1 u3

// C−u2
d3

//

k2

OO

ΣC−f
Σu2

// ΣC+u1...

C+u1 u3

// C−u2 u4

// C+u3
d4

//

k3

OO

ΣC+u1...
↖

↘
C−u2 u4

// C+u3 u5

// C−u4...

k4

OO

(4.132)

Such squares, images of a power Σn, are marked with an arrow in

parentheses. Their arrow will stand for a homotopy in the stronger

hypotheses below.

(b) If A is a symmetric dI2-homotopical category, all these squares are

commutative up to directed homotopies, in suitable directions (not con-

sistent with vertical pasting, see the last column above). As a conse-

quence, the lower cofibre diagram of f (1.193) is commutative up to the

homotopy congruence ' 1 generated by the existence of a (directed)

homotopy between two maps (cf. (1.74))

X
f // Y

u // C−f
d // ΣX

Σf //

'1

ΣY
Σu //

'1

ΣC−f
Σd//

'1

Σ2X...

X
f
// Y

u1

// C−f
u2

// C+u1 u3

//

h1

OO

C−u2 u4

//

h2

OO

C+u3 u5

//

h3

OO

C−u4...

h4

OO
(4.133)

(c) If A is a symmetric dI4-homotopical category, every vertical map of

the earlier diagram is a composite of past homotopy equivalences and
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future homotopy equivalences. In particular, the first three vertical maps

(i.e. h1, h2, h3) are future homotopy equivalences.

(d) If A is a reversible symmetric dI4-homotopical category, the diagram

is commutative up to homotopy and every vertical map of this diagram

is a homotopy equivalence.

Proof (a) Follows from Lemma 4.7.4. In fact, each elementary square

of (4.132) is either the lower or upper comparison square of some map,

or its image under a power of Σ.

(b) Follows from the fact that, in the presence of the transposition, the

suspension preserves homotopies (Theorem 4.1.7); also because, in the

cofibre diagram (4.133), each square is a finite vertical pasting of squares

of the previous diagram.

(c) Follows from Lemma 4.7.3 and, again, the homotopy-preservation

property of Σ in the symmetric case. Point (d) is a straightforward

consequence of the previous one.

4.7.6 Theorem (Homology theories)

Let A be a symmetric dI4-homotopical category. Suppose we have a

sequence (↑Hn, hn) satisfying the axioms (dhlt.0, 1, 2) (Section 2.6.2).

Then the following ‘reduced exactness condition’, implies the full exact-

ness axiom (dhlt.3):

(dhlt.3a) for every morphism f : X → Y in A and every n ∈ Z, the

following sequence is exact in pAb (with u = hcok−(f) : Y → C−f)

↑HnX
f∗ // ↑HnY

u∗ // ↑HnC
−f. (4.134)

Proof First, let us remark that the present condition (dhlt.3a) is invari-

ant under R-duality, because the upper analogue of sequence (4.134),

with u = hcok+(f) : Y → C+f , amounts to the sequence (4.134) of the

reflected map fop (see (1.192)).

Now, consider the initial part of the lower cofibre diagram of f

X
f // Y

u // C−f
d // ΣX

Σf // ΣY

X
f
// Y

u1

// C−f
u2

// C+u1 u3

//

k1

OO
ψnn

C−u2

k2

OO
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We have proved, in the previous theorem, that it is commutative up

to directed homotopy ψ and that its vertical arrows k1, k2 are future

homotopy equivalences.

Now, applying ↑Hn, we get a commutative diagram, by (dhlt.1), whose

vertical arrows are algebraic isomorphisms, because of the previous re-

mark and by (dhlt.1). Moreover, in the lower row every map is a (lower

or upper) h-cokernel of the preceding one. Therefore, by (dhlt.3a), this

row is transformed by ↑Hn into an exact sequence. Finally, the same

holds for the upper row, which proves (dhlt.3): the following row is exact

↑HnX
f∗ // ↑HnY

u∗ // ↑HnC
−f

δ∗ // ↑HnΣX
(Σf)∗// ↑HnΣY.

4.8 The cone monad

In this section we study the (upper) cone functor and the monad struc-

ture (Section A4.4) which it inherits from the cylinder diad, in a dI2-

category. Most of this material has been developed in [G1].

The upper cone functor will be written as C = C+. It has a lower

basis u : X → CX, an upper vertex v = v+ : > → CX and a structural

homotopy γ : IX → CX (cf. (1.171)), with γ.∂−X = u and γ.∂+X =

v.pX : X → >→ CX.

4.8.1 Theorem (The second order cone)

(a) Let A be dI1-homotopical, with I-preserved cylindrical colimits.

For every object X, the following diagram commutes and the second

order (upper) cone C2X = C+C+X is the colimit of the following row,

with structural maps c0, c2, c1

I>

c0
**

IX
Ipoo I∂+

// I2X

c2
��

IX
∂+Ioo e // X

c1
uu

C2X

(4.135)

c0 = γC.Iv = Cv.γ, c2 = γC.Iγ = Cγ.γI, c1 = vC.pX.

Moreover, c1 is determined by c0

c1 = c0.∂
+.pX, (4.136)

which suggests that it can be omitted. In fact, C2X can be equivalently
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described as the colimit of the solid diagram below, with structural maps

c0, c2

IX
∂+.pI

xx
∂+I

''
I>

c0 &&

IX
Ipoo I∂+

// I2X

c2xx
C2X

(4.137)

(b) If A is pointed, with an I-preserved zero object, C2X can be viewed

as the colimit

0

))

IXoo I∂+
// I2X

c2
��

IX
∂+Ioo // 0

uu
C2X

(4.138)

This amounts to saying that the map c2 : I2X → C2X is the gener-

alised coequaliser of the three maps I∂+, ∂+I, 0: IX → I2X, whence an

epimorphism (which need not be true in the unpointed case, see 4.8.2).

Proof It suffices to prove (a), since (b) is a straightforward consequence

of the second description of C2X, in (4.137). Consider the left diagram

below

X
∂+
//

p

��

IX
e //

γ

��

X

p

��

IX
e //

∂+I
��

X

c1

��

> v //

∂+

��

CX //

∂+C
��

>
vC
��

IX
I∂+
//

Ip

��

I2X

Iγ

��
I>

Iv
// ICX

γC
// C2X I>

Iv
// ICX

γC
// C2X

(4.139)

By definition of CX, the left upper square is a pushout. The right

upper square is also (since their pasting is trivially a pushout). By

definition of C(CX), the right lower square is a pushout, and the right

rectangle is also.

Now, its composed central column coincides with the composed central

column of the right diagram above. Therefore, the right rectangle of the

latter is also a pushout. But its left lower square is also (as the result

of applying I to a cylindrical colimit). It follows that C2X is indeed

the colimit in (4.135), with structural maps as specified there. Equality
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(4.136) comes from the outer square of the left diagram (4.139), where

e∂+ = idX.

The second description of C2X follows from the fact that the upper

row of (4.135) and the solid diagram (4.137) have the ‘same’ cocones.

More precisely, if (d0, d2, d1) is a cocone for (4.135), then (d0, d2) is a

cocone for (4.137), because:

d2.∂
+I = d1e = d1e.∂

+e = d2.∂
+I.∂+.e = d2.I∂

+.∂+.e

= d0.IpX.∂
+e = d0.∂

+.pX.e = d0.∂
+.pIX.

Conversely, if (d0, d2) is a cocone for (4.137), we define d1 = d0.∂
+.pX

and obtain a cocone (d0, d2, d1) for (4.135):

d1e = d0.∂
+.pX.e = d0.∂

+.pIX = d2.∂
+I.

4.8.2 Examples

It will be useful to compute C2X for topological spaces and pointed

topological spaces, also in order to see clearly that the unpointed case

is ‘not symmetric’ (has no transposition). One would work similarly in

dTop and dTop•.

(a) In Top, let us begin by noting that C2∅ = C{∗} = I; and then

c2 : ∅ → C2∅ is not surjective.

On the other hand, if X 6= ∅, C2X is the quotient of I2X which

identifies the pairs of points (x, t1, t2), (x′, u1, u2) where (t1 = u1 = 1

and t2 = u2) or (t2 = u2 = 1)

X

t1

t2
OO

//

��

(4.140)

(The dashed lines suggest the classes of the equivalence relation on

I2X. In particular, the top square t2 = 1 is an equivalence class.)
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One can note that the lower connection g−(x, s, t) = (x,max(s, t))

induces a map

g : C2X → CX, g[x, s, t] = [x,max(s, t)], (4.141)

which will be part of the monad structure of C (Theorem 4.8.3).

(b) In Top•, the second order cone C2(X,x0) is the quotient of the

unpointed cylinder I2X which identifies all points (x, t1, t2) where x =

x0, or t1 = 1, or t2 = 1. The operation g is defined as above. We

have now a symmetric description, which is why there is an induced

transposition which interchanges t1 with t2 (see 4.8.4).

4.8.3 Theorem (The cone monad)

Let A be dI2-homotopical.

The cylinder I gives rise to a monad (C, u, g) on the upper cone func-

tor C = C+. The unit is the lower basis u = γ.∂− : 1 → C and the

multiplication g : C2 → C is induced by g− : I2 → I (as made precise in

the proof).

Furthermore, it is a based monad, in the sense that there is a nat-

ural transformation vX : > → CX (the upper vertex) which makes the

following diagram commute

> vC //

v $$

C2X

g

��

C>Cvoo

p

��
CX >

v
oo

(4.142)

It will also be useful to note that the following map is constant (i.e.

factorises through the terminal object):

g.γC.Iv = gc0 = vp : I> → > → CX. (4.143)

Proof Let us use the previous description of the second order cone C2X

as a colimit (in (4.135)). The operation g− gives a commutative diagram,

because of the absorbency axiom on I

I>
p
��

IX
Ipoo I∂+

//

e
��

I2X

g−��

IX
∂+Ioo e //

e
��

X
p
��

> Xoo
∂+

// IX X
∂+

oo // >
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The colimit is our operation g : C2X → CX, determined by the com-

mutative diagram

I> c0 //

p
��

C2X
g
��

I2X
c2oo

g−��
>

v
// CX IX

γ
oo

since the pair of maps c0, c2 is jointly epi, by (4.137).

It is now easy to see that (C, u, g) is indeed a monad, deducing the

properties of (u, g) from the analogous ones of (∂−, g−). The properties

of v in diagram (4.142) follow from the following computations (recall

that γ> is an isomorphism, by 1.7.2(c), whence cancellable)

g.vC = g.c0∂
+ = vp∂+ = v,

g.Cv.γ> = g.c0 = v.p(I>) = v.p(C>).γ>.

The last remark follows from the definition of c0 (in (4.8.1)) and the

diagram above.

4.8.4 Theorem (The transposition of the cone)

Let A be a symmetric dI2-homotopical category, with an I-preserved

zero object. Then the transposition s : I2 → I2 induces an involutive

transposition s : C2 → C2, which interchanges the faces Cu and uC.

Proof Using the description of C2X in (4.138), the transposition s : I2 →
I2 of the cylinder induces an involutive transformation s : C2 → C2,

defined by the commutative diagram on the right hand

0

��

IXoo I∂+
//

1
��

I2X
s
��

IX
∂+Ioo //

1
��

0

��

I2X
c2 //

s
��

C2X
s
��

0 IXoo
∂+I

// I2X IX
I∂+

oo // 0 I2X
c2
// C2X

Finally, using the formula c2 = γC.Iγ of (4.8.1) and recalling that

γX : IX → CX is always epi, in the pointed case, as remarked at the

end of 1.7.2(b), we can prove that s interchanges the faces of C2

(s.Cu).γ = s.γC.Iu = s.γC.Iγ.I∂− = s.c2.I∂
− = c2.s.I∂

−

= c2.∂
−I = γC.Iγ.∂−I = γC.∂−C.γ = uC.γ.
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4.8.5 Proposition (Cones and contractibility)

Let A be a dI2-homotopical category. Then every future cone C+X is

strongly future contractible.

Proof By the previous monad structure on C = C+, the basis u−C :

CX → C2X has a retraction g : C2X → CX. By Lemma 1.7.3, it follows

that CX is future contractible. Moreover, the contraction is given by the

homotopy g.γC : I(CX)→ CX, which on the vertex v = v+ : > → CX

gives g.γC.Iv, a constant map (cf. (4.143)).

4.8.6 Preadditive h-categories

In a category of chain complexes (on an additive category), homotopies

are determined by null-homotopies ν : 0→ a, which can be represented

by a cone functor C(X) or by a cocone functor E(X). Arbitrary homo-

topies ϕ : f → g are then defined as pairs (f, ν), for ν : 0 → g − f , and

can always be reversed.

On the other hand, a category of directed chain complexes is only

enriched on abelian monoids (see 2.1.1): there is no subtraction of mor-

phisms, and nullhomotopies are not sufficient to define homotopies.

Therefore, the additive case is of little interest for directed homotopy,

and we will restrict here to sketching some basic definitions. This sub-

section will not be used in the sequel.

The additive notation for homotopy concatenation is not used here, as

it would lead to ambiguity: degenerate homotopies are written as e(f),

reversed homotopies as ϕop and concatenated homotopies as ϕ ∗ ψ.

A preadditive h-category will be a preadditive category A (Section

A4.6) which is equipped with:

(a) abelian groups A2(X,Y ) of homotopies ϕ : f → g : X → Y (with

variable f, g);

(b) faces and degeneracy homomorphisms (where A1(X,Y ) denotes the

abelian group of maps X → Y )

∂α : A2(X,Y ) −→←−−→ A1(X,Y ) : e, ∂αe = 1, (4.144)

(ϕ : f → g, ψ : f ′ → g′) ⇒ (ϕ+ ψ : f + f ′ → g + g′),

(f, g : X → Y ) ⇒ e(f) + e(g) = e(f + g);

(c) a whisker composition of homotopies and maps, consistent with faces
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and degeneracy, which is trilinear and also satisfies the usual properties

for associativity and identities:

k◦(ϕ+ ψ)◦h = k◦ϕ◦h+ k◦ψ◦h, ϕ◦(h+ h′) = ϕ◦h+ ϕ◦h′,

(k + k′)◦ϕ = k◦ϕ+ k′◦ϕ,

k′(k◦ϕ◦h)h′ = (k′k)◦ϕ◦(hh′) (associativity),

1Y ◦ϕ◦1X = ϕ, k◦e(f)◦h = e(kfh) (identities).

As a consequence, the degenerate homotopy e(0) of the zero-map A→
B is the zero-element of A2(A,B).

It follows that A is a reversible dh1-category (Section 1.2.9), where

R = id and the reversed homotopy ϕop comes forth from the algebraic

opposite −ϕ : − f → −g (but should not be confused with it)

ϕop = e(f)− ϕ+ e(g) : g → f : X → Y.

A preadditive h-category also inherits a (regular) concatenation ∗
defined as follows, by means of the algebraic sum of homotopies in

A2(X,Y ) (and again these two things should not be confused):

ϕ ∗ ψ = ϕ− e(g) + ψ : f → h : X → Y (ϕ : f → g, ψ : g → h).

(We might say that A is a ‘reversible dh3-category’, according to a

definition which has not been given, but can be easily abstracted from

the regular dI3-case, defined in 4.2.3).

Since ϕ = (ϕ − e(f)) + e(f), homotopies are determined by null-

homotopies ν : 0→ a : X → Y . In other words, a preadditive h-category

can be equivalently described as a preadditive category A equipped with

(a′) abelian groups N2(X,Y ) of null-homotopies ν : 0→ f : X → Y ,

(b′) upper face homomorphisms ∂+ : N2(X,Y )→ A1(X,Y ),

(c′) a whisker composition of null-homotopies and maps, consistent with

upper face and degeneracy, which is trilinear and also satisfies the usual

properties for associativity and identities.

Arbitrary homotopies ϕ : f → g are then defined as pairs (f, ν), for

ν : 0→ g − f , and composed in the obvious way:

k(f, ν)h = (kfh, kνh).

An additive h-category is further provided with a zero-object 0 and

biproducts A ⊕ B, always in the two-dimensional sense, i.e. satisfying

the universal properties also for homotopies.
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4.9 The reversible case

The reversible case has peculiar properties, which will also be of use

in studying non-reversible structures equipped with a forgetful functor

taking values in a reversible one (Section 5.8). We will end this section by

establishing a relationship between reversible dI4-homotopical categories

and Baues cofibration categories [Ba].

4.9.1 Reversing homotopies and 2-homotopies

Let A be a reversible dI3-category, which means that the reversor R is

the identity.

Because of that, we already remarked (in 4.2.3) that the preorder

relation f �1 g, i.e. the existence of a homotopy f → g, coincides with

the homotopy congruence f ' 1 g which gives the homotopy category

Ho1(A) = A/'1 (Section 1.3.3).

Furthermore, every double homotopy Φ: I2X → Y can be reversed in

both directions, by pre-composing with rI : I2X → I2X or Ir

f
ϕ //

σ
��

h

τ

��

k
ψ //

−σ
��

g

−τ
��

h
−ϕ //

τ

��

f

σ
��

Φ Φ.rI Φ.Ir

k
ψ
// g f

ϕ
// h g

−ϕ
// k

(4.145)

In particular, a 2-homotopy Φ: ϕ→ ψ yields a 2-homotopy Φ.rI : ψ →
ϕ. Thus, the existence of a 2-homotopy ϕ→ ψ is a symmetric relation,

and coincides with the equivalence relation ϕ '2 ψ (Section 4.5.1).

The procedures of (4.145) have no counterpart in the non-reversible

case; but, applying both, we get a double reversion which corresponds

to the double reflection of the non-reversible case (see (4.10)).

4.9.2 Theorem (The fundamental groupoid)

Let A be a reversible dI4-category. Then the concatenation of homo-

topies is associative, has identities and inverses up to 2-homotopy.

The 2-category Ho2(A) = A/' 2 (Section 4.5.5) has invertible cells.

The fundamental category ↑Π1(X) (Section 4.5.7) becomes the funda-

mental groupoid, and should be preferably written as Π1(X).

Proof After 4.5.6 and 4.5.7, it suffices to prove that, given a homotopy
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ϕ : f → g : X → Y , the reversed homotopy ψ = −ϕ = ϕr : g → f is an

inverse of ϕ, up to 2-homotopies

A : 0f → ϕ+2 ψ : f → f, B : 0g → ψ +2 ϕ : g → g.

These can be constructed as follows

f
0 //

0
��

ϕ.g+

f
0 //

ϕ

��
ϕ.g+.Ir

f

0
��

g
0 //

0

��
ψ.g+

g
0 //

ψ
��
ϕ.g−.rI

g

0

��
f

ϕ
// g

ψ
// f g

ψ
// f

ϕ
// g

4.9.3 Theorem (Homotopy preservation)

Let A be a reversible dI4-category and consider a homotopy ϕ : f →
f ′ : X → Y and two h-pushouts I(f, g) = A, I(f ′, g) = A′

X

g

��

f ′ //

f

↑ϕ // Y

u
��

Y

u′

��

λ

��Z
v

// A λ′

��Z
v′

// A′

Then the comparison map w : A → A′ defined below is a homotopy

equivalence

wu = u′, wv = v′, w◦λ = u′◦ϕ+ λ′ : u′f ′ → v′g.

Proof Since A is reversible, we also have a map w′ : A′ → A constructed

as above, from the reversed homotopy ψ = −ϕ : f ′ → f

w′u′ = u, w′v′ = v, w′◦λ′ = u◦ψ + λ : uf → vg.

Then w′w ' id : A → A, by the two-dimensional property of the h-
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pushout A, applied to the trivial homotopies of u, v

Y
u

""

u //

u

↓0 // A

λ

��

uf
λ //

0 ��

vg

0
��

X

f
<<

g ""

A
1 //

w′w

// A ]

uf
w′wλ

// vg

Z
v

<<

v //

v

↓0 // A

The existence of a 2-homotopy λ→ w′w◦λ is proved by the following

relations, which come from Theorem 4.9.2, on the weak regularity of

concatenation in a reversible dI4-category (including the fact that ϕ

and ψ are inverses up to 2-homotopy)

w′w◦λ = w′u′◦ϕ+ w′◦λ′ = u◦ϕ+ (u◦ψ + λ) '2 u◦(ϕ+ ψ) + λ '2 λ.

4.9.4 Invariance Theorem

Let A be a reversible dI4-homotopical category and consider an h-pushout

I(f, g) = A (as in the diagram below). If g is a homotopy equivalence,

then the ‘opposite’ morphism g′ : Y → A is too.

Proof We already know that, in more general hypotheses, the h-pushout

of an isomorphism is a homotopy equivalence (Proposition 4.6.1(b)).

Now, in the present case, the map g : X → Z is only supposed to be

a homotopy equivalence. We have to prove that g′, the h-pushout of g

along f , is a homotopy equivalence, or equivalently that its class [g′] in

Ho1(A) is an isomorphism.

Let h : Z → X be a homotopy inverse of g, with hg '1 1X , gh '1 1Z ,

and let us construct the following h-pushouts

X
g //

f

��

Z
h //

v

��

X

w

��

X
1 //

f

��

X

w
��

Y
g′
//

λ 00

A
h′
//

µ 00

B Y
u
//

ξ //

I(f, 1)

Now, by special invariance (Proposition 4.6.1), the h-pushout u of

1X along f is a homotopy equivalence. Since hg ' 1 1X , by homotopy

preservation (Theorem 4.9.3), the h-pushout of hg along f is homotopy

equivalent to u, hence a homotopy equivalence itself. By the pasting
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property (Theorem 4.6.2), also h′g′ is a homotopy equivalence, and [h′g′]

is iso in Ho1(A).

Working in the same way on the composition hg (and taking care to

distinguish g′ and g′′)

Z
h //

v
��

X
g //

w

��

Z

w′

��
A

h′
//

µ //

B
g′′
//

ν //

C

one gets that [g′′h′] is an isomorphism. Therefore [h′] is iso in Ho1(A),

and finally so is [g′].

4.9.5 Baues cofibration categories

We end this section by proving that, under an obvious condition on

pushouts, a reversible dI4-homotopical category has a canonical struc-

ture of ‘cofibration category’, a non-selfdual version of Quillen’s model

categories defined in Baues’ book on ‘Algebraic Homotopy’ [Ba].

Let us recall that a cofibration category, in the sense of Baues, is a

category A equipped with two classes of morphisms, called cofibrations

and weak equivalences, which satisfy the following axioms.

(C1) Composition. All isomorphisms are cofibrations and weak equiv-

alences. Cofibrations are closed under composition, while weak equiva-

lences are closed under the ‘two out of three’ property: namely, if in a

composite h = gf two maps out of f, g, h are weak equivalences, then

the third is also.

(C2) Pushout. A cofibration f : X → Y has a pushout (f ′, g′) along any

map g : X → Z, and f ′ is a cofibration

X
g //

f
��

Z

f ′

��
Y

g′
// A

(4.146)

Moreover:

(a) if g is a weak equivalence, so is g′,

(b) if f is a weak equivalence, so is f ′.

(Condition (b) is redundant, as proved in Baues’ text, Lemma 1.4.

Below, we will ignore it.)
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(C3) Factorisation. Every map f : X → Y has a factorisation f = f2f1,

where f1 is a cofibration and f2 a weak equivalence.

(C4) Fibrant models. Every object X has a trivial cofibration X → RX

with values in a fibrant object.

(A cofibration is said to be trivial if it is a weak equivalence. The

object R is said to be fibrant if every trivial cofibration i : R→ R′ has a

retraction p : R′ → R.)

4.9.6 Theorem

Let A be a reversible dI4-homotopical category with extended acceler-

ation (Section 4.6.5). We define cofibrations by the usual homotopy

extension property (Section 4.6.3), and weak equivalences as homotopy

equivalences (Section 1.3.1). Assume now that a cofibration f : X → Y

has a pushout along any map, which is preserved by the cylinder functor

I.

Then A is a cofibration category, in the sense recalled above, and

every object is fibrant.

Proof The properties of the composition axiom are obvious (and already

stated in 4.6.3 and 1.3.3).

As to (C2), let us begin by proving that the map f ′ in diagram (4.146)

is a cofibration. Take a map h : A→W and a homotopy ψ : h′ = hf ′ →
k′. Then, the homotopy ψ ◦g : (hg′)f → k′g has a lifting ϕ : hg′ → w,

with ϕ◦f = ψ ◦g. Now, since I preserves the pushout square (4.146),

there exists (precisely) one map χ : IA → W such that χg′ = ϕ and

χf ′ = ψ

IY

Ig′ $$
ϕ

**IX

If
::

Ig $$

IA χ // W

IZ

If ′
::

ψ

44

The property (a) is here a consequence of the Invariance Theorem

4.9.4: if g is a homotopy equivalence, so is g′. For the factorisation ax-

iom, we have already proved, in 4.6.7, that every map has a canonical

factorisation through its mapping cylinder I(f, 1), formed of a cofibra-

tion followed by a deformation retraction, which is a homotopy equiva-

lence.
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Finally, every object is fibrant: take a trivial cofibration f : X → Y ,

and a map g : Y → X forming a homotopy equivalence with f . Then, the

homotopy ψ : gf → idX can be lifted to a homotopy ϕ : g → p : Y → X,

and pf = idX

X

f

��

gf //

1

↓ψ // X

Y

g //

p

↓ϕ // X



5

Categories of functors and algebras, relative
settings

The homotopical structures we are studying are ‘categorically algebraic’,

in the sense that they are based on endofunctors and ‘operations’ on

them (natural transformations between their powers), much in the same

way as in the theory of monads.

This is why such a structure can generally be lifted from a ground

category A to a categorical construction on the latter, yielding a second

category E equipped with a forgetful functor U : E → A, or with a

family of functors Ui : E→ A.

We treat thus: categories of diagrams and sheaves (Section 5.1), slice

categories (Section 5.2), categories of algebras for a monad (Sections 5.3

and 5.4) and categories of differential graded algebras (Sections 5.5-5.7).

Applying - for instance - these results to dTop, the symmetric dIP4-

homotopical category of d-spaces, we obtain that any category of dia-

grams dTopS and any slice category dTop\A or dTop/B is a symmetric

dIP4-homotopical category (Sections 5.1.5 and 5.2.6). Furthermore, any

category of sheaves Shv(S,dTop), over any site S, is a symmetric dP4-

homotopical category (Section 5.1.5).

The same is also true of any category of algebras dTopT , for every

monad T on dTop which is made consistent with the path functor, in

a natural sense. This yields the homotopical structure of d-topological

semigroups, or d-topological groups, or d-spaces equipped with an action

of a fixed d-topological group, etc. (Section 5.4).

Similarly, the homotopy structure of Cat can be lifted to the category

of strict monoidal categories (Section 5.4.6).

We end, in Section 5.8, by considering a relative setting, called a rela-

tive dI-homotopical category and based on a forgetful functor U : A→ B,

where A is a dI1-homotopical category, B is a symmetric dI4-homotopical

category and U is a dI1-homotopical functor. Now, we can prove higher

299
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properties of the fibre sequence in A, up to relative equivalences, i.e.

maps of A which become past or future homotopy equivalences in B.

This approach and the dual one allow us to treat ‘weak’ homotopy struc-

tures, like the ones of differential graded algebras (Section 5.8.4), di-

rected chain complexes (Section 5.8.5), cubical sets (Section 5.8.6) and

inequilogical spaces (Section 5.8.7).

5.1 Directed homotopy in categories of diagrams and sheaves

A d-homotopy structure based on a cylinder or cocylinder functor, can

be lifted from a category A to every category of diagrams AS defined

on a small category; many different situations can be dealt with in this

way (see 5.1.1), including group-actions and equivariant homotopy.

For categories of sheaves, the lifting is fairly easy for the path functor

(Theorem 5.1.4); on the other hand, to construct the cylinder functor

requires stronger hypotheses, and a sheafification procedure to begin

with; this will not be developed here.

The classical literature on such subjects is abundant. For homotopy

in categories of diagrams and equivariant homotopy, we refer to Dror

Farjoun [Dr], Brown - Loday [BL], Moerdijk - Svensson [MoS], Cordier

and Porter [CP]. For set-valued sheaves over a site, one can see the book

by Mac Lane and Moerdijk [MM], while sheaves in general categories,

but over a space, can be found in Gray [Gy1]. For Quillen structures in

categories of sheaves, see Crans [Cr].

Most of the material of this section and the next comes from [G4].

5.1.1 Categories of diagrams

Let S be a small category and consider the category of diagrams AS,

i.e. functors S → A with their natural transformations. An object

X = ((Xi), (Xι)) is thus a collection indexed over the objects i and the

arrows ι : i→ j of S, which satisfies the functorial properties. A functor

Sop → A is also called an A-valued presheaf defined on S, and their

category will be written as Psh(S,A) = ASop

.

Such categories include, for instance:

• the cartesian power AS , for any set S (as a discrete category),

• the category A2 of morphisms of A,

• the category Az of unbounded towers of A (where z is the order

category of integers),
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• the category AG of actions in A of a fixed group, or monoid, G (as a

one-object category),

• the categories of simplicial or cubical objects in A,

• the category Psh(X,A) = ASop

of A-valued presheaves over a fixed

topological space X (letting S be the category of open subsets of X,

with their inclusion mappings).

We are interested in lifting the structure of A to AS, along the (jointly

faithful) family of evaluation functors Ui : AS → A, X 7→ Xi. Equiva-

lently, we can consider one forgetful functor U : AS → AObS, of compo-

nents Ui.

As a first step, if A is a dh1-category (Section 1.2.9), AS has a canon-

ical dh1-structure, with the obvious reversor R : AS → AS. A (natural

or equivariant) homotopy ϕ : f → g : X → Y in AS is defined to be a

family of A-homotopies ϕi : fi → gi : Xi → Yi (i ∈ ObS) which is nat-

ural in the obvious sense provided by the whisker composition of maps

and homotopies, in A

Yι◦ϕi = ϕj ◦Xι (ι : i→ j in S). (5.1)

5.1.2 Theorem (Diagrams and homotopy)

If A is a dI1 (resp. dI2, dI3, dI4) -category or a dI1 (resp. dI2, dI3, dI4)

-homotopical category, possibly symmetric, then the category of diagrams

AS has a canonical structure of the same kind, by a pointwise lifting of

the cylinder.

Similar results hold for the P- and IP-analogues.

Proof All the argument is obvious. For a dI1-category

A = (A.R, I, ∂α, e, r),

the dI1-structure of the category AS is obtained by post-composing a

diagram X : S→ A with the structure of A:

(RX)i = R(Xi), (RX)ι = R(Xι),

(IX)i = I(Xi), (IX)ι = I(Xι),

(∂αX)i = ∂αXi, (eX)i = eXi.

(5.2)

One works in the same way for the higher structures, up to reach the

symmetric dI4-case (R, I, ∂α, e, r, gα, s, J, c, z). Note that the concatena-

tion pushout J(X) = IX +X IX exists and is pointwise calculated in

AS, which allows one to lift the concatenation c : I → J .
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In the dI1-homotopical case, the terminal object and all cylindrical

colimits exist in AS and are pointwise calculated in A. In the dI2-

homotopical case, the preservation of cylindrical colimits by the cylinder

functor of A automatically lifts to AS.

The P-cases follow now by duality, and the IP-cases from the previous

ones - taking into account that an endo-adjunction of A also lifts to AS,

in a canonical way.

5.1.3 Sheaves on a site

Let us recall the definition of sheaves on a site, from the text by Mac

Lane and Moerdijk [MM]. Let S be a small category.

First, a sieve s of the object i in S is a right ideal of maps having

codomain i, in the sense that: if ι ∈ s, then ικ ∈ s, whenever the

composition is defined.

Now, a site is a small category S equipped with a Grothendieck topol-

ogy J ; the latter assigns to every object i a set J(i) of sieves of i (which

are said to cover i), under three axioms which abstract the behaviour

of (downwards closed) open coverings of open subsets, in a topological

space ([MM], III.2, Def. 1). These axioms are:

(i) the maximal sieve ti, consisting of all the arrows of codomain i,

belongs to J(i);

(ii) (stability) if s ∈ J(i) and κ : j → i is in S, then the sieve κ∗(s) =

{ι | κι ∈ s} belongs to J(j);

(iii) (transitivity) if s ∈ J(i) and r is sieve on i such that, for every

arrow κ : j → i in s, κ∗(r) belongs to J(j), then r ∈ J(i).

Shv(S,A) is the full subcategory of Psh(S,A) consisting of those

presheaves X = ((Xi), (ι
∗)) which are sheaves (with respect to the

Grothendieck topology J of S), i.e. satisfy the following limit condi-

tion. For each object i and each sieve s ∈ J(i), consider the (small)

diagram X|s in A having the following vertices and arrows

Xι = XDomι (ι ∈ s),
xικ : Xι → Xικ = κ∗ : XDomι → XDomκ (ι ∈ s, Codκ = Domι).

Then Xi is required to be the limit in A of this diagram, with projec-

tions

ι∗ : Xi → Xι = XDomι (ι ∈ s).
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Note that the diagram X|s is defined over the category cat(s), with

objects ι ∈ s, arrows

(ι, κ) : ι→ ικ (for ι ∈ s, Codκ = Domι),

and composition (ικ, λ).(ι, κ) = (ι, κλ). Since A is not required to be

complete, the sheaf condition cannot be expressed using products and

equalisers; furthermore, the direct formulation above is often more man-

ageable.

5.1.4 Theorem (Sheaves and cocylinder)

Let A be a dP1 (resp. dP2, dP3, dP4) -category, or a dP1 (resp. dP2,

dP3, dP4) -homotopical category, possibly symmetric, and assume that

the path functor P preserves all the existing limits (as it certainly does

if it is a right adjoint).

Then the category Shv(S,A) of sheaves of A over a small site S is

a subcategory of the same kind (see 1.2.2, 4.2.7), in the category of

presheaves Psh(S,A) = ASop

.

Proof Let A be equipped with a (path) endofunctor P which preserves

the existing limits. Then the path functor of presheaves (Theorem 5.1.2)

PX = ((PXi), (Pι
∗)) restricts trivially to sheaves.

After that, we have to show that the full subcategory of sheaves is

closed in Psh(S,A) under concatenation pullbacks or cocylindrical lim-

its, whenever these are assumed to exist in A (and therefore also exist

in Psh(S,A)). Since the existence of cocylindrical limits is equivalent to

the existence of certain pullbacks, it suffices to prove that Shv(S,A) is

closed in Psh(S,A) under the existing pullbacks.

Let X be the pullback of a cospan A → B ← C in Psh(S,A), and

assume that A,B,C are sheaves. Then X is also: the proof of the

sheaf condition for X reduces to a straightforward diagram-chasing in

the diagram below, for ι ∈ s and Codκ = Domι

Xi
ι∗ //

��

##
Xι

κ∗ //

��

##
Xικ

��

%%
Bi

ι∗ //

��

Bι
κ∗ //

��

Bικ

��
Ai

ι∗ //

##
Aι

κ∗ //

##
Aικ

%%
Ci

ι∗
// Cι

κ∗ // Cικ
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5.1.5 Topological examples

The categories dTopS and (dTop•)
S of S-diagrams of d-spaces or pointed

d-spaces are symmetric dIP4-homotopical.

