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Abstract. This is a brief study of the homology of cubical sets, with two main purposes.

First, this combinatorial structure is viewed as representing directed spaces, breaking the intrinsic
symmetries of topological spaces. Cubical sets have a directed homology, consisting of preordered
abelian groups where the positive cone comes from the structural cubes.

But cubical sets can also express topological facts missed by ordinary topology. This happens, for
instance, in the study of group actions or foliations, where a topologically-trivial quotient (the orbit set or
the set of leaves) can be enriched with a natural cubical structure whose directed cohomology agrees with
Connes' analysis in noncommutative geometry. Thus, cubical sets can provide a sort of 'noncommutative
topology', without the metric information of C*-algebras.
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Introduction

A topological space  T  has intrinsic symmetries, appearing - at the lowest level - in the reversion of

its paths. More generally, the set  ∆nT = Top(∆n, T)  of its singular simplices inherits from the

standard simplex  ∆n  an obvious action of the symmetric group  Sn+1,  while the set  ∆ nT =

Top([0, 1]n, T)  of its singular cubes has a similar action of the hyperoctahedral group (the group of

symmetries of the n-cube). These combinatorial structures produce the singular homology of the space

T,  which can be equivalently defined as the homology of the chain complex associated to the simplicial

set  ∆T,  or the homology of the (normalised) chain complex associated to the cubical set  ∆T.  The

less usual cubical approach (followed for instance in Massey's text [Ms]) has advantages, mainly due

to the fact that cubes are closed under products, while products of tetrahedra have to be 'covered' with

tetrahedra; thus, the proof of homotopy invariance and the study of products or fibrations [Se] are

easier and more natural in the cubical setting, which we shall follow here. Here, a more specific

motivation for this choice is our use of the natural order on  In  (cf. the last remark in 4.2).

(*) Work supported by MIUR Research Projects.
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Now, bypassing topological spaces, an abstract cubical set  X  is a merely combinatorial structure,

consisting of a sequence of sets  Xn,  with faces  ∂αi : Xn = Xn–1  and degeneracies  ei: Xn–1 = Xn

(α = ±;  i = 1,..., n)

 ∂  ∂

(1) X0       _})-∞        X1         
-}_})-)-∞-∞
        X2  ...

 
e

 e

satisfying the well-known cubical relations (1.2). This structure will be used in two ways: to break the

symmetries considered above and to perform constructions, namely quotients, which would be useless

in ordinary topology.

For the first aspect, note that an 'edge' in  X1  need not have any counterpart with reversed vertices,

nor a 'square' in  X2  any counterpart with horizontal and vertical faces interchanged. Thus, our

structure has 'privileged directions', in any dimension, and the (usual) combinatorial homology of  X

can be given a preorder, generated by taking the given cubes as positive. For instance, the obvious

cubical model  ↑sn  of the n-dimensional sphere, with one non-degenerate cube in dimension  n,  has

directed homology  ↑Hn(↑sn)  consisting of the group of integers, with the natural order; the positive

generator, of course, is the homology class of the generator of our cubical set (2.3). Direction should

not be confused with orientation, as shown by the model  ↑t2 = ↑s1⊗↑s1  of the torus, where  ↑H1(↑t2)

© ↑Z2  has the product order (2.9). Note also that our preorder becomes trivial (chaotic, or coarse) for

a 'symmetric' cubical set, like the singular cubical set of a topological space.

Secondly, it may happen that the quotient  T/≈  of a topological space has a trivial topology, while

the corresponding quotient of its singular cubical set  ∆T  keeps a relevant topological information,

detected by its homology and agreeing with the interpretation of such quotients in noncommutative

geometry. These links, briefly explored here, should be further clarified.

Let us start from the classical results on the homology of an orbit space  T/G,  for a group  G

acting properly on a space  T;  these results can be extended to free actions if we replace  T  with its

singular cubical set and take the quotient cubical set  (∆T)/G  (Thm. 3.3). Thus, for the group  Gϑ =

Z+ϑZ  (ϑ  irrational), the orbit space  R/Gϑ  has a trivial topology (the coarse one), but can be

replaced with a non-trivial cubical set,  X = (∆R)/Gϑ,  whose homology is the same as the homology

of the group  Gϑ © Z2,  and coincides thus with the homology of the torus  T2  (4.2.1). The same can

be done for the Kronecker foliation of the torus (with slope  ϑ),  replacing a topologically trivial set of

leaves  T2
ϑ  with a non-trivial cubical set, obtained as a quotient of the singular cubical set of the torus.

