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Abstract. Thisis a brief study of the homology of cubical sets, with two main purposes.

First, this combinatorial structure is viewed as representing directed spaces, breaking the intrinsic
symmetries of topological spaces. Cubical sets have a directed homology, consisting of preordered
abelian groups where the positive cone comes from the structural cubes.

But cubical sets can also express topological facts missed by ordinary topology. This happens, for
instance, in the study of group actions or foliations, where a topologically-trivial quotient (the orbit set or
the set of leaves) can be enriched with a natural cubical structure whose directed cohomology agrees with
Connes' analysis in noncommutative geometry. Thus, cubical sets can provide a sort of 'noncommutative
topology', without the metric information of C*-algebras.

MSC: 55U10, 55Nxx, 81R60.

Keywords: Cubical sets, combinatorial homology, noncommutative spaces, directed algebraic topology.

I ntroduction

A topologica space T hasintrinsic symmetries, appearing - at the lowest level - in the reversion of
its paths. More generally, the set A, T = Top(A", T) of its singular simplices inherits from the
standard simplex A" an obvious action of the symmetric group Sp+1, whiletheset o T =
Top([0,1]", T) of itssingular cubes has a similar action of the hyperoctahedral group (the group of
symmetries of the n-cube). These combinatorial structures produce the singular homology of the space
T, which can be equivaently defined as the homology of the chain complex associated to the smplicial
set AT, or the homology of the (normalised) chain complex associated to the cubical set o T. The
lessusual cubical approach (followed for instance in Massey's text [Mg]) has advantages, mainly due
to the fact that cubes are closed under products, while products of tetrahedra have to be 'covered' with
tetrahedra; thus, the proof of homotopy invariance and the study of products or fibrations [Se] are
easier and more natural in the cubical setting, which we shall follow here. Here, a more specific
motivation for this choiceis our use of the natural order on I" (cf. the last remark in 4.2).

(") Work supported by MIUR Research Projects.



Now, bypassing topological spaces, an abstract cubical set X isamerely combinatorial structure,
consisting of a sequence of sets X, withfaces 9 X, — Xp1 and degeneracies e: Xp1 — Xp
(a=%;i=1,..,n)

9 d
D Xo &= X1 g X2 ...
e —_—

satisfying the well-known cubical relations (1.2). This structure will be used in two ways: to break the
symmetries considered above and to perform constructions, namely quotients, which would be useless
in ordinary topology.

For the first aspect, note that an 'edge’ in X1 need not have any counterpart with reversed vertices,
nor a'square’ in X, any counterpart with horizontal and vertical faces interchanged. Thus, our
structure has 'privileged directions, in any dimension, and the (usual) combinatorial homology of X
can be given a preorder, generated by taking the given cubes as positive. For instance, the obvious
cubical model 18" of the n-dimensional sphere, with one non-degenerate cube in dimension n, has
directed homology tHu(1S") consisting of the group of integers, with the natural order; the positive
generator, of course, isthe homology class of the generator of our cubical set (2.3). Direction should
not be confused with orientation, as shown by the model 1t2 = 1sl@tsl of the torus, where 1Hq(1t9)
=~ 1Z2 hasthe product order (2.9). Note also that our preorder becomestrivia (chaotic, or coarse) for
a'symmetric' cubical set, like the singular cubical set of atopological space.

Secondly, it may happen that the quotient T/~ of atopological space has atrivial topology, while
the corresponding quotient of its singular cubical set o T keeps arelevant topological information,
detected by its homology and agreeing with the interpretation of such quotients in noncommutative
geometry. These links, briefly explored here, should be further clarified.

Let us start from the classical results on the homology of an orbit space T/G, for agroup G
acting properly on aspace T; theseresults can be extended to free actions if wereplace T with its
singular cubical set and take the quotient cubical set (o T)/G (Thm. 3.3). Thus, for the group Gg =
Z+9Z (9 irrational), the orbit space R/Gy hasatrivial topology (the coarse one), but can be
replaced with anon-trivia cubical set, X = (o0 R)/Gy, whose homology is the same as the homology
of thegroup Gy = Z2, and coincides thus with the homology of thetorus T2 (4.2.1). The same can
be done for the Kronecker foliation of the torus (with slope 9), replacing atopologically trivial set of
leaves T§ with anon-trivial cubical set, obtained as a quotient of the singular cubical set of the torus.
Algebraically, al thisisin accord with Connes' interpretation of R/Gg and T§ as a'noncommutative
space, i.e. anoncommutative C*-algebra Ay [C1, C2, C3, R1, BI]; however, our THn(Tg) hasatrivid
preorder, for n> 0.

But this similarity can be enhanced. The quotient (& R)/Ggy can be modified, replacing o R with
the cubical set tR of al order-preserving maps I" — R. Algebraically, the homology groups are
unchanged (and independent of ), but now tH1(1R/Gg) =~ 1Gy asa (totally) ordered subgroup of
R (Thm. 4.8): thusthe rotation cubical sets Cy = tR/Gy have the same classification up to isomor-
phism (Thm. 4.9) asthe rotation C*-algebras Ay up to strong Morita equivalence [PV, R1] (cf. 4.1):
9 isdetermined up to the action of the group PGL(2, Z). This example shows that the ordering of
directed homology can carry arelevant information. Further, comparison with the stricter classification



of the algebras Ag up to isomorphism (4.1) showsthat cubical sets provide a sort of 'noncommutative
topology', without the metric character of noncommutative geometry (cf. 4.2).

The reader can have a quick overview of these motivations, reading 2.9 (cubical tori) and 4.1-4.3
(rotation structures and foliations of tori); Section 4 contains other results on higher dimensional tori.

'‘Directed algebraic topology' is a recent field, whose present applications deal mainly with
concurrency [GG, Go, Ra]; other references can be found in two previous works on directed homotopy
[G4, G5]. Cubical sets are more present in the literature, if less than the simplicial ones. Cubical
singular homology of topological spaces can be found in Massey [Mg] and Hilton-Wylie [HW]. It
should be noted that, while the basic structure of faces and degeneracies (used here) can be sufficient
for introducing their homology, 'intrinsic' homotopy theory requires more. Works by Brown-Higgins
[BH1, BH2] have proved the importance of adding compositions and higher degeneracies, called
connections (see also [To, ABS, An)); the interest of considering also the action of symmetries,
generated by reversions and interchanges, is stressed in various works of the present author [G1, G2]
and sketched here, in 1.1. Cubical sets are presheaves, on a category which depends on how much
structure we want to consider [GM]. Formal cubical settings of homotopy theory go back to Kan [K 1,
K2] and hisintroduction of an abstract cylinder; see Kamps-Porter's book [KP] and its references. A
Quillen structure on cubical sets has been recently studied by Jardine [Jal.

Asdiscussed in 6.4, the cubical set (o R)/Gg could also be interpreted as an equilogical space, in
D. Scott's sense [Sc], while tR/Gg  would require a more complex setting, in thisline. Finaly, also
guantales - a noncommutative version of locales - offer anotion of noncommutative space (see [MP]),
which might have interesting links with the present approach.

The author acknowledges useful information from R. Brown and G. Landi.

Outline. Section 1 recalls the basic properties of cubical sets and their homotopies. Their directed
(co)homology is introduced in Section 2, studying the interaction of preorder with: (preordered)
coefficients (2.2), exact sequences (2.4, 2.6), excision (2.6), tensor products (2.7) and cohomology-
multiplication (2.8, 2.9). Section 3 studies the action of groups on cubical sets; these results are applied
in Section 4 to analyse the second aspect mentioned above: cubical sets related with noncommutative
spaces. The last two sections deal with the directed homology of a pointed suspension and the links
with our previous works on directed homotopy [G4, G5].

Terminology. Top denotes the category of topological spaces and continuous mappings, or maps. A
homotopy ¢ betweenmaps f, g: X — Y iswrittenas ¢:f — g: X — Y. A preorder relationis
reflexive and trangitive; it isa (partial) order if it isaso anti-symmetric. Theindex o takesvaluesO, 1,
also written —, + (e.g. in superscripts). |1 =[0, 1] isthe standard euclideaninterval. 1Z isthe ordered
group of integers; or also, but exceptionally, the cubical set of the directed integral line (1.5).
Homology is often written in a polynomial form, H,(X) =2 o.H;(X), asexplainedin 2.9.

1. Cubical setsand elementary homotopy

Cubical sets and their combinatorial homotopies are briefly recalled.



1.1. Topological spaces and symmetries. Let us start considering topological spaces and the
standard interval | =[0, 1], with avery basic structure consisting of three maps, two faces (57, 8*)
and adegeneracy (e), linking it with its 0-th cartesian power, the singleton 10 ={x}
(1) 8%: {*} = | :¢,
5(*) =0, 8*(x) = 1, e(t) = *.
Thisis sufficient to produce, for every topological space T, acubical set o T, with components

o,T=Top(I", T), theset of singular n-cubesof T; faces and degeneracies arise (contravariantly)
from the faces and degeneracies of the standard cubes I" (for =0, 1; i =1,..., n)

(2) 8% = Il ™M |1 — N, 8 (t1yeens tha) = (tayemey Gyeney b,
g = li=Lyes| |0 — |- gi(ty,e., t) = (tl,...,fi,...,tn).
Abstract cubical sets are defined and studied below. But let us note that a cubical set of the preced-
ingtype o T hasactualy amuch richer, relevant structure, obtained from the structure of the standard

interval | asaninvolutive latticein Top. Thus, the join and meet operations, reversion and
interchange

3 12— 1, vt t) = max(t t),
12—, vt t) = mint, t),
pil =1,  p(t) = 1+, o l2—12  oftt) = (t0),

yield similar transformations between singular cubes of the space T: connections (or higher degen-
eracies), reversons andinterchanges (for ¢ =0,1; i=1,...,n)
(4 o 8T — BT, ri: 0nT — 04T, S: Ot T — OpaT.

The group of symmetries of the n-cube, (Z/2)"«S,, actson O ,T: reversions and interchanges
generate, respectively, the action of the first or second factor of this semidirect product (cf. [GM]).
Now, in homotopy theory, reversion (together with connections) yields reverse homotopies and

inverses in homotopy groups, while interchange yields the homotopy invariance of the cylinder, cone
and suspension endofunctors (cf. [G2]).

On the other hand, not assigning this additional structure allows usto break symmetries (reversion
and interchange) which are intrinsic to topologica spaces.

1.2. Cubical sets. A cubical set X = ((Xp), (97), (&)) isasequence of sets X, (n=0), together with
mappings, called faces (9¢") and degeneracies ()

(1) 0§ =0%: Xn = Xp, € =€yi: Xn1 — Xn (a=4%; i=1,.,n).
satisfying the cubical relations
2) a?.ajﬁ = a?.a?ﬂ (=), g.6 = 6+1.§ (=i),

o.g = g.07, (<i), or id (j=i), or g0 (j>i).

