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Introduction

0.1 Aims and applications

Directed Algebraic Topology is a recent subject which arose in the

1990’s, on the one hand in abstract settings for homotopy theory, like

[G1], and on the other hand in investigations in the theory of concurrent

processes, like [FGR1, FGR2]. Its general aim should be stated as ‘mod-

elling non-reversible phenomena’. The subject has a deep relationship

with category theory.

The domain of Directed Algebraic Topology should be distinguished

from the domain of classical Algebraic Topology by the principle that

directed spaces have privileged directions and directed paths therein need

not be reversible. While the classical domain of Topology and Alge-

braic Topology is a reversible world, where a path in a space can always

be travelled backwards, the study of non-reversible phenomena requires

broader worlds, where a directed space can have non-reversible paths.

The homotopical tools of Directed Algebraic Topology, corresponding

in the classical case to ordinary homotopies, the fundamental group and

fundamental n-groupoids, should be similarly ‘non-reversible’: directed

homotopies, the fundamental monoid and fundamental n-categories. Sim-

ilarly, its homological theories will take values in ‘directed’ algebraic

structures, like preordered abelian groups or abelian monoids. Homo-

topy constructions like mapping cone, cone and suspension, occur here

in a directed version; this gives rise to new ‘shapes’, like (lower and

upper) directed cones and directed spheres, whose elegance is strength-

ened by the fact that such constructions are determined by universal

properties.

Applications will deal with domains where privileged directions ap-

pear, such as concurrent processes, rewrite systems, traffic networks,
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2 Introduction

space-time models, biological systems, etc. At the time of writing, the

most developed ones are concerned with concurrency: see [FGR1, FGR2,

FRGH, Ga1, GG, GH, Go, Ra1, Ra2].

A recent issue of the journal ‘Applied Categorical Structures’, guest-

edited by the author, has been devoted to ‘Directed Algebraic Topology

and Category Theory’ (vol. 15, no. 4, 2007).

0.2 Some examples

As an elementary example of the notions and applications we are going

to treat, consider the following (partial) order relation in the cartesian

plane

p

p′

p′′

a

x

y

•
•

•

,,

//

OO

(x, y) 6 (x′, y′) ⇔ |y′ − y| 6 x′ − x. (0.1)

The picture shows the ‘cone of the future’ at a point p (i.e. the set of

points which follow it) and a directed path from p′ to p′′, i.e. a continuous

mapping a : [0, 1] → R2 which is (weakly) increasing, with respect to

the natural order of the standard interval and the previous order of the

plane: if t 6 t′ in [0, 1], then a(t) 6 a(t′) in the plane.

Take now the following (compact) subspaces X,Y of the plane, with

the induced order (the cross-marked open rectangles are taken out). A

directed path in X or Y satisfies the same conditions as above

• • • ••p′ p′′ p′ p′′
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×
×
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22

,,
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(0.2)

We shall see that - as displayed in the figures above - there are, re-

spectively, 3 or 4 ‘homotopy classes’ of directed paths from the point

p′ to the point p′′, in the fundamental categories ↑Π1(X), ↑Π1(Y ); in

both cases there are none from p′′ to p′, and every loop is constant.
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(The prefixes ↑ and d- are used to distinguish a directed notion from the

corresponding ‘reversible’ one.)

First, we can view each of these ‘directed spaces’ as a stream with

two islands, and the induced order as an upper bound for the relative

velocity feasible in the stream. Secondly, one can interpret the horizontal

coordinate as (a measure of) time, the vertical coordinate as position in

a 1-dimensional physical medium, and the order as the possibility of

going from (x, y) to (x′, y′) with velocity 6 1 (with respect to a ‘rest

frame’ of the medium). The two forbidden rectangles are now linear

obstacles in the medium, with a bounded duration in time. Thirdly, our

figures can be viewed as execution paths of concurrent automata subject

to some conflict of resources, as in [FGR2], fig. 14.

In all these cases, the fundamental category distinguishes between

obstructions (islands, temporary obstacles, conflict of resources) which

intervene essentially together (in the earlier diagram on the left) or one

after the other (on the right). On the other hand, the underlying topo-

logical spaces are homeomorphic, and topology, or algebraic topology,

cannot distinguish these two situations. Notice also that, here, all the

fundamental monoids ↑π1(X,x0) are trivial: as a striking difference with

the classical case, the fundamental monoids often carry a very minor part

of the information of the fundamental category ↑Π1(X).