This includes dTop2, dTopz, d-spaces with G-action (for a group or

monoid G), presheaves of d-spaces on a fixed topological space and the

pointed analogues (see 5.1.1).

Furthermore, for any site S, Shv(S,dTop) and Shv(S,dTop•) are

symmetric dP4-homotopical.

5.2 Directed homotopy in slice categories

We prove now that, under natural conditions, one can lift a d-homotopy

structure from a ground category A to a slice category A\A or A/B,

under or over a reversible object. In order to unify such arguments, we

fix a map u : A → B of A and consider a category A(u) which extends

the previous cases (Section 5.2.2).

Again, literature in the classical case is much developed. For the

homotopy theory of (strict or relaxed) slice categories of spaces see James

[J1, J2], Baues [Ba], Hardie - Kamps [HK1, HK2, HK3], Hardie - Kamps

- Porter [HKP]. Homotopy in a slice category Top/B is called fibre-wise

homotopy.

5.2.1 Some remarks on pushouts

We say that a map t : A → B in the category A has all pushouts (or

that A has all t-pushouts) if the pushout of t along an arbitrary map f

exists

A
f //

t
��

•

t′

��

A
f //

t
��

•
g //

t′

��

•

t′′

��
B // • B //

//•
//
•

(5.3)

This yields a map t′ which again has all pushouts, as proved in the

right diagram above: use the pushout of t along the composite gf , and

‘factorise’ it through the left-hand pushout; then the right-hand square

is also a pushout, by a well-known lemma, easy to verify.

Therefore, if A has all t-pushouts and a functor F : A→ B preserves



5.2 Directed homotopy in slice categories 305

them, it follows that F also preserves the pushouts of any map t′ which

is the pushout of t along some other map.

5.2.2 Bilateral slice categories and reversors

Let A be a category. The classical topological example of a slice category

is Top• = Top\>, the category of pointed spaces, or ‘spaces under the

point’ > = {∗}: an object (X, a) is a map a : > → X in Top; pointed

maps preserve the base point. When studying the directed case dTop• of

pointed d-spaces, we begin by remarking that the reversor R : dTop→
dTop lifts to dTop• letting R(X, a) = (Xop, aop : > → Xop).

Now, if A is a category and A an object therein, the slice category

A\A, of objects under A, has objects (X, a) consisting of a map a : A→
X in A; a morphism f : (X, a)→ (X ′, a′) is given by a map f : X → X ′

in A such that f ◦a = a′, as in the left diagram below

A
a
��

A

a′��

X
f //

b ��

X ′

b′��
X

f
// X ′ B B

(5.4)

If A has a reversor R : A → A (i.e. an involutive endofunctor) and

the object A is invariant under it, we identify R(A) = A, for simplicity,

and define the reversor R : A\A→ A\A letting

R(X, a) = (RX,Ra : A→ RX),

R(f : (X, a)→ (X ′, a′)) = R(f) : R(X, a)→ R(X ′, a′).
(5.5)

Dually, we have the slice category A/B ∼= (A∗\B)∗ of objects over

B, whose morphisms make the right diagram above commutative (with

a similar argument on reversors). We will unify these two types of slice

categories, considering a more general, self-dual situation (as in [Ba],

I.4.3).

Let a map u : A → B be fixed in A, and consider the bilateral slice

category along u

A(u) = (A\A)/(B, u) = (A/B)\(A, u). (5.6)
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Explicitly, an object is a triple (X, a, b) with ba = u

A
a // X

b //

f

��

B

A
a // X

b // B

A
a′
// X ′

b′
// B

(5.7)

and a map f : (X, a, b)→ (X ′, a′, b′) is a morphism f of A which makes

the right diagram above commute.

The category A(u) extends both cases of slice categories, since

A\A ∼= A(A→ >), A/B ∼= A(⊥ → B), (5.8)

provided A has initial and terminal object (which is no real restriction

here, since such objects can always be formally added). On the other

hand, A(u) has the following initial and terminal object (under no as-

sumptions on A)

⊥ = (A, 1, u), > = (B, u, 1). (5.9)

Notice that one could similarly consider the larger category of objects

(X, a : A → X, b : X → B) with A,B fixed and no assumption on the

composite ba : A → B. But the extension is only apparent, since the

right diagram (5.7) shows that a morphism f : (X, a, b) → (X ′, a′, b′)

can only exist when ba = b′a′; therefore, this larger category breaks into

the sum of its connected components, the various A(u), for u ∈ A(A,B),

each with its own initial and terminal object (5.9).

If A has a reversor R : A → A, and one can identify R(u) = u, the

reversor R : A(u)→ A(u) is defined in the obvious way:

R(X, a, b) = (RX,Ra : A→ RX,Rb : RX → B), (5.10)

It strictly commutes with the forgetful functor U : A(u) → A, which

sends (X, a, b) to X.

5.2.3 Theorem and Definition

(Lifting functors to slice categories)

Consider a bilateral slice category A(u), for u : A→ B in A.

(i) Let the pair (F, e) consist of an endofunctor F : A→ A and a natural

transformation e : F → 1 (degeneracy) whose component eA : FA → A
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on the object A has all pushouts (Section 5.2.1). Then F has a canonical

lifting to an endofunctor F of A(u), defined by the following pushout

FA
eA //

Fa

��

A

aF

��

A

u

��

F(X, a, b)

FX
p(X,a)

//

eX ��

F (X, a)
bF

##

= (F (X, a), aF , bF ).

X
b

// B

(5.11)

The object F (X, a) and the map p(X, a) do not depend on b. But the

latter will also be written as p(X, a, b), when useful.

(ii) Every morphism f : (F, e) → (F ′, e′) of such pairs (consisting of a

natural transformation f : F → F ′ such that e′f = e : F → 1) lifts to a

morphism (F, e)→ (F′, e′).

(iii) Given a pair (F, e) as above, if F preserves all pushouts along

eA : FA→ A, then the composed endofunctor F2 is the canonical lifting

of F 2 with respect to its associated degeneracy,

e2 = e.Fe = e.eF : F 2 → 1.

Proof The first point is obvious, and (ii) comes from the following

commutative cube, whose front and back faces are pushouts

F ′A
e′A //

F ′a
��

A

aF
′

��

FA
eA //

Fa

��

fA ::

A

aF

��

1

77

F ′X
p′ // F ′(X, a)

FX
p

//

fX
;;

F (X, a)
f(X,a,b)

88

As to (iii), consider the following diagram, where we write X =
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(X, a, b), Y = F (X, a) and Y = F(X, a, b) = (Y, aF , bF )

F 2A
FeA //

F 2a ��

FA
eA //

FaF��

A

â��

A

u

��

F 2X
FpX

//

eFX
��

FY
pY
//

eFY
��

F (Y, aF )
b̂

$$
FX

pX
// Y

bF
// B

F2(X, a, b) is a triple, whose object is computed as F (F (X, a), aF ),

in the right-hand pushout. The canonical lifting of F 2 on the object

(X, a, b) also gives a triple, whose object is computed with the pasting

of the two pushouts above, and coincides with the former object.

Both computations give the same map â : A→ F (Y, aF ). Finally, the

lower left square commutes, by naturality of e : F → 1 on the morphism

p(X, a, b) : FX → F (X, a). Henceforth, the map b̂ : F (Y, aF )→ B which

satisfies the conditions for F2(X, a, b)

b̂.â = u, b̂.pY = bF .eF (X, a),

also satisfies the similar conditions for the lifting of F 2, since:

b̂.(pY.FpX) = bF .pX.eFX = b.eX.eFX = b.e2X.

5.2.4 Theorem

(First order homotopy structure for slice categories)

Suppose we have a category A equipped with a reversor R and an A-

morphism u : A → B such that Ru = u. The bilateral slice category

A(u) is equipped with the lifted reversor R, as above (Section 5.2.2).

(a) If A is a dI1-category (resp. a dI1-homotopical category) and the

degeneracy eA : IA → A of the domain of u has all pushouts in A (in

the sense of 5.2.1), then the bilateral slice category A(u) has a canonical

dI1-structure (resp. dI1-homotopical structure).

Its cylinder functor I is the canonical lifting of (I, e), constructed as
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follows (in the previous theorem)

IA
eA //

Ia

��

A

aI

��

A

u

��

I(X, a, b)

= (I(X, a), aI , bI).

IX
p //

b.eX
//I(X, a)

bI // B

(5.12)

The forgetful functor U : A(u) → A is a lax dI1-functor (Section

1.2.6), with a comparison p : IU → UI whose general component is

shown in the left square above.

(a*) Dually, if A is a dP1-category (resp. a dP1-homotopical category)

and the degeneracy eB : B → PB of the codomain of u has all pullbacks,

then A(u) is also dP1 (resp. dP1-homotopical), with a path functor P

defined by the eB-pullback below (with waP = eX.a : A→ PX).

A
aP //

u

��

P (X, b)
w //

bP

��

PX

Pb

��

P(X, a, b)

= (P (X, b), aP , bP ).

B B
eB // PB

(5.13)

The forgetful functor U : A(u) → A is a lax dP1-functor (Section

1.2.6), with a comparison w : UP → PU whose general component is

shown in the diagram above.

Proof We prove (a). The new cylinder functor I : A(u) → A(u) is

defined in (5.12). We have also defined the natural transformation

p : IU → UI, p(X, a, b) : IX → UI(X, a, b),

and it will be useful to note that its components p(X, a, b) have all

pushouts in A, by a remark in 5.2.1.

Faces and degeneracy of I are constructed in the dotted rectangles

below (according to 5.2.3(ii))

∂α = p(X, a, b).∂αX : (X, a, b)→ I(X, a, b),

e = eI : I(X, a, b)→ (X, a, b),
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A
∂αA //

a
��

IA
eA //

Ia
��

A

aI

��

A

a
��

X
∂αX
//

b
��

IX
p
//

0b
��

I(X, a)
eI //

bI

��

X

b
��

B B B B

where eI .aI = a and eI .p(X, a, b) = eX : IX → X.

Finally, the new reflection r : IR→ RI is induced by the reflection of

A: in other words, the component r(X, a, b) is defined on the pushout

I(RX,Ra) as the map which makes the following cube commute (recall

that RA = A):

RIA
ReA //

RA

��

RA

R(aI)

��

IRA
eRA //

IRa

��

rA
99

RA

(Ra)I

��

1

66

RIX
Rp // R(IX, aI)

IRX
pR

//

rX
::

I(RX,Ra)
r(X,a,b)

77

The axioms of dI1-category are easily verified, as well as the fact that

(U, p) is a lax dI1-functor (taking into account the fact that UR = RU ,

as already noted in 5.2.2).

In the dI1-homotopical case, we have to prove the existence of the h-

pushout I(f, g) of two maps, f : (X, a, b)→ (X ′, a′, b′) and g : (X, a, b)→
(X ′′, a′′, b′′), in A(u).

Let us begin by remarking that the lower row of the left diagram below

must have a colimit in A, say C

X ′

1
��

X
foo ∂− //

1
��

IX

p
��

X
∂+
oo g //

p
��

X ′′

1
��

IX
λ //

p
��

I(f, g)

p′
��

X ′ X
f
oo

∂−
// I(X, a) X

∂+

oo
g
// X ′′ I(X, a)

λ′
// C

In fact, we start from the colimit of the upper row, which is the h-

pushout I(f, g) in A, with structural maps

u : X ′ → I(f, g), λ : IX → I(f, g), v : X ′′ → I(f, g).
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Since the map p : IX → I(X, a) has all pushouts, we form the right-

hand pushout above. It is easy to verify that this yields the colimit C

which we want, with structural maps

p′u : X ′ → C, λ′ : I(X, a)→ C, p′v : X ′′ → C.

Finally, the h-pushout I(f, g) in A(u) is the triple (C, â, b̂), where the

object C is equipped with the morphism

â = p′ua′ = p′va′′ : A→ C,

and the morphism b̂ : C → B defined on the colimit C of the lower row

in the left diagram above, by the following three maps

b′ : X ′ → B, bI : I(X, a)→ B, b′′ : X ′′ → B.

5.2.5 Theorem

(Higher homotopy structure for slice categories)

Consider again a bilateral slice category A(u), for u : A → B in A,

with Ru = u. If A is a symmetric dI4-category, or symmetric dI4-

homotopical, so is A(u), provided that all eA-pushouts exist in A and

are preserved by I.

Similar results hold for the non-symmetric case, and for the inter-

mediate cases dI2, dI3 (for the latter, there is no need to assume that

eA-pushouts are preserved by I).

Proof Let A be a symmetric dI4-category. Theorem 5.2.3 allows us to

lift I and I2, together with faces, degeneracies, reversion (as in 5.2.4),

connections and transposition.

Furthermore, the endofunctor JX = IX +X IX of A lifts to the slice

category, once we prove that the degeneracy e : JA → A has pushout

along any map f : JA→ C.

First form, in the diagram below, the eA-pushouts of the restrictions

fα = fcα, producing two maps uα which have all pushouts; then form

their pushout D. It is easy to check that D is also the right-hand

pushout below, via the maps h = vαuα : C → D and h′ = hfc−∂+ =
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hfc+∂− : A→ D

A
h− // •

v−

��

IA
f− //

c− ��

e

cc

C
u−

;;

JA
f //

e

��

C

h

��

A JA
f //eoo C

h // D

IA
f+

//
c+
OO

e

{{

C
u+

##

A
h′

// D

A
h+

// •

v+

OO

By 5.2.3(ii), the lifted functor J has transformations c−, c+ : I → J;

these still form the pushout of ∂−, ∂+ : 1→ I, because ‘pushouts preserve

pushouts’ (Lemma 4.2.9). Finally, the concatenation c : I → J and the

acceleration z : I2 → I also lift to natural transformations c : I→ J and

z : I2 → I, which satisfy the axioms of 4.2.5.

The symmetric I4-homotopical case (Section 4.2.6) is now a trivial

consequence of the previous ones. For the dI2 and dI3-cases, possibly

symmetric, use the relevant part of the previous arguments.

5.2.6 Topological examples

We already know that the category dTop• of pointed d-spaces is a

symmetric dIP4-homotopical category (Section 4.3.1). Since dTop• =

dTop\> is a slice category of the category of d-spaces, we can also obtain

this fact from the same property of dTop, using the previous theorem.

Consistently with the constructions we have already used (in 1.5.5),

the P-structure comes directly from that of dTop (cf. (5.13) while the

pointed cylinder I(X, a) = (IX/I{a}, aI) is formed by collapsing the

subspace I{a} in the non-pointed cylinder IX (see (5.12)).

More generally, if u : A → B is a map of d-spaces with R(u) = u,

the bilateral slice category dTop(u) is symmetric dIP4-homotopical,

with cylinder and path functor as in 5.2.4. This includes the categories

dTop\A of d-spaces under a reversible d-space A (take B = >) and

dTop/B of d-spaces over a reversible B (take A = ⊥).

Notice that, for a pointed d-map u : A → B in dTop•, the slice cate-

gory dTop•(u) does not yield anything new. Indeed, if |u| is the under-
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lying map in dTop, the forgetful functor from dTop•(u) to dTop(|u|)
is an isomorphism.

Preordered spaces give symmetric dIP4-homotopical categories of type

pTop(u), while (ordinary) topological spaces give reversible symmetric

dIP4-homotopical categories Top(u).

Finally, let us recall that a homotopy in a slice category Top/B is

called a fibre-wise homotopy over B (and the same terminology can be

used for d-spaces). Indeed, given two fibre maps f, g : (X, b) → (Y, b′),

a map ϕ : I(X, b) → (Y, b′) whose faces are f and g amounts to an

ordinary homotopy ϕ : f → g : X → Y such that, for all x ∈ X, the

path ϕ(τ, x) (τ ∈ [0, 1]) is contained in a b′-fibre of Y (namely, the fibre

over b(x) = b′f(x) = b′g(x)).

5.3 Algebras for a monad and the path functor

We consider now a monad T = (T, η, µ) over a category A (Section

A4.4). Then a homotopy structure for A, defined by a path endofunctor

P , can be lifted to the category AT of Eilenberg-Moore algebras over T ,

provided that the monad is made consistent with the path functor by a

natural transformation λ : TP → PT satisfying some natural conditions.

The dual procedure, which will not be written down, allows one to lift

a cylinder setting to a category of coalgebras over a comonad.

This section and the next are essentially an adaptation to the directed

case of a joint work with J. MacDonald [GMc]. We refer to Mac Lane’s

text [M3] for the basic theory of monads, their categories of algebras and

the relationship with adjunctions (briefly recalled here in A4.4, A4.5).

5.3.1 Lifting functors to algebras

Let T = (T, η, µ) be a monad over the category A. A T -algebra, or

Eilenberg-Moore algebra for T , is a pair (X, t) consisting of an (under-

lying) object X and a morphism t : TX → X in A, called the algebraic

structure, under two (obvious) axioms of consistency with η, µ (see A4.5).

A morphism of T -algebras, f : (X, t)→ (X ′, t′) is an A-map f : X → X ′

such that f.t = t′.T f .

As usual, AT denotes the category of T-algebras, UT : AT → A the

forgetful functor UT (X, t) = X, and FT : A → AT its left adjoint, the

free-algebra functor FT (X) = (TX, µX).

It is well known that the forgetful functor UT : AT → A creates [M3]

the (existing) limits. For instance, given two morphisms of T-algebras
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fi : (Xi, ti)→ (Y, u) (i = 1, 2), if their underlying maps fi : Xi → Y have

a pullback X in A, there is precisely one structure t : TX → X which

makes the pullback-projections into T -morphisms (and is determined by

the conditions pi.t = ti.Tpi). Then (X, t) is the pullback of (f1, f2) in

AT , with the same projections pi

(X, t)
p1 //

p2

��

(X1, t1)

f1
��

pi.t = ti.Tpi : TX → Xi.

(X2, t2)
t2
// (Y, u)

(5.14)

We want now to consider an endomorphism P : A → A, typically a

path endofunctor, ‘consistent’ with the monad. But we prefer to deal,

more generally, with two monads over two categories, as this distinction

happens to make things clearer.

Given a second monad S = (S, η′, µ′) over B (with forgetful functor

US : BS → B and free-algebra functor FS), a (lax) morphism of mon-

ads (P, λ) : T → S is a functor P : A → B equipped with a natural

transformation λ = λP : SP → PT , the comparison, satisfying

λ.η′P = Pη, λ.µ′P = Pµ.λ2,

(λ2 = λT.Sλ : S2P → PT 2).
(5.15)

P
η′P //

Pη ##

SP

λ
��

S2P
µ′Poo

λ2

��
PT PT 2

Pµ
oo

The morphism (P, λ) is said to be strong if λ is invertible, and strict

if λ is an identity; the morphism will generally be written as P , leaving

λP understood.

The composition P ′P with a morphism P ′ : S → R has the obvious

comparison

λP
′P = (P ′◦λP ).(λP

′
◦P ) : R.P ′P → P ′SP → P ′P.T. (5.16)

A 2-cell of these morphisms, or natural transformation ϕ : P → Q :

T → S, is an ordinary natural transformation ϕ : P → Q : A → B
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making the following square commute, for every object X

SPX
Sϕ //

λP

��

SQX

λQ

��
ϕT.λP = λQ.Sϕ.

PTX
ϕT
// QTX

(5.17)

A morphism of monads P : T → S has a canonical lifting P : AT →
BS , with US .P = PUT

P (X, t) = (PX,Pt.λX), P (f) = P (f), (5.18)

and every natural transformation ϕ : P → Q has a unique lifting ϕ : P →
Q, with US .ϕ = ϕUT , which will also be written as ϕ : P → Q since its

components are ‘the same’ as those of ϕ

ϕ(X, t) = ϕX : P (X, t)→ Q(X, t).

For T = S, an endomorphism of monads (P, λ) : T → T will also be

called a T -functor; it is an endofunctor P : A → A equipped with a

natural transformation λ = λP : TP → PT such that

λ.ηP = Pη, λ.µP = Pµ.λ2 (λ2 = λT.Tλ : T 2P → PT 2).

Then, the lifting P : AT → BT will also be written as PT . Moreover

P 2 is also a T -functor by means of the natural transformation

λP
2

= (P ◦λP ).(λP ◦P ) : TP 2 → P 2T.

The lifting of P 2 coincides with the composite (PT )2.

In a setting where one can consider a 2-category CAT of large cate-

gories (see A1.1), a monad can be defined as a 2-functor T : m→ CAT,

defined on the formal monad 2-category m (see 5.3.8). This yields natu-

rally a 2-category MON of monads, lax morphisms and natural transfor-

mations; the lifting procedure respects the various compositions, form-

ing a 2-functor MON→ CAT which takes the monad T to its category

of algebras AT . The lifting of adjunctions will be considered later (in

Theorem 5.3.7).

5.3.2 Remarks

(a) As noted in Johnstone [Jo] (Lemma 1, attributed to Appelgate’s

thesis), it is easy to see that, given two monads T and S as above and

a mere functor P : A → B, there is a bijective correspondence between
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liftings P : AT → BS of P and natural transformations λ : SP → PT

satisfying the conditions above (5.15), i.e. making P into a morphism of

monads. We have already given this correspondence in one direction.

Conversely, if P is such a lifting, the transpose of Pη : P → PUTFT =

USPFT gives a natural transformation λ̂ : FSP → PFT , and λ =

US λ̂ : SP → PT satisfies our conditions (5.15). The two procedures

are inverses of each other.

(b) An oplax morphism of monads can be extended to the categories of

Kleisli algebras [M3]. Details can be found in [GMc].

(c) If (P, λ) : T → T is an endomorphism of monads and P is part

of a comonad (P, ε, δ) then λ is called a bialgebra distributivity in case

εT.λ = Tε and δT.λ = Pλ.λP.Tδ, see MacDonald and Stone [MS]; a

similar case, in which P is part of a monad, is dealt with in Beck [Bc],

p. 120.

5.3.3 Monads and path-functors

Let A = (A, R, P, ∂α, e, r) be a dP1-category (Section 1.2.2, with α = ±)

∂α : P −→←−−→ 1 : e, r : RP → PR (R2 = id),

∂αe = 1: idA→ idA, RrR.r = 1: RP → RP,

r.Re = eR : R→ RP, ∂−R.r = R∂+ : RP → R.

(5.19)

We also have a monad T = (T, η, µ) on the category A, strictly con-

sistent with the reversor R, in the sense that

RT = TR, Rη = ηR, Rµ = µR. (5.20)

This allows us to lift the reversor to T -algebras, letting R : AT → AT

be defined as:

R(X, t) = (RX,Rt), Rt : T (RX) = RTX → RX. (5.21)

By definition, the dP1-structure is made consistent with the monad

T by a natural transformation λ : TP → PT which makes P into a T -

functor and ∂α, e, r into T -natural transformations (Section 5.3.1). In

other words, the following equations hold, after (5.20)

λ.ηP = Pη, λ.µP = Pµ.λT.Tλ,

∂αT.λ = T∂α, eT = λ.Te, rT.Rλ = λR.Tr.
(5.22)

Then the structure (5.19) lifts to a dP1-structure for algebras, yielding
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a path endofunctor PT = P

PT : AT → AT , PT (X, t) = (PX,Pt.λX), (5.23)

whose faces, degeneracy and reflection will still be written ∂α : PT → 1,

e : 1→ PT , r : RPT → PTR.

The forgetful functor UT : AT → A extends obviously to homotopies,

double homotopies and 2-homotopies, preserving faces

(UT (ϕ))̂ = UT (ϕ̂), (UT (Φ))̂ = UT (Φ̂).

Recalling that the lifting of P 2 is (PT )2, the same lifting property

holds for a symmetric dP2-structure (R,P, ∂α, e, r, gα, s) consistent with

T ; this condition means that, moreover, the connections gα and the

transposition s have to satisfy

gαT.λ = Pλ.λP.Tgα, sT.Pλ.λP = Pλ.λP.Ts.

The same terminology can be used replacing the category of algebras

with a category C monadic over A (Section A4.5).

5.3.4 The functor of consecutive pair of paths

Let A be a dP1-category consistent with the monad T , and let us assume

that A has all concatenation pullbacks (Section 4.2.2)

QX
c+ //

c−

��

PX

∂−

��
PX

∂+

// X

(5.24)

Then the functor Q : A→ A has a canonical T -structure λQ : TQ→
QT , which makes the following diagram commute (the inner square is

the Q-pullback of TX)

TQX
Tc+ //

Tc−

��

λQ

''

TPX
λ��

QTX
c+T //

c−T

��

PTX

∂−T

��
TPX

λ
// PTX

∂+T

// TX
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In fact, the coherence conditions with η, µ (5.15)

λQ.ηQ = Qη : QX → QTX,

λQ.µQ = Qµ.λQT.TλQ : T 2QX → QTX,

follow from the analogues for P , by composing with the projections cαT

of QTX; for instance

cαT.(λQ.ηQ) = λ.Tcα.ηQ = λ.ηP.cα = Pη.cα = cαT.(Qη).

Now, the lifted functor QT (X, t) = (QX,Qt.λQX) is the concatena-

tion pullback for algebras, with projections cα : QT → PT which lift the

original ones

QT (X, t)
c+ //

c− ��

PT (X, t)

∂−��
PT (X, t)

∂+

// (X, t)

In fact, the structure Qt.λQX is precisely the one created by UT over

the concatenation pullback in A (see (5.14)):

cα.(Qt.λQX) = Pt.cαT.λQX = Pt.λX.Tcα.

5.3.5 The remaining second-order structure

In the same way, we say that a symmetric dP4-category structure

(R,P, ∂α, e, r, gα, s,Q, c, z)

over A is consistent with the monad T , if P and all the listed natu-

ral transformations are consistent; recall that the consistency of Q is

automatic (Section 5.3.4). Then, AT is a symmetric dP4-category.

Homotopy pullbacks can be viewed as cocylindrical limits (Section

1.8.1), and are thus created (Section 5.3.1) by the forgetful functor

UT : AT → A (when they exist in A). Finally, we get the following

results.

5.3.6 Theorem (Lifting the path functor to algebras)

Let A be a category with a monad T .

(a) A structure of (symmetric) dP4-category or dP4-homotopical cate-

gory over A, made consistent with T by a natural transformation λ :
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TP → PT (as specified above, in 5.3.3-5.3.5) can always be lifted to a

structure of the same type over the category of algebras, with cocylinder

PT : AT → AT , PT (X, t) = (PX,Pt.λ). (5.25)

The weaker cases, from dP1 to dP3, work similarly.

(b) If A is a (symmetric) dP4-homotopical category consistent with T ,

PT has a left adjoint IT and AT has all cylindrical colimits, then AT

is a (symmetric) dIP4-homotopical category.

(c) If A is a dP1-category consistent with T , AT has coequalisers and

P has a left adjoint I, then PT has a left adjoint IT , which extends I,

in the sense that ITFT ∼= FT I.

Note. Generally, IT is not a lifting of I; see for instance the case of

topological semigroups in 5.4.2.

Proof Points (a) and (b) summarise the results of this section, including

some previous ones on dIP4-homotopical categories (Section 4.2). Point

(c) is a particular case of the following well-known theorem.

5.3.7 Theorem (Lifting adjunctions to algebras)

Consider a morphism of monads P = (P, λ) : T → S over the categories

A,B (Section 5.3.1). Assume that the underlying functor P : A → B

has a left adjoint I : B → A and that the category of algebras AT has

coequalisers.

Then, the lifted functor

P : AT → BS , P(X, t) = (PX,Pt.λX),

has a left adjoint I : BS → AT , which extends I with respect to the

free-algebra functors (IFS ∼= FT I).

In particular, if P : A → A is the identity, λ : S → T is a morphism

of monads over A, i.e. λ.ηS = ηT and λ.µS = µT .λ2. (This case can

also be found in Beck [Bc], p. 119.)

Proof The proof is outlined in [Jo], Thm. 2, where one can also find

references to various earlier versions. Here we give a detailed argument

along the same lines.

First, let us note that, if P has a left adjoint I, then IFS and FT I

are both left adjoints to USP = PUT , hence canonically isomorphic.

Recall that λ = λP : SP → PT satisfies the equations λ.η′P = Pη,
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λ.µ′P = Pµ.λT.Sλ. Write the unit and counit of I a P as u : 1B → PI

and v : IP → 1A, and the free-algebra adjunctions of T = (T, η, µ) and

S = (S, η′, µ′) as

FT : A � AT :UT ,

UT (X, t) = X, FT (X) = (TX, µX),

η : 1→ T = UTFT , ε : FTUT → 1;

UT ε(X, t) = t : TX → X;

(5.26)

FS : B � BS :US ,

η′ : 1→ S = USFS , ε′ : FSUS → 1.
(5.27)

To construct I, note that, because of the adjunction I a P , the

functor I inherits a natural transformation λ∗ : IS → TI, the mate of

λ : SP → PT (Section A5.3)

λ∗ = vTI.IλI.ISu : IS → ISPI → IPTI → TI, (5.28)

and let us record the fact that

Pλ∗.uS = PvTI.PI(λI.Su).uS = PvTI.uPTI.λI.Su = λI.Su. (5.29)

Now, λ∗ makes I into an oplax morphism of monads (which would just

allow us to extend I to free algebras, according to 5.3.2(b)). However,

since every algebra is a coequaliser of free ones, and left adjoints preserve

the existing colimits, we get the value of the functor I over the S-algebra

(Y, s : SY → Y ) as the coequaliser in AT of the following two maps of

free T -algebras

FT ISUS(Y, s)
FTIUSε′ //

λ

// FT IUS(Y, s)
p // I(Y, s) (5.30)

FT IUSε′(Y, s) = FT Is :

FT IS(Y ) = (TISY, µISY )→ (TIY, µIY ) = FT I(Y ),

λ = εFT IUS.FTλ∗US :

FT IS(Y )→ FTTI(Y ) = FTUT .FT I(Y )→ FT I(Y ).

Its structure s : TUT I(Y, s)→ UT I(Y, s) makes p an S-morphism

TI(Y )
UT p // UT I(Y, s)

T 2I(Y )
TUT p

//

µIUT

OO

TUT I(Y, s)

s

OO
(5.31)
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The functor I is well defined, letting its value on morphisms be the in-

duced map on coequalisers. The coequaliser-maps form a natural trans-

formation p : FT IUS → I.

We next go on to define a unit and a counit for the new adjunction.

For the unit u : 1 → PI, we want its underlying transformation USu :

US → USPI = PUT I to be the composite

USu = PUT p.PηIUS .uUS :

US → PIUS → PUTFT IUS → PUT I.
(5.32)

In fact, for an S-algebra (Y, s : SY → Y ), we do get a BS-morphism

with values in PI(Y, s) (whose structure is Ps.λUT I(Y, s), by (5.18))

USu(Y, s).s = PUT p(Y, s).(PηI.u)Y.s

= PUT p(Y, s).PUTFT Is.(PηI.u)SY

= PUT p(Y, s).PµIY.PUTFTλ∗Y.PηISY.uSY (by (5.30)),

= PUT p(Y, s).PµIY.PηTIY.Pλ∗Y.uSY

= PUT p(Y, s).λIY.SuY (by (5.29)),

Ps.λUT I(Y, s).SUSu(Y, s)

= Ps.λUT I(Y, s).SP (UT p(Y, s).ηIY ).SuY

= Ps.PT (UT p(Y, s).ηIY ).λIY.SuY

= PUT p(Y, s).PµIY.PTηIY.λIY.SuY

= PUT p(Y, s).λIY.SuY (by (5.31)).

For the counit v : IP→ 1, we require that

v.pP = ε.FT vUT : FT IUSP = FT IPUT → FTUT → 1. (5.33)

The solution exists (and is unique), provided we show that the follow-

ing natural transformations f, g : FT IUSFSUSP→ 1 coincide

f = ε.FT vUT .FT IUSε′P,

g = ε.FT vUT .εFT IUSP.FTλ∗USP.

Applying these to an object (X, t) of AT we get a pair of morphisms

of AT ; it is sufficient to show that the underlying A-morphisms, f0 =

UT f(X, t) and g0 = UT g(X, t) are equal

f0 = t.TvX.TIUSε′(PX,Pt.λX) = t.TvX.TIP t.T IλX

= t.T t.TvTX.TIλX = t.µX.TvTX.TIλX,
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g0 = UT g(X, t) = t.TvX.UT εFT IPX.UTFTλ∗PX

= t.TvX.µIPX.TvTIPX.TIλIPX.TISuPX (by (5.28)),

= t.TvX.(µ.TvT.TIλ)IPX.TISuPX

= t.(µ.TvT.TIλ)X.TISPvX.TISuPX = t.µX.TvTX.TIλX.

Finally, to verify the triangular identities for u,v, it is sufficient to

show that US(Pv.uP) = 1 and (vI.Iu).p = p; this follows from (5.32),

(5.33) and the triangular identities of u, v.

5.3.8 Formal remarks

The morphisms and 2-cells of monads that we have considered above

(Section 5.3.1) are ‘natural’, as soon as we consider the 2-category m

(the formal-monad 2-category) generated by one object ∗, one arrow

t : ∗ → ∗, and two cells e : 1→ t, m : t2 → t subject to the relations

m.et = 1 = m.te, m.mt = m.tm. (5.34)

Notice that (t, e,m) can be viewed as a monad on the object ∗ of the 2-

category m; see Kelly and Street [KS] for further information regarding

monads on objects of a 2-category.

Now, in a convenient set-theoretical setting, a monad (T, η, µ) on the

category A amounts to a strict 2-functor T : m→ CAT, with A = T(∗),
T = T(t), η = T(e).

Given a second monad S over B, a lax natural transformation of 2-

functors T→ S : m→ CAT amounts precisely to a functor P : A→ B

(corresponding to the object ∗) and a natural transformation λ : SP →
PT (corresponding to the generating arrow t : ∗ → ∗ of m) satisfying

our conditions (5.15), i.e. a lax morphism (P, λ) : T → S.

Similarly, a modification ϕ : P → Q : T→ S of lax natural transforma-

tions amounts to an ordinary natural transformation ϕ : P → Q : A→ B

(corresponding to the object ∗) satisfying the appropriate condition,

(5.17).

Equivalently, one could also view a monad as a lax functor T : 1 →
CAT, consisting of a category A = T(∗), an endofunctor T = T(id∗)
and two natural transformations

η : 1T(∗) → T(id∗), µ : T(id∗).T(id∗)→ T(id ∗ .id∗) (5.35)

under conditions coinciding with the axioms of monads. Lax natural

transformations of such lax functors, and their modifications, would give

the same notions as above.



5.4 Applications to d-spaces and small categories 323

5.4 Applications to d-spaces and small categories

Applying the theory developed in the previous section, the homotopy

structure of d-spaces can be lifted to various categories of algebras on

dTop, like d-topological semigroups and groups. Equivariant homotopy,

for d-spaces equipped with an action of a fixed d-topological group, is

considered in 5.4.4.

The homotopy structure of Cat can be lifted to strict monoidal cate-

gories (Section 5.4.6). Slice categories under (or over) an object can also

be recovered as categories of algebras (or coalgebras), see 5.4.7.