Elementsof X, arecalled n-cubes; vertices and edgesfor n=0 or 1, respectively. Every n-cube
XEX,, has 2" vertices: 95'05a}(x) for n=3.



A morphism f = (fp): X — Y isasegquence of mappings f,: X, — Y, commuting with faces
and degeneracies. All this forms a category Cub which has all limits and colimits and is cartesian
closed. (It isthe presheaf category of functors X: I°° — Set, where 1 is the subcategory of Set
consisting of the elementary cubes 2", together with the maps 2™ — 2" which delete some
coordinates and insert some 0's and 1's, without modifying the order of the remaining coordinates
[GM]. The cocubical set T — Set given by the embedding will be written 2*, sinceit realisesthe
'formal n-cube as 2.

The category Cub has two involutions (covariant involutive endofunctors), reflection and
exchange (or transposition [BH2))
(3) R:Cub — Cub, RX = X% = ((Xy), (979, (&) (reflection),
(4 S:Cub — Cub, SX = ((Xn), (3%41.9): (€n+1-3)) (exchange),
the first reversing the 1-dimensional direction, the second the 2-dimensional one.

We say that acubical set X isreflexiveif RX = X and symmetricif SX = X.

1.3. Subobjects and quotients. A cubical subset Y C X isasequence of subsets Y, C X, stable
under faces and degeneracies. An equivalencerelation £ in X isacubical subset of XxX whose
components &, C XxX,, are equivalence relations; then, the quotient X/€ is the sequence of quotient
sets X /€, with induced faces and degeneracies. In particular, for 'Y C X, the quotient X/Y has
components X,/Y,, whereall cubes yeY,, areidentified.

For acubical set X, we define the homotopy set
(1) mo(X) = Xo/=~,

where =~ (connection) isthe equivalence relationin Xy generated by being vertices of a common
edge. The connected component of X at an equivalence class [X] € ng(X) isthe cubical subset
formed by all cubes of X whose verticesliein [x]; X isalways the sum (or coproduct, digoint
union) of its connected components. If X is not empty, we say that it is connected if it has one
connected component, or equivaently if xo(X) isasingleton.

One can easily see that the forgetful functor (-)o: Cub — Set has aleft adjoint, the discrete
cubical set on aset

(2) D:Set — Cub, DS = Set(1, S),

where components are constant, (DS), =S (nEN), faces and degeneracies are identities. Then, the
functor np: Cub — Set isleft adjointto D. (Theforgetful functor (—)o hasalso aright adjoint CS
= Set(2%, S), thecodiscrete cubical seton S.)

1.4. Tensor product. The category Cub hasamonoidal structure [K1, BH2]
(1) X&Y)n = (Zpreen XpxY ) ~n,

where ~, istheequivalence relation generated by identifying (e+1X, y) with (x, ery), foral (x,y)
€ XxYg (for r+s=n-1). Writing x®y the equivalence class of (X, y), facesand degeneracies are
defined as

(2 of(xey) = (/x)@y  (1sis=p), I (x®y) = x(97_py) (ptl<i = ptq),



() alxey) = (ex)®y (1=i=ptl), &(x®y) = x®(e—y) (ptl =i = pta+l),
(and ep+1(x®Y) = (ep+1X)®Y = x@(e1y) iswell defined precisely because of the previous equivalence
relation).

The identity of the tensor product is the singleton {*}, i.e. the cubical set generated by one O-
dimensional cube; it is reflexive and symmetric. The tensor product is not symmetric, but is linked
with reversion and exchange as follows
(4) R(X®Y) = RX®RY, SX®Y) = (SY)®(SX).

Therefore, reflexive objects are stable under tensor product while symmetric objects are stable
under tensor powers: if SX = X, then S(X®") = (SX)®" =~ X®n,

(The construction of the internal homs will be recalled in 1.6.7.)

1.5. Standard models. The elementary directed interval ti =2 isfreely generated by a1-cube, u

u

B 0— 1 o7u) = 0, aX(u) = 1,

thiscubical set isreflexive and symmetric.

The elementary directed n-cube is its n-th tensor power 1i" = ti®..®1i (for n= 0), freely
generated by one n-cube u®", till reflexive and symmetric. (It is the representable presheaf y(2") =
I(— 2M: I°% — Set). The elementary directed square 1i% = ti®ti can be represented as follows,
showing the generator u®u and its faces

0®u 2
00 — 01 . —
) u®0 l uRu l u®1 l 1
10 — 11
1®u

wherethe face d7(u®u) = Oeu isdrawn orthogonally to direction 1 (and directions are chosen so that
the labelling of vertices agrees with matrix indexing). Note that, for each cubical object X,
Cub(1i", X) = X

The directed (integral) line 1Z is generated by (countably many) vertices nEZ and edges up,
from 97(un) = n to 97(un) = n+l. The directed integral interval +[i, j]z isthe obvious cubical
subset with verticesin the integral interva [i, j]z (and al cubes whose verticeslie there); in particular,
ti =1[0, 1]z.

The elementary directed circle 1s! isgenerated by one 1-cube u with equal faces

u

Q) * — = a7(u) = a3(u).

Similarly, the elementary directed n-sphere 1s" (for n> 1) isgenerated by one n-cube u all
whose faces are totally degenerate (hence equal)

@) a%(u) = (e)™H(ap"(u) (=% i=1..,n),



while 1s? =< is generated by two vertices: it is the discrete cubical set D{0, 1} (1.3.2). The
elementary directed n-torusis a tensor power of st

(5) 1" = (rshen,

We also consider the ordered circle 10!, generated by two edges with the same faces (the name is
motivated by its realisation as a space with distinguished paths [G4])

6 v v* IF(U) = o).

and more generally the ordered spheres 10", generated by two n-cubes u', u" with the same
boundary: 9$(u) = 9/(u"). Weshal seethat, starting from s, the unpointed suspension provides all
10" (1.7.5) while the pointed suspension provides all 1s" (5.2.8); of course, these models have the
same geometric realisation S" (as atopological space) and the same homology; but their directed
homology is different (2.3). The models 1s" are more interesting: for instance, their order in directed
homology isnot trivial.

All these cubical setsare reflexive and symmetric.

1.6. Elementary directed homotopies. Since the tensor product is not symmetric, the elementary
directed interval produces aleft (elementary) cylinder 1i®X and aright cylinder X®+1i. But each of
these functors determines the other, using the exchange S (1.4.4) and the property S(1i) = ti

(1) 1: Cub — Cub, IX = ti®X,
SIS: Cub — Cub, SIS(X) = S(1i®@SX) = X@ti.
Let us begin considering the left cylinder, 1. It has two faces and a degeneracy, the following

natural transformations
(2) 9 X — IX, 9*(X) = a®x (@=0,1),
elxX — X, e(u®x) = ey(x).
Moreover, | hasaright adjoint, the (elementary) left cocylinder or left path functor, which shifts

down all components discarding the faces and degeneracies of index 1 (which are then used to build
the faces and degeneracy of P, as natural transformations)

(3) P:Cub — Cub, PY = ((Yn+), (9749), (8+2)),
9* = o PY =Y, e=e:Y — PY.

Now, an (elementary) left homotopy f: f~ — | f*: X — Y isdefinedasamap f: IX — Y with
fo* =% Or, equivalently (because of the adjunction), asamap f: X — PY with 9%f =f®* This
second expression leads immediately to asimple expression of f asafamily of mappings
@) faiXn— Y, 0% fn = frg 0t €+ fn1 = fhe,

o fn = f@ (a=4%; i=1,..,n).

Dualy, theright cylinder SIS(X) = X®ti hasaright adjoint SPS, theright cocylinder or right

path functor, which discards the faces and degeneracies of highest index (used again to build the
corresponding natural transformations)



(5) SPS: Cub — Cub, SPS(Y) = ((Yn+1), (69), (&),
9% SPYY) — Y, 0% = (041 Y1 = Y)n=0s
eY — SPYY), e = (&1 Yn — Ynrneo

An (eementary) right homotopy f: f~ —gf*: X — Y isamap f: X — SPY(Y) withfaces 9% =
f*, i.e.afamily (f) suchthat

(6) fn: Xn = Y, 0 fn = fnq 09, &fra = frhe,
agﬂfn = fa (a=4%; i=1,.,n).

Elementary homotopies of cubical sets (without connections) are a very defective notion (like
intrinsic homotopies of 'face-simplicial' sets, without degeneracies): one cannot even contract the
elementary interval ti to avertex (a simple computation on (4) shows that this requires a non-
degenerate 2-cube f(u), with the samefacesas gj(u) or gj(u) - if connections exist). Moreover, to
obtain 'non-elementary’ paths, which can be concatenated, and a fundamental category 1111(X) one
should usg, instead of the elementary interval ti = 1[0, 1]z, thedirected integral line 1Z (1.5), asin
[G3] for simplicial sets: paths are parametrised on 1Z, but eventually constant at left and right, so to
haveinitial and terminal vertices. However, here we are interested in homology, where concatenation is
surrogated by formal sums of cubes, and we will restrain ourselves to proving its invariance up to
elementary homotopies, right and left. Also, we prefer not to rely on the geometric realisation, which
would ignore the directed structure.

The category Cub has|left and right internal homs, which we shall not need (see [BH2, Ja]). Let
us only recall that the right internal hom CUB(A, Y) can be constructed with the left cocylinder
functor P and its natural transformations (which produce a cubical object P*Y)

(7) -®A — CUB(A,-), CUB(A,Y) = Cub(A, PY).

1.7. Cones and suspension. The left upper cone C*X isdefined asthe first pushout, below

X — IX X — {*}
(0 | -l | -l v
{+} — C'X IX — CX

vt Y

i.e., thequotient (IX+{*})/(o*X+{*}), where the upper basis of the cylinder is collapsed to an upper
vertex v* =v*(*), whilethelower basis 9: X — IX — C*X 'subsists. Notethat C*@ ={*}: the
cone C*X isaquotient of thecylinder IX onlyif X = @. Dually, theleft lower cone CX isdefined
as the second pushout, above, obtained by collapsing the lower basisof X to alower vertex v-=v~
(*).

Analytically, we can describe C*X saying that it is generated by (n+1)-dimensional cubes u®x €
IX (x€X;) plusavertex v*, under thereationsarising from X together with

(2) 1lox = €(vh) (XEX).
Similarly, theleft suspension =X isdefined as the colimit of the left diagram



X — {*} .
| X — C'X
d
©) X = IX v o | -l
| N CX — 3X
) ——— X g

Vv

obtained by collapsing, independently, the bases of 1X to alower and an upper vertex, v— and v*.
Equivaently, it isthe right-hand pushout, above.