The study of the fundamental category of a directed space, via mini-

mal models up to directed homotopy of categories, will be developed in

Chapter 3.

0.3 Directed spaces and other directed structures

The framework of ordered topological spaces is a simple starting point

but is too poor to develop directed homotopy theory.

We want a ‘world’ sufficiently rich to contain a ‘directed circle’ ↑S1

and higher directed spheres ↑Sn - all of them arising from the dis-

crete two-point space under directed suspension (of pointed objects).

In ↑S1, directed paths will move in a particular direction, with fun-

damental monoids ↑π1(↑S1, x0) ∼= N; its directed homology will give
↑H1(↑S1) ∼= ↑Z, i.e. the group of integers equipped with the natural or-

der, where the positive homology classes are generated by cycles which

are directed paths (or, more generally, positive linear combinations of

directed paths).

Our main structure, to fulfil this goal, will be a topological space

X equipped with a set dX of directed paths [0, 1] → X, closed under:
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constant paths, partial increasing reparametrisation and concatenation

(Section 1.4). Such objects are called d-spaces or spaces with distin-

guished paths, and a morphism of d-spaces X → Y is a continuos map-

ping which preserves directed paths. All this forms a category dTop

where limits and colimits exist and are easily computed - as topological

limits or colimits, equipped with the adequate d-structure.

Furthermore, the standard directed interval ↑I = ↑[0, 1], i.e. the real

interval [0, 1] with the natural order and the associated d-structure, is an

exponentiable object: in other words, the (directed) cylinder I(X) = X×
↑I determines an object of (directed) paths P (Y ) = Y ↑I (providing the

functor right adjoint to I), so that a directed homotopy can equivalently

be defined as a map of d-spaces IX → Y or X → PY. The underlying

set of the d-space P (Y ) is the set of distinguished paths dY .

Various d-spaces of interest arise from an ordinary space equipped

with an order relation, as in the case of ↑I, the directed line ↑R and their

powers; or, more generally, from a space equipped with a local preorder

(Sections 1.9.2 and 1.9.3), as for the directed circle ↑S1. But other d-

spaces of interest, which are able to build a bridge with noncommutative

geometry, cannot be defined in this way: for instance, the quotient d-

space of the directed line ↑R modulo the action of a dense subgroup (see

Section 6 of this Introduction).

The category Cub of cubical sets is also an important framework

where directed homotopy can be developed. It actually has some advan-

tages on dTop: in a cubical set K, after observing that an element of K1

need not have any counterpart with reversed vertices, we can also note

that an element of Kn need not have any counterpart with faces per-

muted (for n > 2). Thus, a cubical set has ‘privileged directions’, in any

dimension. In other words, Cub allows us to break both basic symme-

tries of topological spaces, the reversion of paths and the transposition

of variables in 2-dimensional paths, parametrised on [0, 1]2, while dTop

is essentially based on a one-dimensional information and only allows us

to break the symmetry of reversion. As a consequence, pointed directed

homology of cubical sets is much better behaved than that of d-spaces,

and yields a perfect directed homology theory (Section 2.6.3).

On the other hand, Cub presents various drawbacks, beginning with

the fact that elementary paths and homotopies, based on the obvious

interval, cannot be concatenated; however, higher homotopy properties

of Cub can be studied with the geometric realisation functor Cub →
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dTop and the notion of relative equivalence which it provides (Section

5.8.6).

The breaking of symmetries is an essential feature which distinguishes

directed algebraic topology from the classical one; a discussion of these

aspects can be found in Section 1.1.5.

Directed homotopies have been studied in various structures, either

because of general interests in homotopy theory, or with a purpose of

modelling concurrent systems, or in both perspectives. Such structures

comprise: differential graded algebras [G3], ordered or locally ordered

topological spaces [FGR2, GG, Go, Kr], simplicial, precubical and cu-

bical sets [FGR2, GG, G1, G12], inequilogical spaces [G11], small cat-

egories [G8], flows [Ga2], etc. Our main structure, d-spaces, was in-

troduced in [G8]; it has also been studied by other authors, e.g. in

[FhR, FjR, Ra2].