5.4.1 Directed topological semigroups and monoids

Let us start from the category dTop of d-spaces, which is complete and

cocomplete, and forget for the moment its homotopy structure.

Let us define a d-topological semigroup X as an internal semigroup

in dTop: X is a d-space equipped with an associative multiplication

X×X → X which is a morphism of dTop. Equivalently, the d-space X

is a topological semigroup and its (continuous) multiplication preserves

d-paths, in the sense that for every pair of d-paths a, b : ↑I → X, the

following path is also directed

c : ↑I→ X, c(τ) = a(τ) · b(τ). (5.36)

With the obvious morphisms (of d-spaces and semigroups, at the same

time) we have the category Sgr-dTop of d-topological semigroups. We

prove now that this category is monadic over dTop, and then (in 5.4.2)

that the symmetric dP4-homotopical structure lifts to it, and is actually

dIP4-homotopical.

The forgetful functor U : Sgr-dTop→ Top has a left adjoint F , which

is constructed as the free semigroup on a set

FX = (
∑
n>0X

n, ∗),
(x1, ..., xp) ∗ (xp+1, ..., xn) = (x1, ..., xn),

η : X ⊂ UFX, ε : FUA→ A, ε(x1, ..., xn) = x1 · ... · xn.
(5.37)

Here, FX is the free semigroup over the underlying set |X|, endowed

with the sum of the product d-structures Xn, i.e. the sum of the product

topologies (the finest topology making all the embeddings Xn ⊂ FX

continuous), where a path a : ↑I → Xn ⊂ FX is distinguished if this is

true in Xn.

FX is a d-topological semigroup, since the juxtaposition ∗ : Xp×Xq →
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Xp+q is an isomorphism of d-spaces, and every cartesian product in

dTop distributes over arbitrary sums (whence TX×TX =
∑
p,q>0X

p×
Xq). It follows easily that FX is indeed the free d-topological semigroup

over the space X.

The adjunction gives rise to the free-semigroup monad over dTop

T = UF : Top→ Top, TX =
∑
n>0X

n,

µ = UεF : T 2 → T,

µ((x11, ..., x1p1), . . . , (xn1, ..., xnpn)) = (x11, ..., xnpn).

(5.38)

A T -algebra (X, t) is ‘the same’ as a topological semigroup (X, ·) with

multiplication · = t2 : X2 → X; a map of T -algebras is a d-continuous

homomorphism. We identify TopT = Sgr-dTop.

Similarly, the category Mon-dTop of d-topological monoids is monadic

over dTop. One uses now the free-monoid monad on dTop, with TX =∑
n>0X

n.

5.4.2 The homotopy structure of directed topological

semigroups

Now, dTop has a symmetric dIP4-homotopical structure (Section 4.2.6),

based on the adjunction I a P of the cylinder and path endofunctors.

The cocylinder P : dTop → dTop preserves powers (as a right ad-

joint) and also sums. It is a strong T -functor, as proved by the following

relations (for a, ai, aij ∈ PX)

λ : TP → PT, λX :
∑
n>0 (PX)n ∼= P (

∑
n>0X

n),

(a1, ..., an) 7→ 〈a1, ..., an〉 : [0, 1]→ Xn,

λ.ηP (a) = a = Pη(a),

λ.µP ((a11, ..., a1p1), ..., (an1, ..., anpn)) = λ(a11, ..., anpn)

= 〈a11, ..., anpn〉 = Pµ(〈〈a11, ..., a1p1〉, ..., 〈an1, ..., anpn〉〉)
= Pµ.λT.Tλ((a11, ..., a1p1), ..., (an1, ..., anpn)).

P can thus be canonically lifted to topological semigroups

PT : TopT → TopT , PT (X, t) = (PX,Pt.λ), (5.39)

which simply means that PT (X, ·) is the path d-space PX = X↑I with

the pointwise multiplication (a•a′)(τ) = a(τ) · a′(τ).

We prove now that all the operations of the symmetric dP4-structure

of dTop are T -transformations.
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Leaving apart, for the moment, c : Q→ P , each of the remaining nat-

ural transformations ∂α, e, gα, r, s, z is defined by pre-composition with

some continuous increasing function between powers of the unit interval

f0 : [0, 1]q → [0, 1]p,

fX : P pX → P qX, (a : [0, 1]p → X) 7→ (af0 : [0, 1]q → X).

Moreover, the natural transformation making P q a T -functor is

λP
q

= P q−1λ◦...◦PλP
q−2

◦λP
q−1

: T.P q → P q.T,

λP
q

X :
∑
n>0 (P qX)n ∼= P q(

∑
n>0X

n),

(a1, ..., an) 7→ 〈a1, ..., an〉 : [0, 1]q → Xn.

Now, the consistency property of the natural transformation f defined

by the mapping f0, namely fT.λP p = λP q.Tf , is an easy consequence

fT.λP
q

(a1, ..., an) = fT 〈a1, ..., an〉
= 〈a1f0, ..., anf0〉 = λP

q

(a1f0, ..., anf0)

= λP
q

.T f(a1, ..., an).

(5.40)

Finally, recall our choice of Q = P for the concatenation pullback

in dTop (Section 4.2.6), with cα : Q → P given by the first-half or

second-half embedding cα0 : [0, 1]→ [0, 1], and concatenation map c = 1.

Then the lifting of cα to d-topological semigroups makes PTA into the

concatenation pullback of A; finally, c = id obviously lifts.

By 5.3.6 and 5.3.7, we have thus proved that the category TopT =

Sgr-dTop of d-topological semigroups is a symmetric dIP4-homotopical

category, with path functor PT . The cylinder functor IT a PT can be

directly calculated as

IT : Sgr-dTop→ Sgr-dTop, IT (X, ·) = (FIX)/R, (5.41)

where IX = ↑[0, 1]×X is the cylinder of d-spaces and R is the congruence

of semigroups over F (IX) spanned by the following relation, based on

the multiplication of X

(τ, x) ∗ (τ, y) R0 (τ, x · y) (τ ∈ [0, 1];x, y ∈ X).

It follows that, for every instant τ ∈ [0, 1], the mapping

uτ : (X, ·)→ IT (X, ·), uτ (x) = [τ, x]

is a d-continuous homomorphism. The unit of the adjunction is

u : (X, ·)→ PT IT (X, ·) = P ((FIX)/R, ∗), u(x) : τ 7→ uτ (x) = [τ, x].
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Similarly, the category Mon-dTop of d-topological monoids is sym-

metric dIP4-homotopical.

5.4.3 Directed topological groups

As we have already remarked (in 1.4.4), the definition of a d-topological

group requires some care: we must allow the ‘inversion’ to reverse direc-

tions, much in the same way as in an ordered group.

Thus, a d-topological group X will be a d-space equipped with a group

structure which consists of morphisms of dTop:

X×X → X, (x, y) 7→ x · y,
{∗} → X, ∗ 7→ e,

X → Xop, x 7→ x−1.

(5.42)

Equivalently, X is both a d-space and a topological group, its multipli-

cation preserves d-paths (as in 5.4.1), and every d-path a : ↑I→ X gives

a d-path τ 7→ (a(τ))−1 in Xop. The category Gp-dTop of d-topological

groups is a full subcategory of Sgr-dTop and Mon-dTop.

Now, we can follow a procedure similar to the previous one, for topo-

logical semigroups. The free d-topological group FX on a d-space X

can be constructed as a quotient of the free d-topological monoid on the

d-space X +Xop

FX = (
∑
n>0 (X +Xop)n)/R.

The quotient is taken modulo the (usual) congruence of monoids R

generated by the relation R0

(x ∗ xop) R0 e, (xop ∗ x) R0 e,

where x, xop denote any two ‘corresponding’ elements of X and Xop,

while e is the identity of the free monoid, i.e. the empty word (the

unique element of (X +Xop)0).

But it is simpler to lift the path functor (together with its operations)

PT : Gp-dTop→ Gp-dTop,

by letting PT (X, ·) be the path d-space PX = X↑I with pointwise

multiplication (as above, in (5.39)).

The monad procedure gives the same result (as we have noted, in

general, in 5.3.2(a)). Indeed, the free-group monad T = UF : dTop →
dTop allows us to identify dTopT = Gp-dTop. Now, there is a unique
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d-homomorphism λX : TPX → PTX such that λX.ηPX = P (ηX) :

PX → PTX; it provides a natural transformation λ : TP → PT , which

also satisfies the ‘multiplicative’ condition λ.µP = Pµ.λT.Tλ.

Thus, dTopT = Gp-dTop is a symmetric dIP4-homotopical category,

with path functor PT (Theorem 5.3.6). Its left adjoint cylinder functor

IT can be directly calculated as above (in (5.41)), using now a group-

congruence R.

5.4.4 Equivariant directed homotopy

Let G be a d-topological group (Section 5.4.3) in additive notation and

G-dTop the category of G-d-spaces, i.e. d-spaces X equipped with a

right action

X×G→ X, (x, g) 7→ x+ g, (5.43)

which is a morphism of d-spaces satisfying the usual conditions:

x+ 0 = x, (x+ g) + g′ = x+ (g + g′) (x ∈ X; g, g′ ∈ G). (5.44)

(If G is just a topological group, we apply this notion with respect

to the discrete d-structure on G, so that, besides the continuity of the

mapping (5.43) and the algebraic axioms (5.44), we are just requiring

that each operator (−)+g : X → X is a d-map. If G is a discrete group,

we go back to a situation which has already been studied in Section 5.1,

as a functor G→ dTop defined on the associated one-object category.)

The forgetful functor U : G-dTop→ dTop has left adjoint

F (X) = X×G (η : 1→ UF, ε : FU → 1),

where X×G is the product of d-spaces, with action (x, g)+g′ = (x, g+g′).

This yields a monad over dTop

T = UF : dTop→ dTop, TX = X×G,
ηX : X → X×G, x 7→ (x, 0),

µ = UεF : T 2 → T, µX : X×G×G→ X×G,
µX(x, g, g′) = (x, g + g′).

(5.45)

A G-d-space X is the same as a T -algebra (X, t : X×G → X). The

cocylinder P : dTop→ dTop becomes a T -functor, using as follows the
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degenerate-path embedding e : G→ PG

λ : TP → PT,

λX = PX×eG : PX×G→ P (X×G) = (PX)×(PG),

λX(a, g) = 〈a, e(g)〉 : ↑I→ X×G,

λ.ηP (a) = λ(a, 0) = 〈a, e(0)〉 = Pη(a),

λ.µP (a, g, g′) = 〈a, e(g + g′)〉 = Pµ〈a, e(g), e(g′)〉
= Pµ.λT.Tλ(a, g, g′).

P can thus be canonically lifted to G-d-spaces,

PT : G-dTop→ G-dTop, PT (X, t) = (PX,Pt.λ),

which means that PT (X, t) is the path d-space PX = X↑I with the

pointwise action of G

(a+ g)(τ) = a(τ) + g.

A homotopy ϕ : (X, t)→ PT (Y, u) is thus an equivariant d-homotopy,

i.e. a homotopy ϕ : X → PY of d-spaces such that

ϕ(x, τ) + g = ϕ(x+ g, τ) (x ∈ X, τ ∈ [0, 1], g ∈ G).

To show the coherence of the symmetric dP4-structure with λ, we

can now go on as for d-topological semigroups, replacing (5.40) with the

following equation

fT.λP
q

(a, g) = fT 〈a, ep(g)〉 = 〈af0, eq(g)〉 = λP
q

.T f(a, g),

where the natural transformation f : P p → Pq is induced by a continu-

ous increasing function f0 : [0, 1]q → [0, 1]p.

The category dTopT = G-dTop, with path functor PT , is thus a

symmetric dIP4-homotopical category (Theorem 5.3.6). The cylinder

functor IT (obtained from 5.3.7 or directly computed as left adjoint to

PT ) can be expressed as

IT : G-dTop→ G-dTop, IT (X) = (FIX)/R.

Here IX = X×↑I is the cylinder of d-spaces and R is the congruence

of G-sets over F (IX) spanned by the following relation, based on the

G-action over X

(x, τ, g)R0 (x+ g, τ, 0) (x ∈ X, τ ∈ [0, 1], g ∈ G).
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5.4.5 Algebras for pointed d-spaces

The (pointed) category dTop• of pointed d-spaces is symmetric dIP4-

homotopical (Section 4.3.1). Recall that the P-structure comes directly

from that of dTop, adding to the original path-space PX the constant

loop at the base-point

P (X,x) = (PX, xP ), xP = eX .x : {∗} → PX.

(dTop• itself can be seen as a category of algebras over dTop, for a

monad consistent with P , see 5.4.7; but we are not interested in this

fact here.)

A monoid or a group in dTop• is the same as in Top, which we have

already considered. But a semigroup (X,x) in dTop• is a d-topological

semigroup X with an assigned idempotent element x. Sgr-dTop• is the

category of algebras of the free-semigroup monad over Top•

T : dTop• → dTop•, T (X,x) =
∑
n>0 (X,x)n,

where the powers and the sum belong now to the category dTop• (recall

that the sum of pointed spaces has the base-points identified).

The path functor P : dTop• → dTop• does not preserve sums; it is a

non-strong T -functor, via the natural transformation

λ : TP → PT, λX :
∑
n>0 (P (X,x))n → P (

∑
n>0 (X,x)n),

λX(a1, ..., an) = 〈a1, ..., an〉 : ↑I→ Xn,

which is plainly consistent with the identifications in our sums of pointed

spaces.

One shows now, as above, that Sgr-dTop• is a symmetric dIP4-

homotopical category, with path-functor equipped with the pointwise

multiplication of paths

PT (X,x, ·) = (PX, xP , •).

5.4.6 Strict monoidal categories

Recall that the category Cat of small categories and functors is regular

symmetric dIP4-homotopical (Section 4.3.2), with homotopies given by

natural transformations. The structure is based on the interval-object

2 = {0→ 1}, and PX = X2 is the category of morphisms of X.

The category MonCat of (small) strict monoidal categories and strict

monoidal functors can be studied along the same lines as d-topological

monoids, in 5.4.2: the symmetric dP4-homotopical structure of Cat is
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consistent with the monad, and lifts to a symmetric dIP4-homotopical

structure for MonCat.

First, the category MonCat is made monadic over Cat by the forgetful

functor U and its left adjoint F

F : Cat � MonCat :U, η : 1→ UF, ε : FU → 1,

FX = (
∑
n>0X

n,⊗), (x1, ..., xp)⊗ (xp+1, ..., xn) = (x1, ..., xn),

η : X ⊂ UFX, ε : FUA→ A, ε(x1, ..., xn) = x1 ⊗ ...⊗ xn.

FX, the free strict-monoidal category over X, is the sum of the power

categories Xn.

Again, the cocylinder P : Cat→ Cat, PX = X2 preserves powers (as

a right adjoint) and also sums; it is a strong T -functor (same calculations

as in 5.4.2), by identifying an n-tuple of isomorphisms in X with an

isomorphism of Xn

λ : TP → PT, λX :
∑
n>0 (PX)n ∼= P (

∑
n>0X

n),

λX(a1, ..., an) = 〈a1, ..., an〉 : 2→ Xn.

In order to get monoidal categories in the usual relaxed sense, one

should consider homotopy coherent algebras in Cat, satisfying the ax-

ioms of T -algebra up to specified, coherent and reversible, homotopies.

5.4.7 Objects under A as algebras

Let us assume that the category A has finite sums. Then, the slice

category A\A of objects under A can be viewed as a category of algebras

over A.

In fact, the (obvious) forgetful functor U : A\A→ A has the following

left adjoint F : A→ A\A, with unit η : 1→ UF and counit ε : FU → 1

FX = (X +A, j : A ⊂ X +A), ηX : X ⊂ X +A,

ε(X, t) : (X +A, j)→ (X, t), ε(x) = x, ε(a) = t(a).

This yields a monad over A (where inj denotes an injection into a

categorical sum)

T = UF : A→ A, TX = X +A,

ηX : X ⊂ X +A, µ = UεF : T 2 → T,

(µX : X +A+A→ X +A, µ.in1 = in1, µ.in2 = µ.in3 = in2).

One easily sees that a T -algebra (X, τ : X + A → X) has just to

satisfy τ.η = idX (the consistency of τ with µ being trivially satisfied)
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and reduces to an arbitrary object under A, (X, t : A → X), letting

t = τ.j. We identify thus AT = A\A.

Finally, if A has a path functor, this description of A\A as AT yields

the same results on homotopy as those presented in Section 5.2. A

drawback of the present approach is the hypothesis of finite sums, which

is not assumed in the previous one.

Dually, if the category A has finite products, a slice category A/B

of objects over B can be viewed as a category of coalgebras over A,

finding again the results for the lifting of the cylinder functor developed

in Section 5.2.

5.5 The path functor of differential graded algebras

We now investigate the category Dga of differential graded algebras over

a fixed commutative unital ring K. Three sections are devoted to con-

struct a non-reversible symmetric dIP2-homotopical structure on this

category, along the lines of [G3].

First order properties are developed in the present section, includ-

ing the fibre sequence of a morphism. Its study takes advantage of the

forgetful functor with values in the category Dgm = Ch+(K-Mod) of

cochain complexes of K-modules, and of the resulting ‘relative equiva-

lences’ (Section 5.5.2).

Higher homotopy properties of Dga are dealt with in Section 5.6;

in the next, we show how this structure arises from a suitable (non-

standard) structure of Dgm, lifted to its internal semigroups.

In a cochain complex, the degree of an element x is often written as

|x|, and the corresponding ‘sign’ as ε = (−1)|x|.

5.5.0 Terminology for the homotopy theory of algebras

First, we must say something about terminology. Homotopy limits of

algebras have been named in two opposite ways: for instance, a polyno-

mial ring K[t] has been called either the cylinder of the ring K, or its

cocylinder (path algebra).

The first terminology is geometric, viewing rings as representing spaces

(and ignoring the fact that this representation is contravariant). The

second is structural, consistent with the fact that the polynomial ring

K[t] has faces ∂± : K[t]→ K, which evaluate a polynomial at 0 or 1 and

represent the initial or terminal point of a path in the affine line K.

The geometric terminology can be found, for instance, in Blackadar
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[Bl] and Murphy [Mr]; the structural one in Karoubi-Villamayor [KV]

and Munkholm [Mn]. Gersten [Ge1, Ge2] uses the structural terms,

referred to Karoubi and Villamayor, but says in a note of [Ge1]: ‘I

believe that a more appropriate term for EA and ΩA [the cocone and

loop algebras] would have been cone and suspension’.

Since our approach is based on structural properties of homotopies, we

shall always use the structural terminology, naming homotopy limits and

colimits after their universal properties. In the same way as a product

of algebras is always called by its structural name, corresponding to the

universal property that it satisfies rather then to the sum of spaces that

it can be thought to represent.

5.5.1 Generalities

Consider the category K-Dga, or Dga, of (positive) cochain algebras, or

differential graded (associative) algebras, or dg-algebras for short, over

the (commutative, unital) ring K. Such algebras are not assumed to

have a unit (see 5.6.9 for the unital case).

An object A = ((An), (∂n)) is a positive cochain complex of K-

modules (indexed over Z, with An = 0 for n < 0), equipped with

a multiplication of graded K-algebras consistent with the differential

∂n : An → An+1

∂(x.y) = ∂x.y + (−1)|x|x.∂y. (5.46)

Dga has a zero object, the zero-algebra 0, and all limits, which are

computed component-wise.

The forgetful functor with values in the category of dg-modules (or

positive cochain complexes of K-modules) will be written as

U = | − | : Dga→ Dgm (Dgm = Ch+(K-Mod)).

5.5.2 Homotopy and relative homotopy

A homotopy in Dga is a homotopy of dg-modules which respects the

multiplicative structure as follows

ϕ : f → g : A→ B, ϕ = (f, g, (ϕn : An → Bn−1)),

−f + g = ϕn+1∂n + ∂n−1ϕn,

ϕ(x.y) = ϕx.gy + (−1)|x|.fx.ϕy.

(5.47)

The sequence ϕ• = (ϕn) is a map of graded objects, of degree −1,
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which will be called the centre of ϕ (as in 4.4.2); we often write ϕ(x)

instead of ϕn(x), for x ∈ An. These multiplicative homotopies cannot

be reversed, but reflected (as we shall see), and cannot be concatenated.

We say that two dga-homomorphisms f, g : A → B are relatively ho-

motopic, or linearly homotopic, and we write f ' U g, if there is a ho-

motopy of dg-modules linking them, possibly not consistent with the

product. Or, in other words, if the forgetful functor | − | : Dga→ Dgm

carries f and g to homotopic maps; this relation is a congruence of cate-

gories in Dga. In the same way, we say that a homomorphism f : A→ B

is a relative equivalence if |f | is a homotopy equivalence, i.e. if there is

some map g : |B| → |A| of dg-modules such that g.|f | ' 1, |f |.g ' 1 in

Dgm.

We are going to show, here and in the next section, that Dga has

a path endofunctor P , representing homotopies, which makes it into a

dIP2-homotopical category.

5.5.3 The path functor

The path endofunctor P is defined as follows, enriching with a multipli-

cation the path functor of cochain complexes (we let ε = (−1)|a|):

(PA)n = An⊕An−1⊕An,
(a, h, b).(c, k, d) = (ac, hd+ εak, bd),

∂(a, h, b) = (∂a,−a− ∂h+ b, ∂b).

(5.48)

We only write down the main verifications, for the associativity of the

product and the multiplicativity of the differential (with ε = (−1)|a|,

ε′ = (−1)|a
′|)

((a, h, b).(a′, h′, b′)).(a′′, h′′, b′′) = (aa′, hb′ + εah′, bb′).(a′′, h′′, b′′)

= (aa′a′′, (hb′ + εah′)b′′ + εε′(aa′)h′′, bb′b′′)

= (aa′a′′, hb′b′′ + εah′b′′ + εε′aa′h′′, bb′b′′),

(a, h, b).((a′, h′, b′).(a′′, h′′, b′′)) = (a, h, b).(a′a′′, h′b′′ + ε′a′h′′, b′b′′)

= (aa′a′′, h(b′b′′) + εa(h′b′′ + ε′a′h′′), bb′b′′)

= (aa′a′′, hb′b′′ + εah′b′′ + εε′aa′h′′, bb′b′′).
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∂((a, h, b).(a′, h′, b′)) = ∂(aa′, hb′ + εah′, bb′)

= (∂(aa′),−aa′ − ∂(hb′ + εah′) + bb′, ∂(bb′))

= (∂(aa′),−aa′ − ∂h.b′ + εh.∂b′ − ε∂a.h′ − a.∂h′ + bb′, ∂(bb′)),

∂(a, h, b).(a′, h′, b′) + ε(a, h, b).∂(a′, h′, b′)

= (∂a, −a− ∂h+ b, ∂b).(a′, h′, b′) +

+ ε.(a, h, b).(∂a′,−a′ − ∂h′ + b′, ∂b′)

= ((∂a).a′, (−a− ∂h+ b).b′ − ε(∂a).h′, (∂b).b′) +

+ ε(a.∂a′, h.∂b′ + εa.(−a′ − ∂h′ + b′), b.∂b′)

= (∂(aa′), −ab′ − ∂h.b′ + bb′ − ε∂a.h′ +

+ εh.∂b′ − aa′ − a.∂h′ + ab′, ∂(bb′)).

The basic structure of P is defined as for cochain complexes:

∂− : P → 1, ∂−(a, h, b) = a (lower face),

∂+ : P → 1, ∂+(a, h, b) = b (upper face),

e : 1→ P, e(a) = (a, 0, a) (degeneracy),

(5.49)

but reversion has to be replaced with a reflection (Section 5.5.4).

With this structure, P yields the homotopies we have considered

above, in (5.47). Whisker composition (of homotopies and maps) and

trivial homotopies work as for cochain complexes

kϕh = (kfh, (kϕnh), kgh), 0f = (f, 0, f).

It is easy to see that the path endofunctor P : Dga→ Dga preserves

products and equalisers, hence all limits. We will see later that it has a

left adjoint (Section 5.6.7).

5.5.4 Reflection

Dga becomes a complete dP1-homotopical category, with the following

reflection pair (R, r).

First, the reversor R : Dga→ Dga is defined by the opposite algebra

RA = Aop, with the same structure of graded module, skew-opposite

differential (written ∂∗) and reversed product (written a ∗ b)

∂∗(a) = (−1)|a|∂a, a ∗ b = b.a,

∂∗(a ∗ b) = ∂∗(b.a) = εη.∂(ba)

= εη(∂b.a+ ηb.∂a) = εηa ∗ (∂b) + ε(∂a) ∗ b
= (∂∗a) ∗ b+ εa ∗ (∂∗b) (ε = (−1)|a|, η = (−1)|b|).

(5.50)
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There is now a reflection r : RP → PR

r : (PA)op → P (Aop), r(a, h, b) = (b, εh, a) (ε = (−1)|a|). (5.51)

Indeed, r is consistent with the differential and product, since (for

ε = (−1)|a|, η = (−1)|c|)

r∂∗(a, h, b) = εr(∂a,−a− ∂h+ b, ∂b)

= ε(∂b, εa+ ε.∂h− εb, ∂a),

∂∗r(a, h, b) = ∂∗(b, εh, a) = (∂∗(b),−b− ∂∗(εh) + a, ∂∗(a))

= (ε.∂b,−b+ ∂h+ a, ε.∂a),

r((c, k, d) ∗ (a, h, b)) = r(ac, hd+ εak, bd)) = (bd, εη(hd+ εak), ac)

= (d ∗ b, εη(d ∗ h+ εk ∗ a), c ∗ a),

r(c, k, d) ∗ r(a, h, b) = (d, ηk, c) ∗ (b, εh, a)

= (d ∗ b, ηk ∗ a+ ηd ∗ εh, c ∗ a).

Finally, r satisfies the axioms (1.39)

RrR.r(a, h, b) = RrR(b, εh, a) = (a, h, b),

r.Re(a) = r(a, 0, a) = (a, 0, a) = eR(a),

∂−R.r(a, h, b) = ∂−R(b, εh, a) = b = R∂+(a, h, b).

5.5.5 Homotopy pullbacks

The homotopy pullback X = P (f, g) of a cospan (f, g) in Dga

X
q //

p

��

C

g

��
ξ

JJ

A
f
// B

(5.52)

exists, and can be constructed as a cocylindrical limit (cf. (1.200)), start-

ing from the path object PB, constructed above (Section 5.5.3). It con-

sists thus of the homotopy pullback X of cochain complexes, enriched

with the multiplication consistent with p, q and ξ (writing ε = (−1)|a|):

Xn = An⊕Bn−1⊕Cn,
(a, b, c).(a′, b′, c′) = (aa′, b.gc′ + εfa.b′, cc′),

∂(a, b, c) = (∂a,−fa+ gc− ∂b, ∂c),
p(a, b, c) = a, q(a, b, c) = c, ξ(a, b, c) = b.

(5.53)
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In particular, the upper h-kernel E+f of the morphism f : A → B is

the homotopy pullback of f and 0, as in the left diagram below

E+f //

u

��

0

��

E−f
u //

��

A

f

��
ξ

GG

ξ

GG

A
f
// B 0 // B

(5.54)

E+f is given by the following formulas, where a ∈ An, ε = (−1)n

(E+f)n = An⊕Bn−1,

(a, b).(a′, b′) = (aa′, εfa.b′), ∂(a, b) = (∂a,−fa− ∂b),
u(a, b) = a, ξ(a, b) = b.

Symmetrically, the lower h-kernel E−f , displayed in the right diagram

above, is computed as:

(E−f)n = Bn−1⊕An,
(b, a).(b′, a′) = (b.fa′, aa′), ∂(b, a) = (fa− ∂b, ∂a),

u(b, a) = a, ξ(b, a) = b.

5.5.6 The fibre sequence

The lower cocone algebra of a dg-algebra A is

E−A = E−(id : A→ A), (E−A)n = An−1⊕An. (5.55)

The loop-algebra

ΩA = E+(0→ A) = E−(0→ A)

is the shifted chain complex Ω|A|, with a null component in degree 0

and null multiplication

(ΩA)n = An−1, evA : 0→ 0: ΩA→ A,

a.a′ = 0, ∂nΩA(a) = − ∂n−1a, evA(a) = a.
(5.56)

The lower fibre sequence (Section 1.8.5) of the morphism f : A → B

is:

...
Ωd // ΩE−f

Ωv // ΩA
Ωf // ΩB

d // E−f
v // A

f // B (5.57)

d(b) = (b, 0), v(b, a) = a.
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5.5.7 Forgetting multiplication

When useful, the path-functors of dg-algebras and dg-modules will be

written as Pa and Pm, respectively.

We have seen that the forgetful functor U = | − | : Dga → Dgm

preserves h-pullbacks (Section 5.5.5). It is actually a dP1-homotopical

functor (i.e. a strong dP1-functor which preserves the initial object and

h-pullbacks; see 1.8.2), when equipped with the following natural iso-

morphism i and the following identity

i : UR→ RU = U, iA : |Aop| → |A|, in = (−id)[n/2],

UPa = PmU, |PaA| = Pm|A|,
(5.58)

A0 ∂0
//

1
��

A1 −∂
1

//

1
��

A2 ∂2
//

−1
��

A3 −∂
3

//

−1
��

A4 ∂4
//

1
��

... |Aop|
i
��

A0

∂0
// A1

∂1
// A2

∂2
// A3

∂3
// A4

∂4
// ... |A|

(5.59)

The only non trivial fact is the consistency of i with reflection (see

(1.59)), which here reduces to the commutativity of the square:

URPa
iP //

Ur
��

RUPa RPmU

rU
��

UPaR PmUR
Pi
// PmRU

(5.60)

In fact, if (a, h, b) ∈ (PA)n and ε = (−1)n, η = (−1)[n/2], η′ =

(−1)[(n−1)/2], we have

rU.iP (a, h, b) = η.rU(a, h, b) = (ηb,−ηh, ηa),

P i.Ur(a, h, b) = Pi(b, εh, a) = (ηb, εη′h, ηa).

To show that these two results coincide, start from the (obvious) re-

lation [n/2] + [(n− 1)/2] = n− 1, which can be rewritten as [n/2] + 1 =

n− [(n− 1)/2]; thus, −η = εη′.

5.5.8 Fibre diagrams of dg-algebras

The forgetful functor U = | − | : Dga→ Dgm, being dP1-homotopical,

preserves the whole structure based on the path functor, in particular

h-kernels, cocone and loop objects, fibre sequences and fibre diagrams

(Section 1.8). We can thus make use of the stronger properties of Dgm
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- a reversible, symmetric dP4-homotopical category - which have been

developed in Chapter 4.

In particular, let us examine the lower fibre diagram of a morphism

f : A→ B of dg-algebras (see (1.209)), where the ]-marked squares need

not commute

... ΩE−f
Ωv //

k3 �� ]

ΩX
Ωf //

k2
�� ]

ΩY
d //

k1
��

E−f
v // X

f // Y

... E+v3 v4
// E−v2 v3

// E+v
v2
// E−f

v1
// X

f
// Y

(5.61)

U transforms this diagram into the (lower) fibre diagram of Uf in

Dgm. By Theorem 4.7.5 (dualised), the transformed diagram is com-

mutative up to homotopy and its vertical arrows Uki are homotopy

equivalences.

5.5.9 Cohomology of dg-algebras

The usual cohomology of cochain algebras yields a covariant functor with

values in the category of (positive, associative) graded K-algebras

H∗ : K-Dga→ K-Gra. (5.62)

This can be viewed as a contravariant cohomology theory on the op-

posite dI1-homotopical category (K-Dga)∗, whose suspension Σ is the

loop endofunctor of K-Dga.

5.6 Higher structure and cylinder of dg-algebras

We complete the structure of Dga to a symmetric dIP2-homotopical

category. After introducing connections and transposition for the path

functor, we show that the latter is monoidal, P (A) ∼= P⊗A, with respect

to the tensor product of dg-algebras and the dP2-interval P = P (K).

This object is coexponentiable and gives rise to the cylinder endofunc-

tor I a P .

5.6.1 Second order paths

For an arbitrary element ξ of the second-order path object

ξ = (a, h, b; u, z, v; c, k, d) ∈ (P 2A)n, (5.63)
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(P 2A)n = (PA)n ⊕ (PA)n−1 ⊕ (PA)n =

(An⊕An−1⊕An)⊕(An−1⊕An−2⊕An−1)⊕(An⊕An−1⊕An),

we follow the same convention already used above for chain complexes

(Section 4.4.3), representing ξ as a square diagram, with its faces at the

boundary of the square

a
u //

h
��

z

c

k
��

•
1 //

2

��b
v
// d

∂−1 (ξ) = ∂−P (ξ) = (a, h, b), ∂+
1 (ξ) = ∂+P (ξ) = (c, k, d),

∂−2 (ξ) = P∂−(ξ) = (a, u, c), ∂+
2 (ξ) = P∂+(ξ) = (b, v, d).

Let us recall that the differential of P 2A is (cf. 4.4.3):

∂(a, h, b; u, z, v; c, k, d) =

(∂a,−a− ∂h+ b, ∂b;−a− ∂u+ c, z,−b− ∂v + d; ∂c,−c− ∂k + d, ∂d)

where z = −h+ u+ ∂z − v + k.

The product of P 2A arises from the product of PA (Section 5.5.3)

and is (for ε = (−1)|a|):

(a, h, b;u, z, v; c, k, d) . (a′, h′, b′;u′, z′, v′; c′, k′, d′) =

= ((a, h, b).(a′, h′, b′); (u, z, v).(c′, k′, d′) +

+ ε(a, h, b).(u′, z′, v′); (c, k, d).(c′, k′, d′))

= (aa′, hb′ + εah′, bb′; uc′ + εau′, zd′ − εuk′ + εhv′ + az′,

vd′ + εbv′; cc′, kd′ + εck′, dd′).

(5.64)

5.6.2 The connections

The maps g− and g+ are defined as for chain complexes (in (4.78))

g−(a, h, b) = (a, h, b;h, 0, 0; b, 0, b),

g+(a, h, b) = (a, 0, a; 0, 0, h; a, h, b),
(5.65)

a
h //

h
��

0

b

0
��

a
0 //

0
��

0

a

h
��

b
0
// b a

h
// b



340 Categories of functors and algebras, relative settings

We only have to verify that they preserve multiplication. For g−,

writing ε = (−1)|a|, we have:

g−((a, h, b).(a′, h′, b′)) = g−(aa′, hb′ + εah′, bb′) =

= (aa′, hb′ + εah′, bb′;hb′ + εah′, 0, 0; bb′, 0, bb′),

g−(a, h, b).g−(a′, h′, b′)

= (a, h, b;h, 0, 0; b, 0, b).(a′, h′, b′;h′, 0, 0; b′, 0, b′) =

= ((a, h, b).(a′, h′, b′); (h, 0, 0).(b′, 0, b′) +

+ ε(a, h, b).(h′, 0, 0); (b, 0, b).(b′, 0, b′))

= ((aa′, hb′ + εah′, bb′); (hb′, 0, 0) + ε(ah′, 0, 0); (bb′, 0, bb′)).