Thus, the suspension of s°=D{0, 1} yieldsthe 'ordered circle’ 1ol (1.5.6)

vt — vt
(4) v { fu u = <0eu>, U' = <1eu>,
v — v

where <—> denotes equivaence classesin the pushout (3). More generally
(5) =Y = ro"

But we are moreinterested in the pointed suspension, which will be studied in Section 5 (and yields
the directed spheres 17).

1.8. Geometric realisation. We have aready recalled, in 1.1, the functor
() ©o:Top — Cub, oT = Top(l*, T),

which assigns to a topological space T the singular cubical set of (continuous) n-cubes I" — T,
produced by the cocubical set of standard cubes I = ((I"), (8¢, (¢;)) (1.1.2). Asfor simplicial sets,
the geometric realisation RX of acubical set isgiven by the left adjoint functor

R
(2 Cub =2 Top R — O,

[m]

which takes acubical set X to atopological space, by pasting a copy of the standard cube I" for each
n-cube xEX,, aong facesand degeneracies. This pasting (formally, the coend of the functor X.I*:
I°PxI — Top) comeswith afamily of structural mappings, one for each cube x, coherent with faces
and degeneracies (of 1* and X)

(3) xI"— RX, X% = (0%), X = (ex)",
and RX hasthe finest topology making all the structural mappings continuous.

Thisredlisation isimportant, since it iswell known that the combinatorial homology of a cubical set
X coincides with the homology of the CW-space RX (cf. [Mu, 4.39], for the simplicial case). But we
also want afiner 'directed realisation’, keeping information about the privileged cubes of X: we shall
use a set equipped with a presheaf of distinguished cubes (1.9); other solutions, by distinguished
paths, will be discussed in Section 6.
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1.9. Sets with distinguished cubes. Let us introduce the category cSet of sets with distinguished
cubes, or c-sets.

Anobject K isaset equipped with asub-presheaf ¢, K of the cubical set Set(l1*, K), suchthat K
is covered by al distinguished cubes. In other words, the structure of the set K consists of a sequence
of sets of distinguished cubes c,K C Set(I", K), preserved by faces and degeneracies (of the
cocubical set 1) and satisfying the covering condition K = UIm(x) (for x varying in the set of all
distinguished cubes); the latter amounts to saying that the canonical mapping pk: R(c,K) — K is
surjective. A morphism f: K — K' isamapping of setswhich preserves distinguished cubes: if x: I"
— K isdistinguished, also fx: I" — K' is.

Now, theadjunction R — o of geometric realisation (1.8.2) can be factored through cSet

1R t
(1) Cub == cSet ~—> Top, 1R—c, t— (Da.
Cx N

First, if T isatopological space, its cubes cover the underlying set. Thus, we factor the functor ©':
Top — Cub letting T- betheset T with structural presheaf o T C Set(1*, T), and letting c, be
the forgetful functor assigning to ac-set K its structural presheaf c,K. Notethat c, isfaithful
(because pk: R(c.K) — K issurjective).

Then, the left adjoint of ¢, yieldsthe directed realisation 1R(X) of acubical set: itistheset R
underlying the geometric realisation RX, without topology but equipped with the distinguished cubes
produced by the n-cubes x&Xp, viathe associated mappings x: 1" — R (1.8.3), which are closed
under faces and degeneracies

(2) &R = {X|XE X} C Set(I" R);

the bijection (1R(X), K) = (X, ¢.K) iseasy to congtruct: given f: tR(X) — K, define fn: X — ¢ K
letting fn(X) =fx; given g: X — ¢ K, take f =pg.Rf = (RX — R(c,K) — K).

Finally, the functor t: cSet — Top (left adjoint of (-)c), actingonac-set K, givesthe under-
lying set t(K) equipped with the cubical topology, i.e. the finest topology making all distinguished
cubes I" — K continuous. The bijection (t(K), T) = (K, o T) isobvious: amapping K — T is
continuous for the cubical topology of K if and only if it is continuous on each distinguished n-cube
x: " — K, if and only if each composite fox isann-cubeof o T.

We end with some comments on the category cSet. Givenac-set K = (K, ¢,K), ac-subset H =
(H, c.H) will be a c-set with ¢,H C ¢,K; in other words, we are considering a subset H C K
equipped with a sub-presheaf c,H C ¢, KnSet(I*, H) satisfying the covering conditionon H. Itisa
regular subobject if ¢,H =c,KnSet(l*, H), that isif the distinguished cubes of H are precisely the
ones of K whoseimageis contained in H; aregular subobject amounts thus to a subset H C K
whichisaunion of images of cubesof K (equipped with the restricted structure).

The quotient K/~ of ac-set modulo an equivalence relation (on the set K) will be the set-
theoretical quotient, equipped with the projections 1" — K — K/~ of the distinguished cubes of K
(plainly stable under the faces and degeneracies of 1*). This easy description of quotients will be
exploited in Section 4, as an advantage of c-sets with respect to cubical sets: one hasjust to assign an
equivalence relation on the underlying set.
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2. Homology and cohomology of cubical sets

Combinatorial homology of cubical sets is a simple theory with evident proofs. We study its enrich-
ment with a natural preorder, showing that it is preserved and reflected by excision (2.6), preserved by
tensor product (2.7), but not preserved by the differentials of the usual exact sequences (2.4, 2.6) nor by
multiplication, in cohomology (2.8, 2.9).

2.1. Directed homology. Every cubical set X determines acollection DegnX = U; Im(g: X1 —

Xn) of subsets of degenerate elements (with DegoX = @); this collection is not a cubical subset

(unless X isempty), but satisfies weaker conditions (for all i =1,..., n)

(1) xeDegX = (X € DegpaX or 97X =97X), e(Degn1X) C DegnX.

The cubical set X determines a (normalised) chain complex of free abelian groups

(2) Ci(X) = (ZXn)/(ZDegnX) = ZXq (Xn = Xn\ DegnX),
() = Ziq (1) (0%%) (X E Xn),

where ZS isthefree abelian group ontheset S, and X isthe class of the n-cube x up to degenerate

cubes; but we shall generally write the normalised class X as X, identifying all degenerate cubes with
0.

Now, each component can be preordered by the positive cone of positive chains NX,,, and will be
written as 1C,(X) when thus enriched; note that the positive coneis not preserved by the differential
In: 1Cr(X) = 1Cnh_1(X), which is just a homomorphism of the underlying abelian groups (as
stressed by marking its arrow with a dot). On the other hand, a morphism of cubical sets f: X — Y
induces a sequence of preorder-preserving homomorphisms 1Cr(X) — 1Cx(Y). We have defined a
covariant functor

(3 1C,:Cub — dC,Ab,

with valuesin the category dC,Ab of directed chain complexes of abelian groups (directed referring
to the preorder of components, preserved by chain homomorphisms). This produces the directed
homology of acubical set, as a sequence of preordered abelian groups

(4) tHp: Cub — dAb, tHr(X) = tHy(1CX),
where the directed homology tHn(1C,) of adirected chain complex is its ordinary homology
equipped with the preorder induced on the subquotient Kerdy/Imap.1.
When we forget preorders, the usual chain and homology functors will be written as usual
(5) C,:Cub — C,Ab, Hn: Cub — Ab.
If T isatopologica space, it iswell known that its singular homology can be defined by the
singular cubical set o T
(6) Hn(T) = Hn(oT);
(the equivalence with the simplicial definition is proved by acyclic models, cf. [HW]). Notice that -

here - we are not likely losing any essential information with respect to tHn(2 T). Infact, tHp(2 T)
has an obvious order generated by the homology classes of points (cf. 2.3.1), while - for instance - the
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preorder of 1H1(o T) iseasily seen to be chaotic: every homology class bel ongs to the positive cone
(for every 1-cube | — T, thereversed cube obtained by precompaosing with thereversion p: | — | is
equivalent to the opposite of the origina one, modulo boundaries).

Finally, we shall feel free of applying the functors 1C, and tH, toac-set K = (K, ¢,K) (1.9);
obvioudly, this meansto let them act on the cubical set ¢, K of distinguished cubes of K

(7) tHR(K) = tHp(c.K).

2.2. Preordered coefficients. Implicitly, we have introduced the category dAb of preordered abelian
groups. an object tL isan abelian group equipped with a preorder A <)’ preserved by the sum, or
equivalently with a submonoid, the positive cone L* ={A€L |1 = 0}. A morphism is a preorder-
preserving homomorphism.

Plainly, it is an additive category with all limits and colimits, computed asin Ab and equipped with
asuitable preorder. It is not an abelian category, since a bijective morphism (mono and epi) need not be
an isomorphism. But the symmetric monoidal structure of abelian groups can be easily lifted to dAb:
the positive cone of 1L®1M isthe submonoid generated by the tensors A®u, for AEL*, ueEM™,
while Hom(t+M, tN) isthe abelian group Hom(M, N) of all algebraic homomorphisms, with
positive cone given by theincreasing ones

(1) (Hom(tM, tN))* = dAb(1M, tN) = {f € Hom(M, N) | f(M*) C N*}.

The unit of the tensor product is the ordered group of integers, 1Z. Theforgetful functor dAb —
Ab, written 1L — L, hasleft adjoint 1gA and right adjoint 1A, respectively giving to an abeian
group A itsdiscrete preorder (A" ={0}) or the chaotic one (A* = A) - the latter can also be called
coarse, or codiscrete. On the other hand, the forgetful functor dAb — Set has (only) aleft adjoint
associatingto aset S the free ordered abelian group 1Z.S: the usual free abelian group ZS,
equipped with the submonoid NS generated by S.

We have also introduced the category dC,Ab of directed chain complexes of abelian groups (and
their directed homology). Recall that their components are preordered abelian groups, differentials are
not assumed to preserve the preorder, but chain morphisms are. It is again an additive category with all
limits and colimits. Similarly, we have the category of directed cochain complexes of abelian groups,
dC*Ab.

Now, we can consider directed combinatorial homology and cohomology of cubical sets, with
coefficientsin a preordered abelian group 1L

(2) 1C.(= tL): Cub — dC,Ab, 1C.(X; tL) = 1C.(X)®rL,
tHn(= tL): Cub — dAb, tHn(X; tL) = tHa(1C.(X; 1L)),

(3) 1C*(= 1L): Cub® — dC*Ab, 1C*(X; 1L) = Hom(1C,(X), 1L),
tH"(=; 1L): Cub® — dAb, tHCX; 1L) = tHY(1C*(X; 1L)),

where the components 1C(X)®tL and Hom(1C,(X), 1L) are defined as above. Of course, tHp(X)
= tH(X; 1Z), with ordered integral coefficients; below, we generally consider this case, but the
extension is easy.