Algebraically, all this is in accord with Connes' interpretation of  R/Gϑ  and  T2
ϑ  as a 'noncommutative

space', i.e. a noncommutative C*-algebra  Aϑ  [C1, C2, C3, R1, Bl]; however, our  ↑Hn(T2
ϑ)  has a trivial

preorder, for  n > 0.

But this similarity can be enhanced. The quotient  (∆R)/Gϑ  can be modified, replacing  ∆R  with

the cubical set  ↑R  of all order-preserving maps  In = R.  Algebraically, the homology groups are

unchanged (and independent of  ϑ),  but now  ↑H1(↑R/Gϑ) © ↑Gϑ  as a (totally) ordered subgroup of

R  (Thm. 4.8): thus the rotation cubical sets  Cϑ = ↑R/Gϑ  have the same classification up to isomor-

phism (Thm. 4.9) as the rotation C*-algebras  Aϑ  up to strong Morita equivalence [PV, R1] (cf. 4.1):

ϑ  is determined up to the action of the group  PGL(2, Z).  This example shows that the ordering of

directed homology can carry a relevant information. Further, comparison with the stricter classification
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of the algebras  Aϑ  up to isomorphism (4.1) shows that cubical sets provide a sort of 'noncommutative

topology', without the metric character of noncommutative geometry (cf. 4.2).

The reader can have a quick overview of these motivations, reading 2.9 (cubical tori) and 4.1-4.3

(rotation structures and foliations of tori); Section 4 contains other results on higher dimensional tori.

'Directed algebraic topology' is a recent field, whose present applications deal mainly with

concurrency [GG, Go, Ra]; other references can be found in two previous works on directed homotopy

[G4, G5]. Cubical sets are more present in the literature, if less than the simplicial ones. Cubical

singular homology of topological spaces can be found in Massey [Ms] and Hilton-Wylie [HW]. It

should be noted that, while the basic structure of faces and degeneracies (used here) can be sufficient

for introducing their homology, 'intrinsic' homotopy theory requires more. Works by Brown-Higgins

[BH1, BH2] have proved the importance of adding compositions and higher degeneracies, called

connections (see also [To, ABS, An]); the interest of considering also the action of symmetries,

generated by reversions and interchanges, is stressed in various works of the present author [G1, G2]

and sketched here, in 1.1. Cubical sets are presheaves, on a category which depends on how much

structure we want to consider [GM]. Formal cubical settings of homotopy theory go back to Kan [K1,

K2] and his introduction of an abstract cylinder; see Kamps-Porter's book [KP] and its references. A

Quillen structure on cubical sets has been recently studied by Jardine [Ja].

As discussed in 6.4, the cubical set  (∆R)/Gϑ  could also be interpreted as an equilogical space, in

D. Scott's sense [Sc], while  ↑R/Gϑ   would require a more complex setting, in this line. Finally, also

quantales - a noncommutative version of locales - offer a notion of noncommutative space (see [MP]),

which might have interesting links with the present approach.

The author acknowledges useful information from R. Brown and G. Landi.

Outline. Section 1 recalls the basic properties of cubical sets and their homotopies. Their directed

(co)homology is introduced in Section 2, studying the interaction of preorder with: (preordered)

coefficients (2.2), exact sequences (2.4, 2.6), excision (2.6), tensor products (2.7) and cohomology-

multiplication (2.8, 2.9). Section 3 studies the action of groups on cubical sets; these results are applied

in Section 4 to analyse the second aspect mentioned above: cubical sets related with noncommutative

spaces. The last two sections deal with the directed homology of a pointed suspension and the links

with our previous works on directed homotopy [G4, G5].