5.6.3 The transposition

Again, the transposition s : P 2A → P 2A is defined as for chain com-

plexes (in (4.79)), by a symmetry with respect to the ‘main diagonal’

(a, z, d) and a sign-change in the middle term

s(a, h, b;u, z, v; c, k, d) = (a, u, c;h,−z, k; b, v, d), (5.66)

a
u //

h
��

z

c

k
��

7→

a
h //

u

��
−z

b

v
��

b
v
// d c

k
// d

To verify that s preserves the multiplication of P 2A, computed in

(5.64)

(a, h, b;u, z, v; c, k, d) . (a′, h′, b′;u′, z′, v′; c′, k′, d′) =

= (aa′, hb′ + εah′, bb′; uc′ + εau′, zd′ − εuk′ + εhv′ + az′,

vd′ + εbv′; cc′, kd′ + εck′, dd′),

(5.67)

it suffices to remark that the interchange h/u, b/c, v/k, z/−z, h′/u′, ...,
z′/− z′ in the two given 9-tuples has a similar effect on their product.

To show that the axioms of symmetric dP2-categories are satisfied, we

have only to verify the consistency of the transposition with the reflection

pair, since the latter is different from that of cochain complexes.

In other words, according to 4.1.4, we have to verify that the double

reflection r2 = Pr.rP : RP 2 → P 2R commutes with the transposition

s, or more precisely that r2.Rs = sR.r2. But r2 acts as below, and the

commutation property is obvious:

r2(a, h, b;u, z, v; c, k, d) = (d, εk, c; εv, z, εu; b, εh, a), (5.68)
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a
u //

h
��

z

c

k
��

7→

d
εv //

εk
��

z

b

εh
��

b
v
// d c

εu
// a

Since all limits exist and P preserves them, Dga is a symmetric

dP2-homotopical category. As a consequence, we get the homotopy-

preservation property of the endofunctors P,Eα and Ω (the dual state-

ments, for a symmetric dI1-homotopical category, can be found in 4.1.5

and 4.1.7).

5.6.4 Tensor product

The tensor product of dg-algebras is given by the tensor product of

cochain complexes of K-modules, enriched with the following multiplica-

tive structure

(A⊗B)n =
⊕
p+q=n (Ap ⊗K Bq),

∂(a⊗ b) = ∂a⊗ b+ (−1)|a|.a⊗ ∂b,
(a⊗ b).(a′ ⊗ b′) = (−1)|b|.|a

′|.aa′ ⊗ bb′.
(5.69)

Its identity is the dg-algebra K (in degree zero). The tensor product

is symmetric, under the isomorphism

s(A,B) : A⊗B → B ⊗A, a⊗ b 7→ (−1)|a|.|b|.b⊗ a. (5.70)

As for K-algebras, one can note that, restricting to the full subcate-

gory of commutative unital dg-algebras, A⊗B is the categorical sum of

A and B, with injections

i : A→ A⊗B, i(a) = a⊗ 1B ,

j : B → A⊗B, j(b) = 1A ⊗ b.

This symmetric monoidal structure is not co-closed. A characterisa-

tion of the coexponentiable objects A (such that A ⊗ − has a left ad-

joint) for algebras, graded algebras and cochain algebras can be found

in [N1, N2].

5.6.5 The co-interval

The path functor P is monoidal, i.e. it is produced by a symmetric dP2-

interval P, as P (A) = P ⊗ A. Of course, the notion of dP2-interval is
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dual to dI2-interval, defined in 4.2.8; less specifically, we will also use

the term ‘co-interval’.

Indeed, let us consider the path-object P = P (K) of the monoidal

unit, and write e1, e2 (resp. e) the free generators on K of the component

P0 (resp. P1)

P = P (K) = (K2 → K → 0→ 0→ ...),

∂0(e1) = − e, ∂0(e2) = e,

ei.ei = ei, ei.ej = 0 (i 6= j),

e1.e = e = e.e2, e2.e = 0 = e.e1.

(5.71)

For every dg-algebra A, we identify P (A) with P⊗A, via the natural

isomorphism

iA : P (A)→ P⊗A, An⊕An−1⊕An → (P⊗A)n,

i(a, h, b) = e1 ⊗ a+ e2 ⊗ b+ e⊗ h,
(5.72)

i((a, h, b).(c, k, d)) = i(ac, hd+ εak, bd)

= e1 ⊗ (ac) + e2 ⊗ (bd) + e⊗ (hd+ εak),

i(a, h, b).i(c, k, d)

= (e1 ⊗ a+ e2 ⊗ b+ e⊗ h).(e1 ⊗ c+ e2 ⊗ d+ e⊗ k)

= e1 ⊗ (ac) + e⊗ (εak) + e2 ⊗ (bd) + e⊗ (hd),

i(∂(a, h, b)) = i(∂a,−a− ∂h+ b, ∂b)

= e1 ⊗ ∂a+ e2 ⊗ ∂b+ e⊗ (−a− ∂h+ b),

∂(i(a, h, b)) = ∂(e1 ⊗ a+ e2 ⊗ b+ e⊗ h)

= −e⊗ a+ e1 ⊗ ∂a+ e⊗ b+ e2 ⊗ ∂b− e⊗ ∂h.

The object P obtains thus the structure of a symmetric dP2-interval

in (Dga,⊗), from the symmetric dP2-structure of the functor P

K
e
// P

∂αoooo
gα //// P (P) = P⊗P, (5.73)

r : Pop → P, s = s(P,P) : P⊗P→ P⊗P.

Conversely, some standard calculations show that this co-dioid gives

back the symmetric dP2-structure of P , by applying to its structural

maps the functor −⊗A.
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5.6.6 The tensor algebra of a dg-module

The forgetful functor U = |−| from dg-algebras to dg-modules has a left

adjoint F . This carries a dg-module X to the tensor dg-algebra FX,

defined as a categorical sum of tensor powers of cochain complexes

F : Dgm � Dga :U, η : 1→ UF, ϑ : FU → 1,

FX = (
∑
n>0 X

⊗n, ⊗),

(x1 ⊗ ...⊗ xp)⊗ (xp+1 ⊗ ...⊗ xn) = x1 ⊗ ...⊗ xn;

η : X ⊂ UFX; ϑ : FUA→ A, ϑ(x1 ⊗ ...⊗ xn) = x1 · ... · xn.
(5.74)

The n-component and differential of FX are:

(FX)n =
⊕
|p|=n X

p1 ⊗Xp2 ⊗ ...⊗Xpr

(|p| = p1 + ...+ pr),

∂(x1 ⊗ ...⊗ xr) =
∑
i=1,...,r (−1)qi x1 ⊗ ...⊗ ∂xi ⊗ ...⊗ xr

(qi = degx1 + ...+ degxi−1).

(5.75)

5.6.7 The cylinder functor

The path functor P has a left adjoint I, and the symmetric dP2-structure

of P , transferred along the adjunction I a P , yields a symmetric dIP2-

homotopical structure. The dg-algebra I(A) can be constructed as fol-

lows:

I(A) = F (I(|A|))/JA. (5.76)

First, we form the cylinder over the underlying dg-module |A|

(I|A|)n = An⊕An+1⊕An,
∂I(a, h, b) = (∂a− h,−∂h, ∂b+ h) (n > 0),

(I|A|)0 = Cok(∂−1 : A0 → A0⊕A1⊕A0),

∂−1(h) = (−h,−∂h, h),

and then the tensor dg-algebra F (I|A|) over the latter (Section 5.6.6).

Finally, we use the product of A to quotient F (I|A|) modulo the bilat-

eral K-ideal JA of the tensor algebra, spanned by the elements of the

following types

(a, 0, 0)⊗ (b, 0, 0)− (a.b, 0, 0), (0, 0, a)⊗ (0, 0, b)− (0, 0, a.b),

(0, a, 0)⊗ (0, 0, b) + (−1)|a|.(a, 0, 0)⊗ (0, b, 0)− (0, a.b, 0).
(5.77)
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The unit η of the adjunction is

ηA : A→ PIA, η(a) = ([a, 0, 0], [0, a, 0], [0, 0, a]),

η(a).η(b) = ([a, 0, 0], [0, a, 0], [0, 0, a]).([b, 0, 0], [0, b, 0], [0, 0, b])

= ([a, 0, 0]⊗ [b, 0, 0], [0, a, 0]⊗ [0, 0, b] +

+ (−1)|a|[a, 0, 0]⊗ [0, b, 0], [0, 0, a]⊗ [0, 0, b])

= ([ab, 0, 0], [0, ab, 0], [0, 0, ab]) = η(a.b),

∂P (η(a)) = ∂P ([a, 0, 0], [0, a, 0], [0, 0, a])

= (∂I[a, 0, 0],−[a, 0, 0] + [0, 0, a]− ∂I[0, a, 0], ∂I[0, 0, a])

= ([∂a, 0, 0],−[a, 0, 0] + [0, 0, a]− [−a,−∂a, a], [0, 0, ∂a])

= ([∂a, 0, 0], [0, ∂a, 0], [0, 0, ∂a]) = η(∂a).

The counit ζA : IPA→ A is obtained as follows. Take first the counit

for dg-modules, ω|A| : IP |A| → |A|

ω|A| : (An⊕An−1⊕An)⊕(An+1⊕An⊕An+1)⊕(An⊕An−1⊕An)→ An,

ω(a, h, b; x, e, y; c, k, d) = a+ e+ d,

and recall that P |A| = |PA|. Extend ω to the tensor algebra, ω : FI|PA|
→ A, and define ζ as the induced morphism, which exists because ω

annihilates over the generators (5.77) of the ideal JPA

ω(((a, h, b), 0, 0)⊗ ((c, k, d), 0, 0)− ((a, h, b).(c, k, d), 0, 0))

= ω((a, h, b), 0, 0).ω((c, k, d), 0, 0)− ω((a, h, b).(c, k, d), 0, 0))

= a.c− ω((ac, hd+ εak, bd), 0, 0) = ac− ac = 0,

ω((0, (a, h, b), 0)⊗ (0, 0, (c, k, d)) +

+ ε((a, h, b), 0, 0)⊗ (0, (c, k, d), 0)− (0, (a, h, b).(c, k, d), 0))

= ω(0, (a, h, b), 0).ω(0, 0, (c, k, d) +

+ εω((a, h, b), 0, 0).ω(0, (c, k, d), 0)− ω(0, (a, h, b).(c, k, d), 0)

= h.d+ εa.k − ω(0, (ac, hd+ εak, bd), 0) = 0.

5.6.8 Free dg-algebras

In the literature, the cylinder IA is usually considered for dg-algebras

which are free in some sense (cf. [Mn, AL, Ba]). Indeed, if A is free over

dg-modules, i.e. a tensor algebra FX for some dg-module X, there is a

simple description of IA

I(FX) = F (IX), (5.78)
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which follows from the relation |PA| = P |A| (Section 5.5.3) and the

adjunctions

Dgm
Im //

Dgm
Pm

oo
F //

Dga
U
oo

Ia //
Dga

Pa

oo (5.79)

IaF a UPa, F Im a PmU, UPa = PmU.

5.6.9 Unital dg-algebras

Finally, we briefly consider the category DGA of unital dg-algebras,

always on the commutative, unital ring K.

This category is not pointed: the terminal object is still the null alge-

bra, but the initial object is the unit K of the tensor product, with

jA : K → A, λ 7→ λ.1A,

(the element λ.1A is necessarily a cocycle, because ∂(1A) = ∂(1A.1A) =

∂(1A) + ∂(1A)).

DGA is again a dIP2-homotopical category, with the ‘same’ construc-

tion of the path functor and of homotopy pullbacks, but a slightly more

complicated description of h-kernels and loop-algebras. For instance,

ΩA is no longer trivial in degree zero

(ΩA)n = Kn⊕An−1⊕Kn,

∂0
ΩA(λ, µ) = −λA + µA, ∂nΩA = − ∂n−1

A (n > 0),

K⊕K ∂0
// A0 ∂1

// A1 ∂2
// ...

Its multiplication is:

(λ, a, µ).(λ′, a′, µ′) = (λλ′, µ′a+ λa′, µµ′).

The result is null, unless one factor at least is of degree zero; indeed,

an element (λ, a, µ) ∈ (ΩA)n has a = 0 in degree 0, and λ = µ = 0 in

degree > 0.

Here, the forgetful functor to cochain complexes must be replaced

with

V : DGA→ Dgm\K, V (A) = (|A|, jA : |K| → |A|),

which preserves the initial object, and is dP2-homotopical.
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Augmented unital dg-algebras (A, ζ : A → K) are the co-pointed ob-

jects of DGA. They form a slice category DGA\K, which is equiva-

lent to the previous category Dga (without unit assumption) by well-

known constructions: sending an augmented unital dg-algebra (A, ζ) to

A− = Ker(ζ) and adding a unit to a dg-algebra B in the usual way,

B+ = B⊕K.

Loosely speaking, DGA is an algebraic dual-counterpart of topolog-

ical spaces, and Dga (or DGA\K) of pointed topological spaces. But

notice that their homotopy structures are non reversible.

5.7 Cochain algebras as internal semigroups in cochain

complexes

We construct now a new symmetric dP4-structure on the category Dgm

= Ch+(K-Mod). This structure is not reversible, but is isomorphic to

the standard (reversible) one, studied in Section 4.4, and could be said

to be ‘weakly reversible’.

Only the symmetric dP2-structure which it contains can be lifted to

algebras, producing the symmetric dP2-structure we have already con-

sidered: all the rest, including the previous isomorphism and the con-

catenation of homotopies, is not consistent with the monad which gives

rise to dg-algebras - it is only so up to homotopy. The last point makes

evident the interest of studying a homotopy relaxation of algebras, like

the strongly homotopy associative cochain algebras introduced by Stash-

eff (see [Sf, G5]).

Again, K is a fixed commutative unital ring.

5.7.1 The standard reversion

The category A = Ch+D of (positive) cochain complexes over an addi-

tive category D has a canonical reversible, symmetric dP4-structure

A0 = (A, R0, P, ∂
α, e, r, gα, s,Q, c, z), R0 = idA,

studied in Section 4.4 (in the case of chain complexes). Here, its reversion

(4.71) will be written as:

r : PA→ PA, r(a, h, b) = (b,−h, a). (5.80)

Notice that we are still using the notation based on ‘formal variables’

(cf. (4.67)), which allows us to compute on direct sums as if D were a

category of modules.
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Now, if A is a cochain K-algebra and PA is endowed with the product

defined in 5.5.3

(a, h, b).(c, k, d) = (ac, hd+ εak, bd) (ε = (−1)|a|), (5.81)

the cochain morphism (5.80) does not respect the product:

r(a, h, b).r(c, k, d) = (b,−h, a).(d,−k, c) = (bd,−hc− εbk, ac),
r(ac, hd+ εak, bd) = (bd,−hd− εak, ac).

We introduce therefore a new dP4-structure on Ch+D, replacing the

pair (R0, r) with a non-reversible pair (R, r), so that, when D = K-Mod,

the restricted symmetric dP2-structure (R,P, ∂α, e, r, gα, s) lifts to inter-

nal semigroups. The new structure on cochain complexes is isomorphic

to the standard one; and, of course, is defined ‘as’ for cochain algebras

(in Section 5.5), forgetting about multiplication but replacing K-Mod

with an arbitrary additive category.

5.7.2 The skew structure of cochain complexes

The involutive endofunctor R : A → A (A = Ch+D) is based on the

opposite chain complex RA = Aop, having the same structure of graded

module and a skew-opposite differential, written ∂∗

∂∗(a) = (−1)|a| (∂a). (5.82)

This reversor is isomorphic to the identity, by a natural transformation

already considered above, in a slightly different form (cf. (5.58))

i : R→ idA, in = (−1)[n/2], (5.83)

whose inverse is Ri = iR : idA→ R.

There is now a reflection r : RP → PR for cochain complexes

r : (PA)op → P (Aop), r(a, h, b) = (b, (−1)|a|h, a), (5.84)

which comes from the original reversion r : P → P and the natural

isomorphism i, in the sense that r makes the following diagram commute

(as in (5.60))

RP
iP //

r
��

P

r
��

PR
Pi
// P
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The fact that r is consistent with the differential follows from the

diagram above (and has also been checked directly, in 5.5.4).

Finally, the next proposition says that A has a new symmetric dP4-

structure

A1 = (A, R, P, ∂α, e, r, gα, s,Q, c, z),

strongly isomorphic to the original one (called A0 in 5.7.1).

The new structure only differs from the original (reversible) one by

replacing the reversion pair (idA, r) with the reflection pair (R, r). The

fact that the new structure also agrees with the cylinder is automatic,

since all the natural transformations of the cylinder functor can be de-

duced from the adjunction I a P .

5.7.3 Proposition

Let A be equipped with a symmetric dP4-structure

A0 = (A, R0, P, ∂
α, e, r0, g

α, s,Q, c, z).

Let R1 : A → A be another involutive (covariant) endofunctor and

i : R1 → R0 a natural transformation such that

(R1iR0).i = idR0.

Then i has inverse i−1 = R1iR0. The natural transformation r1 :

R1P → PR1 which makes the following diagram commute

R1P
iP //

r1
��

R0P

r0
��

PR1
Pi
// PR0

gives a new symmetric dP4-structure A1 on A where the reflection pair

(R0, r0) is replaced with (R1, r1). Furthermore, we have a strong sym-

metric dP4-functor (Section 4.2.7)

(idA, i, idP ) : A0 → A1,

which is invertible, with inverse (idA, i−1, idP ).

Proof It is a straightforward consequence of assumptions.
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5.7.4 The monad of cochain algebras

Dga is monadic over Dgm, via the monad T = UF given by the forget-

ful functor U : Dga→ Dgm and its left adjoint F , described in 5.6.6

T = UF : Dgm→ Dgm, TX =
∑
n>0 X

⊗n, (5.85)

η : X ⊂ UFX, µ = UϑF : T 2 → T,

µ((x11 ⊗ ...⊗ x1p1)⊗ ...⊗ (xn1 ⊗ ...⊗ xnpn)) = x11 ⊗ ...⊗ xnpn .

One can now verify that the non-reversible symmetric dP2-structure

(R,P, ∂α, e, r, gα, s) of Dgm is made consistent with the monad by the

natural transformation

λ : TP → PT, λX :
∑
n>0 (PX)⊗n → P (

∑
n>0X

⊗n),

(x1, z1, y1)⊗ ...⊗ (xn, zn, yn) 7→
(x1 ⊗ ...⊗ xn,

∑
i(x1 ⊗ ...⊗ xi−1 ⊗ zi ⊗ yi+1 ⊗ ...⊗ yn), y1 ⊗ ...⊗ yn),

where x = (−1)|x|.x.

In fact, PT (X, t) = (PX,Pt.λ) gives the path-module PX, with the

multiplication we have been using above:

(x1, z1, y1).(x2, z2, y2) = (x1.x2, x1.z2 + z1.y2, y1.y2).

One concludes again that the category Dga = DgmT is symmetric

dP2-homotopical, with path functor P = PT .

5.8 Relative settings based on forgetful functors

The forgetful functor U : Dga → Dgm has been used in Section 5.5

to prove higher properties of the fibre sequence of a morphism of dif-

ferential graded algebras, up to relative equivalences, i.e. maps of Dga

which become homotopy equivalences in the strong domain of cochain

complexes.

We now abstract this procedure, which can also be used for other

‘weak’ homotopy structures, like directed chain complexes (Section 5.8.5),

cubical sets (Section 5.8.6) and inequilogical spaces (Section 5.8.7).

5.8.1 The main definitions

A relative dI-homotopical category will be a dI1-homotopical category A

equipped with a dI1-homotopical functor U = (U, i, h) (Section 1.7.0)

U : A→ B (i : RU → UR, h : IU → UI), (5.86)
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with values in a symmetric dI4-homotopical category B. Recall that

U is a strong dI1-functor (Section 1.2.6) which preserves the terminal

object and h-pushouts. It is not assumed to be faithful.

A U-equivalence, or relative equivalence, in A will be any map f of

A such that U(f) is a past or future homotopy equivalence of B. If

B is reversible (i.e. its reversor is the identity), our condition simply

means that U(f) is a homotopy equivalence of B; in this case, relative

equivalences of A necessarily satisfy the ‘two out of three’ property (as

homotopy equivalences of B do), and it may be useful to write f 'U g

in A when U(f)'U(g) in B (as already done for dg-algebras, in 5.5.2).

Given a map f : X → Y in A, the functor U preserves its lower cofibre

sequence (1.190) and its lower cofibre diagram (1.192) - as well as the

upper analogues. By Theorem 4.7.5, a cofibre diagram in A satisfies the

following properties:

(i) its vertical arrows are U -equivalences,

(ii) its image in B is a diagram commutative up to homotopy.

Dually, a relative dP-homotopical category will be a dP1-homotopical

category A equipped with a dP1-homotopical functor U : A→ B, with

values in a symmetric dP4-homotopical category.

Finally, a relative dIP-homotopical category is a dIP1-homotopical cat-

egory A equipped with a dIP1-homotopical functor U : A → B, with

values in a symmetric dIP4-homotopical category.

5.8.2 Lemma

Let A be a dI2-category and H : A → C a functor with values in an

arbitrary category. Then condition (i) implies condition (ii)

(i) every future equivalence in A is carried by H to an isomorphism

of C,

(ii) every pair of maps f−, f+ : X → Y in A such that there exists a

homotopy f− → f+ is identified by H.

Proof By hypothesis, there exists a map ϕ : IX → Y in B such that

ϕ.∂α = fα. Because of the existence of connections in A, both faces

∂α : X → IX are embeddings of (past or future) deformation retracts,

with the same retraction e : IX → X (see (4.29)). Therefore, e is a

future equivalence and H(e) is an algebraic isomorphism (of abelian

groups).
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From the relation H(e).H(∂−) = H(idX) = H(e).H(∂+), cancelling

the isomorphism H(e), we deduce that H(∂−) = H(∂+) and finally

H(f−) = H(f+).

5.8.3 Theorem (Homology theories in the relative setting)

Let U : A→ B be a relative dI-homotopical category.

Suppose we have a sequence of functors ↑Hn and natural transforma-

tions hn

↑Hn : A→ pAb, hn : ↑Hn → ↑Hn+1Σ (n ∈ Z). (5.87)

which satisfy the following axiom of homology theories (Section 2.6.2)

(dhlt.2) (algebraic stability) every component hnX : ↑HnX → ↑Hn+1ΣX

is an algebraic isomorphism (of abelian groups).

Then the following conditions imply that these data also satisfy the

homotopy invariance axiom (dhlt.1) and the exactness axiom (dhlt.3), so

that they form a (reduced) theory of directed homology on A, as defined

in 2.6.2

(i) every U -equivalence f : X → Y in A is taken by each functor
↑Hn : A→ pAb to an algebraic isomorphism,

(ii) every pair of maps f−, f+ : X → Y in A such that there exists a

homotopy Uf− → Uf+ in B is identified by each functor ↑Hn,

(iii) for every morphism f : X → Y in A and every n ∈ Z, the following

sequence is exact (in pAb), with u = hcok−(f) : Y → C−f

↑Hn(X)
f∗ // ↑Hn(Y )

u∗ // ↑Hn(C−f). (5.88)

Moreover, if A is a dI2-homotopical category (in its own right), con-

dition (ii) can be omitted.

Proof The homotopy invariance axiom (dhlt.1) is a trivial consequence

of (ii). To prove the exactness axiom (dhlt.3) we operate as in Theorem

4.7.6. Consider the initial part of the lower cofibre diagram of f in A,

and recall that the right-hand square need not commute

X
f // Y

u // C−f
d // ΣX

Σf //

]

ΣY

X
f
// Y

u1

// C−f
u2

// C+u1 u3

//

k1

OO

C−u2

k2

OO
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This diagram is transformed by U into the initial part of lower cofibre

diagram of Uf in B, which is a symmetric dI4-homotopical category.

By Theorem 4.7.6, the transformed diagram is commutative up to di-

rected homotopy and its vertical arrows Uk1, Uk2 are future homotopy

equivalences.

Now, applying ↑Hn to the diagram above, we get a commutative dia-

gram, by (ii), whose vertical arrows are algebraic isomorphisms, by (i).

Moreover, in the lower row of the diagram every map is a (lower or

upper) h-cokernel of the preceding one. Therefore, by (iii), this row is

transformed by ↑Hn into an exact sequence. Finally, the same holds for

the upper row, which proves (dhlt.3): the following row is exact

↑Hn(X)
f∗ // ↑Hn(Y )

u∗ // ↑Hn(C−f)
d∗ // ↑Hn(ΣX)

(Σf)∗// ↑Hn(ΣY ).

As to the last assertion, if A is a dI2-homotopical it follows from

Lemma 4.7.4 that one can insert a homotopy in the right-hand square

of the diagram above. Then, applying Lemma 5.8.2 to the functor

H = W.↑Hn : A→ pAb→ Ab,

(where W forgets preorders) condition (i) is sufficient to conclude that

H takes the diagram above to a commutative diagram, and therefore
↑Hn does also.

5.8.4 Differential graded algebras

We end this section with some examples of relative settings. We have

seen, in Sections 5.5-5.6, that the category Dga of cochain algebras

over the commutative unital ring K has a symmetric dIP2-homotopical

structure.

Moreover, the forgetful functor to cochain complexes of K-modules,

which forgets the multiplicative structure

U : Dga→ Dgm = Ch+(K-Mod), (5.89)

is a dP2-homotopical functor (and a lax dI2-functor, with a comparison

I|A| → |IA|, cf. 1.2.6), with values in a reversible, symmetric dIP4-

homotopical category.

It follows that Dga, equipped with the forgetful functor U , is a rel-

ative dP-homotopical category (Section 5.8.1). Its relative equivalences

are those morphisms of dg-algebras which are homotopy equivalences of

cochain complexes (forgetting multiplication, for their quasi-inverse and
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the relevant homotopies). Relative equivalences satisfy the ‘two out of

three’ property.

5.8.5 Directed chain complexes

We have seen, in 4.4.5, that the category dCh•Ab of (unrestricted)

directed chain complexes of abelian groups has a non-symmetric dIP4-

homotopical structure.

Let us equip it with the forgetful functor

U : dCh•Ab→ Ch•Ab, (5.90)

which forgets preorders; it is a dIP4-homotopical functor, with values in

a reversible, symmetric dIP4-homotopical category.

Therefore, dCh•Ab is a relative dIP-homotopical category. Here, a

relative equivalence is any morphism of directed chain complexes which

is a homotopy equivalence of chain complexes (forgetting preorders).

Again, relative equivalences satisfy the ‘two out of three’ property.

5.8.6 Cubical sets

For the category Cub of cubical sets, let us consider - for instance -

the left dIP1-homotopical structure CubL (Section 1.6.5), with cylin-

der IX = ↑i ⊗ X. There are no connections, no transposition and no

concatenation. While considering the directed geometric realisation (see

1.6.7, 1.7.0)

U = ↑R : CubL → dTop, (5.91)

we have already seen that it is a dI1-homotopical functor. We have thus

a relative dI-homotopical category CubL.

One can also use a more drastic forgetful functor, the classical geo-

metric realisation V = R : CubL → Top, with values in a reversible

domain. This has advantages, since V -equivalences satisfy the ‘two out

of three’ property, and drawbacks, since V misses information which we

may prefer to keep, e.g. with respect to the applications of Chapter 2.

5.8.7 Inequilogical spaces

We have seen, in 1.9.1, that the category pEql of inequilogical spaces

is a cartesian closed dIP1-category, based on the directed interval ↑I =
↑[0, 1].
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Moreover, it has all limits and colimits ([G11], Thm. 1.5); in partic-

ular, a product
∏
Xi is the product of the (preordered) supports X#

i ,

equipped with the product of all equivalence relation. pEql becomes a

dIP2-homotopical category, with the same structure on ↑I as in pTop

(Section 3.1.3). But paths and homotopies cannot be concatenated, un-

less we extend maps and homotopies using the ‘local’ ones ([G11], 2.3).

Here, it will be simpler to consider the forgetful functor

U : pEql→ pTop, X = (X#,∼X) 7→ |X| = X#/ ∼X , (5.92)

where X#/ ∼X has the induced topology and the induced preorder.

This is a dI2-homotopical functor with values in a symmetric dIP4-

homotopical category. First, U preserves all colimits, since it has a right

adjoint, D′(Y ) = (Y,=). Second, it preserves the cylinder functor: using

the fact that I = −×↑I : pTop → pTop is a left adjoint and preserves

colimits, we have:

UI(X) = U(X#×↑I, ∼X×idI) = (X#/∼X)×↑I = IU(X). (5.93)

Therefore, (pEql, U) is a relative dI-homotopical category.
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Elements of weighted algebraic topology

As we have seen, directed algebraic topology studies ‘directed spaces’

with ‘directed algebraic structures’ produced by homotopy or homology

functors: on the one hand the fundamental category (and possibly its

higher dimensional versions), on the other preordered homology groups.

Its general aim is modelling non-reversible phenomena.

We now sketch an enrichment of this subject: we replace the truth-

valued approach of directed algebraic topology (where a path is licit

or not) with a measure of costs, taking values in the interval [0,∞]

of extended (weakly) positive real numbers. The general aim is, now,

measuring the cost of (possibly non-reversible) phenomena.

Weighted algebraic topology will study ‘weighted spaces’, like (gener-

alised) metric spaces, with ‘weighted’ algebraic structures, like the fun-

damental weighted (or normed) category, defined here, and the weighted

homology groups, developed in [G10] for weighted (or normed) cubical

sets.

Lawvere’s generalised metric spaces, endowed with a possibly non-

symmetric distance taking values in [0,∞] (already considered in 1.9.6),

are a basic setting where weighted algebraic topology can be developed

(see Section 6.1). This approach is based on the standard generalised

metric interval δI, with distance δ(x, y) = y − x, if x 6 y, and δ(x, y) =

∞ otherwise; the resulting cylinder functor I(X) = X ⊗ δI has the l1-

type metric (Section 6.2). We define the fundamental weighted category

wΠ1(X) of a generalised metric spaces, and begin its study (Sections

6.3, 6.4).

We work with elementary and extended homotopies, which are given

by 1-Lipschitz maps (i.e. weak contractions) and Lipschitz maps, respec-

tively (see Section 6.2). This gives a relative dI-homotopical category

U : δMtr ⊂ δ∞Mtr. Thus, elementary homotopies are used to define

355
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the main homotopical constructions, namely cylinder, cone, suspension

and - dually - cocylinder, cocone, loop-object (in the pointed case); and

then to obtain the (co)fibration sequence of a map. But extended homo-

topies can be concatenated, and are essential to obtain the higher order

properties of such sequences. Moreover, in the fundamental weighted

category, an arrow is a class of extended paths, up to extended homo-

topy with fixed endpoints.

We also introduce, in Sections 6.5-6.6, the more flexible setting of w-

spaces, or spaces with weighted paths, which can be viewed as a weighted

version of d-spaces. This allows us to take on, in Section 6.7, the study of

the irrational rotation C*-algebras Aϑ, obtaining a more precise analogy

than that we have conducted with the cubical set Cϑ = (�↑R)/Gϑ or

the corresponding c-set (Section 2.5). Here, we start from the standard

w-line wR, which assigns a finite weight w(a) = a(1) − a(0) to each

increasing path a : I → R, and w(a) = ∞ otherwise (Section 6.5.5).

Now, the quotient w-space Wϑ = (wR)/Gϑ has a non-trivial fundamen-

tal weighted monoid (at any point), isomorphic to the additive monoid

G+
ϑ = Gϑ ∩ R+ with the natural weight w(x) = x. We prove in The-

orems 6.7.3 and 6.7.4 that the irrational rotation w-space Wϑ has the

same classification up to isometric isomorphism (resp. Lipschitz isomor-

phism) as the C*-algebra Aϑ up to isomorphism (resp. strong Morita

equivalence).

We end with some hints about a possible formal setting for weighted

algebraic topology (Section 6.8).

This chapter is an adaptation of two papers, [G19, G20], to the ap-

proach developed in the previous part. A previous paper [G10] already

contains some of these concepts, based on ‘normed cubical sets’ (which

would be called here weighted cubical sets).

6.1 Generalised metric spaces

Lawvere’s generalised metric spaces [Lw1] have already been briefly con-

sidered in 1.9.6 and will be used below as a first setting for weighted

algebraic topology.

After considering some of their basic properties, we develop some new

points, like the standard models (Section 6.1.5), the reflective symmet-

ric distance (Section 6.1.6), the length of paths (6.1.8), the associated

symmetric topology and d-structure (Section 6.1.9).
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6.1.1 Real weights

The basic ingredient is the strict symmetric monoidal closed category

of extended positive real numbers, introduced by Lawvere [Lw1], which

we write w+ (the original notation is R). It has objects λ ∈ [0,∞],

morphisms λ > µ, and tensor product λ + µ (with λ +∞ = ∞, for all

λ).

As a complete lattice, this category has all limits and colimits, which

amount to products and sums

product: sup(λi) = ∨λi, terminal object: 0,

sum: inf(λi) = ∧λi, initial object: ∞.
(6.1)

The internal hom is given by truncated subtraction, which will be

written as a difference:

λ+ µ > ν ⇔ λ > hom+(µ, ν) = ν − µ. (6.2)

In other words, as in [Lw1], we write ν − µ for max(0, ν − µ). Notice

that the ‘undetermined form’∞−∞ is assigned a precise value, namely

0; indeed, 0 +∞ >∞ implies 0 >∞−∞.

Let v denote the full subcategory of w+ on the objects 0,∞; in this

subcategory, the cartesian product max(λ, µ) coincides with the tensor

product λ + µ. Thus, the following embedding of the Boolean algebra

2 = ({0, 1},6) of truth-values (which is covariant with respect to the

given orders)

M : 2→ w+, M(0) =∞, M(1) = 0, (6.3)

is strict monoidal with respect to the cartesian product in 2 (the opera-

tion min) and the cartesian or tensor product of w+. Moreover, M has

left and right adjoint

P a M a Q, P (λ) = 1 ⇔ λ <∞, Q(λ) = 1 ⇔ λ = 0. (6.4)

A function w : A→ [0,∞] defined on a set (or a class) equipped with

a partial operation a ∗ b, will be said to be (sub)additive if w(a ∗ b) 6
w(a) + w(b) whenever a ∗ b is defined; and strictly additive, or linear, if

w(a ∗ b) = w(a) +w(b) (again, when a ∗ b is defined). The main property

being the former, the prefix ‘sub’ will generally be omitted: for instance,

an ‘additively weighted’ category will have an ‘additive’ weight function

on morphisms (Section 6.3.1), in the first sense.

Occasionally, we shall also use the same category w = ([0,∞],>)

equipped with the strict symmetric monoidal closed structure w• defined
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by the multiplicative tensor product λ.µ. Here we (must) take λ.∞ =∞
for all λ, including 0 (since tensoring with any element λ must preserve

∞, which is a colimit: the initial object for the ‘direction’ λ > µ). Again,

a multiplicative function with values in w• will mean a sub-multiplicative

one.