The algebraic part of the universal coefficient theorems holds, with the usual proof; the preorder
aspect should be examined, but we shall restrict to considering rational and real coefficients (also
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because a preorder on atorsion group cannot be of much interest). First, it is easy to verify that, for the
ordered group of rationals 1Q, the canonical algebraic isomorphism

(4) tHn(X) ® 1Q — tHp(X; 1Q), [Z]®n — [z&0],

which obvioudly preserves preorder, also reflectsit. In fact, apositive chainin 1Cy(X; 1Q) can plainly
be written as ¢ =x.c' where A >0 isrational and c' isapositive chain with integral coefficients;
further, if ¢ isacycle aso ¢ is,and [c] =[c]®n belongsto the positive cone of 1HR(X)®1Q.

As a consequence, the same property holds for the ordered group 1R: it sufficesto take a positive
basis of the reals on the rationals. More elementarily: apositive chainin 1Cy(X; t1R) can be rewritten
asafinite linear combination ¢ =X Ajc; where the A; > 0 are real numbers, linearly independent on
therationals, and al ¢; are positive chainswith integral coefficients; since each boundary j(dc) still
has coefficientsin 4jQ, one concludes as before: if ¢ isacycle, soareal ¢ and [c] = Z [ci]®h
belongs to the positive cone of 1HL(X)®1R.

2.3. Elementary computations. The homology of asum X =X X; isadirect sum t1H,X = ®;
tHRX; (and every cubical set isthe sum of its connected components, 1.3). It isaso easy to seethat, if
X is connected (non empty), then tHp(X) =~ 1Z (viathe augmentation dg: 1CoX = 1ZXg — 1Z
taking each vertex X&Xg to 1€Z). Thus, for every cubical set X
(D 1Ho(X) = 1Z.moX,
isthe free ordered abelian group generated by the homotopy set ngX (1.3).

In particular, tHo(1s%) = 1Z2. Now, itiseasy to seethat, for n>0
(2 tHN(1s") =12,
isthe group of integers with the natural order: anormalised n-chain ku (notation of 1.5) is positive if
andonly if k=0 (andisawaysacycle).

On the other hand, tHp(10") = 14Z has the discrete order: the positive cone is reduced to 0. In
fact, anormalised n-chain hu' + ku" (notation of 1.5) isacyclewhen h+k =0, and a positive chain
for h=0, k= 0. The directed homology of the elementary directed torus 1t? is easy to determine;
but we shall computeit for all 1t" (2.9.2).

2.4. Relative directed homology. Relative homology is defined in the usual way. A cubical pair (X,
A) consists of acubical subset i: A — X; amorphism f: (X, A) — (Y,B) isamap f: X — Y
whose regtriction A — B isaso amap.

The induced map on directed chain complexes ix: 1CxA — 1Ci X isinjectiveaswell (acubein
A isdegeneratein X if andonly if itisaready soin A). We obtain the relative directed chains of
(X,A) by the usua short exact sequence of (directed) chain complexes

(1) 0 — 1CA — 1CX — 1CG(X,A) — O
and the relative directed homol ogy as the homology of the quotient
(2) tHA(X, A) = tHy(1Cx (X, A)).

The exact sequence of the pair (X, A) comes from the exact homology sequence of (1), with
differential Aj[c] =[0onC]; thelatter does not preserve the preorder (its arrow is dot-marked)
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A
(©)) w. = tHRA — tH X — tH(X, A) = tHp1A — ..

.. = tHpA — tHoX — tHp(X, A) — 0.

Plainly, 1C«(X, @) = 1C«(X) and 1Hn(X, &) = tHx(X). More generally, given acubical triple
(X, A, B), consisting of cubical subsets B — A — X, the snake lemma gives a short exact sequence
of chain complexes 1C«(A, B) — 1C«(X, B) — 1Ci(X, A), providing the exact homology sequence
of thetriple.

Tensoring by 1L our chain complexes (with free preordered components), one gets - as usud - the
anal ogous results with arbitrary coefficients.

2.5. Invariance Theorem. The homology functor tH,: Cub — dAb isinvariant for left (or right)
immediate homotopies: given f: f~ — | f*: X — Y, then tHy(f") = 1Hy(f"). Similarly for relative
homology.

Proof. We can forget about preorders. By 1.6.4, the homotopy f: f~ — f*: X — Y has
(1) fr:Xn— Y, 0% fn = frr 0§, 0 fn = 1% fhe = @+1faa (1<i=n),
and produces a homotopy of the associated (normalised) chain complexes
(2 fn: CX — ChaaY, fn(DegnX) C DegnrY,
dnsafn = 0 fn— 07 fn— Zig, (1) 9%, fr = fF —f-—fp g 0.

It will be useful to note that the thesis also holds for a generalised left homotopy, replacing the
condition f,, g = 41 fn1 with f(DegX) C Degn+1Y. o

2.6. Mayer-Vietoris and excision. Given two cubical subsets U, V C X, their union UuV (resp.
intersection UNV) just consists of the union (resp. intersection) of all components. Therefore, 1Cx
takes subobjects of X to directed chain subcomplexes of 1Cy X, preserving joins and meets

(D 1Cx(UuV) = 1CU +1CV, 1Cx(UNV) = 1CxU N 1CLV.
These facts have two important consequences

(a) The Mayer-Vietoris sequence. Let the cubical set X be covered by its subobjects U, V, i.e. X =
UuV. Then we have an exact sequence

(i*vj*) [U*,—V*] A
(@ ../ tHyUnV) —— (tHU)®(tHnV) —— tHR(X) — tHp(UNV) — ...

with the obvious meaning of brackets; themaps u: U — X, v:V — X, i: UnV — U, j:UnV — X
areinclusions and the connective A (which does not preserve preorder!) is:

(3 Alc] = [ondl, c=at+b (@€ 1C(U), bE 1Cr(V)).

The sequenceis natural, for acubical map f: X — X'=U'uV', whichrestrictsto U — U', V —
V'

(b) Excision. Let acubical set X be given, with subobjects B C YNA. Theinclusion map i: (Y, B)
— (X, A) issaidto beexcisive whenever Y\ B, =X\ Ay, foral n (or equivaently: YUA =X,
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YNA =B, inthelattice of subobjectsof X). Then i inducesisomorphismsin homology, preserving
and reflecting preorder.

Proof. The proof is similar to the topological one, simplified by the fact that here no subdivision is
needed. For (@), it is sufficient to apply the algebraic theorem of the exact homology sequence to the
following sequence of directed chain complexes

("D [Us, V4]

(4) 0 — 1Cx(UnV) ——  (1CxU)@(1CxV) ———  1C«(X) — 0

whose exactness needs one non-trivial verification. Take a€ 1C,U, b& 1C,V and assume that
U« (a) = v« (b); therefore, each cubereally appearingin a (and b) belongsto UnV; globaly, thereis
(one) normalised chain ¢ € 1C,(UNV) suchthat i«(c) =a, ix(c) =h.

For (b), the proof reduces to a Noether isomorphism for directed chain complexes
(5) 1C«(Y,B) = (1CY)/(C«(YNA)) = (1CY)/(CiY N CkA)
= (1CY +1CxA) [ (C+A) = (1C«(YUA)) [/ (CLA) = 1C«(X, A). o

2.7. Theorem [Tensor products]. Given two cubical sets X, Y, thereisanatural isomorphism and a
natural monomorphism

(1) 1C.(X®Y) = 1C.(X) ® 1C.(Y), tH.(X) ® tH.(Y) — 1H.(X®Y).

Proof. It sufficesto prove the first part, and apply the Kiinneth formula

First, the canonical (positive) basis of the preordered abelian group 1Cy(X)®1C¢(Y) is XpxYq (as
in2.1, Xp=Xp\ DegyX). Recall now that the set (X®Y)n isaquotient of Zgig-n XpxYq modulo an
equivalence relation which only identifies pairs where aterm is degenerate (1.4.1); moreover, aclass
x®y isdegenerateif and only if x or y isdegenerate (1.4.3). Therefore, the canonical positive basis
of 1Cy(X®Y) isprecisely the sum (digoint union) of the preceding sets )_(px\_(q, for ptq=n. We
can identify the preordered abelian groups
(2) 1CH(X®Y) = @prg=n 1Cp(X) ® 1C(Y),
respecting the canonical positive bases. Finaly, the differential of an element x®y, with (x,y) €
XpxY g, isthe samein both chain complexes
3 Zia (1) 0¥(x®Y) = Zipo (D) (97X)®Y + Zjcga (P x0(55y)

2.8. Cohomology. The (normalised) cochain complex 1C*(X; t1L) = Hom(1C, (X); 1L), of acubical
set X, with coefficientsin apreordered abelian group 1L (2.3) has asimple description

(1) CX;1L) = {n: Xp — L | M(DegnX) =0},
(d)@ = Ziq (1) n(078) (A€ Xn),

with components preordered by the cones of positive cochains, A: X, — L*, again not preserved by
the differential.



16

Forgetting preorders and assuming that L isaring, the cochain complex C*(X; L) hasanatura
structure of differential graded coalgebra, by the cup product (cf. [HW, 9.3])

2 (W@ = Zpc (1)PH 2(058)-1(5%a) (A ECAX; L), nECUX; L), aEXp+g),

where (H, K) varies among al partitions of {1,..., n} intwo complementary subsetsof p and g
elements, respectively, p(HK) isthe class of this permutation, da isthelower H-face of a and dga
its upper K-face. Thus, H*(X; L) is a graded algebra, isomorphic to H*(RX; L) (and graded
commutetive).

Plainly, the product of positive cochains need not be positive. Graded commutativity of H*(X; L)
(for a commutative ring L) says that this preservation property can hardly work for cohomology
classes; an actua counterexampleis given below (2.9.3).

2.9. Elementary cubical tori. The graded preordered abelian group of acubical set X will be written
as aformal polynomial

(D) 1H.(X) = X o 1Hi(X),

whose coefficients are preordered abelian group, while the indeterminate ¢ shows the homology
degree. One can think of o' asapower of the suspension operator of chain complexes (acting on a
preordered abelian group, embedded in dC,Ab in degree 0): then the expression (1) is adirect sum
of graded preordered abelian groups; and the direct sum of such objects amounts to the sum of the
corresponding polynomials (the latter is computed by means of the direct sum of the coefficients, in
the obvious way).

It is easy to see (also using 2.7) that the directed homology of the elementary torus 1t" = (1sh)®n
(2) 1H,(1t") = (1Z +0.42Z)®" = 1Z + 01 Z® + 6242 + .+ o142,
where, of course, apower 1ZX hasthe product order.