Terminology.  Top  denotes the category of topological spaces and continuous mappings, or maps. A

homotopy  ϕ  between maps  f, g: X = Y  is written as  ϕ: f = g: X = Y.  A preorder relation is

reflexive and transitive; it is a (partial) order if it is also anti-symmetric. The index  α  takes values 0, 1,

also written –, + (e.g. in superscripts).  I = [0, 1]  is the standard euclidean interval.  ↑Z  is the ordered

group of integers; or also, but exceptionally, the cubical set of the directed integral line (1.5).

Homology is often written in a polynomial form,  H*(X) = Σ σi.Hi(X),  as explained in 2.9.

1. Cubical sets and elementary homotopy

Cubical sets and their combinatorial homotopies are briefly recalled.
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1.1. Topological spaces and symmetries. Let us start considering topological spaces and the

standard interval  I = [0, 1],  with a very basic structure consisting of three maps, two faces  (δ–, δ+)

and a degeneracy  (ε),  linking it with its 0-th cartesian power, the singleton  I0 = {*}

(1) δα :  {*}       _£∞-)        I  : ε,

δ–(*)  =  0, δ+(*)  =  1, ε(t)  =  *.

This is sufficient to produce, for every topological space  T,  a cubical set  ∆T,  with components

∆nT = Top(In, T),  the set of singular n-cubes of  T;  faces and degeneracies arise (contravariantly)

from the faces and degeneracies of the standard cubes  In  (for  α = 0, 1;  i = 1,..., n)

(2) δαi   =  Ii–1×δα× In–i: In–1 = In, δαi (t1,..., tn–1)  =  (t1,..., α,..., tn–i),

εi  =  Ii–1×ε×In–i: In = In–1, εi(t1,..., tn)  =  (t1,..., t̂i,..., tn).

Abstract cubical sets are defined and studied below. But let us note that a cubical set of the preced-

ing type  ∆T  has actually a much richer, relevant structure, obtained from the structure of the standard

interval  I  as an involutive lattice in  Top.  Thus, the join and meet operations, reversion and

interchange

(3) γ–: I2 = I, γ–(t, t')  =  max(t, t'),

γ+: I2 = I, γ+(t, t')  =  min(t, t'),

ρ: I = I,      ρ(t)  =  1–t, σ: I2 = I2,      σ(t, t')  =  (t', t),

yield similar transformations between singular cubes of the space  T:  connections (or higher degen-

eracies),  reversions  and interchanges (for  α = 0, 1;  i = 1,..., n)

(4) gαi : ∆nT = ∆n+1T, ri: ∆nT = ∆nT, si: ∆n+1T = ∆n+1T.

The group of symmetries of the n-cube,  (Z/2)nºSn,  acts on  ∆nT:  reversions and interchanges

generate, respectively, the action of the first or second factor of this semidirect product (cf. [GM]).

Now, in homotopy theory, reversion (together with connections) yields reverse homotopies and

inverses in homotopy groups, while interchange yields the homotopy invariance of the cylinder, cone

and suspension endofunctors (cf. [G2]).

On the other hand, not assigning this additional structure allows us to break symmetries (reversion

and interchange) which are intrinsic to topological spaces.

1.2. Cubical sets. A cubical set  X = ((Xn), (∂αi ), (ei))  is a sequence of sets  Xn  (n ≥ 0),  together with

mappings, called faces  (∂αi )  and degeneracies  (ei)

(1) ∂αi  = ∂αn i: Xn = Xn–1, ei = eni: Xn–1 = Xn (α = ±;  i = 1,..., n).

satisfying the cubical relations

(2) ∂αi .∂βj   =  ∂βj .∂
α
i +1   (j ≤ i), ej.ei  =  ei+1.ej   (j ≤ i),

∂αi .ej  =  ej.∂αi –1   (j < i), or    id   (j = i), or    ej–1.∂αi    (j > i).