6.1.2 Directed metrics

Now, as already recalled in 1.9.6, a generalised metric space X in the

sense of Lawvere [Lw1], called here a directed metric space or δ-metric

space, is a set X equipped with a δ-metric δ : X×X → [0,∞], satisfying

two of the classical axioms

δ(x, x) = 0, δ(x, y) + δ(y, z) > δ(x, z). (6.5)

This amounts to a category enriched over the symmetric monoidal

closed category w+ considered above, with δ(x, y) = X(x, y) the hom-

object in [0,∞]. (If the value ∞ is forbidden, δ is often called a quasi-

pseudo-metric, cf. [Ky]; but including it has crucial advantages, e.g. with

respect to limits and colimits.)

δMtr denotes the category of such δ-metric spaces, with (weak) con-

tractions f : X → Y , satisfying δ(x, x′) > δ(f(x), f(x′)) for all x, x′ ∈ X;

these mappings will also be called 1-Lipschitz maps or δ-maps. Isomor-

phisms in this category are isometric - and will be called isometric iso-

morphisms or 1-Lipschitz isomorphisms. Limits and colimits exist and

are calculated as in Set, with the δ-metric specified in 1.9.6.

The reversor endofunctor R : δMtr→ δMtr is based on the opposite

δ-metric space R(X) = Xop, with the opposite δ-metric, δop(x, y) =

δ(y, x).

A symmetric δ-metric, with δ = δop, is the same as an écart in

Bourbaki [Bk]. In this case, the object X will be called a δ-metric

space with symmetric δ-metric, even if the analogy with d-spaces would

rather require to speak of a ‘reversible’ δ-metric space. Unfortunately,

clashes of terminology coming from different frameworks cannot be en-

tirely avoided. More generally, according to a general definition (Section

1.2.1), a δ-metric space is reversive if it is isometrically isomorphic to its

opposite.

The notation X 6 X ′ means that these δ-metric spaces have the

same underlying set and δX 6 δX′ , or equivalently that the identity of

the underlying set is a δ-map X ′ → X.
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A δ-metric space has a canonical preorder (to be used later)

x ≺∞ x′ if δ(x, x′) <∞. (6.6)

A preordered set is the same as a δ-metric space with a truth-valued

metric δ : X×X → v, which takes values in {0,∞}, so that x ≺ x′ ⇔
δ(x, x′) = 0. The canonical preorder gives thus the left adjoint to this

embedding of the category of preordered sets in δMtr.

A δ-metric space X has a past topology and a future topology, defined

in 1.9.6. We will not use these constructions, but a ‘symmetric’ topology

enriched with the previous preorder, or with a d-structure (see 6.1.9).

6.1.3 Lipschitz maps

We introduce now the wider category δ∞Mtr of δ-metric spaces and

Lipschitz maps, also called δ∞ -maps.

An arbitrary mapping f : X → Y between δ-metric spaces has a Lip-

schitz weight ||f || ∈ [0,∞], defined as:

min{λ ∈ [0,∞] | ∀x, x′ ∈ X, δ(f(x), f(x′)) 6 λ.δ(x, x′)}, (6.7)

and f is a weak contraction, or 1-Lipschitz, if and only if ||f || 6 1.

More generally, we say that f is Lipschitz, or a Lipschitz map, when

||f || is finite. A Lipschitz isomorphism will be an isomorphism of this

wider category δ∞Mtr. The latter is finitely complete and cocomplete,

and the inclusion δMtr ⊂ δ∞Mtr preserves finite limits and colimits;

but, now, the δ-metric of a (co)limit is only determined up to Lipschitz

isomorphism.

The category δ∞Mtr is multiplicatively weighted by the Lipschitz

weight. By this we mean that every morphism f is assigned a weight

||f || ∈ [0,∞] so that:

||gf || 6 ||f ||.||g||, ||idX|| 6 1. (6.8)

(These two axioms imply that the weight of an identity can only be 1

or 0.) The subcategory δMtr, characterised by the condition ||f || 6 1,

inherits the same weight.

If X is a δ-metric space and λ ∈ [0,∞[, we will write λX the same

set equipped with the δ-metric λ.δX . (Recall that λ.∞ = ∞, for all

λ, cf. 6.1.1.) Thus, a δ∞ -map f : X → Y with ||f || 6 λ is the same

as a δ-map λX → Y . More generally, as in [Lw1], one can define λX

where λ : [0,∞] → [0,∞] is any increasing mapping with λ(0) = 0 and
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λ(µ + ν) 6 λ(µ) + λ(ν) (i.e. a lax monoidal functor w+ → w+). For

instance, the square-root mapping gives the δ-metric space
√
X.

6.1.4 Tensor product

The category δMtr has a ‘natural’ symmetric monoidal closed structure

([Lw1], p. 153). The tensor product X ⊗ Y is the cartesian product of

the underlying sets, with the l1-type δ-metric (instead of the l∞-type

δ-metric of the categorical product)

δ((x, y), (x′, y′)) = δ(x, x′) + δ(y, y′). (6.9)

It solves the usual universal problem, with respect to mappings which

are 1-Lipschitz in each variable. The exponential ZY is the set of 1-

Lipschitz maps Y → Z equipped with the δ-metric of uniform conver-

gence

δ(h, k) = supy δZ(h(y), k(y)) (y ∈ Y ),

= supyy′ (δZ(h(y), k(y′))− δY (y, y′)) (y, y′ ∈ Y ).
(6.10)

The proof of the adjunction is standard (and can be deduced from the

proof of Theorem 6.5.7). The cartesian and tensor products satisfy the

following inequalities

X×Y 6 X ⊗ Y 6 2.(X×Y ). (6.11)

In δ∞Mtr, these products are isomorphic and denote isomorphic

functors (in two variables). But, again, we will distinguish such objects

(and functors): the notation X×Y (resp. X ⊗ Y ) will always denote

the realisation of the cartesian product given by the δ-metric of l∞-type

(resp. l1-type).

6.1.5 Standard models

The line R and the standard interval I have the euclidean metric |x−y|.
Then, Rn and In have the product metric, supi|xi − yi|, while R⊗n and

I⊗n have the tensor product metric,
∑
i |xi − yi|.

But we are more interested in the following non-symmetric δ-metrics.

The standard δ-line δR has the δ-metric

δ(x, y) = y − x, if x 6 y, δ(x, y) =∞, otherwise. (6.12)

Its associated preorder is the natural order x 6 y (cf. 6.1.2).

The standard δ-interval δI = δ[0, 1] has the subspace structure of
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the δ-line. This also provides the cartesian powers δRn, δIn and the

tensor powers δR⊗n, δI⊗n. These δ-metric spaces have a non-symmetric

δ-metric (for n > 0), but are reversive; in particular, the canonical

reflecting isomorphism

r : δI→ (δI)op, r(t) = 1− t, (6.13)

will play a role, in reflecting paths and homotopies (in the opposite

space).

The standard δ-circle δS1 will be the coequaliser in δMtr of each of

the following two pairs of maps (equivalently)

∂−, ∂+ : {∗} ⇒ δI, ∂−(∗) = 0, ∂+(∗) = 1,

id, f : δR ⇒ δR, f(x) = x+ 1.

The ‘standard realisation’ of the first coequaliser is the quotient

(δI)/∂I,

which identifies the endpoints; δ(x, y) takes values in [0, 1[, and can be

viewed as measuring the length of the ‘counter-clockwise arc’ from x

to y, with respect to the whole circle. The structure 2π.δS1 is also of

interest: now, arcs are measured in radians.

More generally, the n-dimensional δ-sphere will be the quotient of the

monoidal δ-cube δI⊗n modulo its (ordinary) boundary ∂In,

δSn = (δI⊗n)/(∂In) (n > 0). (6.14)

Thus, for δS2, δ(x′, x′′) and δ(x′′, x′) are respectively the length of the

dashed and the dotted path, below

x′

x′′

•

•

;;

OO

//

On the other hand, δS0 = {−1, 1} will be given the discrete δ-metric,

infinite out of the diagonal (so that every mapping from this space to

any other is a contraction). All δ-spheres are reversive.
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6.1.6 The symmetric case

The full subcategory Mtr ⊂ δMtr of δ-metric spaces with a symmet-

ric δ-metric (Section 6.1.2) is reflective and coreflective in δMtr; the

inclusion preserves limits and colimits.

The coreflector, right adjoint to the embedding, is the well-known

procedure of symmetrisation d(x, x′) = max(δ(x, x′), δ(x′, x)), based on

the least symmetric δ-metric d > δ. It will not be used here, since (for

instance) it transforms the δ-metric of δR into the discrete δ-metric -

infinite out of the diagonal.

But we shall frequently use the reflector, based on the greatest sym-

metric δ-metric !δ 6 δ, which will be called the symmetrised δ-metric of

δ

! : δMtr→Mtr, !(X, δ) = (X, !δ),

!δ(x, x′) = infx (
∑
j (δ(xj−1, xj) ∧ δ(xj , xj−1)))

(x = (x0, ..., xp), x0 = x, xp = x′),

(6.15)

The associated topology will be called the symmetric topology of the

δ-metric space X; it is the one we are interested in.

This operation carries the δ-metric of δR to the euclidean metric. On

δRn the reflector gives a δ-metric !(δRn) with ε-disc as in the second

figure below, the convex hull of [−ε, 0]n ∪ [0, ε]n

(!δR)2 !(δR2) !(δR⊗2)

= (!δR)⊗2

2.(!δR)2

ε ε ε ε/2
//

OO

//

OO

//

OO

//

OO

(6.16)

while on the tensor powers δR⊗n it gives precisely the l∞-metric (!δR)⊗n,

with ε-disc as above, in the third figure. All these δ-metrics are Lipschitz-

equivalent (i.e. give Lipschitz isomorphic objects), as follows from com-

paring the discs above, and from the following more general result.

6.1.7 Proposition (Symmetrisation and products)

Given a finite family of δ-metric spaces X1, ..., Xn we have the following

inequalities (or equalities) for the δ-metrics obtained by symmetrisation,

product and tensor product (on the cartesian product of the underlying
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sets |X1|×...×|Xn|)∏
(!Xi) 6 !(

∏
Xi) 6 !(

⊗
Xi) =

⊗
(!Xi) 6 n.

∏
(!Xi). (6.17)

Therefore all these symmetric δ-metrics are Lipschitz-equivalent and

induce the same topology.

Proof An element of
∏
i|Xi| is written as x = (xi). Recall the notation

δX(x, x′) = X(x, x′), which comes from viewing a δ-metric space as an

enriched category (Section 6.1.2). The only non-standard point of the

argument is the ‘backward’ inequality for the tensor product, proved in

(c).

(a) First, to compare
∏

(!Xi) and !(
∏
Xi), note that∏

(!Xi)(x,y) = supi(!Xi)(xi, yi) 6 supiXi(xi, yi) = (
∏
Xi)(x,y);

since
∏

(!Xi) is symmetric, it follows that
∏

(!Xi) 6 !(
∏
Xi).

(b) The second inequality, !(
∏
Xi) 6 !(

⊗
Xi), is a straightforward con-

sequence of
∏
Xi 6

⊗
Xi.

(c) We now prove that !(
⊗
Xi) =

⊗
(!Xi). The δ-metric of the latter is:⊗

(!Xi)(x,y) =
∑
i(!Xi)(xi, yi) 6

∑
iXi(xi, yi) = (

⊗
Xi)(x,y).

Since
⊗

(!Xi) is symmetric, we have
⊗

(!Xi) 6 !(
⊗
Xi). The opposite

inequality is more subtle: take a sequence of n+1 points zj , which varies

from x to y, by changing one coordinate at a time

zj = (y1, ..., yj , xj+1, ..., xn), z0 = x, zn = y (j = 0, ..., n).

and apply the triangular inequality:

!(
⊗
Xi)(x,y) 6

∑
j !(

⊗
Xi)(z

j−1, zj).

Now, zj−1 and zj only differ at the j-th coordinate (xj or yj , respec-

tively); restricting the domain of the ‘inf’ in the right term above to

those sequences in !(
⊗
Xi) where only the j-th coordinate changes, we

get the δ-metric !Xj , and the inequality:∑
j !(

⊗
Xi)(z

j−1, zj) 6
∑
j (!Xj)(xj , yj) =

⊗
(!Xi)(x,y).

(d) Finally, the last inequality in (6.17) is obvious.



364 Elements of weighted algebraic topology

6.1.8 Definition and Proposition (The length of paths)

Let X be a δ-metric space and a : I → X a mapping of sets. We define

its span spn(a) and its length L(a) with the following functions, taking

values in [0,∞] (t stands for a finite strictly increasing sequence (ti) of

points in I)

spn(a) = supt δ(a(t0), a(t1)) (0 6 t0 < t1 6 1),

Lt(a) =
∑
j δ(a(tj−1), a(tj)) (0 = t0 < t1 < ... < tp = 1),

L(a) = supt Lt(a).

(6.18)

These functions satisfy the following properties, where ||a|| is the Lip-

schitz weight (Section 6.1.3), 0x is the constant path at a point x, a+ b

denotes a concatenation of consecutive paths, and Y is another δ-metric

space

(a) spn(0x) = L(0x) = 0,

(b) spn(a+ b) 6 spn(a) + spn(b), L(a+ b) = L(a) + L(b),

(c) spn(aρ) 6 spn(a), L(aρ) 6 L(a)

(for every weakly increasing map ρ : I→ I),

(d) spn(aρ) = spn(a), L(aρ) = L(a)

(for every increasing homeomorphism ρ : I→ I),

(e) spn(a, b) = spn(a) + spn(b), L(a, b) = L(a) + L(b)

(for all paths (a, b) : I→ X ⊗ Y ),

(f) spn(a) 6 L(a) 6 ||a||,
(g) L is the least function on ‘set-theoretical paths’ which is strictly addi-

tive for concatenation, invariant for reparametrisation on increasing

homeomorphisms I→ I and satisfies L > spn,

(h) spn(f ◦a) 6 ||f ||.spn(a), L(f ◦a) 6 ||f ||.L(a)

(for all δ∞ -maps f : X → Y ),

(i) for a mapping a : I→ δR⊗n, we have:

L(a) = spn(a) =
∑
i(ai(1)− ai(0)) if a is (weakly) increasing,

and L(a) =∞ otherwise.

Finally, note that the length L(a) can be finite even when a is not

Lipschitz, i.e. ||a|| =∞.

Proof The properties of the span being obvious, we only verify those of

the length. Note that, if the partition t′ is finer than t, then Lt(a) 6
Lt′(a), because of the triangular property of δ-metrics.

Point (a) is obvious. For (b), the inequality L(a + b) 6 L(a) + L(b)

follows easily from the previous remark: given a partition t for c = a+b,



6.1 Generalised metric spaces 365

call t′ its refinement by introducing the point t = 1/2 (if missing); thus

Lt(c) 6 Lt′(c) and the latter term can be split into two summands

6 L(a) + L(b). For the other inequality, it is sufficient to note that a

partition for a and one for b yield a partition of [0, 2], which can be

scaled down to the standard interval.

Point (c) is obvious, since L(aρ) is computed on the partitions of

ρ[0, 1] ⊂ [0, 1]; (d) is a consequence. For (e), the inequality L(a, b) 6
L(a)+L(b) is obvious, and the other follows again from the first remark:

given a partition for a and one for b, by using a common refinement for

both we get higher values.

Finally, points (f) - (h) are plain; (i) is obvious for n = 1, and follows

from (e) for higher n. For the last remark, taking X = δR, the square-

root map f : I → R is not Lipschitz but has a finite length, as any

increasing path: L(f) = f(1)− f(0) = 1.

6.1.9 The associated topology and direction

A δ-metric space X will be equipped with the symmetric topology, de-

fined by the symmetric δ-metric !δ (Section 6.1.6). In other words, we

are composing the functor ! : δMtr →Mtr with the ordinary forgetful

functor Mtr→ Top. Furthermore, we will keep a trace of the ‘directed’

information of the original δ in two main ways, based on the previous

settings for directed algebraic topology.

The simplest, if a rather poor way, is by the associated preorder x ≺∞
y, defined by δ(x, y) < ∞ (see (6.6)). We have thus a forgetful functor

with values in the category pTop of preordered spaces and continuous

preorder-preserving mappings

p : δMtr→ pTop, (δ∞Mtr→ pTop), (6.19)

which preserves finite products, since the symmetrising functor ! : δMtr

→Mtr preserves finite products up to Lipschitz isomorphism (Proposi-

tion 6.1.7) and δ(x, y) <∞ if and only if this holds on all components.

Thus p(δRn) = p(δR⊗n) = ↑Rn is the euclidean n-dimensional space

with the product order. Similarly, p(δIn) = p(δI⊗n) = ↑In. But a

preorder is a poor way of describing direction, which does not allow for

non-reversible loops. For instance, p(δS1) gets the indiscrete preorder

and misses any information of direction.

A more accurate way of keeping the ‘directed’ information of the orig-
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inal δ is using d-spaces. We now have a forgetful functor

d : δMtr→ dTop, (δ∞Mtr→ dTop), (6.20)

which equips a δ-metric space X with the associated symmetric topology

and the d-structure where a (continuous) path a : I→ X is distinguished

if and only if it is L-feasible, i.e. it has a finite length L(a) (see (6.18)).

The axioms of d-spaces are satisfied (by Proposition 6.1.8): distin-

guished paths contain all the constant ones, are closed under concate-

nation and partial reparametrisation by weakly increasing maps I → I.

And, of course, a Lipschitz map f : X → Y of δ-metric spaces preserves

feasible paths. It will be important to note that this functor takes the

tensor (or cartesian) product of δ∞Mtr (or δMtr) to the cartesian

product of d-spaces (where a path is distinguished if and only if its two

components are).

Now, in dTop, d(δS1) = ↑S1 = ↑I/∂I is the standard directed circle

(Section 1.4.3), where path are only allowed to turn in a given direction.

In fact, it is sufficient to consider a continuous mapping a : I → I and

its image in the circle a′ : I → I/∂I. If a is increasing, then L(a′) =

L(a) = a(1) − a(0) is a ’finite’ number. Otherwise, it is easy to prove

that, for every n > 3, there exists a partition tn of I in n subintervals,

with a(t1) > ... > a(tn−1); this gives Ltn(a′) > n3 and L(a′) =∞.

The functor d need not preserve quotients: for instance, d(δR) = ↑R
is the standard directed line, with the increasing paths as distinguished

ones; the quotient d-space ↑R/Gϑ, modulo the action of the dense sub-

group Gϑ = Z + ϑZ (for an irrational number ϑ), is a non-trivial ob-

ject, with the homology of the 2-dimensional torus (Section 2.5.2), while

(δR)/Gϑ has a trivial δ-metric, always zero. A finer notion of ‘weighted

space’, studied in Sections 6.5-6.7, will be able to express such phenom-

ena within weighted algebraic topology (not just the directed one).

Note that the forgetful functor dTop→ pTop provided by the path-

preorder x � x′ (there is a distinguished path from x to x′), applied

to a d-space of type dX, gives a finer preorder than pX, generally

more interesting than the latter (two points at a finite distance may be

disconnected, or not linked by a feasible path.)

6.2 Elementary and extended homotopies

The standard δ-interval δI generates a cylinder endofunctor, which yields

elementary homotopies in δMtr, and extended homotopies in δ∞Mtr.

We need both.
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6.2.1 Elementary and extended paths

Let X be a δ-metric space. An elementary path (resp. an extended path,

or Lipschitz path) in X will be a 1-Lipschitz (resp. a Lipschitz) map

a : δI → X. Applying the forgetful functors that we have seen in the

previous section (cf. (6.20)), we always have an associated path da : ↑I→
dX.

Thus, a set-theoretical mapping a : I → X is an elementary path if

and only if ||a|| 6 1, for the Lipschitz weight (6.7)

||a|| = min{λ ∈ [0,∞] | ∀ t 6 t′, δ(a(t), a(t′)) 6 λ.(t′ − t)}, (6.21)

and is an extended path if and only if ||a|| < ∞. Elementary paths

cannot be concatenated, because - loosely speaking - this procedure

doubles the velocity, whose least upper bound is the Lipschitz weight.

Recall that the (finite) length L(a) 6 ||a|| has been defined in 6.1.8, and

that a continuous path in X, of finite length, need not be Lipschitz.

The reflected (elementary or extended) path is obtained in the obvious

way

aop = ar : δI→ Xop, r(t) = 1− t, (6.22)

A reversible extended path is a mapping a : I → X such that both a

and aop are extended paths δI → X. This amounts to a Lipschitz map

a : !δI→ X, with respect to the ordinary metric |t− t′| of the euclidean

interval.

6.2.2 The elementary cylinder

The symmetric monoidal closed category δMtr has a symmetric monoidal

dIP2-homotopical structure, which arises from the δ-interval δI.

Indeed, the latter is a monoidal symmetric dIP2-interval in δMtr,

with the usual structural maps (for α = ±)

{∗}
∂α // // δI
e
oo δI⊗2

gαoooo r : δI→ δIop, s : δI⊗2 → δI⊗2. (6.23)

∂α(∗) = α, g−(t, t′) = max(t, t′), g+(t, t′) = min(t, t′),

r(t) = 1− t, s(t, t′) = (t′, t).

We have thus the elementary cylinder endofunctor

I : δMtr→ δMtr, I(−) = −⊗ δI, (6.24)
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with natural transformations, denoted - as always - by the same symbols

and names

1
∂α //// I
e
oo I2

gαoo oo r : IR→ RI, s : I2 → I2. (6.25)

Its right adjoint, the elementary-path functor, or elementary cocylin-

der, is

P : δMtr→ δMtr, P (Y ) = Y δI. (6.26)

The δ-metric space Y δI is the set of elementary paths δMtr(δI, Y )

with the δ-metric of uniform convergence (6.10). The lattice structure

of δI in dTop gives - contravariantly - a dual structure on P .

The name of ‘elementary paths’ is meant to suggest that such paths

cannot be concatenated as such, as we consider now.

6.2.3 The Lipschitz cylinder

The category δ∞Mtr has a symmetric dI4-homotopical structure, based

on the Lipschitz cylinder endofunctor

I : δ∞Mtr→ δ∞Mtr, I(−) = −⊗ δI. (6.27)

After the basic part, which is the same as above, we have to consider

concatenation. Given two consecutive Lipschitz paths a, b : δI → X,

with a(1) = b(0), the usual construction gives a concatenated path

a+ b : δI→ X, ||a+ b|| 6 2.max(||a||, ||b||), (6.28)

(which need not be elementary, when a and b are). As usual, this can

be dealt with a concatenation pushout.

In the category δMtr, pasting two copies of the standard δ-interval,

one after the other, can be realised as δ[0, 2] ⊂ δR, or (isometrically) as

2.δI (with the double δ-metric)

{∗} ∂+
//

∂−

��

δI

c−

��

c−(t) = t/2,

δI
c+
// 2.δI c+(t) = (t+ 1)/2.

(6.29)

Of course, this is of no help to concatenate elementary paths. But,

in the category δ∞Mtr, this pushout can be realised as the Lipschitz-

isomorphic object δI. This yields the left diagram below, which will be
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called the standard concatenation pushout in δ∞Mtr (it lives in δMtr,

but is not a pushout there)

{∗} ∂+
//

∂−

��

δI

c−

��

X
∂+
//

∂−

��

X ⊗ δI

c−

��
δI

c+
// δI X ⊗ δI

c+
// X ⊗ δI

(6.30)

c−(x, t) = (x, t/2), c+(x, t) = (x, (t+ 1)/2).

This pushout is preserved by any functor X ⊗ −, yielding the right-

hand pushout above (or, equivalently, by X×−). In fact, X⊗− : δMtr→
δMtr preserves the pushout (6.29), as a left adjoint; and the embedding

δMtr→ δ∞Mtr preserves finite colimits (Section 6.1.3).

Now we complete the dI4-homotopical structure of δ∞Mtr, as for d-

spaces: we take J = I, c = idI and define the acceleration ζ : I2 → I by

zX = X⊗ζ, where ζ : δI⊗δI→ δI is defined in (4.52) (and is Lipschitz).

The embedding U : δMtr → δ∞Mtr is a dI2-homotopical functor.

It gives to δMtr the structure of a relative dI-homotopical category

(Section 5.8.1), with relative equivalences consisting of the δ-maps which

are homotopy equivalences in δ∞Mtr.

6.2.4 Homotopies

An elementary homotopy ϕ : f → g : X → Y is defined as a δ-map

ϕ : IX = X⊗δI→ Y whose two faces are f and g, respectively: ∂−(ϕ) =

ϕ∂− = f , ∂+(ϕ) = ϕ∂+ = g. In particular, an elementary path is a

homotopy between two points, a : x→ x′ : {∗} → X.

More generally, an extended homotopy, or Lipschitz homotopy, is a

Lipschitz map ϕ : X ⊗ δI→ Y ; an extended path is an extended homo-

topy between two points, a : x → x′ : {∗} → X. (Note that a Lipschitz

map defined on the singleton is always a δ-map.)

An extended homotopy has a Lipschitz weight ||ϕ||, which is 6 1 if

and only if ϕ is elementary.

Reflected homotopies (elementary or extended) live in the opposite

‘spaces’ (as for paths, in (6.22))

ϕop : Rg → Rf : RX → RY, ϕop = Rϕ.rX : I(RX)→ RY. (6.31)

In both cases, elementary and extended, the main operations given by
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the cylinder functor (for ϕ : f → g : X → Y ; h : X ′ → X; k : Y → Y ′;

ψ : g → h : X → Y ) are:

(a) whisker composition of (elementary or extended) maps and homo-

topies

k◦ϕ◦h : kfh→ kgh (k◦ϕ◦h = k.ϕ.Ih : IX ′ → Y ′),

(b) trivial homotopies: 0f : f → f (0f = fe : IX → Y ),

and satisfy the axioms of dh1-categories (Section 1.2.9), for associativity,

identities and reflection.

In δ∞Mtr consecutive homotopies can be pasted via the concatena-

tion pushout of the cylinder functor (the right-hand diagram in (6.30)).

The concatenation ϕ + ψ of two consecutive homotopies (∂+ϕ = ∂−ψ)

is thus computed as usual:

(ϕ+ ψ)(x, t) =

{
ϕ(x, 2t), for 0 6 t 6 1/2,

ψ(x, 2t− 1), for 1/2 6 t 6 1.
(6.32)

As always in directed algebraic topology, homotopy equivalence is a

complex notion, which has to be considered not only for ‘spaces’ but also

for their algebraic counterpart - weighted categories. This will be briefly

considered in Section 6.4.

Extended double homotopies and 2-homotopies are based on the sec-

ond order cylinder I2X = X ⊗ δI2, and treated as in any dI4-category:

see 4.1.1 and Section 4.5.

All the homotopy constructions of Chapter 1 can now be performed,

in δMtr and (consistently) in δ∞Mtr: homotopy pushouts and pull-

backs; mapping cones, suspension and cofibration sequences; homotopy

fibres, loop-objects and fibration sequences (in the pointed case). The

higher properties of this machinery, as studied in Chapter 4, need con-

catenation, and work in δ∞Mtr, but can be partially extended to δMtr

in the relative sense of Section 5.8.

6.3 The fundamental weighted category

After sketching the theory of weighted categories and their elementary

and extended homotopies, we will define the fundamental weighted cat-

egory of a δ-metric space. Non obvious computations are based on a van

Kampen-type theorem, 6.3.8.

Small categories are generally written in additive notation.
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6.3.1 Weighted categories

An additively weighted category will be a category X where every mor-

phism a is equipped with a weight, or cost, w(a) ∈ [0,∞] (or wX(a)),

so that two obvious axioms are satisfied, for identities and composition

(written in additive notation):

(w+cat.0) w(0x) = 0, for all objects x of X,

(w+cat.1) w(a+ b) 6 w(a) + w(b), for all consecutive arrows a, b.

This was called a ‘normed category’ by Lawvere (see [Lw1]), but we

also have to consider multiplicatively weighted categories, as δ∞Mtr

(Section 6.1.3). We will generally let the term ‘additive’ understood,

and specify the term ‘multiplicative’ when it is the case.

We also speak of a w+-category, for short. The weight is said to be

linear, or strictly additive, if w(a+ b) = w(a) + w(b) for all composites.

A w+-functor f : X → Y , or 1-Lipschitz functor, is a functor between

such categories which satisfies the condition w(f(a)) 6 w(a), for all

morphisms a of X. We write wCat, or w+Cat, the category of (small)

w+-categories and such functors. (Here we do not use the multiplicative

analogue w•Cat, for which one can see [G19]).

The opposite weighted category Xop is the opposite category with the

‘same’ weight.

As for δ-metric spaces, we also need the bigger category w∞Cat of

weighted categories and Lipschitz functors f : X → Y , or w∞-functors,

i.e. the functors between weighted categories having a finite Lipschitz

weight

||f || = min{λ ∈ [0,∞] | ∀ a ∈ Mor(X), wY (f(a)) 6 λ.wX(a)}. (6.33)

(Lipschitz natural transformations will be defined in 6.3.4.) With this

weight, the category w∞Cat is multiplicatively weighted (cf. 6.1.3). This

is also true of wCat, which is the subcategory of all the functors f such

that ||f || 6 1.

A weighted monoid is a small weighted category on one (formal) ob-

ject. We have thus the full subcategories wMon and w∞Mon of wCat

and w∞Cat, respectively.

Weighted categories can be viewed as categories enriched over the

symmetric monoidal closed category w+Set of weighted sets: an object

is a set X equipped with a mapping w : X → w+; a morphism is a

mapping f : X → Y between weighted sets, such that w(f(x)) 6 w(x)

for all x ∈ X. The tensor product X ⊗Y is the cartesian product of the

underlying sets, with w(x, y) = w(x) + w(y) (see [G19]).
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6.3.2 Proposition (The monoidal closed structure)

The category wCat has a symmetric monoidal closed structure, with

tensor product X⊗Y consisting of the cartesian product of the underlying

categories, equipped with the l1-weight on a map (a, b) : (x, y)→ (x′, y′)

w⊗(a, b) = w(a) + w(b). (6.34)

The internal hom ZY is the category of 1-Lipschitz functors h : Y → Z

and all natural transformations ϕ : h → k between such functors, with

the (plainly sub-additive) weight:

W (ϕ) = supy wZ(ϕ(y)), (y ∈ ObY ). (6.35)

Proof First, a 1-Lipschitz functor f : X ⊗ Y → Z defines a functor

g : X → ZY , sending an object x to the 1-Lipschitz functor

g(x) = f(x,−) : Y → Z,

wZ(g(x)(b)) = wZ(f(0x, b)) 6 w⊗(0x, b) = w(b),

and the X-morphism a : x → x′ to the natural transformation g(a) =

f(a,−) : g(x)→ g(x′). The functor g itself is a contraction:

W (g(a)) = supy wZ(g(a)(y)) = supy wZ(f(a, 0y))

6 supy w⊗(a, 0y) = w(a).

Conversely, given a 1-Lipschitz functor g : X → ZY , we define the

functor f : X ⊗ Y → Z in the usual, obvious way, and verify that it is

1-Lipschitz, on a map (a, b) : (x, y)→ (x′, y′)

wZ(f(a, b)) = wZ(g(a)(y) + g(x′)(b)) 6 wZ(g(a)(y)) + wZ(g(x′)(b))

6 w(a) + w(b).

The last inequality above comes from:

wZ(g(a)(y)) 6 supy′ wZ(g(a)(y′)) = W (g(a)) 6 w(a).

6.3.3 The elementary cylinder of weighted categories

Directed homotopy in wCat is a non-trivial enrichment of what we have

already seen in Cat (Section 1.1.6).

The directed interval w2 is now the usual order category 2 = {0→ 1}
on two objects, enriched with the weight w(0 → 1) = 1 on the unique

non-trivial arrow. Taking into account the symmetric monoidal closed
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structure of wCat considered above, w2 is a monoidal dIP2-interval, and

yields a symmetric monoidal dIP2-homotopical structure, made concrete

by the monoidal unit 1.

We have thus the elementary cylinder endofunctor of weighted cate-

gories

I : wCat→ wCat, I(−) = −⊗ w2. (6.36)

An elementary path in the weighted category Y is a map w2 → Y ,

and amounts to an elementary arrow b : y → y′ (of weight 6 1).

The right adjoint to I, called the elementary path functor, or elemen-

tary cocylinder, is

P : wCat→ wCat, P (Y ) = Y w2, (6.37)

where Y w2, is the category of elementary arrows of Y and their ‘un-

bounded’ commutative squares in Y , with weight

W (b, b′) = max(w(b), w(b′)).

Therefore, an elementary homotopy, or elementary natural transforma-

tion ϕ : f → g : X → Y , is the same as a natural transformation between

1-Lipschitz functors, which satisfies w(ϕ(x)) 6 1 for all x ∈ X.

Such homotopies cannot be concatenated, since their vertical composi-

tion need not be elementary. An elementary isomorphism of 1-Lipschitz

functors will be an elementary natural transformation having an inverse

in the same domain; this amounts to an invertible natural transforma-

tion ϕ such that max(w(ϕ(x)), w(ϕ−1(x))) 6 1, for all points x.

6.3.4 The Lipschitz cylinder of weighted categories

On the other hand, the category w∞Cat has a regular symmetric dI4-

homotopical structure, based on the same directed interval and the re-

sultant Lipschitz cylinder endofunctor (which here is ‘cartesian’)

I : w∞Cat→ w∞Cat, I(−) = −⊗ w2. (6.38)

Now, an extended path in the weighted category X is a Lipschitz func-

tor a : w2→ X, and amounts to a feasible arrow a : x→ x′, i.e. an arrow

with a finite weight w(a); the latter coincides with the Lipschitz weight

||a||, as a functor on w2.

The standard concatenation pushout gives the ordinal w3 (cf. 4.3.2 for
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Cat), equipped with the linear weight resulting from the pasting

1
∂+
//

∂−

��

w2

c−

��

w(0→ 1) = w(1→ 2) = 1,

w2
c+
// w3 w(0→ 2) = 2,

(6.39)

c : w2→ w3, c(0→ 1) = (0→ 2) (concatenation map).

The concatenation map c is the same as in Cat; notice that its weight

is 2. Concatenation of extended paths amounts to composition in X,

and is thus strictly associative, with strict identities.

This pushout is preserved by any functor X⊗−, yielding the concate-

nation pushout JX of the Lipschitz cylinder and the transformation

c : I → J , which complete the regular symmetric dI4-homotopical struc-

ture of w∞Cat.

A Lipschitz homotopy, or Lipschitz natural transformation ϕ : f →
g : X → Y , is a Lipschitz functor ϕ : X ⊗w2→ Y . In other words, it is

an ordinary natural transformation, viewed as a functor ϕ : X×2 → Y

whose Lipschitz weight ||ϕ|| is finite. We prove below that:

||ϕ|| = max(||f ||, ||g||, |ϕ|),

where we call |ϕ| the reduced weight of f

|ϕ| = supxwY (ϕ(x))

= min{λ ∈ [0,∞] | ∀x ∈ X, wY (ϕ(x)) 6 λ}.
(6.40)

Equivalently, ϕ is a natural transformation of Lipschitz functors which

has a finite reduced weight |ϕ|. The concatenation of such natural trans-

formations, computed with the J-pushout, is by vertical composition.