Finally, to show that the cohomology multiplication (2.8) with coefficientsin 1Z need not preserve
the positive cone, we use graded commutativity in odd degree, [A]Ju[u] =—[u]U[A], looking for a case
where cohomology is ordered (not just preordered) and [A], [u], [AJU[u] arestrictly positive (whence
[u]U[A] isnot).

Thetorus 1t2 = 1sl@ts! has one O-cube (*), two non degenerate 1-cubes (u®+*, *®u) and one
non degenerate 2-cube (u®u), which also provide the positive generators of 1H, (1t2). Similarly, in
cohomology, we have an ordered object

(3) tH*(1t3) = 1Z + 0122+ o21Z,
and the positive generatorsin degree 1, 2 come from the following cocycles (zero el sewhere)

4 Muexr) = 1, u(xeu) = 1, (WWw)(ueu) = 1.
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3. Group actions

The classical theory of proper actions on topological spaces, up to the spectral sequence, is extended
to free actions on cubical sets. G is a group, always written in additive notation (independently of
commutativity); the action of an operator g=G on an element x is written as x+g.

3.1. Basics. Takeacubical set X andagroup G acting on it, on the right: we have an action x+g
(xeXp, gEG) on each component, consistently with faces and degeneracies (or, equivalently, a cubical
object in the category of G-sets). Plainly, thereisacubical set of orbits X/G, with components X /G
and induced structure; and anatura projection p: X — X/G.

Say that the action isfreeif G actsfreely on each component: if x = x+g, for some x&X, and
gEG, then g=0. Thisisequivaent to sayingthat G actsfreely on the set of vertices X (because
X =x+g impliesthat their first vertices coincide).

It is now easy to extend to free actions on cubical setsthe classical results of actions of groups on
topological spaces [Ma, 1V.11], which hold for groups acting properly on a space, a much stronger
condition (every point has an open neighbourhood U such that all subsets U+g are disoint). But
note that all results below which involve the homology of G ignore preorder, necessarily (4.6).

Of course, an action of G on a c-set (X, ¢, X) (1.9) is defined to be an action on the set X
coherent with the structural presheaf c,X: for every distinguished cube x: I" — X, al mappings
x+g are aso distinguished. Thus, for atopological space T, a G-action on the space gives an action
onthec-set T, =(T, o T) andonthecubical set oT.

3.2. Lemma [Freeactiong]. (a) If G actsfreely onthe cubical set X, then 1C,(X) isacomplex of
free right G-modules, with a (positive) basis B, C X,, which projects bijectively onto X,/G, the
canonical basisof 1CL(X/G).

(b) Moreover, if tL isapreordered abelian group, viewed as atrivial G-module, then the canonical
projection p: X — X/G induces an isomorphism of directed (co)chain complexes, and hence an
isomorphism in (co)homology

(D pe: 1C(X)®ctL — 1C(X/G; 1L), Pin: HW(1C.(X)®ctL) — tHA(X/G; tL),
p*: tC (X/G; tL) — Homg(1C,(X), 1L), p " tHY(X/G; tL) — Hp(Homg(1C,(X), 1L).

Proof. (This Lemma adapts [Ma, IV.11.2-4]). It is sufficient to prove (&), which plainly implies (b).
Theactionof G on X, extendsto aright action on the free abelian group ZX,, consistent with
faces and degeneracies and preserving the canonical basis; it induces thus an obvious action on
1Cn(X) = 1ZX,, consistent with the positive cone and the differential

() (Zaix)+g = Zr(x+0), (X aix) + g = (X rix; + Q).

Thus 1C(X) isacomplex of G-modules, whose components are preordered G-modules. Take
now asubset By C X choosing exactly one point in each orbit; then Bg isaG-basisof 1Cq(X).
Letting Bn C X, be the subset of those non-degenerate n-cubes x whose 'initial vertex' 97...9-x
belongsto By, we have more generally aG-basisof 1Cy(X) which satisfies our requirements. o
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3.3. Theorem [Free actions on acyclic cubical sets]. Let X be an acyclic (connected) cubical set and
G agroup acting freely on it. Then, for an abelian group L with trivial G-structure, and forgetting
preorder in combinatorial (co)homology (cf. 4.6)

(1) H.(X/G;L) = H,(G;L), H*(X/G; L) =~ H*(G;L).
Proof. Asin [Ma, 1V.11.5], the augmented sequence
@ .= CX) = CX) ~Z—0

isexact, since X isacyclic (hasthe homology of the point). By 3.2a, this sequence forms a G-free
resolution of the G-trivial module Z. Therefore, applying the definition of H.(G; L) and the
isomorphism 3.2.1, we get the thesis for homology (and cohomology as well)

(3) Hn(G;L) = Hy(C,(X)®cL) = Hn(X/G;L). =

3.4. Corollary [Free actions on acyclic spaces]. Let T be an acyclic (path connected) topological
space and G agroup acting freely on it. Then H,((2 T)/G) = H,(G), and tH.((2 T)/G) has a
chaotic preorder. The same holds in cohomology.

Proof. It suffices to apply the preceding theorem to the singular cubical set o T of continuous cubes
of T. Thiscubical set hasthe same homology as T, and G actsobviously onit, by (x+g)(t) = x(t)
+g (for t€lM). Moreover, the action is free because so it is on the set of vertices, T. Finaly, the
remark on preorder isproved asfor tHy (2 T), in 2.1 o

3.5. Theorem [The spectral sequence of a G-free cubical set]. Let X be aconnected cubical set, G a
group acting freely onitand L a G-module. Then there is a spectral sequence

(1) Bl = Hp(G; Hy(X; L)) =p Hn(X/G; L).
Proof. This result extends Corollary 3.4, without assuming X acyclic. The proof isthe same asin

[Ma, X1.7.1], where X isapath-connected topological space with aproper G-action. The argument is
based on computing the terms Equ of the two spectral sequences of the double complex

(2) Kpg=L ® Cy(X) ®c By(G),

B.(G) being a G-free resolution of Z asatrivia G-module. And it only depends on the fact that
C.(X) isachain complex of free G-moduleswith C,(X)®cL = C,(X/G; L), whichisaso truein our
case (Lemma 3.2). o

4. Rotation structures and noncommutative tori

We compute the directed homology of various cubical sets, related with 'virtual spaces of noncom-
mutative geometry: irrational rotation algebras and noncommutative tori of dimension = 2; & isaways
an irrational real number.

4.1. Rotation algebras. Let us begin recalling some well-known ‘'noncommutative spaces.
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First, take the line R and its (dense) additive subgroup Gy = Z+9Z, acting on the former by
translations. In Top, the orbit space R/Gg = S'/9Z istrivia: an uncountable set with the coarse
topology.

Second, consider the Kronecker foliation F' of thetorus T2 =R2%Z2, with slope 9 (recaledin
4.3), and the set T§ =T?%=p of itsleaves. It iswell known, and easy to see, that the sets R/Gy and
Tg arein bijection (cf. 4.3). Again, ordinary topology gives no information on T12, since the quotient
T?= in Top iscoarse.

In noncommutative geometry, both these sets are 'interpreted' as the (noncommutative) C*-algebra
Ay, generated by two unitary elements u, v under the relation vu = exp(2ri9).uv, and called the
irrational rotation algebra associated with 9, or also anoncommutative torus [C1, C2, C3, R1, Bl].
Both its complex K-theory groups are two-dimensional.

A relevant achievement of K-theory [PV, R1] classifies these algebras, by proving that Kg(Ag) =
Z+9Z asan ordered subgroup of R; more precisely, the traces of the projections of Ag cover the
set GyN[0, 1]. Itfollowsthat Ay and Ag areisomorphicif andonly if 9 €+9+Z [R1, Thm.
2] and strongly Morita equivalent if and only if & and 9" are equivalent modulo the fractional action
(ontheirrationals) of thegroup GL(2, Z) of invertible integral 2x2 matrices[R1, Thm. 4]

ab _at+b _ B
(@) (C d)'t T ct+d (& b,c,deZ; ad—bc=+1),

(or the action of the projective general linear group PGL(2, Z) onthe projectiveline). Since GL(2,2)
is generated by the matrices

- (01 _(11
(Z)R'(lo’ T‘(01)’
the orbit of o isitsclosure {9}rt under the transformations R(t) = t1 and T*(t) = t+1 (on

R\Q)

A similar result, based on the 1-cohomology of an associated etale topos, can be found in [Ta].

We show now how one can obtain similar results with cubical sets naturally arising from the
previous situations:. the point is to replace atopologically-trivial orbit space T/G with the correspond-
ing quotient of the singular cubical set o T, identifying the cubes I™ — T modulo the action of G.

4.2. Irrational rotation structures. (a) Now, instead of considering the trivial quotient R/Gg of
topological spaces, wereplace R with the singular cubical set o R (on which Gy acts freely) and
consider the cubical set (o R)/Gg. Or, equivaently, wereplace R withthec-set R, =(R, o R) and
take the quotient R./Gg, i.e theset R/Gy equipped with the projections of the (continuous) cubes
of R. (Infact, if thecubes x,y: I" — R coincide when projected to R/Gg, their difference g=x—
y: I" — R takesvauesin thetotally disconnected subset Gg C R, and is constant; therefore, x and
y asocoincidein (o0 R)/Gg).

Then, applying Corollary 3.4, wefind that the c-set R./Gg (or (2 R)/Gg) has the same homol-
ogy asthegroup Gy = Z2, which coincides with the ordinary homology of thetorus T2

(1) H,(R./Gs) = H,(Gy) = H(T?) = Z +0.Z2+ 02.Z;
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(the last fact follows, for instance, from the classical version of Theorem 3.3 [Ma, 1V.11.5], applied to
the proper action of the group Z2 on the acyclic space R?). We aso know that directed homology
only gives the chaotic preorder on tH1(R./Gy) (again by 3.4).

In cohomology, we have the same graded group. Algebraically, thisisin accord with the K-theory
of the rotation algebra Ay, sinceboth H¥®(R,/Gy) and HO(R,/Gy) aretwo-dimensional.

(b) A much more interesting result (and accord) can be obtained with the c-structure 1R of the line
produced by topology and natural order: ¢,1R isthe set of continuous order-preserving mappings 1"
— R. Thequotient Cy=1R/Gy = 1SY9Z will be called an irrational rotation c-set (onthe directed
circle 1St = tR/Z), and we want to classify itsisomorphism classes, for 9 & Q.