Elements of  Xn  are called n-cubes; vertices and edges for  n = 0  or 1, respectively. Every n-cube

x∈Xn  has 2n vertices:  ∂α1∂
β
2∂

γ
3(x)  for  n = 3.
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A morphism  f = (fn): X = Y  is a sequence of mappings  fn: Xn = Yn  commuting with faces

and degeneracies. All this forms a category  Cub  which has all limits and colimits and is cartesian

closed. (It is the presheaf category of functors  X: Iop = Set,  where  I   is the subcategory of  Set
consisting of the elementary cubes  2n,  together with the maps  2m =  2n  which delete some

coordinates and insert some 0's and 1's, without modifying the order of the remaining coordinates

[GM]. The cocubical set  I  = Set  given by the embedding will be written  2*,  since it realises the

'formal n-cube' as  2n).

The category  Cub  has two involutions (covariant involutive endofunctors), reflection and

exchange (or transposition [BH2])

(3) R: Cub = Cub, RX  =  Xop  =  ((Xn), (∂–
i
α), (ei)) (reflection),

(4) S: Cub = Cub, SX  =  ((Xn), (∂αn +1–i), (en+1–i)) (exchange),

the first reversing the 1-dimensional direction, the second the 2-dimensional one.

We say that a cubical set  X  is reflexive if  RX © X  and symmetric if  SX © X.

1.3. Subobjects and quotients. A cubical subset  Y ⊂ X  is a sequence of subsets  Yn ⊂ Xn,  stable

under faces and degeneracies. An equivalence relation  E  in  X  is a cubical subset of  X×X  whose

components  En ⊂ Xn×Xn  are equivalence relations; then, the quotient  X/E  is the sequence of quotient

sets  Xn/En,  with induced faces and degeneracies. In particular, for  Y ⊂ X,  the quotient  X/Y  has

components  Xn/Yn,  where all cubes  y∈Yn  are identified.

For a cubical set  X,  we define the homotopy set

(1) π0(X)  =  X0/√,

where  √  (connection) is the equivalence relation in  X0  generated by being vertices of a common

edge. The connected component of  X  at an equivalence class  [x] ∈ π0(X)  is the cubical subset

formed by all cubes of  X  whose vertices lie in  [x];  X  is always the sum (or coproduct, disjoint

union) of its connected components. If  X  is not empty, we say that it is connected if it has one

connected component, or equivalently if  π0(X)  is a singleton.

One can easily see that the forgetful functor  (–)0: Cub = Set  has a left adjoint, the discrete

cubical set on a set

(2) D: Set = Cub, DS  =  Set(1*, S),

where components are constant,  (DS)n = S  (n∈N),  faces and degeneracies are identities. Then, the

functor  π0: Cub = Set  is left adjoint to  D.  (The forgetful functor  (–)0  has also a right adjoint  CS

= Set(2*, S),  the codiscrete cubical set on  S.)

1.4. Tensor product. The category  Cub  has a monoidal structure [K1, BH2]

(1) (X⊗Y)n  =  (Σp+q=n Xp×Yq)/≈n,

where  ≈n   is the equivalence relation generated by identifying  (er+1x, y)  with  (x, e1y),  for all  (x, y)

∈ Xr×Ys  (for  r+s = n–1).  Writing  x⊗y  the equivalence class of  (x, y),  faces and degeneracies are

defined as

(2) ∂αi (x⊗y)  =  (∂αi x)⊗y (1 ≤ i ≤ p), ∂αi (x⊗y)  =  x⊗(∂αi –py) (p+1 ≤ i ≤ p+q),
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(3) ei(x⊗y)  =  (eix)⊗y (1 ≤ i ≤ p+1), ei(x⊗y)  =  x⊗(ei–py) (p+1 ≤ i ≤ p+q+1),

(and  ep+1(x⊗y) = (ep+1x)⊗y = x⊗(e1y)  is well defined precisely because of the previous equivalence

relation).

The identity of the tensor product is the singleton  {*},  i.e. the cubical set generated by one 0-

dimensional cube; it is reflexive and symmetric. The tensor product is not symmetric, but is linked

with reversion and exchange as follows

(4) R(X⊗Y)  =  RX⊗RY, S(X⊗Y)  ©  (SY)⊗(SX).

Therefore, reflexive objects are stable under tensor product while symmetric objects are stable

under tensor powers: if  SX © X,  then  S(X⊗n) = (SX)⊗n © X⊗n.