The symbol w∞Cat will also denote the 2-category of weighted cate-

gories, Lipschitz functors and Lipschitz natural transformations.

The embedding U : wCat → w∞Cat is a dI2-homotopical functor.

It gives to wCat the structure of a relative dI-homotopical category

(Section 5.8.1), with relative equivalences consisting of the 1-Lipschitz

functors which are Lipschitz equivalences in w∞Cat.

6.3.5 Lemma

(a) Let X,Y be weighted categories and ϕ : f → g : X → Y a natural

transformation of arbitrary functors. Then the Lipschitz weight of ϕ as
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a functor X ⊗ w2→ Y is

||ϕ|| = max(||f ||, ||g||, |ϕ|), (6.41)

where |ϕ| is the reduced weight |ϕ| defined above, in (6.40).

(b) The interval w2 is not exponentiable in w∞Cat.

Proof (a) The following computations give the thesis, where a : x→ x′

is in X, u = (0 → 1) is the non trivial arrow of w2 and b = ϕ(a, u) =

g(a)◦ϕ(x)

ϕ(a, id(0)) = f(a), w(f(a)) 6 ||f ||.w(a),

ϕ(a, id(1)) = g(a), w(g(a)) 6 ||g||.w(a),

w(b) 6 w(f(a)) + w(ϕ(x′)) 6 ||f ||.w(a) + |ϕ|
6 (||f || ∨ |ϕ|).(w(a) + 1) 6 (||f || ∨ |ϕ|).w(a, u).

(b) Suppose, for a contradiction, that w2 is exponentiable. It is easy

to show that Y w2 must have as underlying category Y 2. Now, if X

is discrete, a natural transformation ϕ : f → g : X → Y is a Lipschitz

functor ϕ : X ⊗ w2 → Y if and only if |ϕ| is finite; but, viewed as a

functor ϕ : X → Y 2, it only reaches identity maps, and every weight of

Y 2 makes it into a Lipschitz functor.

6.3.6 The fundamental weighted category

Let us come back to a δ-metric space X, and construct its fundamental

weighted category.

Let us recall that an extended path in X is a δ∞ -map a : δI→ X.

An extended double path is a δ∞ -map A : δI2 → X. A 2-path is a

double path whose faces ∂α1 are degenerate, and a 2-homotopy A : a ≺2

b : x → x′ between its faces ∂α2 , which have the same endpoints. A 2-

homotopy class of paths [a] is a class of the equivalence relation ' 2

spanned by the preorder ≺2.

Since δ∞Mtr is a dI4-category, made concrete by the standard point

{∗}, we already have the fundamental category ↑Π1(X) of the δ-metric

space X (Section 4.5.7). An object is a point of X; an arrow [a] : x→ x′

is a 2-homotopy class of paths from x to x′; composition is induced by

concatenation of consecutive paths, and identities come from degenerate

paths

[a] + [b] = [a+ b], 0x = [e(x)] = [0x]. (6.42)
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We make ↑Π1(X) into the fundamental weighted category wΠ1(X),

by enriching it with a weight. This is defined on an arrow ξ : x→ x′, by

evaluating the length L(a) of the extended paths which belong to this

2-homotopy class (Section 6.1.8), and taking their greatest lower bound

w(ξ) = infa∈ξ L(a). (6.43)

The axioms of (sub)additive weights follow immediately from the

properties of L (see 6.1.8)

w(0x) = 0, w([a] + [b]) 6 w[a] + w[b].

On a δ∞ -map f : X → Y of δ-metric spaces, we get a w∞-functor

f∗ = wΠ1(f) : wΠ1(X)→ wΠ1(Y ),

wΠ1(f)(x) = f(x), wΠ1(f)[a] = f∗[a] = [fa],

w(f∗[a]) 6 ||f ||.w[a], ||f∗|| 6 ||f ||.
(6.44)

All this forms a functor wΠ1 : δ∞Mtr→ w∞Cat, with values in the

category of additively-weighted small categories and Lipschitz functors.

This functor restricts to δMtr → wCat, because of the last inequal-

ity above; but, of course, wΠ1(X) is still based on extended paths. In

particular, wΠ1 preserves Lipschitz isomorphisms and isometric isomor-

phisms.

Finally, a δ∞ -homotopy ϕ : f → g : X → Y yields a Lipschitz natural

transformation

ϕ∗ : f∗ → g∗ : wΠ1(X)→ wΠ1(Y ),

w(ϕ∗(x)) = w[ϕ(x)] 6 ||ϕ||, ||ϕ∗|| 6 ||ϕ||,
(6.45)

so that wΠ1 : δ∞Mtr → w∞Cat is a morphism of dh1-categories, as

well as its restriction δMtr→ wCat to the 1-Lipschitz case.

Here also, the fundamental weighted category of X is related to the

fundamental groupoid of the underlying space UX, by an obvious com-

parison functor

wΠ1(X)→ Π1(UX), x 7→ x, [a] 7→ [a]. (6.46)

6.3.7 Geodesics

In a δ-metric space X, we say that an extended path a : x → x′ is a

homotopic geodesic if it realises the weight of its class, L(a) = w[a], which

amounts to saying that L(a) 6 L(a′) for all extended paths a′ '2 a.

We say that X is geodetically simple if every arrow ξ : x → x′ of
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its fundamental weighted category wΠ1(X) has some representative a

which realises its weight: L(a) = w(ξ); the path a is then a homotopic

geodesic.

We say that X is 1-simple if its fundamental category wΠ1(X) is a

preorder: all hom-sets have at most one arrow.

The δ-metric spaces δRn, δR⊗n are geodetically simple and 1-simple;

all their convex subspaces are also (cf. 3.2.7(a)). The pierced plane

(!δR)2 \{0} is not geodetically simple, nor 1-simple. The δ-metric sphere

δS1 is geodetically simple and not 1-simple.

Being geodetically simple is ‘somehow’ related to completeness of the

δ-metric, as it appears from these examples. Notice that a non-complete

space, like δ]0, 1[⊂ δR can be geodetically simple, but it is also true that

all its extended paths x → x′ (between two given points) stay in the

compact subspace δ[x, x′].

6.3.8 Pasting Theorem

(’Seifert - van Kampen’ for fundamental weighted categories)

Let X be a δ-metric space; let X1, X2 be two subspaces and X0 = X1∩X2.

If X = int(X1)∪ int(X2), the following diagram of weighted categories

and contracting functors (induced by inclusions) is a pushout in wCat

wΠ1X0
u1 //

u2

��

wΠ1X1

v1
��

wΠ1X2 v2
// wΠ1X

(6.47)

Proof As in Theorem 3.2.6.

6.3.9 Homotopy monoids

The fundamental weighted monoid wπ1(X,x) of the δ-metric space X at

the point x is the (additively) weighted monoid of endo-arrows x → x

in wΠ1(X). It forms a functor from the (obvious) category δMtr• of

pointed δ-metric spaces, to the category of weighted monoids (Section

6.3.1)

wπ1 : δMtr• → wMon, wπ1(X,x) = wΠ1(X)(x, x). (6.48)

This functor is strictly homotopy invariant: a pointed homotopy ϕ :

f → g : (X,x)→ (Y, y) has, by definition, a trivial path at the base-point
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(ϕ(x) = 0y), whence the naturality square of every endomap a : x → x

of X gives f∗[a] = g∗[a] (as for d-spaces, see 3.2.5).

6.4 Minimal models

This is a brief exposition of how the minimal models developed in Chap-

ter 3 for the fundamental category of a d-space can be enriched, in the

present weighted setting.

6.4.1 The fundamental weighted category of a square annulus

Let us begin with an elementary example, enriching with a δ-metric the

‘square annulus’ analysed in 3.1.1, as an ordered space.

We start now from the δ-metric space δI⊗2, with

δ(x,y) =

{
(y1 − x1) + (y2 − x2), if x1 6 y1, x2 6 y2,

∞, otherwise.
(6.49)

Its underlying ordered topological space (cf. (6.19)) is the ordered

topological square ↑I2
(with euclidean topology and product order).

Taking out the open square ]1/3, 2/3[2 (marked with a cross), we get

the square annulus X ⊂ δI⊗2, with the induced δ-metric

X L L′

x

x′

× ×
•

•

OO OO
(6.50)

Its extended paths are the Lipschitz order-preserving maps δ[0, 1]→ X

defined on the standard δ-interval; they move ‘rightward and upward’

(in the weak sense). Extended homotopies of such paths are Lipschitz

order-preserving maps ↑[0, 1]2 → X.

As a consequence of the ‘van Kampen’ theorem recalled above (using

the subspaces L,L′), the fundamental weighted category C = wΠ1(X)

is the category described (in 3.1.1) for the underlying ordered space,

equipped with the appropriate weight. Moreover, the weight of an ar-

row can always be realised as the length of some representative: X is

geodetically simple (Section 6.3.7).

Thus, the weighted category C is ‘essentially represented’ by the full
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weighted subcategory E on four vertices 0, p, q, 1 (the central cell does

not commute), where each of the four generating arrows has weight 2/3,

and the weight of E is linear (i.e. strictly additive on composition)

E

×

0

p

q

1

0→ p ⇒ q → 1

E
•

•

•

•

??

OO OO

??

(6.51)

The situation can be analysed as in 3.1.1, adding the information due

to the weight:

• the action begins at 0, from where we move to the point p, with weight

2/3,

• p is an (effective) future branching point, where we have to choose

between two paths, each of them of weight 2/3, which join at q, an

(effective) past branching point,

• from where we can only move to 1, again with weight 2/3, where the

process ends.

In order to make precise how E can ‘model’ the category C, we have

proved in Chapter 3 that E is both future equivalent and past equivalent

to C, and actually is the ‘join’ of a minimal future model with a minimal

past model of the latter. All this can now be enriched with weights.

6.4.2 Future equivalence of weighted categories

The notion of future equivalence can be easily transferred from Cat

(Section 3.3) to the 2-category w∞Cat, since it makes sense and works

well in any 2-category.

Thus, a future equivalence (f, g;ϕ,ψ) between the weighted categories

C,D consists of a pair of Lipschitz functors and a pair of Lipschitz

natural transformations, the units, satisfying two coherence conditions:

f : X � Y : g ϕ : 1X → gf, ψ : 1Y → fg,

fϕ = ψf : f → fgf, ϕg = gψ : g → gfg (coherence).
(6.52)

and is said to be elementary, or 1-Lipschitz, if both functors and both

natural transformations are.
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Future equivalences compose (cf. 3.3.3), and yield an equivalence re-

lation of weighted categories; the elementary ones do not. Dually, past

equivalences have counits, in the opposite direction.

In particular, an elementary future retract i : C0 ⊂ C will be a full

weighted subcategory having a reflector p a i which is 1-Lipschitz, has

a 1-Lipschitz unit η : 1C → ip and a trivial counit pi = 1. The coherence

conditions of the adjunction (ηi = 1i, pη = 1p) show that the four-tuple

(i, p; 1, η) is an elementary future equivalence.

A (weighted) pf-presentation of the weighted category C (extending

3.5.2) will be a diagram consisting of an elementary past retract P and

an elementary future retract F of C (which are thus a full coreflective

and a full reflective weighted subcategory, respectively) with elementary

adjunctions i− a p− and p+ a i+

P
i− // C
p−
oo

p+ // F
i+
oo (6.53)

ε : i−p− → 1C (p−i− = 1, p−ε = 1, εi− = 1),

η : 1C → i+p+ (p+i+ = 1, p+η = 1, ηi+ = 1).

6.4.3 Spectra

Coming back to the square annulus X (Section 6.4.1), the weighted cat-

egory C = wΠ1(X) has a least full reflective weighted subcategory F ,

which is future equivalent to C and minimal as such. Its objects form the

future spectrum sp+(C) = {p, 1} (Section 3.8.1); the full weighted sub-

category F = Sp+(C) on these objects is also called a future (weighted)

spectrum of C

E F P

× × ×

•

•

•

•

•

•

•

•

0

p

q

1

p

1

0

q

??

OO OO

??

OO
//

//
OO

(6.54)

Dually, we have the least full coreflective weighted subcategory P =

Sp−(C), on the past spectrum sp−(C) = {0, q}.
Together, they form a (weighted) pf-presentation of C (cf. (6.53)),

called the spectral pf-presentation. Moreover the (weighted) pf-spectrum
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E = Sp(C) is the full weighted subcategory of C on the set of objects

sp(C) = sp−(C) ∪ sp+(C) (Section 3.8.5). E is a strongly minimal

injective model of the weighted category C (Theorem 3.8.8).

6.5 Spaces with weighted paths

We introduce a second framework for weighted algebraic topology, which

is more complicated than δ-metric spaces but has finer quotients, as we

shall see in Section 6.7. The relationship between the two notions is

dealt with in Section 6.6.

6.5.1 Main definitions

A w-space X, or space with weighted paths, will be a topological space to-

gether with a weight function w : XI → [0,∞], or cost function (also writ-

ten as wX) defined on the set of its (continuous) paths, which satisfies

three axioms concerning the constant paths 0x, the path-concatenation

a+ b of consecutive paths and strictly increasing reparametrisation

(wsp.0) w(0x) = 0, for all points x of X,

(wsp.1) w(a+ b) 6 w(a) + w(b), for all consecutive paths a, b,

(wsp.2) w(aρ) 6 w(a), for all paths a and all strictly increasing contin-

uous maps ρ : I→ I.

It is easy to see that the last condition, in the presence of the others, is

equivalent to asking that w(aρ) 6 w(a), for all paths a and all increasing

continuous maps ρ : I → I which are constant on a finite number of

subintervals. It is also equivalent to the conjunction of the following two

conditions:

(wsp.1′) max(w(a), w(b)) 6 w(a+ b), for all consecutive paths a, b,

(wsp.2′) w(aρ) = w(a), for all paths a and all increasing homeomor-

phisms ρ : I→ I.

We shall say that a path is free, feasible or unfeasible when, respec-

tively, its cost is 0, finite or ∞.

A w-space will be said to be linear, or strictly additive, if w(a+ b) =

w(a)+w(b); see 6.5.5 for examples. We shall see in Section 6.6 that linear

w-spaces form a coreflective subcategory. Note that we are not asking

that the weight function be continuous with respect to the compact-open

topology of XI; in most examples, this will only be true if we restrict w



382 Elements of weighted algebraic topology

to the feasible paths (or - equivalently - if we topologise [0,∞] letting

∞ be everywhere dense, which might be interesting).

If X,Y are w-spaces, a w-map f : X → Y , or map of w-spaces, or

1-Lipschitz map will be a continuous mapping which decreases costs:

w(f ◦a) 6 w(a), for all (continuous) paths a of X. More generally, a

Lipschitz map, or w∞-map f : X → Y is a continuous mapping which has

a finite Lipschitz constant λ ∈ [0,∞[, in the sense that w(f◦a) 6 λ.w(a),

for all continuous paths a in X.

We have thus the category wTop of w-spaces and w-maps, embedded

in the category w∞Top of w-spaces and w∞-maps. Again, we distin-

guish between isometric isomorphisms (of wTop) and Lipschitz isomor-

phisms (of w∞Top).

The forgetful functor U : wTop → Top has left and right adjoints

D a U a D′, where the discrete weight of DX is the highest possible

one, with w(a) = 0 on the constant paths and∞ on all the others, while

the natural, indiscrete weight of D′X is the lowest possible one, where

all paths have a null cost. Except if otherwise stated, when viewing a

topological space as a weighted one we will use the embedding D′ : Top→
wTop, where all paths are free.

Note now that the weight function of the w-space X acts on the con-

tinuous mappings a : I → UX, with values in the underlying topological

space; we shall go on writing down, pedantically, such occurrences of U .

(Viewing these paths as w-maps DI → X would also be correct, but

confusing.)

Here also, reversing paths by the involution r : I→ I, r(t) = 1−t, gives

the opposite w-space and forms a (covariant) involutive endofunctor,

called reversor

R : wTop→ wTop, R(X) = Xop, wop(a) = w(ar). (6.55)

A w-space will be said to be reversible if it is invariant under the

reversor (in accord with our general terminology for symmetries, after

the clashes of the metric case, in 6.1.2). It is reversive if it is isometrically

isomorphic to its opposite space. The notation X 6 X ′ will mean that

these w-spaces have the same underlying topological space and wX 6
wX′ ; equivalently, the identity of the underlying space is a w-map X ′ →
X.
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6.5.2 The weight of a map

A continuous mapping f : UX → UY between w-spaces takes paths of

UX into paths of UY , and inherits two weights from the category of

weighted sets.

Letting the path a vary in Top(I, UX) and λ ∈ [0,∞], we have the

additive weight

|f |0 = supa (w(f ◦a)− w(a))

= min{λ | ∀ a, w(f ◦a) 6 λ+ w(a)},
(6.56)

and the multiplicative weight, or Lipschitz weight:

||f || = |f |1 = supa(w(f ◦a)/w(a))

= min{λ | ∀ a, w(f ◦a) 6 λ.w(a)}.
(6.57)

The first distinguishes w-maps with the condition |f |0 = 0. But we

shall only use the second, written as ||f ||, which distinguishes w-maps

with the condition ||f || 6 1, and w∞-maps with the condition ||f || <
∞. With this weight, wTop and w∞Top are multiplicatively weighted

categories: all identities have weight ||1X || 6 1 and composition gives

||gf || 6 ||f ||.||g||.
If X is a w-space and λ ∈ [0,∞[, we write λX the same topological

space equipped with the weight λ.wX . A w∞-map f : X → Y with

||f || 6 λ is the same as a w-map λX → Y .

6.5.3 Limits

The category wTop has all limits and colimits, computed as in Top and

equipped with the adequate w-structure.

Thus, for a product
∏
Xi, a path a : I → U(

∏
Xi) of components

ai : I → UXi has weight w(a) = supw(ai). For a sum
∑
Xi, a path

a : I → U(
∑
Xi) lives in one component UXi and inherits the weight

from the latter.

Given a pair of parallel w-maps f, g : X → Y , the equaliser is the

topological one, with the restricted weight function. The coequaliser is

the topological coequaliser Y/R, with the induced weight characterised

in the theorem below.

Linear w-spaces are not closed under (even binary) products, as we

see below. But they are closed under subspaces (obviously), all colimits

(by adjointness) and tensor product (see 6.5.6).

The category w∞Top has finite limits and colimits, which can be
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constructed as above. Such objects are only determined up to Lipschitz

isomorphism, but we shall keep the previous constructions as privileged

ones. Thus, when we write X×Y in w∞Top, we still mean that its

weight is the l∞-weight, with w(a, b) = max(w(a), w(b)); isomorphic

constructions will have different names (cf. 6.5.6). It is easy to verify

that: ||f×g|| 6 max(||f ||, ||g||).
We say that the group G (in additive notation) acts on the w-space

X if it acts on the underlying topological space, and moreover all the

homeomorphisms x 7→ x+g are w-maps. The last condition is equivalent

to saying that, for every path a : I → UX and every g ∈ G, w(a) =

w(a+ g); i.e. that the weight function of X is invariant under the action

of G.

The orbit w-space X/G is the generalised coequaliser of all the maps

X → X, x 7→ x + g (for g ∈ G). This structure is characterised below,

in a simpler way than for a general quotient of w-spaces. (We have seen

a similar behaviour for d-spaces, in 1.4.2.)

6.5.4 Theorem (Quotients of w-spaces)

(a) Given a pair of parallel w-maps f, g : X → Y , the coequaliser is the

topological coequaliser Y/R, with the induced weight

w(b) = inf (
∑
i wY (ai)) (b : I→ (UY )/R), (6.58)

the inf being taken on all finite families (a1, ..., an) of paths in UY such

that their projections on the quotient, pai : I → (UY )/R, are consecu-

tive, and give b = ((pa1) + ... + (pan))ρ (by n-ary concatenation and

reparametrisation along an increasing homeomorphism I→ I).

Of course, if there are no such families, w(b) = inf(∅) =∞.

(b) If the group G acts on the w-space X, the orbit w-space X/G is the

usual topological space, equipped with the weight

w(b) = inf (wX(a)) (b : I→ (UX)/G), (6.59)

the inf being taken on all paths a : I→ UY such that pa = b.

Proof (a) The only non-trivial point is verifying that this weight-function

satisfies the axioms (wsp.1, 1′) of 6.5.1. Take b = b′ + b′′ : I→ Y/R.

First, every pair of decompositions of b′, b′′

b′ = ((pa′1) + ...+ (pa′m))ρ′, b′′ = ((pa′′1) + ...+ (pa′′n))ρ′′,
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gives a decomposition b = ((pa′1) + ...+ (pa′′n))ρ; therefore

(wY (a′1) + ...+ wY (a′m)) + (wY (a′′1) + ...+ wY (a′′n) > w(b),

and w(b′) + w(b′′) > w(b).

Second, given a decomposition b = ((pa1)+...+(pan))ρ, we can always

assume that n = 2k (otherwise, we insert a constant path, without

modifying
∑
i wY (ai)). Then, for suitable reparametrisations ρ′, ρ′′, we

have

((pa1) + ...+ (pak)) + ((pak+1) + ...+ (pa2k)) = bρ−1 = b′ρ′ + b′′ρ′′,

b′ρ′ = (pa1) + ...+ (pak),

w(b′) 6 wY (a1) + ...+ wY (ak) 6 wY (a1) + ...+ wY (a2k),

It follows that w(b′) 6 w(b), and similarly w(b′′) 6 w(b).

(b) Again, we only have to verify the axioms (wsp.1, 1′) of 6.5.1. Take

b = b′ + b′′ : I→ X/G.

Every path a : I → X which projects to b can be (uniquely) decom-

posed as a = a′ + a′′, into its two halves, and these project to b′, b′′.

Conversely, given any pair of paths a′, a′′ : I → X which project to

b′, b′′, we can always assume that they are consecutive in X (up to

replacing a′′ with a suitable path of the same weight, a′′+g, as in 1.4.2).

Therefore, letting a, a′, a′′ vary as specified above, we have

w(b) = inf (wX(a)) 6 inf (wX(a′) + wX(a′′))

= inf (wX(a′)) + inf (wX(a′′)) = w(b′) + w(b′′).

w(b′) = inf (wX(a′)) 6 inf (wX(a′ + a′′)) = w(b).

6.5.5 Standard models

The standard weighted real line, or w-line wR, will be the euclidean line

with the following weight on all paths a : I→ R, equivalently defined by

its span or length in δR (see 6.1.8)

w(a) = spn(a) = L(a). (6.60)

Thus, w(a) is finite if and only if a is a (weakly) increasing path, and

then w(a) = a(1)−a(0). (General relations between δ-metric spaces and

w-spaces will be studied in the next section.)

The n-dimensional real w-space wRn, a cartesian power in wTop, has

w(a) = supi (ai(1) − ai(0)) for all increasing paths a : I → Rn (with
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respect to the product order of Rn, x 6 x′ if and only if xi 6 x′i for all

i). Plainly, wR is linear while every higher dimensional wRn is not.

The standard w-interval wI has the subspace structure of the w-line;

the standard w-cube wIn is its n-th power, and a subspace of wRn. These

w-spaces are not reversible (for n > 0), but reversive; in particular, the

canonical reflecting isomorphism

r : wI→ (wI)op, r(t) = 1− t, (6.61)

will be used to reflect paths and homotopies.

The standard weighted circle wS1 will be the coequaliser in wTop of

each of the following two pairs of maps (equivalently)

∂−, ∂+ : {∗} ⇒ wI, ∂−(∗) = 0, ∂+(∗) = 1, (6.62)

id, f : wR ⇒ wR, f(x) = x+ 1. (6.63)

The ‘standard realisation’ of the first coequaliser above is the quotient

(wI)/∂I, which identifies the endpoints; a feasible path turns around

the circle in a given direction, and its weight measures the length of

the path with respect to the length of the circle: w(a) = L(a) in δS1.

The Lipschitz-isomorphic structure 2π.wS1 is also of interest. Both are

linear.

More generally, the weighted n-dimensional sphere will be the quotient

of the weighted cube wIn modulo its (ordinary) boundary ∂In, while wS0

has the discrete topology and the unique w-structure

wSn = (wIn)/(∂In) (n > 0), wS0 = S0 = {−1, 1}. (6.64)

All weighted spheres are reversive. Again, wS1 is linear while the

higher spheres are not.

6.5.6 Tensor product

The tensor product X⊗Y of two w-spaces (similar to the tensor product

in w+) will be the cartesian product of the underlying topological spaces,

with an l1-weight (instead of the l∞-weight, which is used in the cartesian

product of w-spaces)

w⊗(a, b) = wX(a) + wY (b). (6.65)

Here (a, b) : I → X×Y denotes the path of components a : I → X,

b : I → Y . This tensor product defines a symmetric monoidal structure

on wTop, with identity the singleton space {∗}.
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Linear w-spaces are closed under tensor product. In particular, all

tensor powers (wR)⊗n, (wI)⊗n and (wS1)⊗n are linear. The following

theorem shows that all of them are exponentiable in wTop, with respect

to the tensor product; in particular, this holds for the tensor power

(wI)⊗n, which is what is relevant for homotopy.

This tensor product extends to w∞Top, with ||f⊗g|| 6 max(||f ||, ||g||).
In this category the tensor product is isomorphic to the cartesian one,

but we keep distinguishing these realisations.

6.5.7 Theorem (Exponentiable w-spaces)

Let Y be a linear w-space with a locally compact Hausdorff topology.

Then Y is exponentiable in wTop, with respect to the previous tensor

product.

For every w-space Z, the internal hom

ZY = wTop(Y, Z) ⊂ Top(UY,UZ), (6.66)

is the set of w-maps, equipped with the compact-open topology (restricted

from (UZ)UY ) and the w-structure where a path c : I → U(ZY ) ⊂
(UZ)UY has the following weight

W (c) = supb (wZ(ev◦(c, b))− wY (b)) (b : I→ UY ). (6.67)

Here, λ − µ is the truncated difference in w+, while the evaluation

mapping

ev : ZY ⊗ Y → Z, (6.68)

is the restriction of the topological one. This mapping is a w-map, and

yields the counit of the adjunction.

Proof (Note. The same argument, conveniently simplified, shows that

δMtr is monoidal closed.)

We defer to the end the technical part showing that (6.66) and (6.67)

do define a w-structure.

First, the evaluation mapping (6.68) satisfies the inequality w⊗(c, b) >
wZ(ev◦(c, b)), because of the symmetric monoidal closed structure of w+:

W (c) > wZ(ev◦(c, b))− wY (b) (∀ b : I→ UY ),

w⊗(c, b) = W (c) + wY (b) > wZ(ev◦(c, b)).

Second, the pair (ZY , ev : ZY ⊗ Y → Z) is a universal arrow from

the functor − ⊗ Y to the object Z: given a w-space X and a w-map
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f : X ⊗ Y → Z, we have to prove that there is precisely one w-map

g : X → ZY such that f factors as:

ev◦(g ⊗ Y ) : X ⊗ Y → ZY ⊗ Y → Z. (6.69)

Indeed, since Y is exponentiable in Top, there exists precisely one

continuous mapping g : UX → (UZ)UY such that f = ev◦(g×UY ), and

it will be sufficient to prove the following two facts.

(a) Im(g) ⊂ ZY . For x ∈ X, we must prove that g(x) : Y → Z is a

w-map. And indeed, for every path b : I→ UY

w(g(x)◦b) = w(f ◦(0x, b)) 6 w⊗(0x, b) = wX(0x) + wY (b) = wY (b).

(b) The mapping g is a w-map X → ZY . And indeed, for every path

a : I→ UA

W (ga) = supb (wZ(ev◦(ga, b))− wY (b)) = supb (wZ(f(a, b))− wY (b))

6 supb (w⊗(a, b)− wY (b)) = wX(a).

Finally, we verify the axioms for the weight W of the internal hom.

First, the constant path 0h : I → ZY at an arbitrary w-map h : Y → Z

gives

W (0h) = supb (wZ(ev◦(0h, b))− wY (b)) = supb (wZ(hb)− wY (b)) = 0.

Second, to prove (wsp.1), let c = c′+c′′ be a concatenation of paths in

U(ZY ). We can always rewrite a path b : I→ UY as the concatenation

b = b′ + b′′ of its two halves, so that, using the assumption that Y is

linear:

W (c′ + c′′) = supb [(wZ(ev◦(c′ + c′′, b))− wY (b)]

= supb′b′′ [wZ(ev◦(c′ + c′′, b′ + b′′))− wY (b′ + b′′)]

(for all consecutive paths b′, b′′ in UY ),

= supb′b′′ [wZ((ev◦(c′, b′)) + (ev◦(c′′, b′′))− wY (b′)− wY (b′′)]

6 supb′b′′ [wZ(ev◦(c′, b′))− wY (b′) + wZ(ev◦(c′′, b′′))− wY (b′′)]

6 W (c′) +W (c′′).

The last inequality comes from the fact that the last term amounts

to the previous sup for arbitrary paths b′, b′′ in Y . (Note: for δ-metric

spaces, one would use the fact that all ‘paths’ (y, y′) : 2 → Y can be

rewritten as a trivial ‘concatenation’ (y, y′) + (y′, y′), with d(y, y′) =

d(y, y′) + d(y′, y′).)

Now, for (wsp.1′), we can make our least upper bound smaller by

restriction to those paths b : I → Y which are constant on [1/2, 1], so
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that b = b′ + b′′ with an arbitrary b′ and b′′ constant at the terminal of

b′:

W (c′ + c′′) > supb′(wZ((ev◦(c′, b′)) + (ev◦(c′′, b′′)))− wY (b′ + b′′))

> supb′(wZ(ev◦(c′, b′))− wY (b′)) = W (c′),

where, again, we have used the linear property of Y : w(b) = w(b′) +

w(b′′) = w(b′).

Last, for (wsp.2′), given an increasing homeomorphism ρ : I→ I, every

path b′ in UY can be rewritten as bρ, with b = b′ρ−1, so that:

W (cρ) = supb (wZ(ev◦(cρ, bρ))− wY (bρ))

= supb (wZ(ev◦(c, b)◦ρ)− wY (bρ)) = W (c).

6.5.8 Elementary and extended paths

Let X be a w-space. An elementary path (resp. an extended path, or Lips-

chitz path) in X will be a 1-Lipschitz (resp. a Lipschitz) map a : wI→ X.

Thus, a continuous mapping a : I → X is an elementary path if and

only if ||a|| 6 1, for the Lipschitz weight (6.57) recalled below, and is an

extended path if and only if ||a|| <∞

||a|| = min{λ ∈ [0,∞] | ∀ ρ : ↑I→ ↑I, w(aρ) 6 λ.(ρ(1)− ρ(0)}. (6.70)

(Notice that ρ varies in the set of increasing maps I → I). Again,

elementary paths are not closed under concatenation.

Thus, w(a) 6 ||a||. A path of finite weight w(a) need not be Lipschitz,

as one readily sees considering the square-root function a : I→ R, which

in wR has w(a) = 1, but ||a|| =∞.

The reflected (elementary or extended) path is obtained in the usual

way

aop = ar : wI→ Xop, r(t) = 1− t. (6.71)

A reversible extended path is a mapping a : I → X such that both a

and aop are extended paths wI→ X.

In the category wTop, the pasting of two copies of the standard

weighted interval, one after the other, can be realised as w[0, 2] ⊂ wR (or

as 2.wI, cf. 6.5.2), which is of no help to concatenate paths parametrised

on wI, in wTop. But in w∞Top this pasting can be realised as wI
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(which is Lipschitz-isomorphic to w[0, 2]), by the standard concatena-

tion pushout

{∗} ∂+
//

∂−

��

wI

c−

��

c−(t) = t/2,

wI
c+
// wI c+(t) = (t+ 1)/2.

(6.72)

(Again, the diagram above lives in wTop, but is a pushout only in

w∞Top.) Now, given two consecutive Lipschitz paths a, b : wI → X,

with a(1) = b(0), we get a concatenated path

a+ b : wI→ X, ||a+ b|| 6 2.(||a||+ ||b||), (6.73)

as follows from the following proposition (or using the pushout 2.wI, in

wTop).

We can now treat homotopies as in the case of δ-metric spaces, in

Section 6.2. We define the fundamental weighted category and the fun-

damental weighted monoids of a w-space as in Section 6.3. In particular,

concatenation is based on the following result.

6.5.9 Proposition

For every w-space X, the functor X×− : w∞Top → w∞Top preserves

the standard concatenation pushout (6.72).

Moreover, if a map f : X×wI → Y comes from the pasting of two

‘consecutive’ maps f0, f1 : X×wI → Y , we have the following upper

bound for its Lipschitz weight

||f || 6 2.(||f0||+ ||f1||) (f0 = f ◦(X×c−), f1 = f ◦(X×c+)). (6.74)

Equivalently, one can use the Lipschitz-isomorphic functor X ⊗− .

Proof In Top, the preservation holds because the subspaces UX×[0, 1/2]

and UX× [1/2, 1] form a finite closed covering of UX×I, so that each

mapping defined on the latter and continuous on such closed parts is

continuous (as already remarked in 1.1.2).

Consider then a (topological) map f : UX×I→ UY coming from the

pasting of two maps f0, f1 on the topological pushout UX×I

f(x, t) =

{
f0(x, 2t), for 0 6 t 6 1/2,

f1(x, 2t− 1), for 1/2 6 t 6 1.
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Let now (a, ρ) : I→ UX×I be any feasible path; in particular, ρ : I→ I

is an increasing map. If the image of ρ is contained in the first half of I,

then f ◦(a, ρ) = f0(a, 2ρ) and

w(f ◦(a, ρ)) 6 ||f0||.(w(a) ∨ 2w(ρ)) 6 2.||f0||.w(a, ρ).

A similar argument holds for the second half. Otherwise, since ρ is

increasing, we have ρ(t1) = 1/2 at some interior point t1 ∈]0, 1[; we

can assume that t1 = 1/2 (up to pre-composing with an increasing

homeomorphism σ : I → I, which does not modify the weight of paths,

by (wsp.2′)).

Now, the path f ◦(a, ρ) : I → UY is the concatenation of two paths

ci : wI→ UY which factor through the Lipschitz maps fi

c0(t) = f ◦(a(t/2), ρ(t/2)) = f0◦(a(t/2), 2ρ(t/2)),

c1(t) = f ◦(a((t+ 1)/2), ρ((t+ 1)/2)) =

f1◦(a((t+ 1)/2), 2ρ((t+ 1)/2)− 1).

and finally we can conclude that f is Lipschitz, with the upper bound

(6.74)

w(f ◦(a, ρ)) 6 w(c0) + w(c1) 6 (||f0||+ ||f1||).(w(a) ∨ 2w(ρ))

6 2.(||f0||+ ||f1||).w(a, ρ).

6.6 Linear and metrisable w-spaces

The span and length function of a δ-metric space X, defined in 6.1.8,

allow us to construct the w-spaces spnX (Section 6.6.2) and LX (Section

6.6.3); the latter is linear.