We prove below (Theorems 4.8, 4.9) that tH1(1R/Gg) = 1Gg, as an ordered subgroup of the
line and that the c-sets Cy have the same classification up to isomorphism as the rotation algebras Ag
up to strong Morita equivalence: while the algebraic homology of Cy isthe same asin (a),
independent of 9, the (pre)order of directed homology determines 9 up to the equivalence relation
1Gy = 1Gy, which amountsto 9 and 9" being conjugate under the action of the group GL(2, Z).

Note that the stronger classification of rotation algebras up to isomorphism (recalled in 4.1) has no
analogue here: cubical setslack the 'metric information' contained in C*-algebras.

Note also the role of the ordered cube 1" (with its faces and degeneracies) for defining 'R.
Presumably, this cannot be easily transferred to a simplicial approach: the standard realisations of A"
in R™1 or R" are of no use, since the former inherits the discrete order while the latter has a
‘diagonal’ face not consistent with ordering; other realisationsin R" have complicated faces.

4.3. The noncommutative two-dimensional torus. Consider now the Kronecker foliation F' of
thetorus T2=R?Z2, withirrational slope 9, andtheset T2=T?/=¢ of itsleaves. F' and =¢ are
induced, respectively, from the following foliation F=(F,) and equivalencerelation = onthe plane
(D) Fo={(xy)ER* | y=0x+1} (rE€R),
xy) = (X,Y) & y+k=9(x+h) = y' + k' —9(x'+h) (for some h, k, h', k' € Z).
Now, weinterpret Tg asthe quotient c-set T2/=p, i.e. the set Tg equipped with the projection of
the cubes of the torus (or of the plane). Thisis proved below to be isomorphic to the previous c-set K

=R./Gy (4.2a), whose directed (co)homology has been computed above, in accord (algebraically)
with the complex K-theory groups of Ag.

Now, the isomorphism we want can be realised with two inverse c-maps i': K — T\?} and p" T§
— K, respectively induced by the following maps (in Top):

2 'R — R? i®) = (0,1),
p: RZ — R, p(x,y) = y—9x.

First, the induction on quotientsis legitimate because, for t=t+h+ko in R and (x,y) = (X,Y')
in R2 (asin (1))

(3 i(t+h+kd) = (0,t+h+ko) = (1,t+9) = (0,t) = i(t),
px,y) —p(x,y) = (y—9)—(y'—9X) = K—=oh'=k+9h € Z +9Z.
Second, pi istheidentity, and i'p’ aswell, because:
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(4) ipx,y) = (0,y=9x) = (X,y) (y—9x—9.0 = y—9x).
Finaly, it is obvious that distinguished cubes are preserved by i', p', sincethey areby i and p

X i y
(5) In — R — RZ «— N

Lo

K=R/Gy —— R%==T2

4.4. Higher foliations of codimension 1. (a) Extending 4.2a and 4.3, take an n-tuple of real numbers
9 = (91,..., 9n), linearly independent on the rationals, and consider the additive subgroup Gy = Zj 9;Z
~ 7N acting freely on R. (The previous case corresponds to the pair (1, 9).)

Now, the c-set R:/Gy has the homology (or cohomology) of the n-dimensional torus T"
(notation asin 2.9)

() H,(Ro/Gg) = H,(Gg) = Hy(T" = Z + 6.2@ + 622®) + ... + o"Z,

And again, this coincides with the homology of ac-set T"/=¢ arising from the foliation F' of the
n-dimensional torus T" = R"/Z" induced by the hyperplanes Z; 9jxj =i of R". (In the previous
proof, one can replace the maps i, p (4.3.2) with i(t) = (/94, 0,..., 0) and p(Xy,..., Xn) = Zj 9jX;.)

(b) Extending now 4.2b (and Theorem 4.8), the c-set tR/Gg has a more interesting directed
homology, with arelevant total order in degree 1:

(2) tH1(1R/Gy) = 1Gy = 1(Z) 92) (Gy =Gy N RY).

4.5. Higher foliations. More generally, consider a linear subspace H C R" of codimension k (0 <
k <n) and suchthat HNZ"={0}. (Incase(a), H isthe hyperplane X 9;x; = 0.)

Let F bethefoliation of R" whose leaves are the (n—k)-dimensional planes H+x, paralel to H.
These can be parametrised letting x vary in some convenient k-dimensional subspace transverseto H;
equivaently, choose aprojector e R" — R" with H =Ker(e) and an epi-mono (linear) factorisation
of the latter through RK

p i
() R" — Rk — R" ip==e pi=id,

so that the leaves of F are bijectively parametrised on R¥
(2 F. = {XER" | p(x) =2} (» € RY).

The projection R" — T"=R"/Z" isinjective on each leaf F, (because Ker(p)nZ"=HNZ" =
{0}). Therefore, F inducesafoliation F' of T" with codimension k, and an equivalence relation
=p (to belong to the same leaf). The set of leaves T"/=p can be identified with the quotient R"/=,
modulo the equivalence relation = generated by the trandationsof Z" and the equivalence relation x
=gy of theorigina foliation (i.e., p(x) = p(y)):

(3 x=x"in R" ifandonly if p(x) —p(x") € p(Z").
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Note that Gp = p(Z") isan additive subgroup of RK isomorphic to Z", by Ker(p)nZ" = {0}
again. Now, we areinterested inthe c-set T"/=, isomorphicto R"/=. Because of (3), the maps p, i
in (1) induce a bijection of sets

p i
(49 RY= — RKG, — R,

and an isomorphism of c-sets
(5) TQ/EF' = RQ/E = RL‘/Gp

Sincethe cubical set o R¥ isacyclic and Gp = Z", we conclude by 3.3 (and its classical version)
that the homology of T"/=F isthe same as the ordinary homology of thetorus T" (cf. 2.9)

(6) H.(Tl=r) = H.(RE/Gp) = Hi(Gp) = HL(TM).

It should be interesting to study the relations of the above with the general n-dimensional
noncommutative torus Ag [R2]. Thisisthe C*-algebra generated by n unitary elements uy,..., Un
under the relations uxu = exp(2ridnk).Unuk produced by an antisymmetric matrix © = (9yk); it has
the same K-groupsas T".

4.6. Remarks. The previous results show also that it is not possible to preorder group-homology so
that the isomorphism H,(G) = H,(X/G) (3.3.1) be extended to tH,(X/G): agroup G can act
freely on two acyclic cubical sets X; producing different preorders on some 1H(Xi/Gy).

Infact, it is sufficient to take Gy =Z+9Z, asabove, and recall that tH1(R./Gy) hasachaotic
preorder (3.4) while tH1(1R/Gg) = 1Gy istotally ordered (4.8).
Another example comes from a different c-structure Rg on the real line, defined by the sub-

presheaf X =c,Rg C Set(l*, R) having the following non-degenerate n-cubes (stable under the action
of Gy on R):

(1) x{*} - R, (n=0, XxE Gy CR),
Cio Coxi | = R,  cCi(t) = x +1, Cox(t) = X +to (n=1, x€Gy),
acl?— R, a(t, t) = x+to+t (n=2, x€Gy),
97(a) = Crx+ad 05(a) = Cox+a-

Now, (c.Rg)/Gg has precisely four non-degenerate cubes ([0], [Ci0], [C2al, [a0]) and isplainly
isomorphic to the cubical set tt2. Thus, all the homology groups 1Hn(Rg/Gg) = tHp(1t2) are
ordered (2.9.2). And it is not difficult to show that the cubical set X itsdlf isindeed acyclic: in degree
2, takeachain z=2, mac andlet yEGy bethe lowest index with non-zero coefficient (if any); then
the lower faces d7(a)) = ciy aredistinct, and different from all faces of the other summandsin z; we
conclude that the only 2-cycleis 0. A similar argument shows that the only 1-cycleisO.

We end this section by proving the main results on the directed homology of the rotation c-set Cy
= 1R/Gy, aready announced in 4.2.

47.Lemma. Let 9,9 beirrationals. Then Gy =Gy, assubsetsof R, ifandonly if ¥ €+9+Z.
Moreover the following conditions are equivalent

(@) 1Gy =~ 1Gy asordered groups,
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(b) ® and ©' are conjugate under the action of GL(2, Z2) (4.1),
(c) 9 belongsto theclosure {9}rt of {9} under thetransformations R(t) =t and T*(t) = t+1.

Further, these conditions imply the following one (which will be proved to be equivalent in 4.8)
(d) 1R/IGy =~ tR/Gy asc-sets.
Proof. First, if Gy =Gy, then 9 =a+ bd' and 9 =c+ d9, whence 9 =a+bc+bdd andd =
+1; the converseisobvious.

We have already seen, in 4.1, that (b) and (c) are equivalent, because the group GL(2,Z) is
generated by the matrices R, T (4.1.2), which give the transformations R(t) = t1 and TX(t) = t+k
(on R\Q; for k&Z). To provethat (c) implies (@) and (d), it sufficesto consider the cases o' = 9+k
and 9 =971 Inthefirst case, 1Gy and 1Ggy coincide (as well as their action on tR); in the
second, the isomorphism of c-sets
(1 1R — 1R, f(t) = [ol.t,
restricts to an isomorphism f: 1Gg — 1Gg, obviously consistent with the actions (f(t + g) = f(t) +
f'(g)), and inducesanisomorphism tR/Gy — 1R/Gg.

We are left with proving that (a) implies (c). Let us begin noting that any irrational & defines an
algebraic isomorphism Z2 =~ Gy, which becomes an order isomorphism for the structure 1522
(2) 19Z% — G, (a b) — a+ by,

(a,b)>y0 = a+bo>0,
and the number o is (completely) determined by this order, as an upper bound in R
3) o =sup{—ab | abez, b>0, (ab)>y0}.

Take now an algebraic isomorphism f: Z2 — Z2. Since GL(2, Z) isgenerated by R and T,
thisisomorphism can be factored as f = f...f1, with factors fg, f$
(4) fr(ab) = (b,a), fk(a b) = (a+kb, b).

Now, take 19Z2 and replace 9 with a positive representativein {9}gr. Then fg (resp. fX) isan
order isomorphism 19Z2 — 1:Z2 with ¢ =R(®) (resp. ¢ =TX()), still belongingto {o}rr
(B) (@ab)>0 < a+by4>0 « b+a¥y’>0 <« (b,a)>0 (t=v7),

@ab)>0 <« a+by>0 « a+kb+b(®-k)>0 < (a+kb,b)>0 (t=9-Kk).