0.4 Formal foundations for directed algebraic topology

We will use settings based on an abstract cylinder functor I(X) and nat-

ural transformations between its powers, like faces, degeneracy, connec-

tions,... Or, dually, on a cocylinder functor P (Y ), representing the object

of (directed) paths of an object Y . Or also, on an adjunction I a P

which allows one to see directed homotopies as morphisms I(X) → Y

or equivalently X → P (Y ), as mentioned above for d-spaces.

As a crucial aspect, such a formal structure is based on endofunctors

and ‘operations’ on them (natural transformations between their pow-

ers). In other words, it is ‘categorically algebraic’, in much the same way

as the theory of monads, a classical tool of category theory (Section A4,

in the Appendix). This is why such structures can generally be lifted

from a ground category to categorical constructions on the latter, like

categories of diagrams, or sheaves, or algebras for a monad (Chapter 5).

After a basic version in Chapter 1, which covers all the frameworks

we are interested in, we develop stronger settings in Chapter 4. Rela-

tive settings, in Section 5.8, deal with a basic world, satisfying the basic

axioms of Chapter 1, which is equipped with a forgetful functor with

values in a strong framework; such a situation has already been men-

tioned above, for the category Cub of cubical sets and the (directed)

geometric realisation functor Cub→ dTop.

A peculiar fact of all ‘directed worlds’ (categories of ‘directed objects’)

is the presence of an involutive covariant endofunctor R, called reversor,

which turns a directed object into the opposite one, R(X) = Xop; its
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action on preordered spaces, d-spaces and (small) categories is obvious;

for cubical sets, one interchanges lower and upper faces. Then, the

ordinary reversion of paths is replaced with a reflection in the opposite

directed object. Notice that the classical reversible case is a particular

instance of the directed one, where R is the identity functor,

In the classical case, settings based on the cylinder (or path) end-

ofunctor go back to Kan’s well-known series on ‘Abstract Homotopy’,

and in particular to [Ka2] (1956); the book [KP], by Kamps and Porter,

is a general reference for such settings. In the directed case, the first

occurrence of such a system, containing a reversor, is probably a 1993

paper of the present author [G1].

Quillen model structures [Qn] seem to be less suited to formalise di-

rected homotopy. But, in the reversible case, we prove (in Theorem

4.9.6) that our strong setting based on the cylinder determines a struc-

ture of ‘cofibration category’, a non selfdual version of Quillen’s model

categories introduced by Baues [Ba].

0.5 Interactions with category theory

On the one hand, category theory intervenes in directed algebraic topol-

ogy through the fundamental category of a directed space, viewed as a

sort of algebraic model of the space itself. On the other hand, directed al-

gebraic topology can be of help in providing a sort of geometric intuition

for category theory, in a sharper way than classical algebraic topology

- the latter can rather provide intuition for the theory of groupoids, a

reversible version of categories.

The interested reader can see, in 1.8.9, how the pasting of comma

squares of categories only works up to convenient notions of ‘directed

homotopy equivalence’ of categories - in the same way as, in Top, the

pasting of homotopy pullbacks leads to homotopy equivalent spaces.

The relationship of directed algebraic topology and category theory

is even stronger in ‘higher dimension’. It consists of higher fundamental

categories for directed spaces, on the one hand, and geometric intuition

for the - very complex - theory of higher dimensional categories, on the

other hand. Such aspects are still under research and will not be treated

in this book. The interested reader is referred to [G15, G16, G17] and

references therein.

Finally, we should note that category theory has also been of help in

fixing the structures which we explore here, according to general princi-

ples discussed in the Appendix, A1.6.
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0.6 Interactions with non-commutative geometry

While studying the directed homology of cubical sets, in Chapter 2,

we also show that cubical sets (and d-spaces) can express topological

facts missed by ordinary topology and already investigated within non-

commutative geometry. In this sense, they provide a sort of ‘noncom-

mutative topology’, without the metric information of C*-algebras.

This happens, for instance, in the study of group actions or foliations,

where a topologically-trivial quotient (the orbit set or the set of leaves)

can be enriched with a natural cubical structure (or a d-structure) whose

directed homology agrees with Connes’ analysis in noncommutative ge-

ometry.