6.6.1 Linear w-spaces

First, we want to observe that linear w-spaces form a full subcategory

Lw∞Top of w∞Top, which has a coreflector L, right adjoint to the

embedding U

U : Lw∞Top � w∞Top :L (U a L). (6.75)

In fact, for a w-space X, there is a linearised w-space L(X) on the
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same underlying topological space, endowed with the least linear weight

L > w

L(a) = supt

∑
j w(a(tj−1, tj)) (0 = t0 < t1 < ... < tp = 1),

a(tj−1, tj)(t) = a((1− t).tj−1 + t.tj) (0 6 t 6 1).
(6.76)

Note that we have written a(tj−1, tj) : I → X the restriction of the

path a to the interval [tj−1, tj ], reparametrised on the standard interval.

Thus L(X) > X, and L(X) = X if and only if the w-space X is

linear. These relations give, respectively, the counit UL → 1 and the

unit LU = 1 of the adjunction.

All this restricts to contractions, yielding the full coreflective subcate-

gory LwTop ⊂ wTop of linear w-spaces. Therefore, the latter are closed

under colimits in wTop.

6.6.2 Span-metrisable w-spaces

Now, let us construct an adjunction

δ : w∞Top � δ∞Mtr : spn, δ a spn. (6.77)

First, the functor

δ : w∞Top→ δ∞Mtr, ||δf || 6 ||f ||, (δ : wTop→ δMtr), (6.78)

sends a w-space X to the δ-metric space δX, consisting of the same set

with the geodetic δ-metric associated to the weight

δ(x, x′) = infa w(a), (6.79)

where a : dI→ X varies in the set of extended paths in X, from x to x′.

The δ-metric spaces obtained in this way, from w-spaces, will be said

to be geodetic. Plainly, if f : X → X ′ is a w∞-map, δf = f : δX → δX ′

is continuous and satisfies the inequality of (6.78), whence it is a δ∞ -map

(and 1-Lipschitz if f is).

Second, the functor

spn : δ∞Mtr→ w∞Top, ||spn(f)|| 6 ||f ||,
(spn : δMtr→ wTop),

(6.80)

has essentially been constructed in Section 6.1. For a δ-metric space

Y , we let spnY be the same set equipped with the symmetric topology

(Section 6.1.6) and the weight-function spn (see (6.18))

spn(a) = supt δ(a(t0), a(t1)) (0 6 t0 < t1 6 1), (6.81)
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which we have already proved to satisfy the axioms of w-spaces (Propo-

sition 6.1.8).

The w-spaces obtained in this way will be said to be span-metrisable.

On maps, we take again the same underlying mapping.

These two functors form an idempotent adjunction δ a spn, which

restricts to a (covariant) Galois connection whenever we fix the under-

lying set. In fact, both functors do not change the underlying set; unit

and counit reduce to the following inequalities

X > spn(δX), δ(spnY ) > Y, (6.82)

where X is a w-space and Y a δ-metric space. (For idempotent adjunc-

tions, see [AT], Section 6 and [LS], Lemma 4.3.)

This adjunction gives an equivalence between the full subcategories

of:

(a) span-metrisable w-spaces, characterised by the condition X =

spn(δX), or equivalently by the condition X = spn(Y ) for a suit-

able δ-metric structure Y (on the same set),

(b) geodetic δ-metric spaces, characterised by the condition Y =

δ(spnY ), or equivalently by the condition Y = δ(X) for some

weighted structure X on the associated topological space.

Restricting to 1-Lipschitz maps, span-metrisable w-spaces form a re-

flective subcategory of wTop, closed under limits, while geodetic δ-

metric spaces form a coreflective subcategory of δMtr, closed under

colimits.

Within the examples of 6.5.5, the standard w-line is span-metrisable,

wR = spn(δR), and the standard δ-line is geodetic, δ(wR) = δR.

Similarly, in higher dimension, wRn = spn(δRn) and δ(wRn) = δRn;

this also holds for the standard interval and its powers.

The standard δ-circle δS1 = δ(wS1) is geodetic, while the circle S1

with the euclidean metric of R2 is not, since δ(spn(S1)) has the obvious

geodetic distance, which is bigger. The standard w-circle wS1 is not

span-metrisable, since the weight (i.e. length) of its feasible paths has

no finite upper bound, while the δ-metric of δS1 = δ(wS1) cannot exceed

1.
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6.6.3 The length adjunction

The span-adjunction (6.77) and the adjunction of linear w-spaces (6.75)

give a composed adjunction, which is again idempotent

δ : Lw∞Top � δ∞Mtr : L (δ a L). (6.83)

Here, δ is the restriction of the functor (6.78), and equips a linear

w-space X with the geodetic δ-metric δ(x, x′) = infa w(a). On the other

hand, L = L◦spn takes a δ-metric space Y to the same set equipped with

the symmetric topology (Section 6.1.6) and with the (linear) weight-

function L which we have already defined in 6.1.8

L(a) = supt

∑
j δ(a(tj−1), a(tj)) (0 = t0 < t1 < ... < tp = 1).

(6.84)

Here also, maps are left ‘unchanged’ and ||δf || 6 ||f ||, ||Lf || 6 ||f ||,
so that the adjunction restricts to contractions.

6.6.4 Length-metrisable w-spaces

The length adjunction (6.83) also becomes a (covariant) Galois connec-

tion when we fix the underlying set: unit and counit reduce to inequal-

ities

X > L(δX), δ(LY ) > Y, (6.85)

where X is a linear w-space and Y a δ-metric space.

The adjunction gives thus an equivalence between the full subcate-

gories of:

(a) length-metrisable w-spaces, characterised by the condition X =

L(δX), or equivalently by the condition X = LY for some δ-metric

structure Y on the same set (all such w-spaces are linear),

(b) linearly geodetic δ-metric spaces, characterised by the condition Y =

δ(LY ), or Y = δX for some linear weight X on the associated

topological space.

Thus, a linearly geodetic δ-metric space is geodetic; the converse need

not be true. For instance, the δ-metric subspace Y ⊂ δR2 consisting

of the union of the two axes is geodetic, but not linearly geodetic: the

points y = (−1, 0) and y′ = (0, 1) have δ(y, y′) = 1 but all feasible paths

a in Y , from y to y′, have length L(a) = 2.

The two notions of ‘metrisability’ of w-spaces are not comparable.

Indeed, the w-line wR is metrisable in both senses. The w-plane wR2
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is span-metrisable and not linear, hence not length-metrisable. The

standard w-circle wS1 (Section 6.5.5) is only length-metrisable. Finally,

in 6.7.2, we will show that the irrational rotation w-space Wϑ has a

trivial δ-metric on δWϑ (always zero), whence it is neither span- nor

length-metrisable.

6.6.5 Directed spaces

Finally, we have a forgetful functor

d : w∞Top→ dTop, (6.86)

which sends a w-space to the same topological space, equipped with the

distinguished paths obtained from the feasible ones, by reparametrisation

along weakly increasing maps I→ I.

Composing L : δ∞Mtr → Lw∞Top with the latter, we get the for-

getful functor δ∞Mtr → dTop already considered in 6.1.9, which dis-

tinguishes the L-feasible paths of a δ-metric space - already closed under

increasing reparametrisation.

There is an obvious comparison (of categories, of course)

wΠ1(X)→ ↑Π1(dX), x 7→ x, [a] 7→ [a], (6.87)

and one can prove that it is an isomorphism of categories for every w-

space X whose feasible paths are already closed under reparametrisation

along weakly increasing maps I→ I.

6.7 Weighted noncommutative tori and their classification

Throughout this section ϑ is an irrational number. We now introduce

the irrational rotation w-spaces Wϑ (Section 6.7.1), which have a clas-

sification similar to the irrational rotation C*-algebras Aϑ, including

the metric aspects which cannot be obtained with the cubical sets Cϑ
(Chapter 2) or the d-spaces Dϑ (classified here, in 6.7.6).

Analogous results have been obtained in [G10] for ‘normed’ cubical

sets and their ‘normed’ homology - an earlier approach to weighted al-

gebraic topology.

6.7.1 Irrational rotation w-spaces

The irrational rotation C*-algebras Aϑ and their classifications - up to

isomorphism or up to strong Morita equivalence - have been reviewed
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in 2.5.1. We have also introduced a family of cubical sets Cϑ, whose

classification up to isomorphism is the same as the classification of Aϑ
up to strong Morita equivalence.

We define now the irrational rotation w-space

Wϑ = (wR)/Gϑ, (6.88)

whose feasible paths are the projection of the feasible paths of wR, as

we prove below. On the additive group R and its subgroup Gϑ we use

the standard weight

w(x) = δ(0, x), (6.89)

i.e. w(x) = x when x > 0, and w(x) = ∞ otherwise. We also have the

(restricted) standard weight w(x) = x on the additive monoids R+ and

G+
ϑ = Gϑ ∩R+, formed by the elements of finite weight.

6.7.2 Theorem

(a) The fundamental weighted monoid of Wϑ at each point x ∈ R/Gϑ
is isometrically isomorphic to the additive weighted monoid G+

ϑ , via the

weight function

w : wπ1(Wϑ, x)→ [0,∞[, Im(w) = G+
ϑ . (6.90)

(b) Let us choose a representative x ∈ R of x; for every feasible path

a : wI→Wϑ starting at x there is precisely one increasing path a : wI→
R which lifts it and starts at x. Moreover, the weight of a in Wϑ coin-

cides with the weight of a, w(a) = a(1)− a(0) = a(1)− x.

(c) The w-space Wϑ is linear; the associated metric space δWϑ (cf.

(6.78)) is indiscrete, with δ(x, y) always zero, so that Wϑ is neither

span- nor length-metrisable.

Proof We begin by proving (b), applying Theorem 6.5.4(b) which char-

acterises the weight of the orbit w-space Wϑ.

Take a feasible path a : wI → Wϑ starting at x, and choose a rep-

resentative x ∈ R of the latter. Since w(a) < ∞ is the greatest lower

bound of the weights of the paths in R which lift it, there exists some

feasible (i.e. increasing) path a : wI→ wR which lifts a.

Now, up toGϑ-translations, we may assume that a starts at x (without

changing its weight). But there is only one path which satisfies these

conditions. Indeed, if b also does, the image of the continuous mapping
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a − b : I → R must be contained in Gϑ, which is totally disconnected;

thus a − b is constant, and a(0) = x = b(0) gives a = b. It follows that

w(a) = w(a), where a is the unique path in R which starts at x and lifts

a.

For (c), the fact that Wϑ is linear follows from (a) and the linearity of

the weight in wR. The other assertions are obvious, taking into account

the characterisations of span- and length-metrisable w-spaces, in 6.6.2,

6.6.4.

For (a), let us consider the weight function (6.90). First, we show

that its image is G+
ϑ . For a loop a, we have w(a) = w(a) where the

(increasing) lifting a starts at x and ends at some x′ > x, which also

projects to x; thus w(a) = x′ − x ∈ G+
ϑ . On the other hand, if g ∈ G+

ϑ ,

any increasing path a : x→ x+ g projects to a loop at x, whose weight

is g.

Finally, we must prove that the weight function is injective. Let a, b

be two loops at x with the same weight g ∈ G+
ϑ , and let a, b be their

liftings which start at x; they have again the same weight g, which

means that they end at the same point x′ = x+ g. Then, the increasing

path c = a ∨ b : I → R also goes from x to x′; since a 6 c, the affine

interpolation from a to c is an extended 2-homotopy a ≺2 c (cf. 6.3.6);

similarly, b ≺2 c and a '2 b, whence [a] = [b].

6.7.3 Theorem (Isometric classification)

Let ϑ, ϑ′ be irrationals. The w-spaces wR/Gϑ and wR/Gϑ′ are isomet-

rically isomorphic if and only if G+
ϑ = G+

ϑ′ (as subsets of R), if and only

if Gϑ = Gϑ′ (in the same sense), if and only if ϑ′ ∈ Z± ϑ.

Proof If our w-spaces are isometrically isomorphic, their fundamental

weighted monoids (independently of the base point) are also: G+
ϑ
∼= G+

ϑ′

(isometrically). Since the values of the weight w : G+
ϑ → R form the set

G+
ϑ , it follows that G+

ϑ = G+
ϑ′ , which implies that Gϑ (the additive

subgroup of R generated by G+
ϑ ) coincides with Gϑ′ . If this is the case,

then ϑ = a + bϑ′ and ϑ′ = c + dϑ for suitable integers a, b, c, d; whence

ϑ = a+ bc+ bdϑ and d = ±1, so that ϑ′ = c± ϑ. Finally, if ϑ′ ∈ Z± ϑ,

then Gϑ = Gϑ′ and wR/Gϑ = wR/Gϑ′ .
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6.7.4 Theorem (Lipschitz-isomorphic classification)

Let ϑ, ϑ′ be irrationals. The w-spaces wR/Gϑ and wR/Gϑ′ are Lipschitz

isomorphic if and only if the equivalent conditions of the following lemma

hold (see 6.7.5).

Proof One implication follows from Theorem 6.7.2: if our w-spaces are

Lipschitz isomorphic, their fundamental weighted monoids G+
ϑ and G+

ϑ′

are also, by the functorial properties of wΠ1 (Section 6.3.6).

For the converse, let ϑ′ belong to the closure {ϑ}RT ; it suffices to

consider the cases ϑ′ ∈ ϑ + Z and ϑ′ = ϑ−1. In the first case, Gϑ and

Gϑ′ coincide, as well as their action on wR; in the second, the Lipschitz

isomorphism of weighted spaces

f : wR→ wR, f(t) = |ϑ|.t, (6.91)

restricts to a group-isomorphism f ′ : Gϑ → Gϑ′ , consistent with the

actions: f(t + g) = f(t) + f ′(g); therefore (6.91) induces a Lipschitz

isomorphism wR/Gϑ → wR/Gϑ′ .

6.7.5 Lemma

Let ϑ, ϑ′ be irrationals. The following conditions are equivalent:

(a) the weighted groups Gϑ and Gϑ′ are Lipschitz isomorphic,

(b) the weighted monoids G+
ϑ and G+

ϑ′ are Lipschitz isomorphic,

(c) Gϑ and Gϑ′ are isomorphic as ordered groups (with respect to the

total orders induced by R),

(d) ϑ and ϑ′ are conjugate under the action of GL(2,Z) (Section 2.5.1),

(e) ϑ′ belongs to the closure {ϑ}RT of {ϑ} under the mappings R(t) =

t−1 and T±1(t) = t± 1.

Proof The equivalence of the last three conditions has been proved in

Lemma 2.5.7.

Further, (a) implies (b), because G+
ϑ is the monoid of elements of Gϑ

having a finite weight. And (b) implies (c), because Gϑ is the group

canonically associated to the cancellative monoid G+
ϑ , ordered with the

latter as a positive cone.

Finally, to prove that (e) implies (a), let ϑ′ belong to the closure

{ϑ}RT ; as in the proof of the previous theorem, it suffices to consider

the cases ϑ′ ∈ ϑ+Z and ϑ′ = ϑ−1. In the first, Gϑ = Gϑ′ ; in the second,

the Lipschitz isomorphism of weighted spaces f : wR→ wR considered
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above (in (6.91)) restricts to a Lipschitz isomorphism of weighted abelian

groups Gϑ → Gϑ′ .

6.7.6 Classifying the irrational rotation d-spaces

Consider now the irrational-rotation d-space Dϑ = ↑R/Gϑ, defined in

(2.77), viewed now as dWϑ.

By (6.87), it follows that its fundamental category is isomorphic to

the category which underlies wΠ1(Wϑ), forgetting the weight of the lat-

ter. Therefore, at any point x, the fundamental monoid ↑π1(Dϑ, x) is

isomorphic to the monoid G+
ϑ .

By the same argument as in the proof of Theorem 6.7.4, the d-spaces

Dϑ and Dϑ′ are isomorphic if and only if the equivalent conditions of

Lemma 6.7.5 hold.

6.8 Tentative formal settings for weighted algebraic topology

We only sketch a few ideas, based on the previous structures for δ-metric

spaces, w-spaces, weighted categories, together with another structure

which we mention here: weighted cubical sets.

6.8.1 A tentative definition

Let us say that a concrete symmetric wI4-category is a symmetric dI4-

homotopical category (Section 4.2.6)

A∞ = (A∞, R, I, ∂
α, e, r, gα, s, J, c, z),

which is made concrete by a standard point E (Section 4.5.7) and

equipped with a weight function, defined on each set of paths

w = wX : A∞(I, X)→ [0,∞] (I = I(E)). (6.92)

The following axioms on the family (wX) (X varying in ObA∞) are

assumed (for every point x : E → X, every pair of consecutive paths

a, b : I→ X, every isomorphism ρ : I→ I, and every map f : X → Y )

wX(0x) = 0,

wX(a) ∨ wX(b) 6 wX(a+ b) 6 wX(a) + wX(b),

wX(aρ) = wX(a), wXop(aop) = wX(a), ||f || <∞.
(6.93)

In the last condition we are using the multiplicative weight, or Lipschitz
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weight of a map f : X → Y , which is defined as follows (as for w-spaces,

in 6.5.2):

||f || = min{λ ∈ [0,∞] | ∀ a ∈ A∞(I, X), wY (f ◦a) 6 λ.wX(a)}. (6.94)

With this weight, A∞ is a multiplicatively weighted category: all

identities have ||idX|| 6 1 and composition gives ||gf || 6 ||f ||.||g||. The

same is true of its wide subcategory A1 formed of all objects and 1-

Lipschitz maps, with ||f || 6 1.

6.8.2 Examples

In all the following cases

(a) A∞ = δ∞Mtr ⊃ δMtr = A1,

(b) A∞ = w∞Top ⊃ wTop = A1,

(c) A∞ = w∞Cat ⊃ wCat = A1,

the hypotheses above are satisfied. Moreover, the wide subcategory A1

is a concrete symmetric dI2-homotopical subcategory of A∞, and - in

its own right - a concrete symmetric dIP2-homotopical category.

Such hypotheses should be sufficient to work as in the relative setting

of Section 5.8, and to enrich the fundamental category with an additive

weight induced by the family (wX).

Notice also that, in all these examples, we have a family of functors

λA : A∞ → A∞ (λ ∈ [0,∞[), (6.95)

which - perhaps - should be taken into account in a formal setting.

6.8.3 A defective case

Weighted cubical sets (introduced in [G10] as normed cubical sets) form

a ‘defective’ case:

w∞Cub ⊃ wCub. (6.96)

A weighted cubical set is a cubical set X equipped with a sequence of

weights which annihilate on degenerate elements

w : Xn → [0,+∞], w(ei(a)) = 0 (a ∈ Xn). (6.97)

We do not require any coherence condition for faces, nor any restric-

tion on the weight of a point; for instance, a degenerate edge must have

weight zero, but its vertices can have any weight.
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The category w∞Cub contains all morphisms of cubical sets f : X →
Y , with a finite weight:

||f || = min{λ ∈ [0,∞] | ∀x ∈ Xn, w(fn(x)) 6 λ.w(x)}, (6.98)

while its wide subcategory wCub only contains the weak contractions,

with w(fn(x)) 6 w(x), for all x ∈ Xn.

Here w∞Cub and wCub are only dI1-categories. Therefore, to study

the homotopy of weighted cubical sets, one should likely use a relative

framework, like Cub→ dTop, with a weighted geometric realisation as

a forgetful functor (between pairs of categories)

wR : (w∞Cub,wCub) → (w∞Top,wTop). (6.99)



Appendix A

Some points of category theory

In this book, category theory is used extensively, if at an elementary

level. The notions of category, functor and natural transformation are

used throughout, together with standard tools like limits, colimits and

adjoint functors.

The brief review of this appendix is also meant to fix the notation

used here. Proofs can be found in the texts mentioned in A1.1, except

for some non-standard points at the end of this chapter.

A1 Basic notions

A1.1 Smallness

Something must be said on set-theoretical aspects, to make precise the

meaning of the category of ‘all’ sets’, or ‘all’ topological spaces, and so

on.

We work within the theory NBG (von Neumann - Bernays - Gödel),

where there are sets and classes, and the class of all sets or all spaces

makes sense. In a category A the objects form a class ObA and the

morphisms form a class MorA; but, for every pair X,Y of objects, we

assume that the morphisms X → Y , also called maps or arrows, form a

set A(X,Y ). The category is said to be small if the class ObA is a set,

and large otherwise.

This approach is followed in Mitchell’s book [Mi] and - essentially -

also in Adàmek - Herrlich - Strecker [AHS]; a brief exposition of NBG

can be found in the Appendix of [Ke]. Thus, Set is the (large) category

of sets and mappings, Top is the (large) category of topological spaces

and continuous mappings, etc. Small categories and their functors also

form a (large) category, Cat.

402
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One can easily translate everything in the other set-theoretical setting

widely used in category theory, which is based on universes: see the texts

of Mac Lane [M3] and Borceux [Bo]. Then, a basic universe is chosen,

and a small set is any element of the latter; Set is defined as the category

of small sets, Top as the category of small topological spaces (i.e. having

a small underlying set), and so on. This is slightly more complicated,

but has the advantage of allowing one to consider categories of large

categories, making use of a hierarchy of universes.

A1.2 Basic terminology

We assume that the reader is familiar with the very basic concepts and

notation of category theory, like:

• category; the identity morphism idX (or 1X) of an object X in a

category; isomorphism (or iso), monomorphism (or mono) and epi-

morphism (or epi); retract, split monomorphism (or section) and split

epimorphism (or retraction), in a category;

• functor; the identity functor idC (or 1C) of a category C; faithful and

full functor; forgetful functor between categories of structured sets;

• subcategory and its inclusion functor, full subcategory; cartesian prod-

uct of categories and its projection functors.

(In a small category we may use an additive notation, for composition

and identities, see Section 8 of the Introduction.)

Let us recall something about the 2-dimensional structure of cate-

gories, which will be further analysed below (Sections A5.1 and A5.2). A

natural transformation ϕ : F → G : C→ D, between functors F,G : C→
D, consists of the following data:

- for each object X of C, a morphism ϕX : FX → GX in D (called the

component of ϕ on X, and also written as ϕX , or ϕX),

so that, for every arrow f : X → X ′ in C, we have a commutative square

in D:

FX
ϕX //

Ff

��

GX

Gf

��

ϕX ′.F (f) = G(f).ϕX

FX ′
ϕX′

// GX ′ (naturality condition).

(A.1)

In particular, the identity of a functor F : C → D is the natural

transformation idF : F → F , of components (idF )X = id(FX).
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Natural transformations have a vertical composition

F //
ϕ��

ψϕ : F → H,

C //
ψ��

D

H
// (ψϕ)(X) = ψX.ϕX : FX → HX,

(A.2)

and a whisker composition, or reduced horizontal composition, with func-

tors

C′
H // C

F

↓ϕ
//

G
// D

K // D′ (A.3)

KϕH : KFH → KGH : C′ → D′, (KϕH)(X ′) = K(ϕ(HX ′)).

An isomorphism of functors is a natural transformation ϕ : F → G

which is invertible (with respect to vertical composition).

A1.3 Universal properties, products and equalisers

Many definitions in category theory are based on a universal property.

For instance, in a category C, the product of a family (Xi)i∈I of objects

(indexed on a set I), is defined as an object X equipped with a family

of morphisms pi : X → Xi (i ∈ I), called projections, which satisfy the

following universal property:

(i) for every object Y and every family of morphisms fi : Y → Xi, there

exists a unique morphism f : Y → X such that, for all i ∈ I, pif = fi.

The solution need not exist. But it is determined up to a unique

coherent isomorphism, in the sense that if also Y is a product of the

family (Xi)i∈I with projections qi : Y → Xi, then the morphism f : X →
Y which commutes with all projections (i.e. qif = pi, for all indices i)

is an isomorphism. Therefore, one speaks of the product of the family

(Xi), denoted as
∏
iXi.

We say that a category C has products (resp. finite products) if every

family of objects indexed on a set (resp. on a finite set) has a product

in C.

In particular, the product of the empty family of objects ∅ → ObC

means an object X (equipped with no projections) such that for every

object Y (equipped with no maps) there is a unique morphism f : Y → X

(satisfying no conditions). The solution is called the terminal object of

C; again, it need not exist, but is determined up to a unique isomor-

phism. It can be written as >.
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In Set and Top, all products exist, and are the usual cartesian ones.

It is easy to prove that a category has finite products if and only if it

has binary products X1×X2 and a terminal object.

Products are a basic instance of a much more general concept recalled

below, the limit of a functor (see A2.1). Another basic instance is the

equaliser of a pair f, g : X → Y of ‘parallel’ maps of C; this is (an

object E with) a map m : E → X such that fm = gm and the following

universal property holds:

(ii) every map h : Z → X such that fh = gh factors uniquely through

m (i.e. there exists a unique map w : Z → E such that mw = h).

The equaliser morphism m is necessarily a monomorhism, and - by

definition - a regular mono. In Set (resp. Top), the equaliser of two

parallel maps f, g : X → Y is the embedding in X of the maximal sub-

set (resp. subspace) of X on which they coincide. Therefore, regular

monomorphisms coincide with monomorphisms (or injective mappings)

in Set, but ‘amount’ to inclusion of subspaces in Top.

It is easy to prove that a split monomorphism is always a regular

mono.

A1.4 Duality, sums and coequalisers

If C is a category, the opposite (or dual) category, written Cop or C∗,

has the same objects as C and ‘reversed’ arrows,

Cop(X,Y ) = C(Y,X), (A.4)

with ‘reversed composition’ g∗f = f.g and the same identities.

Every notion of category theory has a dual notion, which comes from

the opposite category (or categories): thus, monomorphism and epimor-

phism are dual to each other, while isomorphism is a selfdual notion.

Dual notions are often distinguished by the prefix ‘co-’.

The sum, or coproduct, of a family (Xi)i∈I of objects of C is dual

to their product. Explicitly, it is an object X equipped with a family

of morphisms ui : Xi → X (i ∈ I), called injections, which satisfy the

following universal property:

(i*) for every object Y and every family of morphisms fi : Xi → Y , there

exists a unique morphism f : X → Y such that, for all i ∈ I, fui = fi.

Again, if the solution exists, it is determined up to a unique coherent

isomorphism. The sum of the family (Xi) is denoted as
∑
iXi, or X1 +

... + Xn in a finite case. The sum of the empty family is the initial
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object ⊥: this means that, for every object X, there is precisely one

map ⊥ → X.

The coequaliser of a pair f, g : X → Y of parallel maps of C is a map

p : Y → C such that pf = pg and:

(ii*) every map h : Y → Z such that hf = hg factors uniquely through

p (i.e. there exists a unique map w : C → Z such that wp = h).

A reader not familiar with these notions should begin by performing

these constructions in Set and Top. In Top, a regular epimorphism

(i.e. a coequaliser map) amounts to a projection on a quotient space.

Sums and coequalisers are particular instances of the colimit of a functor

(Section A2.1).

A1.5 Isomorphism and equivalence of categories

(a) An isomorphism of categories is a functor F : C → D which is in-

vertible. This means that F admits an inverse, i.e. a functor G : D→ C

such that GF = idC and FG = idD.

For instance, the category Ab of abelian groups is (clearly) isomorphic

to the category of Z-modules (and Z-homomorphisms). Being isomor-

phic categories is written as C ∼= D.

(b) More generally, an equivalence of categories is a functor F : C→ D

which is invertible up to isomorphism of functors (Section A1.2), i.e.

there exists a functor G : D→ C such that GF ∼= idC and FG ∼= idD.

An adjoint equivalence of categories is a coherent version of this notion,

namely a four-tuple (F,G, η, ε) where:

• F : C→ D and G : D→ C are functors,

• η : idC→ GF and ε : FG→ idD are isomorphisms of functors,

• Fη = (εF )−1 : F → FGF, ηG = (Gε)−1 : G → GFG (coherence

conditions).

The following conditions on a functor F : C→ D are equivalent, form-

ing a very useful characterisation of equivalences:

(i) F is an equivalence of categories,

(ii) F can be completed to an adjoint equivalence of categories

(F,G, η, ε),

(iii) F is faithful, full and essentially surjective on objects.
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The last condition means that: for every object Y of D there exists

some object X in C such that F (X) is isomorphic to Y in D. The proof

of the equivalence of these three conditions is rather long and requires

the axiom of choice, for classes.

One says that two categories C,D are equivalent, written C ' D,

if there exists an equivalence of categories, as above. This is indeed an

equivalence relation, as follows easily from the previous characterisation.

For instance, the category of finite sets (and mappings between them)

is equivalent to its full subcategory of finite cardinals, which is small

(and therefore cannot be isomorphic to the former).

A1.6 A digression on mathematical structures and categories

When studying a mathematical structure with the help of category the-

ory, it is crucial to choose the ‘right’ kind of structure and the ‘right’

kind of morphisms, so that the result is sufficiently general and ‘natural’

to have good properties (with respect to the goals of our study) - even

if we are interested in more particular situations.

For instance, the category Top of topological spaces and continuous

mappings is a natural framework for studying topology. Among its good

properties there is the fact that all (co)products and (co)equalisers exist,

and are computed as in Set, then equipped with a suitable topology.

(More generally, this is true of all limits and colimits, and is a conse-

quence of the fact that the forgetful functor Top→ Set has a left and a

right adjoint, see below). Hausdorff spaces are certainly important, but

it is often better to view them in Top, as their category is less well be-

haved: coequalisers exist, but are not computed as in Set, i.e. preserved

by the forgetful functor to Set.

(Many category theorists would agree with [M3], saying that even Top

is not sufficiently good, because it is not a cartesian closed category,

and prefer - for instance - the category of compactly generated spaces;

however - since homotopy theory is our goal - we are essentially satisfied

with the fact that the standard interval is exponentiable in Top (with

all its cartesian powers, see A4.3).

Similarly, if we are interested in ordered sets, it is generally better to

view them in the category of preordered sets and (weakly) increasing

mappings, where (co)products and (co)equalisers not only exist, but

again are computed as in Set, with a suitable preorder. On the other

hand, the category of totally ordered sets does not have (even binary)

products, and - generally speaking - is of little interest; nevertheless,
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one should not forget that the category ∆ of finite positive ordinals

(and increasing maps) is important as a basis of presheaves (see A1.8).

Another point to be kept in mind is that the isomorphisms of the cat-

egory (i.e. its invertible arrows) should indeed ‘preserve’ the structure

we are interested in, or we risk of studying something different from our

purpose. As a trivial example, the category T of topological spaces and

all mappings between them has practically nothing to do with topology:

an isomorphism of T is any bijection between topological spaces. In-

deed, T is equivalent to the category of sets (according to the previous

definition, in A1.5), and is a ‘deformed’ way of looking at the latter.

Less trivially, the category M of metric spaces and continuous map-

pings misses crucial properties of metric spaces, since its invertible mor-

phisms do not preserve completeness. In fact, M is equivalent to the

category of metrisable topological spaces and continuous mappings, and

should be viewed in this way. A ‘reasonable’ category of metric spaces

should be based on Lipschitz maps, or - more particularly - on weak

contractions (see Section 6.1).

A1.7 Categories of functors

Let S be a small category and S = ObS its set of objects. For any

category C, one writes CS the category whose objects are the func-

tors F : S → C and whose morphisms are the natural transformations

ϕ : F → G : S→ C, with vertical composition.

Notice that the natural transformations between two given functors

F,G : S→ C do form a set

CS(F,G) = Nat(F,G), (A.5)

since this class can be embedded in a product of sets indexed on a set:∏
i∈S C(F (i), G(i)). Moreover, if C is also small, CS is too.

In particular, the ordinal category 2 (with two objects 0, 1 and one

non-identity arrow, 0 → 1), gives C2, the category of morphisms of C,

where a map (u0, u1) : f → g is a commutative square of C; these are

composed as below, on the right

A0
u0 //

f
��

B0

g

��

A0
u0 //

f
��

B0
v0 //

g

��

C0

h
��

A1 u1

// B1 A1 u1

// B1 v1
// C1

(A.6)
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A natural transformation ϕ : F → G : A → B can be viewed as a

functor A×2→ B or, equivalently, as a functor A→ B2.

A functor F : C → Set is said to be representable if it is isomorphic

to a functor C(C,−) : C→ Set, for some object C in C (which is deter-

mined by F , up to isomorphism). Then, the Yoneda Lemma describes

the natural transformations F → G, for every functor G : C → Set

[M3].

A1.8 Categories of presheaves

A functor Sop → C, defined on the opposite category Sop, is also

called a presheaf of C on the (small) category S. They form a cate-

gory Psh(S,C) = CSop

, whose arrows are the natural transformations

between such functors.

The small category S is canonically embedded in its presheaf category

SetSop

, by the Yoneda embedding

y : S→ CSop

, y(i) = S(−, i) : Sop → Set, (A.7)

which sends every object i to the corresponding representable presheaf

(Section A1.7).

Taking as S the category ∆ of finite positive ordinals (and increasing

maps), one gets the category SmpC = C∆op

of simplicial objects in C,

and - in particular - the category of simplicial sets Smp = SmpSet =

Set∆op

. The Yoneda embedding sends the ordinal n to the simplicial

set ∆n, freely generated by one simplex of dimension n.

Cubical objects also form a presheaf category CubC = CIop , where I is

the subcategory of Set consisting of the elementary cubes 2n = {0, 1}n,

together with the maps 2m → 2n which delete some coordinates and

insert some 0’s and 1’s, without modifying the order of the remaining

coordinates. For cubical objects with connections and/or symmetries,

viewed as presheaves, see [GM]. (Cubical sets are studied in Section 1.6.

Sheaves on a site (S, J) are recalled in 5.1.3.)

A1.9 Universal arrows

We end this section by recalling a general way of formalising universal

properties, based on a functor U : A→ C and an object X of C.

A universal arrow from the object X to the functor U is a pair (A,

η : X → UA) consisting of an object A of A and arrow η of C which is

universal, in the sense that every similar pair (B, f : X → UB) factors
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uniquely through (A, η): in other words, there exists a unique g : A→ B

in A such that the following triangle commutes in C

X
η //

f %%

UA

Ug
��

Ug.η = f.

UB

(A.8)

Dually, a universal arrow from the functor U to the object X is a pair

(A, ε : UA → X) consisting of an object A of A and arrow ε of C such

that every similar pair (B, f : UB → X) factors uniquely through (A, ε),

i.e. there exists a unique g : B → A in A such that the following triangle

commutes in C

UA
ε // X

ε.Ug = f.

UB

Ug

OO

f

99
(A.9)

A reader which is not familiar with these notions might begin by

constructing the universal arrow from a set X to the forgetful functor

Ab → Set, or from a group G to the inclusion functor Ab → Gp.

Then, one can describe (co)products and (co)equalisers in a category C

as universal arrows for suitable functors (Section A2.4 may be of help).

A2 Limits and colimits

A2.1 Main definition

The categorical notion of the limit of a functor contains, as particular

cases, cartesian products, equalisers (Section A1.3), pullbacks and the

classical projective limits.

Let S be a small category and X : S→ C a functor, written in ‘index

notation’ (for i ∈ S = ObS and a : i→ j in S):

X : S→ C, i 7→ Xi, a 7→ (Xa : Xi → Xj), (A.10)

as we think of X as a diagram of shape S in C.