Thus, f =f,..f1 can be viewed as an isomorphism 19Z? — 1:Z? where ¢ belongs to the

closure {9}gr. Finaly, given 9, ', anisomorphism 1Gy = 1Gy yieldsaniso 1922 — 19Z2;

but we have seen that the same algebraic isomorphism is an order isomorphism 1922 — 1:Z? where
¢ belongstothe closure of {8}; by (3), o' =t and thethesisholds. o

4.8. Theorem. Thec-set 1R (4.2b) isacyclic. The directed homology of 1R/Gy isthe homology of
T2, with atotal order on tH; and achaotic preorder on tH,

(1) tH1(1R/Gy) = 1Gy = 1(Z +9Z) (Gj =Gy N R,
tHo(1R/Gy) = 1Z,
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and obviously tHg(1R/Gg) =1Z. The first isomorphism above has a simple description on the
positive cone Gy N R*

(2 ¢:1Gy — tH1(1R/Gy), 9(p)
a | — R, 3(t)

where p: 1R — tR/Gg isthe canonical projection.

[P3p] (p €EGyNRY),
ot,

Proof. Firgt, let us consider the cubical subset 1[x, +o[ (x € R) of tR and the following left
homoatopy of cubical sets (1.6.4; noting that it does preserve directed cubes)

Q) fnicn(t[X, +oo[) — cnea(t[X, +o[),
fn(a): (tl,..., tn+1) — X+ tl.(a(tz,..., tn+1) —X),
0741 fn = fna 07, fne = e+ fna.

Computing its faces 9f, f isahomotopy between the identity f*=(07f,) and the map f~=
(9:fn), constant at x; therefore, every t[x, +o[ iscontractible (to its minimum x). Since cubes of
1R have acompact imagein theline, it follows easly that also 1R isacyclic.

Now, Theorem 3.3 proves that the cubical homology of 1R/Gg coincides, algebraicaly, with the
homology of the group Gg, or of the space T2. It also provesthat Hq(1R/Ggy) isgenerated by the
homology classes [pay] and [pag]. Since [pay+p] = [pay] + [pay], the mapping ¢ in (2) isan
algebraic isomorphism. By construction, it preserves preorders, and we still have to prove that it reflects
it.

To simplify the argument, a 1-chain z of tR which projectsto acycle p,(z) in 1R/Gg, ora
boundary, will be called apre-cycle or a pre-boundary, respectively. (Note that, since p, issurjective,
the homology of 1R/Ggy isisomorphic to the quatient of pre-cycles modulo pre-boundaries.) Let z =
2 Ajg beapositive pre-cycle, withal A >0; letuscal A =23 itsweight. We have to prove that
z isequivaent to apositive combination of pre-cyclesof type &, (p € Gj), modulo pre-boundaries.

Let z=2Zz+Zz", puttingin z' al thesummands g which are pre-cycles themselves, and replace
any such &, up to pre-boundaries, with a,, where pj = ota—o0a € Gg. If z' =0 weare done,
otherwise 7" =z -7 isdtill apre-cycle; let usact onit. Reorder its paths g sothat & hasaminimal
coefficient aq (strictly positive); since aTa; hasto annihilatein ap,(z), thereissome g (i > 1)
with 9ta; —97a € Gy. By aGg-trandation of g (leaving pa unaffected), we can assumethat 9~
a = 01ay, and then replace (modulo pre-boundaries) a1 + 2ja with xlél + (A —M)g where él =
a*g isthe concatenation (and 2j —A1 = 0). Now, the new weight is A —iq <2, strictly lessthan the
previous one.

Continuing this way, the procedure ends in a finite number of steps; this means that, modulo pre-
boundaries, we have changed z into a positive combination of pre-cycles of the required form, a,.

Finally, it iseasy to seethat Hy(1R/Gg) = Z gets the chaotic preorder. In fact, we already know
that the 2-cycle
(4) pa[0, 1] — RIGy, at,t) = to+t,

gives a (positive) generator of tH,. But the interchange s: [0, 1]2 — [0, 1]2 preserves the natural

order of the square, whence pers isalso apositive cycleand [pas] =—[pa] isaso (weakly) positive.
m]
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4.9. Theorem. Thec-sets 1R/Gg and tR/Gg areisomorphic if and only if the ordered groups 1Gg
and 1Gg areisomorphic, if and only if & and o' are conjugate under the action of GL(2, Z)
(4.1.1),if and only if o' belongsto the closure {9}rr (4.1.2).

Proof. Follows immediately from Lemma 4.7 and Theorem 4.8, which gives the missing implication of
the Lemma: if our c-sets are isomorphic, also their ordered groups tH; are, and 1Gg =~ 1Gg o

5. Pointed suspension and homology

Pointed suspension is well linked with directed pointed homology; the latter can also be viewed as a
form of reduced homology, well adapted to preorder.

5.1. Pointed cubical sets. Unpointed and pointed suspension produce different results on the discrete
two-point cubical set 0 ={0, 1}, since = = 10! (1.7.4) while, plainly, 2(s°, 0) = 1s! (cf. 5.2);
these cubical sets have different directed homology (2.3).

Since we are more interested in the spheres 15", we shall consider the suspension (and homol ogy)

of pointed cubical sets. The latter form the category Cub,: an object (X, Xg) isacubica set with a
base point xg € Xg; morphisms f: (X, Xg) — (Y, Yo) preserve the base points.

Again, limits and colimits are obvious: limits and quotients are computed asin Cub and pointed in
the obvious way, whereas sums are quotients of the corresponding unpointed sums, under
identification of the base points (as for pointed sets).

5.2. Pointed homotopies. The pointed left (elementary) cylinder is

(1) I: Cub, — Cub,, (X, X0) = (IX/1{Xg}, [0®Xq]),
(2) 9% (X, xq) — 1(X, Xq), 04X) = [a®X],
e 1(X, xg) — (X, Xo), guex] = e(x).

Itsright adjoint, the pointed left (elementary) cocylinder, is
(3) P:Cub, — Cub,, P(Y,yo) = (PY, wg), wo = €y(Yo) € Y1.

Again, an (immediate) pointed left homotopy f: f~ — | f*: (X, xg) — (Y, yo) isdefined asamap f:
(X, Xg) — (Y,yg) with fo*=f% Or, equivaently (because of the adjunction), asamap f: (X,Xg) —
P(Y, yo) with 9% =f%, which amountsto afamily
(4) fn: Xn — Yn+l| a(ix_'_l fn = fn_]_ 6?, 8(1‘ fn = fOt’

€+1 T = fhe, fo(Xg) = wg (a=%; i=1,., n).

The pointed left upper cone C*(X, xg) isaquotient of the pointed cylinder

(X1X0) — I(X!XO)
(5) | R, CH(X, Xo) = (IX)/(1{xc} Ud*X).
"} — CXxo)

Vv
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The pointed left suspension is the quotient
6) =(X, %) = (IX)/(0~XuUl{xg}ua*X).
Thus, the pointed suspension of (2, 0) yields the elementary directed circle tst (1.5.3)

* p— *
7) | f <o
* j— *

and, more generdly

® (1", %) = =%, 0).

5.3. Pointed homology. A pointed cubical set (X, Xg) produces naturally a chain complex 1C, (X,
Xo) where the O-component is the free preordered abelian group generated by the pointed set (X, Xg),
so that the base point is annihilated
(1) 1Cuo(X, %0) = 1Z(Xo, X0) = (1ZX0)/(ZX0),
(thefunctor 1Z(—, —) being left adjoint to the forgetful functor dAb — Set,, A — (A™, 0)).

We have thus the pointed directed homology of a pointed cubical set

(2) tHp: Cub, — dAD, tHa(X, Xg) = tHa(1C(X, X0)),

which only differs from the unpointed one in degree zero, where tHg(X, Xo) isthe free ordered
abelian group generated by the pointed set of connected components of (X, Xg), or equivaently by the
set of components different from the one of the base point.

Algebraically, Ho(X, Xg) isplainly isomorphic to the reduced homology I:|0(X) of the underlying
cubical set (defined asthe kernel of the natural homomorphism Ho(X) — Z). But thisis not true for
preorders: this kernel inheritsfrom tHg(X) atrivial (discrete) preorder, since the trace of the positive
cone Z Aj[x] (A € N) onthiskernel is {0}. One can also note that, independently of directions or
preorders, and also for topological spaces, pointed homology (of pointed objects) preserves sums
while reduced homology (of unpointed objects) does not.

Our next result gives again the ordered homology tHn(1S") =1Z (n>0; cf. 2.3).

5.4. Theorem [Homology of suspension]. There is a natural isomorphism of preordered abelian
groups (where <—> denotes equivalence classesin (X, Xg) asaquctient of 1(X, Xg), and u isthe
generator of the dementary interval 1)

(1) tH(X, X0) — tHn+2(Z(X, X)), [Zhexi] = [Z me<uexi] (n=0).

Proof. Fird, let us note that, for x&X,,, we havethefollowing relationin 1Cn+1(Z(X, Xg))
(2) a<uex> = <1ex —0&x>—Zj (-1)** <URI X> = — <URIX>.

Now, the isomorphism is induced by the following inverse isomorphisms of preordered abelian
groups, which anti-commute with differentials

() fn: 1Ch(X, Xg) = 1Che1(Z(X, X0)), f(X) = <uex> (xXeEXp),
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of(x) = a<uex> = —<uedx> = —f(ax), f(Xo) = <uexp> = O,

fley) = <ueay> = <gui(u®y)> = 0 (for n>0, yEXp1);
(4 gn: 1Che1(Z(X, X0)) — 1Cr(X, X0), g<uex> = X,

gI<URX> = —Qg<URIX> = —IX = — Ig<URX>. =

6. Comparisons with other structures

Cubical sets have other directed realisations, besides 1R X (1.9): for instance as spaces with directed
paths, a structure studied in two previous works as a setting for directed homotopy [G4, G5]. Finally, we
show that the algebraic part of our results on noncommutative tori can also be obtained using Scott's
equilogical spaces [Sc], instead of cubical sets.

6.1. Spaces with directed paths. In [G4, G5] we used the following setting, to develop atheory of
directed homotopy. A space with directed paths, or di-space T, isatopological space equipped with a
set diT of (continuous) maps a | — T, called directed paths (or distinguished paths, or d-paths),
satisfying three axioms:

(i) (congtant paths) every constant map | — T isdistinguished,
(i) (reparametrisation) diT isclosed under composition with (weakly) increasing maps | — I,

(iii) (concatenation) diT isclosed under path-concatenation: if the d-paths a, b are consecutivein T
(a(1) = b(0)), then their ordinary concatenation a+b isalso ad-path

(1) (a+b)®) = a20), if 0=t=1/z, (a+b)(t) = b(2t—1), if Yz2<t=<1.

A directed map, or di-map f: T — T', is a continuous mapping between di-spaces which
preserves the directed paths. if a€ d;T, then fac d;T'. Thiscategory will be denoted as d;Top (it
waswritten dTop in[G4, G5]; here, we want to stress the one-dimensional character of the structure,
just consisting of pathsinstead of general cubes). Directed homotopy has been developed on the basis
of the standard directed interval 11, i.e. the euclidean interval equipped with all (weakly) increasing
maps | — 1.