Let us only recall here that, if ϑ is an irrational number, Gϑ = Z+ϑZ

is a dense subgroup of the additive group R, and the topological quo-

tient R/Gϑ is trivial (has the indiscrete topology). Noncommutative

geometry ‘replaces’ this quotient with the well-known irrational rota-

tion C*-algebra Aϑ (Section 2.5.1). Here we replace it with the cubical

set Cϑ = (�↑R)/Gϑ, a quotient of the singular cubical set of the di-

rected line (or the quotient d-space Dϑ = ↑R/Gϑ, cf. 2.5.2). Computing

its directed homology, we prove that the (pre)ordered group ↑H1(Cϑ) is

isomorphic to the totally ordered group ↑Gϑ ⊂ R. It follows that the

classification up to isomorphism of the family Cϑ (or Dϑ) coincides with

the classification of the family Aϑ up to strong Morita equivalence. No-

tice that, algebraically (i.e. forgetting order), we only get H1(Cϑ) ∼= Z2,

which gives no information on ϑ: here, the information content pro-

vided by the ordering is much finer than that provided by the algebraic

structure.

0.7 From directed to weighted algebraic topology

In Chapter 6 we end this study by investigating ‘spaces’ where paths have

a ‘weight’, or ‘cost’, expressing length or duration, price, energy, etc.

The general aim is now: measuring the cost of (possibly non-reversible)

phenomena.

The weight function takes values in [0,∞] and is not assumed to be

invariant up to path-reversion. Thus, ‘weighted algebraic topology’ can

be developed as an enriched version of directed algebraic topology, where

illicit paths are penalised with an infinite cost, and the licit ones are mea-

sured. Its algebraic counterpart will be ‘weighted algebraic structures’,

equipped with a sort of directed seminorm.
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A generalised metric space in the sense of Lawvere [Lw1] yields a prime

structure for this purpose. For such a space we define a fundamental

weighted category, by providing each homotopy class of paths with a

weight, or seminorm, which is subadditive with respect to composition.

We also study a more general framework, w-spaces or spaces with

weighted paths (a natural enrichment of d-spaces), whose relationship

with noncommutative geometry also takes into account the metric aspects

- in contrast with cubical sets and d-spaces. Here, the irrational rotation

C*-algebra Aϑ corresponds to the w-space Wϑ = wR/Gϑ, a quotient of

the standard weighted line, whose classification up to isometric isomor-

phism (resp. Lipschitz isomorphism) is the same as the classification of

Aϑ up to isomorphism (resp. strong Morita equivalence).

0.8 Terminology and notation

The reader is assumed to be acquainted with the basic notions of topol-

ogy, algebraic topology and category theory. However, most of the no-

tions and results of category theory which are used here are recalled in

the Appendix, Chapter A.

In a category A, the set of morphisms (or maps, or arrows) X → Y ,

between two given objects, is written as A(X,Y ). A natural transforma-

tion between the functors F,G : A → B is written as ϕ : F → G : A →
B, or ϕ : F → G.

Top denotes the category of topological spaces and continuous map-

pings. A homotopy ϕ between maps f, g : X → Y is written as ϕ : f →
g : X → Y , or ϕ : f → g. R is the euclidean line and I = [0, 1] is the

standard euclidean interval. The concatenation of paths and homotopies

is written in additive notation: a + b and ϕ + ψ; trivial paths and ho-

motopies are written as 0x, 0f . Gp (resp. Ab) denotes the category of

groups (resp. abelian groups) and their homomorphisms.

Cat denotes the 2-category of small categories, functors and natural

transformations. In a small category, the composition of two consecutive

arrows a : x → x′, b : x′ → x′′ is either written in the usual notation ba

or in additive notation a+ b. In the first case, the identity of the object

x is written as idx or 1x, in the second as 0x. Loosely speaking, we tend

to use additive notation in the fundamental category of some directed

object, or in a small category which is itself ‘viewed’ as a directed object;

on the other hand, we follow the usual notation when we are applying

the standard techniques of category theory, which would look unfamiliar

in additive notation.
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A preorder relation, generally written as x ≺ y, is assumed to be re-

flexive and transitive; an order, often written as x 6 y, is also assumed

to be anti-symmetric (and need not be total). A mapping which pre-

serves preorders is said to be increasing (always used in the weak sense).

As usual, a preordered set X will be identified with the (small) category

whose objects are the elements of X, with precisely one arrow x → x′

when x ≺ x′ and none otherwise. We shall distinguish between the or-

dered real line r and the ordered topological space ↑R (the euclidean

line with the natural order), whose fundamental category is r. ↑Z is the

ordered group of integers, while z is the underlying ordered set.

The index α takes values 0, 1; these are often written as −,+, e.g. in

superscripts.
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