A cone for X is an object A of C equipped with a family of maps

(fi : A→ Xi)i∈S in C such that the following triangles commute

A
fi //

fj ##

Xi

Xa
��

(a : i→ j in S).

Xj

(A.11)
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The limit of X : S → C is a universal cone (L, (ui : L → Xi)i∈S).

This means a cone of X such that every cone (A, (fi : A → Xi)i∈S
factors uniquely through the former; in other words, there is a unique

map f : A→ L such that, for all i ∈ S, uif = fi.

The solution need not exist. When it does, it is determined up to a

unique coherent isomorphism, and the object L is denoted as Lim(X).

The definition of colimit is dual: a universal cocone.

A2.2 Particular cases

The product
∏
Xi of a family (Xi)i∈S of objects of C is the limit of

the corresponding functor X : S → C, defined on the discrete category

whose objects are the elements of the index set S (and whose morphisms

only consist of the formal identities of such objects).

The equaliser in C of a pair of parallel morphisms f, g : X0 → X1 is

the limit of the obvious functor defined on the category 0 ⇒ 1.

The pullback of a pair of morphisms with the same codomain fi : Xi →
X0 (i = 1, 2) is the limit of the obvious functor defined on the category

1→ 0 ← 2. This amounts to the usual definition: an object A equipped

with two maps ui : A → Xi which form a commutative square with f1

and f2, in a universal way:

A
u1 //

u2

��

X1

f1
��

X2
f2

// X0

(A.12)

that is, f1u1 = f2u2, and for every triple (B, v1, v2) such that f1v1 =

f2v2, there exists a unique map w : B → A such that u1w = v1, u2w =

v2.

It is easy to show that A can be constructed as the equaliser of the

two maps fipi : X1×X2 → X0, when such limits exist in our category.

Sums and coequalisers are dual to products and equalisers. The col-

imit of a pair of morphisms fi : X0 → Xi (with the same domain) is

called a pushout. A category with binary sums X1 +X2 and coequalis-

ers has all pushouts.



412 Some points of category theory

A2.3 Complete categories and the preservation of limits

A category C is said to be complete (resp. finitely complete) if it has

a limit for every functor S → C defined over a small category (resp. a

finite category).

One says that a functor F : C→ D preserves the limit

(L, (ui : L→ Xi)i∈S)

of a functor X : S → C if the cone (FL, (Fui : FL → FXi)i∈S) is the

limit of the composed functor FX : S→ D. One says that F preserves

limits if it preserves those limits which exist in C. Analogously for the

preservation of products, equalisers, etc.

One proves, by a constructive argument, that a category is complete

(resp. finitely complete) if and only if it has equalisers and products

(resp. finite products). Moreover, if C is complete, a functor F : C→ D

preserves all limits (resp. all finite limits) if and only if it preserves

equalisers and products (resp. finite products).

Dually, a category is said to be cocomplete if it has all colimits; and

all colimits can be constructed from sums and coequalisers.

A2.4 Limits and colimits as universal arrows

Consider the category CS of functors S → C and their natural trans-

formations (Section A1.7). The diagonal functor

D : C→ CS, (DA)i = A, (DA)a = idA (i ∈ S, a in S), (A.13)

sends an object A to the constant functor at A, defined above, and a mor-

phism f : A→ B to the natural transformation Df : DA→ DB : S→ C

whose components are constant at f .

Then, the limit of a functor X : S→ C in C is the same as a universal

arrow (L, ε : DL→ X) from the functor D to the object X of CS.

Dually, the colimit of X in C is the same as a universal arrow (L, η :

X → DL) from the object X of CS to the functor D.

A3 Adjoint functors

A3.1 Main definitions

An adjunction F a G, making a functor F : C → D left adjoint to a

functor G : D → C, can be equivalently presented in four main forms.
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(An elegant, concise proof of the equivalence can be seen in [M3]; again,

one needs the axiom of choice.)

(i) We assign two functors F : C → D and G : D → C together with a

family of bijections

ϕXY : D(FX, Y )→ C(X,GY ) (X in C, Y in D),

which is natural in X,Y . More formally, the family (ϕXY ) is an invert-

ible natural transformation between functors in two variables

ϕ : D(F (−), .)→ C(−, G(.)) : Cop×D→ Set.

(ii) We assign a functor G : D → C and, for every object X in C, a

universal arrow from the object X to the functor G

(F0X, ηX : X → GF0X).

(ii*) We assign a functor F : C → D and, for every object Y in D, a

universal arrow from the functor F to the object Y

(G0Y, εY : FG0Y → Y ).

(iii) We assign two functors F : C → D and G : D → C, together with

two natural transformations

η : idC→ GF (the unit), ε : FG→ idD (the counit),

which satisfy the triangular identities: εF.Fη = idF , Gε.ηG = idG

F
Fη //

idF $$

FGF

εF
��

G
ηG //

idG $$

GFG

Gε
��

F G

(A.14)

The term ‘unit’ is motivated by the monad associated to the adjunc-

tion (Section A4.4).

A3.2 Remarks

The previous forms have different features. Form (i) is the classical def-

inition of an adjunction, and is at the origin of the name (compare with

adjoint maps of Hilbert spaces). Form (ii) is used when one starts from

an ‘easily defined’ functor and wants to construct its left adjoint. Form

(ii*) is dual to the previous one, and used in a dual way, to construct
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right adjoints. Form (iii) is adequate to the formal theory of adjunctions

(and makes sense in an abstract 2-category).

Duality of categories interchanges left and right adjoint.

An adjoint equivalence (Section A1.5) amounts to an adjunction where

the unit and counit are both invertible.

A3.3 Main properties of adjunctions

(a) Uniqueness. Given a functor, its left adjoint (if it exists) is uniquely

determined up to isomorphism.

(b) Composing adjoint functors. Given two consecutive adjunctions

F : C � D :G, η : 1→ GF, ε : FG→ 1,

H : D � E :K, ρ : 1→ KH, σ : HK → 1,
(A.15)

there is a composed adjunction from the first to the third category:

HF : C � E :GK,

GρF.η : 1→ GK.HF, σ.HεK : HF.GK → 1.
(A.16)

(c) Adjoints and limits. A left adjoint preserves (the existing) colimits,

a right adjoint preserves (the existing) limits.

(d) Faithful and full adjoints. Suppose we have an adjunction F a G,

with counit ε : FG→ 1. Then

(i) G is faithful if and only if all the components εY of the counit are

epimorphisms;

(ii) G is full if and only if all the components εY of the counit are split

monomorphisms;

(iii) G is full and faithful if and only if the counit is invertible.

A3.4 Reflective and coreflective subcategories

A subcategory C′ ⊂ C is said to be reflective (notice: not ‘reflexive’) if

the inclusion functor U : C′ → C has a left adjoint, and coreflective if U

has a right adjoint.

For instance, Ab is reflective in Gp, while the full subcategory of Ab

formed by torsion abelian groups is coreflective in Ab.
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A3.5 The adjoint Functor Theorem (P. Freyd)

Let G : D→ C be a functor defined on a complete category. Then G has

a left adjoint if and only if it preserves all limits and:

(Solution Set Condition) for every X in C there exists a solution set,

i.e. a set of objects S(X) in D such that every morphism f : X → GY

(with Y in D) factors as

X
f0 //

f ##

GY0

Gg
��

Gg.f0 = f,

GY

(A.17)

for some Y0 ∈ S(X), f0 in C and g in D.

A4 Monoidal categories, monads, additive categories

A4.1 Monoidal categories

A monoidal category (C,⊗, E) is a category equipped with a tensor

product, which is a functor in two variables

C×C→ C, (A,B) 7→ A⊗B. (A.18)

Without entering into details, this operation is assumed to be asso-

ciative up to a natural isomorphism (A⊗B)⊗ C ∼= A⊗ (B ⊗ C), and

the object E is assumed to be an identity, up to natural isomorphisms

E⊗A ∼= A ∼= A⊗E. All these isomorphisms form a ‘coherent’ system,

which allows one to forget them and write (A⊗B)⊗C = A⊗ (B ⊗C),

E ⊗A = A = A⊗ E. See [M2, Ke1, EK, Ke2].

A symmetric monoidal category is further equipped with a symmetry

isomorphism, coherent with the other ones:

s(X,Y ) : X ⊗ Y → Y ⊗X. (A.19)

The latter can not be omitted: notice that s(X,X) : X⊗X → X⊗X
is not the identity, generally.

A4.2 Exponentiable objects and internal homs

In a symmetric monoidal category C, an object A is said to be exponen-

tiable if the functor −⊗A : C→ C has a right adjoint, often written as

(−)A : C→ C or Hom(A,−), and called an internal hom.
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Since adjunctions compose, it follows easily that all its tensor powers

A⊗n are also exponentiable, with

Hom(A⊗n,−) = (Hom(A,−))n. (A.20)

A symmetric monoidal category is said to be closed if all its objects

are exponentiable. The category Ab of abelian groups is symmetric

monoidal closed, with respect to the usual tensor product and Hom

functor.

In the non-symmetric case, one should consider a left and a right hom

functor, as it happens for cubical sets (see (1.156)).

A4.3 Cartesian closed categories

A category C with finite products has a symmetric monoidal structure

given by the categorical product. This structure is called cartesian.

Then, C is said to be cartesian closed if all objects are exponentiable

for this structure. Set is cartesian closed. Cat is cartesian closed, with

the internal hom Cat(S,C) = CS described in A1.7. Every category of

presheaves of sets is cartesian closed.

Ab is not cartesian closed: for every abelian group A 6= 0, the product

−×A does not preserves sums, and cannot have a right adjoint.

Top is not cartesian closed: for a fixed Hausdorff space A, the product

−×A preserves quotients (if and) only if A is locally compact ([Mi], Thm.

2.1 and footnote (5)). But, as a crucial fact for homotopy, the standard

interval I is exponentiable, with all its powers; more generally, each

locally compact Hausdorff space is exponentiable (as recalled in 1.1.2).

A4.4 Monads and adjunctions

A monad in the category C is a triple (T, η, µ) where T : C → C is

an endofunctor, η : 1 → T and µ : T 2 → T are natural transformations

(called the unit and multiplication of the monad), and the following

diagrams commute:

T
ηT // T 2

µ

��

T
Tηoo T 3 Tµ //

µT
��

T 2

µ

��
T T 2

µ
// T

(A.21)
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It is easy to verify that an adjunction

F : C � A :U, η : 1→ UF, ε : FU → 1, (A.22)

yields a monad (T, η, µ) on C, where T = UF : C→ C, η is the unit of

the adjunction and µ = UεF : UF.UF → UF .

A4.5 Algebras for a monad

Given an arbitrary monad, as above, one defines the category CT of

T -algebras, or Eilenberg-Moore algebras for T .

An object is a pair (X, a : TX → X) consisting of an object X of C

and a map a (the algebraic structure) satisfying two coherence axioms:

the following diagrams commute

X
ηX // TX

a

��

T 2X
Ta //

µX
��

TX

a

��
X TX

a
// X

(A.23)

A morphism of T -algebras f : (X, a)→ (Y, b) is a morphism f : X → Y

of C which preserves the algebraic structures, in the sense that fa =

b.Tf .

There is an adjunction

FT : C � CT :UT ,

ηT = η : 1→ UTFT , εT : FTUT → 1,
(A.24)

whose associated monad coincides with the given one.

A functor U : A → C is said to be monadic, or to make A monadic

over C, if it has a left adjoint F : C → A and moreover the following

comparison functor from A to the category of algebras CT of the monad

associated to the adjunction

K : A→ CT , K(A) = (UA,UεA : UFUA→ UA), (A.25)

is an equivalence of categories. One also says that A is algebraic over C

(via U).

For instance, the category Ab of abelian groups is algebraic over Set

(via the usual forgetful functor); the same holds for all categories of

‘equationally defined algebras’. Less obviously, the category of compact

Hausdorff spaces is algebraic over Set [M3].
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A4.6 Additive categories

Let us recall that a preadditive category C is a category enriched on

the symmetric monoidal category Ab. Explicitly, this means that every

hom-set C(X,Y ) is equipped with a structure of abelian group and

that composition is bilinear. The zero element of C(X,Y ) is written

0XY : X → Y .

We also need the more general notion of a category enriched on abelian

monoids (e.g. for directed chain complexes), which is defined in a similar

way.

Let C be enriched on abelian monoids. The following conditions on

the object Z are equivalent:

(a) Z is terminal,

(b) Z is initial,

(c) C(X,X) is the null group,

(d) idZ = 0ZZ .

In this case Z is the zero object, often written as 0.

In the same situation, given two objects X1, X2, their biproduct X =

X1⊕X2 comes with injections ui : Xi → X and projections pi : X → Xi

satisfying the following equivalent properties:

(i) (X, p1, p2) is the product of X1, X2 and the injections have com-

ponents u1 = (idX1, 0), u2 = (0, idX2);

(ii) (X,u1, u2) is the sum of X1, X2 and the projections have ‘co-

components’ p1 = [idX1, 0], p2 = [0, idX2];

(iii) the following relations hold:

X1
u1

&&

X2
u2

xx

piui = idXi

X

p1xx p2 &&

(i = 1, 2),

X1 X2 u1p1 + u2p2 = idX.

(A.26)

Therefore, in a category enriched on abelian monoids, the existence

of binary products is equivalent to the existence of binary sums, which

are called biproducts and written X1⊕X2.

An additive category is a preadditive category with finite biproducts.

A preadditive category is finitely complete if and only if it is additive

and has kernels.
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A5 Two-dimensional categories and mates

We end this review with some less standard subjects of category theory,

which are of interest here.

A5.1 Sesquicategories

Let us begin with the notion of an ‘h-category’ [G2], which was in-

troduced by Kamps under the name of ‘generalised homotopy system’

[Km2]. An h-category C is a category equipped with:

(a) for each pair of parallel morphisms f, g : X → Y , a set of 2-cells, or

homotopies, C2(f, g) whose elements are written as ϕ : f → g : X → Y

(or ϕ : f → g), so that each map f has a trivial (or degenerate, or

identity) endocell idf : f → f ;

(b) a whisker composition, or reduced horizontal composition, for homo-

topies and maps

X ′
h // X

f

↓ϕ
//

g
// Y

k // Y ′ (A.27)

k◦ϕ◦h : kfh→ kgh : X ′ → Y ′,

also written as kϕh. These data must satisfy the following axioms:

k′◦(k◦ϕ◦h)◦h′ = (k′k)◦ϕ◦(hh′) (associativity),

1Y ◦ϕ◦1X = ϕ, k◦idf ◦h = id(kfh) (identities).
(A.28)

This structure can be viewed as a category enriched over the category

Gph of (small) reflexive graphs, equipped with the symmetric monoidal

closed structure described in 4.3.3.

A sesquicategory [St] is further equipped with a concatenation, or ver-

tical composition of 2-cells ψ.ϕ, which is associative, has for identities

the trivial 2-cells and is consistent with whisker composition:

f //
ϕ��X //
ψ��

Y ψ.ϕ : f → h : X → Y,

h
//

(A.29)

χ.(ψ.ϕ) = (χ.ψ).ϕ, ϕ.idf = ϕ = idg.ϕ,

k◦(ψ.ϕ)◦h = (k◦ψ◦h).(k◦ϕ◦h).
(A.30)
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A5.2 Two-categories

A 2-category is a sesquicategory which satisfies the following reduced

interchange property:

X

f

↓ϕ
//

g
// Y

h

↓ψ
//

k
// Z (ψ◦g).(h◦ϕ) = (k◦ϕ).(ψ◦f). (A.31)

To recover the usual definition [Be, KS], one defines the horizontal

composition of 2-cells ϕ,ψ which are horizontally consecutive, as in dia-

gram (A.31)

ψ◦ϕ = (ψ◦g).(h◦ϕ) = (k◦ϕ).(ψ◦f) : hf → kg : X → Z. (A.32)

Then, one proves that the horizontal composition of 2-cells is associa-

tive, has identities (any identity 2-cell of an identity arrow) and satisfies

the middle-four interchange property with vertical composition (an ex-

tension of the previous reduced interchange property):

//
ϕ��

//
σ��X //

ψ��
Y //

τ��
Z (τ.σ)◦(ψ.ϕ) = (τ ◦ψ).(σ◦ϕ).

// //
(A.33)

The prime example of such a structure is the 2-category Cat of small

categories, functors and natural transformations.

Notice: the usual definition of a 2-category [Be, KS] is based on the

complete horizontal composition, rather than on the reduced one. But

practically one generally works with the reduced horizontal composition;

and there are important cases of sesquicategories where the reduced

interchange property does not hold (and one does not define a complete

horizontal composition): for instance, the sesquicategory Ch•D of chain

complexes, chain morphisms and homotopies.

A5.3 Natural transformations and mates

(a) Let us have two adjunctions (between ordinary categories)

F : X � Y :U, η : 1→ UF, ε : FU → 1,

F ′ : X′ � Y′ :U ′, η′ : 1→ U ′F ′, ε′ : F ′U ′ → 1,
(A.34)

and two functors H : X → X′, K : Y → Y′. Then there is a bijection

between sets of natural transformations:

Nat(HU,U ′K)→ Nat(F ′H,KF ), λ 7→ µ, (A.35)
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µ = ε′KF.F ′λF.F ′Hη : F ′H → F ′HUF → F ′U ′KF → KF,

λ = U ′Kε.U ′µU.η′HU : HU → U ′F ′HU → U ′KFU → U ′K,

X
1 //

F ��

η
pp

X
H // X′

F ′

  
λ

��
ε′

��Y
K

//

U
??

Y′
1

//

U ′
>>

Y′

X
H //

F ��
µpp

X′
1 //

F ′   
η′ ..

X′

ε ��Y
1

//

U
??

Y
K

// Y′
U ′

>>

The natural transformations λ, µ are said to be mates under the ad-

junctions (A.34).

(More generally, as shown in [KS], 2.2, this holds true for internal

adjunctions in a 2-category, and can be formalised as an isomorphism

between two double categories.)

(b) In particular, if X = X′, Y = Y′, H = idX and K = idY, we have

a bijection

Nat(U,U ′)→ Nat(F ′, F ). (A.36)

(c) The case of interest for the cylinder/cocylinder adjunction of homo-

topy theory is even more particular: we have an adjunction I a P of

endofunctors of the category Y. Then, we have composed adjunctions

In a Pn for their powers, and bijections

Nat(In, Ik)→ Nat(P k, Pn) (n, k > 0). (A.37)

A5.4 Mates and limits

Under this correspondence of mates, colimits of natural transformations

of left adjoints correspond to limits of natural transformations of right

adjoints. The following instance is of interest here.

Let us assume we have four adjunctions (for i = 0, ..., 3)

Fi : X � Y :Ui, ηi : 1→ UiFi, εi : FiUi → 1, (A.38)

with four natural transformations f, g, h, k and their mates f ′, h′, g′, h′,
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as in the following diagrams

F0X
fX //

gX

��

F1X

hX

��

G0Y G1Y
f ′Yoo

F2X
kX
// F3X G2Y

g′Y

OO

G3Y
k′Y

oo

h′Y

OO

(A.39)

Then, every left-hand square is a pushout in Y if and only if every

right-hand square is a pullback in X.

Indeed, assuming that the left-hand squares are pushouts, take - for

an arbitrary X in X - two maps ui : X → GiY (i = 1, 2) which commute

with f ′Y , g′Y . Then their ‘adjoint’ maps vi : FiX → Y commute with

fX, gX, and yield a unique coherent morphism v : F3X → Y . The

adjoint map u : X → G3Y yields the unique morphism coherent with

u1, u2.

Starting from a cylinder/cocylinder adjunction I a P of endofunctors

of the category A, this result links the concatenation pushout J to the

concatenation pullback Q: take F0 = idA, F1 = F2 = I, F3 = J and

G0 = idA, G1 = G2 = P , F3 = Q.
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Glossary of Symbols

2, directed interval

of categories, 23

of cubical sets, 69

Aϑ, irrational rotation C*-algebra,

129

C+f , C−f , mapping cones, 81

C+X, C−X, cones, 81

Cat, category of small categories,

417

c, the fundamental category of

the directed circle, 196

Ch•D, category of chain com-

plexes on D, 254

cSet, category of c-sets, 76

Cϑ, irrational rotation c-set or

cubical set, 131

Cub, category of cubical sets,

67

Cub•, category of pointed cubi-

cal sets, 78, 119

dCh+Ab, category of directed

chain complexes, 106

dCh•Ab, in the unbounded case,

259

δI, δ-metric interval, 357

δMtr and δ∞Mtr, categories of

δ-metric spaces, 355, 356

δR, δ-metric line, 357

δS1, δ-metric circle, 358

Dga, category of dg-algebras, 329

Dgm, category of cochain com-

plexes of modules, 328

Dϑ, irrational rotation d-space,

131

dTop, category of d-spaces, 50

dTop•, category of pointed d-

spaces, 63

E+f , E−f , mapping cocone, 92

E+X, E−X, cocone, 92

∼1, equivalence generated by di-

rected homotopies, 42

∼+, future regularity equivalence,

202

∼−, past regularity equivalence,

203

Gpd, category of groupoids, 24

Gph, the category of reflexive

graphs, 252

hcok+(f), hcok−(f), 81

hker+(f), hker−(f), 92
↑Hn(A), directed homology

of a directed chain complex,

107
↑Hn(X), directed homology

429
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of a cubical set, 108

of a d-space, 116

of an inequilogical space, 139
↑Hn(X,x), directed homology

of a pointed cubical set, 122

Ho1(A), homotopy category, 42

Ho2(A), homotopy 2-category, 266

I, standard interval (space), 14

I, dI1-interval in a concrete dI1-

category, 32

I, dI1-interval in a monoidal cat-

egory, 34

I(f, g), h-pushout, 44
↑I, directed interval (d-space),

53, 148
↑I, directed interval (preordered

space), 18, 148
↑i, see 2
↑I•, directed interval (pointed d-

space), 64

J(X), concatenation pushout, 241

K-Mod, category of modules on

a ring, 261

L(a), length of a path, 361

Mtr, category of symmetric δ-

metric spaces, 359

n, the ordered set of natural num-

bers as a category, 174

↑O1, ordered circle (d-space), 54

ΩX, loop object, 92

P (f, g), h-pullback, 90

pAb, category of preordered abel-

ian groups, 105

pEql, category of inequilogical

spaces, 98

↑Π1(X), fundamental category

of a d-space, 155
↑Π1(X), fundamental category

of an object, 268
↑π1(X,x), fundamental monoid

of a pointed d-space, 158∏
Xi, product in a category, 401

Psh(S,A), category of presheaves,

297

pTop, category of preordered topo-

logical spaces, 18

Q(Y), concatenation pullback, 242

Rn, euclidean space, 53

r, the ordered real line as a cat-

egory, 195

R(K), geometric realisation, 74

↑R(K), directed geometric real-

isation, 75
↑R, directed line (d-space), 53

↑S1, directed circle (d-space), 53

Shv(S,A), category of sheaves,

299

ΣX, suspension, 82

Sn, n-dimensional sphere, 53
↑Sn, directed n-sphere, 54
↑sn, directed n-sphere (cubical

set), 70

sp+ or Sp+, future spectrum of

a category, 205

sp− or Sp−, past spectrum of a

category, 206

spn(a), span of a path, 361

�X, singular cubical set, 65
↑�X, directed singular cubical

set of a d-space, 75∑
Xi, sum in a category, 402

w2, directed interval of weighted

categories, 369
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wCat and w∞Cat, categories of

weighted categories, 368, 371

wCub and w∞Cub, categories

of weighted cubical sets, 397

wI, weighted interval, 383

wΠ1(X), fundamental weighted

category, 373

w+, category of extended posi-

tive real numbers, 354

wR, weighted line, 382

wS1, weighted circle, 383

Wϑ, irrational rotation w-space,

392

wTop and w∞Top, categories

of w-spaces, 379

z, the ordered set of integers as

a category, 195
↑z, directed integral line (cubi-

cal set), 70



Index

2-category, 420

2-homotopy

in dTop, 154

in a dI1-category, 234

of acceleration, 155, 247

relation in dTop, 156

2-path in dTop, 156

action on a cubical set, 127

additive category, 418

adjoint functors, 412

and (co)limits, 414

composition, 414

faithful, full, 414

algebras of a monad, 417

bitopological space, 103

c-set, 77, 102

cartesian closed category, 416

categories of functors, or diagrams,

408

categories of presheaves, 409

chain complex, 46, 256

coarse

contractible category, 174

d-homotopy equivalence, 42

equivalence of categories, 170

cochain algebra, see dg-algebra

cocone of an object, 93

cocylinder, see path functor

coequaliser in a category, 406

cofibration, 274

category (Baues), 296

cofibre

comparison of a map, 87, 281

diagram of a map, 89, 284

reduced diagram, 87

sequence of a map, 88

colimit in a category, 411

complete category, 412

concatenation

for δ-metric spaces, 368

for chain complexes, 257

for w-spaces, 390

for weighted categories, 374

of double homotopies, 265

of homotopies, 245

regular, 245

of homotopies in dTop, 152

of homotopies in Top, 16

of paths in dTop, 151

of paths in Top, 14

concatenation pullback, 244

in Top, 18

concatenation pushout, 243

in Cat, 23

in dTop, 61

in pTop, 20

432
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in Top, 15, 16

cone

functor, 82, 239

of a cubical set, 85

of a d-space, 84

of a pointed d-space, 85

of an object, 82

connections, 241

in a singular cubical set, 67

of chain complexes, 257, 259

of the cylinder in Top, 17

of the interval in Top, 15

of the path functor in Top, 18

contractions (weak), 358

coreflective subcategory, 171

counit

of a past equivalence, 168

of a past homotopy equivalence,

40

of an adjunction, 412

cubical set, 67

cylinder functor

of δ-metric spaces, 367, 368

of categories, 23

of chain complexes, 258

of cubical sets (left, right), 72

of d-spaces, 62, 149

of dg-algebras, 343

of directed chain complexes,

261

of pointed cubical sets, 121

of pointed d-spaces, 65

of preordered spaces, 20

of topological spaces, 16

of weighted categories, 373

d-map, 51

d-space, 51

associated to a δ-metric, 366

associated to a w-space, 395

d-topological group, 326

δ-metric interval, 360

δ-metric, 358

δ-metric line, 360

δ-metric circle, 361

dg-algebra, 332

unital, 345

dh1-category, 38

dI1

-category, 28

concrete, 31

symmetric, 236

symmetric monoidal, 237

-functor (lax), 35

-functor (strong, strict), 36

-homotopical category, 80

symmetric, 237

-homotopical functor, 80

-interval, 32, 34

-subcategory, 29

dI2

-category

symmetric, 242

-functor, subcategory, 250

-homotopical category, 242

-interval, 251

dI3

-category, 243

regular, 245

symmetric, 246

-functor, subcategory, 250

-homotopical category, 244

-interval, 251

dI4

-category, 247

concrete, 271

symmetric, 248

-functor (lax), 249

-homotopical category, 248

-interval, 251
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-subcategory, 250

diad, 25

differential of a map, 86, 94

dioid, 24, 25

dIP1

-category, 30

concrete, 33

symmetric, 237

-functor (lax), 36

-homotopical category, 96

dIP2

-category, 243

-functor, subcategory, 250

dIP3

-category, 244

-functor, subcategory, 250

dIP4

-category, 248

-functor, subcategory, 250

-homotopical category, 248

directed chain complex, 107, 261

directed circle

cubical set, 71

d-space, 54

directed homology

of cubical sets, 109

(relative), 112

of d-spaces, 118

of directed chain complexes,

108

of inequilogical spaces, 140

of pointed cubical sets, 123,

142

(relative), 125

perfect theory, 142

theory, 140, 285

directed interval

of δ-metric spaces, 360

of categories, 23

of cubical sets, 70

of d-spaces, 54, 149

of pointed d-spaces, 65

of preordered spaces, 19, 149

of weighted categories, 372

directed line (d-space), 54

directed spheres, 54

as pointed suspensions, 85

double homotopy, 233

and its folding, 268

in dTop, 155

from a graded composition, 154,

234

in dTop, 153

double path

in dTop, 156

double reflection, 234

dP1

-category, 29

concrete, 33

symmetric, 237

-functor (lax), 36

-homotopical category, 92

-homotopical functor, 93

dP2

-category, 243

-functor, subcategory, 250

dP3

-category, 244

-functor, subcategory, 250

dP4

-category, 248

-functor (lax), 250

-homotopical category, 248

-subcategory, 250

equaliser in a category, 405

equivalence of categories, 406

essential localisation, 183

exponentiable

d-space, 60
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object in a monoidal category,

415

preordered space, 19

topological space, 17

w-space, 387

external transposition

of directed chain complexes,

263

factorisation (canonical)

of a future equivalence, 171

of an adjunction, 189

feasible path, 366, 381

fibration, 275

fibre

diagram of a map, 95

reduced diagram, 94

sequence of a map, 95

fibre-cofibre sequence of a map,

96

free path in a w-space, 381

free point, 31

fundamental category

of a d-space, 156

of an object, 271

weighted, 375

fundamental monoid

of a pointed d-space, 159

future (or past)

(co)contractible object, 41

branching morphism, 200

branching point, 203

effective, 204

contractible category, 173

equivalence of categories, 167,

168

equivalence of weighted cate-

gories, 379

faithful equivalence, 167

homotopy equivalence, 40

regular morphism, 199, 200

regular point, 203

regularity equivalence, 204, 205

retract of a category, 170, 171

spectrum of a category, 207,

208

generalised metric, see δ-metric

geodesic path, 376

geometric realisation

of a cubical set, 75

directed, 76

Grothendieck topology, 302

h-category, 419

preadditive, 291

h-cokernel, 81

h-kernel, 93

h-pullback, 90

of categories, 97

of chain complexes, 258

of d-spaces, 91

of preordered spaces, 91

h-pushout, 44

functor, 48, 238

higher universal property, 235

higher homotopies, 31

homology, see directed homol-

ogy

homotopy

in a category of algebras, 316

in a category of diagrams, 301

in a dI1-category, 28

in a slice category, 308, 311

in categories of sheaves, 303

in the reversible case, 293

of δ-metric spaces, 369

of G-d-spaces, 327

of categories, 23, 254

of chain complexes, 257
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of cubical sets, 73, 255

of d-spaces, 63, 249

of d-topological groups, 326

of dg-algebras, 332

of directed chain complexes,

261

of pointed d-spaces, 253

of positive chain complexes, 260

of reflexive graphs, 255

of strict monoidal categories,

329

of topological spaces, 15

of weighted categories, 373, 374

homotopy 2-category

of a dI4-category, 269

homotopy category

of a dI1-category, 42

of a dP1-category, 42

homotopy pullback, see h-pullback

homotopy pushout, see h-pushout

hyperoctahedral group, 21

inequilogical space, 99

injective

contractibility, 195

equivalence of categories, 186

model of a category, 186

minimal, 194

strongly minimal, 194

interchange (middle-four), 420

interval (reversible)

of chain complexes, 264

irrational rotation

C*-algebra, 130

c-set, 132

cubical set, 132

d-space, 132

w-space, 396

isomorphism of categories, 406

Kronecker foliation, 130, 133

length of a path, 364

limit in a category, 410

linear w-space, 381

Lipschitz

functor, 371

map of δ-metric spaces, 359

map of w-spaces, 382

weight of a functor, 371

weight of a mapping

of δ-metric spaces, 359

of w-spaces, 383

locally preordered space, 101

loop-object, 93

mapping cocone of a map, 93

mapping cone of a map, 81

mapping cylinder, 45

metrisable w-space, 393, 394

monad, 416

monoidal category, 415

monoidal closed category, 416

natural transformation, 403

mates, 420

opposite category, 405

ordered circle (d-space), 55

past, see future

path functor

of δ-metric spaces, 368

of categories, 23

of chain complexes, 257

of cubical sets (left, right), 73

of d-spaces, 62, 150

of dg-algebras, 333

of directed chain complexes,

261

of pointed cubical sets, 121

of pointed d-spaces, 65

of preordered spaces, 21
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of topological spaces, 17

of weighted categories, 373

path-evaluation, 30

permutable, see symmetric

permutative cubical set, 68

pf-embedding, 180

pf-equivalence, 177

pf-presentation, 186

pf-projection, pf-surjection, 181

point-like vortex in a d-space, 58

pointed

cubical set, 78, 120

d-space, 64

preadditive category, 418

preordered

abelian group, 107

topological space, 18

preservation

of cylindrical colimits, 235

of homotopies, 35

of limits, 412

presheaf, 300

product in a category, 404

projective

contractibility, 195

equivalence of categories, 186

model associated to an injec-

tive one, 192

model of a category, 186

minimal, 194

pullback in a category, 411

pushout in a category, 411

R-duality, 37

reflection

duality, 37

of cones, 83

of dg-algebras, 334

of directed chain complexes,

262

of h-pushouts, 45

of mapping cones, 82

of preordered spaces, 20

of suspension, 83

reflective subcategory, 170, 414

regular monomorphism, 405

relative setting

for cubical sets, 353

for dg-algebras, 352

for directed chain complexes,

353

for inequilogical spaces, 354

relative settings, 349, 350

replete subcategory, 206

representable functor, 409

reversible

d-space, 51

dI1-category, 29

framework, 21

homotopy of d-spaces, 63

path of d-spaces, 58

w-space, 382

reversible interval

of categories, 24

of d-spaces, 56

of spaces, 14

reversive object, 29

reversor

in a dI1-category, 28

in a dP1-category, 29

in a monoidal category, 34

of categories, 23

of cubical sets, 68

of d-spaces, 51

of directed chain complexes,

262

of preordered spaces, 20

sesquicategory, 419

singular cubical set
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in a concrete dI1-category, 143

of a d-space, 76

of a space, 66

skeleton of a category, 193

slice category, 305

bilateral, 305

smash product of pointed d-spaces,

65

space with distinguished paths,

see d-space

space with weighted paths, see

w-space

span of a path, 364

split epimorphism or retraction,

403

split monomorphism or section,

403

standard point, 31

sum in a category, 405

suspension

functor, 83, 240

of a cubical set (left), 86

of a d-space, 84

of a pointed d-space, 85

symmetric

framework, 21

group, 21

topology of a δ-metric space,

362

symmetries

and their breaking, 21

tensor product

of δ-metric spaces, 360

of chain complexes, 264

of cubical sets, 69

of dg-algebras, 341

of w-spaces, 386

of weighted categories, 372

transposer, 240

of cubical sets, 68

of directed chain complexes,

262

transposition, 236, 242

external, 240

of chain complexes, 257, 260

of the cylinder in Top, 17

of the interval in Top, 15

of the path functor in Top, 18

unit

of a future equivalence, 167

of a future homotopy equiva-

lence, 40

of an adjunction, 412

universal arrow, 409

universal property, 404, 409

van Kampen theorem

for δ-metric spaces, 377

for d-spaces, 160

vertical composition

in a sesquicategory, 419

of homotopies, 245

of natural transformations, 404

w-map, 382

w-space, 381

weighted category

additively, 371

multiplicatively, 359

weighted circle, 386

weighted cubical set, 400

weighted interval, 386

weighted line, 385

whisker composition

in an h-category, 419

of homotopies, 31

of natural transformations, 404