Thereis now adirected realisation of cubical sets as d;-spaces, produced by an adjunction

TRy
(2 Cub == diTop, 1Ry — cubl,

cubl

and intermediate between the ordinary redisation RX (1.8) and the directed redlisation 1RX (1.9), as
we show below (6.3).

Here, cub!T isthe cubical set of all mappings x: I" — T such that, whenever we precompose
with a continuous order-preserving mapping a | — 1", we get a distinguished path. On the other
hand, the di-space 1R X isthe geometric realisation RX (with itstopology), equipped with the finite
concatenations of paths xa | — I" — RX, where a | — I" isan order-preserving map and X
corresponds to some cube XX, asin 1.8.3.
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We only need to show that the classical bijection Top(RX, T) = Cub(X, o T) (1.8.2), which sends
f: RX — T tothefamily gn: Xn — ohT, gn(X) = fX, restrictsto abijection (1RX, T) = (X, cub!T);
infact, themap f isamorphism of the specified type if and only if, for every x&X,, and every order-
preserving mapping a | — I, f(xa) isadistinguished pathin T (then, finite concatenations of paths
of type xa also work, because T is a di-space); but f(§<a) = (f>A<)a= On(X).a, and our condition is
equivalent to saying that gn(x) isan n-cubeof cub!T (fordl xEX,).

6.2. Comments. This category d;Top isinsufficient for our purposes here, because it only breaks
reversion, and not the interchange symmetry. Thus, the directed 2-sphere 1R1(1s%) living there (called
1S? in[G4, G5]) would get the chaotic preorder on 1Ho.

Y €, it seems difficult to develop a reasonable homotopy theory without the interchange symmetry,
which is required - for instance - to prove the homotopy invariance of the cylinder, cone and
suspension functors, and deduce important properties of the (co)fibration sequence [G5]. One could
use sets with distinguished cubes closed under connections and interchange; but then, it is perhaps
simpler and more effective to use objects with distinguished paths, whose cubes automatically have
connections and interchange.

6.3. Comparison of directed realisations. Finally, welink the three realisations we have considered,
RX (1.8), 1RX (1.9) and 1R X (6.1), showingthat R factorsthrough 1R, and the latter through
tR (including their adjunctions).

This will be better seen introducing a variant of d;Top: the category diSet of dj-sets,
constructed as diTop using sets and mappings instead of spaces and maps, with the exception that
reparametrisation is still required for increasing maps | — 1. (It workssimilarly to diTop and has
the advantage of being cartesian closed.) Then we can construct the following chain of adjunctions (left
adjoints as dashed arrows)

[ 1 |
I 1R d; t + 1R u + R
(1) Cub =z cSet == diSet -2 diTop == Top
Cx Vy Uy CO
’[‘iR]_ = t1d1.1‘iR, R = U.TiRl.

At the right hand, we have the forgetful functor U: d;Top — Top (forgetting distinguished
paths); its right adjoint Cp equips a topological space with the natural d;-structure, where the
distinguished paths are the continuous ones [G4, 1.1]. Then, the forgetful functor u;: d;Top —
d1Set hasaleft adjoint t; which equips a d;-set with the finest topology making all its distinguished
paths continuous. Finally, the functor dj: cSet — d;Set completes the distinguished paths of c¢1K
under the closure conditions (i)-(iii), whileitsright adjoint v;: d;Set — cSet produces a c-structure
on adj;-set X, saying that a mapping I" — X is distinguished if and only if, whenever we
precompose with a continuous order-preserving mapping | — 1", we get adistinguished path.

Now, it is easy to verify that every standard cube 1" hasthe final topology for the maps | — I

Therefore, amapping 1" — T with valuesin atopologica spaceis continuousif and only if all those
precomposites are: this proves that (). = viu;Co: Top — cSet (1.9.1), whence also their left
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adjoints coincide, Utidy =t: cSet — Top (1.9). Similarly, cub!: d;Top — Cub coincides with
C,V1U1 and Tleztldl.’l‘fR. FlnaIIy, URy = Ut]_dl.’l‘fR =t R=R.

6.4. Equilogical spaces. We end with some remarks, to be developed elsewhere, on a structure
introduced by D. Scott [Sc]. An equilogical space (T, R) isatopological space T equipped with an
equivalencerelation R; amap f: (T, R) — (T',R) isamapping T/R — T'/R' which admits some
continuous lifting T — T'. The category Eql thus obtained contains Top as afull subcategory,
identifying the space T withthepair (T, =1); moreover, Eql iscartesian closed. (We are dropping
the condition that the support spaces be Ty, generally assumed but inessential; cf. [Ro].)

Singular cubes and singular homology have an obvious extension to equilogical spaces, setting
o (T, R) = EqI(I", (T, R)). And thereis an embedding of equilogical spacesin c-sets (or in cubical
sets)

(1) Egl — cSe, (T,R) — Tu./R,

consistent with singular cubes and singular homology, since acube I" — (T, R) isthe sameasa
mapping I" — T/R which can be continuoudly liftedto T, that isadistinguished cube of T./R.

Now, it is easy to see that our result 4.2a on the group Gg =Z+93Z acting on thered line can also
be stated in terms of the equilogical space (R, =g,)

(2) H.(R,=g,) = Hi(Ru/Gy) = H.(T?).

The deeper results on the cubical sets Cyg = 1R/Gy can be obtained with equilogical spaces
equipped with an ordering. However, the directed homology of such a structure could hardly avoid the
genera drawbacks we have considered above, for d;-spaces (6.2).

References

[ABS] F.A.A. Al-Agl - R. Brown - R. Steiner, Multiple categories: the equivalence of a globular and a
cubical approach, Adv. Math. 170 (2002), 71-118.

[An] R. Antolini, Geometric realisations of cubical sets with connections, and classifying spaces of
categories, Appl. Categ. Structures 10 (2002), 481-494.

[BI] B. Blackadar, K-theory for operator algebras, Springer, Berlin 1986.
[BH1] R. Brown - P.J. Higgins, On the algebra of cubes, J. Pure Appl. Algebra 21 (1981), 233-260.

[BH2] R. Brown - P.J. Higgins, Tensor products and homotopies for w-groupoids and crossed
complexes, J. Pure Appl. Algebra 47 (1987), 1-33.

[C1] A. Connes, C*-algébres et géométrie différentielle, C.R. Acad. Sci. Paris Sér. A 290 (1980), 599-
604.

[C2] A. Connes, Noncommutative geometry, Academic Press, San Diego CA 1994.
[C3] A. Connes, A short survey of noncommutative geometry, J. Math. Physics 41 (2000), 3832-3866.

[GG] P. Gaucher - E. Goubault, Topological deformation of higher dimensional automata, Homology,
Homotopy Appl. 5 (2003), 39-82. http://wwv. rm . acnet. ge/ hha/ vol umes/ 2003/ n2a3/

[Go] E. Goubault, Geometry and concurrency: a user's guide, in: Geometry and concurrency, Math.
Structures Comput. Sci. 10 (2000), no. 4, pp. 411-425.



30

[G1] M. Grandis, Cubical monads and their symmetries, in: Proceedings of the Eleventh International
Conference on Topology, Trieste 1993, Rend. Ist. Mat. Univ. Trieste, 25 (1993), 223-262.

[G2] M. Grandis, Categorically algebraic foundations for homotopical algebra, Appl. Categ. Structures
5 (1997), 363-413.

[G3] M. Grandis, Higher fundamental functors for simplicial sets, Cahiers Topologie Géom.
Différentielle Catég. 42 (2001), 101-136.

[G4] M. Grandis, Directed homotopy theory, I. The fundamental category, Cahiers Topologie Géom.
Différentielle Catég. 44 (2003), 281-316.

[G5] M. Grandis, Directed homotopy theory, 1. Homotopy constructs, Theory Appl. Categ. 10 (2002),
No. 14, 369-391 (electronic). http://tac.nta.cal/tac/

[GM] M. Grandis - L. Mauri, Cubical sets and their site, Theory Appl. Categ. 11 (2003), No. 8, 185-211
(electronic). http://tac. nta.caltac/

[HW] P.J. Hilton - S. Wylie, Homology theory, Cambridge Univ. Press, Cambridge 1962.

[Ja] J.F. Jardine, Cubical homotopy theory: a beginning, Preprint (2002),
http://ww. mat h. uwo. cal/ ~j ar di ne/

[KP] K.H. Kamps - T. Porter, Abstract homotopy and simple homotopy theory, World Scientific
Publishing Co., River Edge NJ 1997.

[K1] D.M. Kan, Abstract homotopy I, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 1092-1096.
[K2] D.M. Kan, Abstract homotopy |1, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 255-258.
[Ma] S. Mac Lane, Homology, Springer, Berlin 1963.

[Ms] W. Massey, Sngular homology theory, Springer, Berlin 1980.

[MP] C.J. Mulvey - JW. Pelletier, On the quantisation of spaces, J. Pure Appl. Algebra 175 (2002), 289-
325.

[Mu] J.R. Munkres, Elements of algebraic topology, Perseus Publ., Cambridge MA, 1984.

[PV] M. Pimsner - D. Voiculescu, Imbedding the irrational rotation C*-algebra into an AF-algebra, J.
Operator Th. 4 (1980), 93-118.

[Ra] M. Raussen, State spaces and dipaths up to dihomotopy, Homotopy Homology Appl. 5 (2003),
257-280. http://ww. rmi . acnet. ge/ hha/ vol unes/ 2003/ n2a9/

[R1] M.A. Rieffel, C*-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), 415-429.

[R2] M.A. Rieffel, Projective modules over higher-dimensional noncommutative tori, Canad. J. Math. 40
(1988), 257-338.

[Ro] G. Rosolini, Equilogical spaces and filter spaces, Categorical studiesin Italy (Perugia, 1997). Rend.
Circ. Mat. Palermo (2) Suppl. No. 64, (2000), 157-175.

[Sc] D. Scott, A new category? Domains, spaces and equivalence relations, Unpublished manuscript
(1996). ht t p: / / ww. cs. cru. edu/ Groups/ LTC/

[Se] J. P. Serre, Homologie singuliere des espaces fibrés. Applications, Ann. of Math. 54 (1951), 425-
505.

[Ta] J. Tapia, Sur la pente du feuilletage de Kronecker et la cohomologie étale de I'espace des fediilles, C.
R. Acad. Sci. Paris Sér. | Math. 305 (1987), 427-429.

[To] A.P. Tonks, Cubical groups which are Kan, J. Pure Appl. Algebra 81 (1992), 83-87.