(The construction of the internal homs will be recalled in 1.6.7.)

1.5. Standard models. The elementary directed interval  ↑i = 2  is freely generated by a 1-cube,  u

 u

(1) 0     -=      1 ∂–
1(u)  =  0,    ∂+

1(u)  =  1;

this cubical set is reflexive and symmetric.

The elementary directed n-cube is its n-th tensor power  ↑in = ↑i⊗...⊗↑i  (for  n ≥ 0),  freely

generated by one n-cube  u⊗n,  still reflexive and symmetric. (It is the representable presheaf  y(2n) =

I (–, 2n): Iop = Set).  The elementary directed square  ↑i2 = ↑i⊗↑i  can be represented as follows,

showing the generator  u⊗u  and its faces

  0⊗u   2
 00 - -=   01 à -=

(2)  u⊗0 :ò   u⊗u :ò   u⊗1 :ò   1

 10 - -=  11
  1⊗u

where the face  ∂–
1(u⊗u) = 0⊗u  is drawn orthogonally to direction 1 (and directions are chosen so that

the labelling of vertices agrees with matrix indexing). Note that, for each cubical object  X,

Cub(↑in, X) = Xn.

The directed (integral) line  ↑Z  is generated by (countably many) vertices  n∈Z  and edges  un,

from  ∂–
1(un) = n  to  ∂+

1(un) = n+1.  The directed integral interval  ↑[i, j]Z  is the obvious cubical

subset with vertices in the integral interval  [i, j]Z  (and all cubes whose vertices lie there); in particular,

↑i = ↑[0, 1]Z.

The elementary directed circle  ↑s1  is generated by one 1-cube  u  with equal faces

 u

(3) *     -=      * ∂–
1(u)  =  ∂+

1(u).

Similarly, the elementary directed n-sphere  ↑sn  (for  n > 1)  is generated by one n-cube  u  all

whose faces are totally degenerate (hence equal)

(4) ∂αi (u)  =  (e1)n–1(∂–
1)n(u) (α = ±;  i = 1,..., n),
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while  ↑s0 = s0  is generated by two vertices: it is the discrete cubical set  D{0, 1} (1.3.2). The

elementary directed n-torus is a tensor power of  ↑s1

(5) ↑tn  =  (↑s1)⊗n.

We also consider the ordered circle  ↑o1,  generated by two edges with the same faces (the name is

motivated by its realisation as a space with distinguished paths [G4])

u'

(6) v–     -=-=      v
+ ∂α1 (u')  =  ∂α1 (u").

   u"

and more generally the ordered spheres  ↑on,  generated by two n-cubes  u', u"  with the same

boundary:  ∂αi (u') = ∂αi (u").  We shall see that, starting from  s0,  the unpointed suspension provides all

↑on  (1.7.5) while the pointed suspension provides all  ↑sn  (5.2.8);  of course, these models have the

same geometric realisation  Sn  (as a topological space) and the same homology; but their directed

homology is different (2.3). The models  ↑sn  are more interesting: for instance, their order in directed

homology is not trivial.

All these cubical sets are reflexive and symmetric.

1.6. Elementary directed homotopies. Since the tensor product is not symmetric, the elementary

directed interval produces a left (elementary) cylinder  ↑i⊗X  and a right cylinder  X⊗↑i.  But each of

these functors determines the other, using the exchange  S  (1.4.4) and the property  S(↑i) = ↑i

(1) I: Cub = Cub, IX  =  ↑i⊗X,

SIS: Cub = Cub, SIS(X)  =  S(↑i⊗SX)  =  X⊗↑i.

Let us begin considering the left cylinder,  I.  It has two faces and a degeneracy, the following

natural transformations

(2) ∂α: X = IX,    ∂α(x)  =  α⊗x (α = 0, 1),

e: IX = X,   e(u⊗x)  =  e1(x).

Moreover,  I  has a right adjoint, the (elementary) left cocylinder or left path functor, which shifts

down all components discarding the faces and degeneracies of index 1 (which are then used to build

the faces and degeneracy of  P,  as natural transformations)

(3) P: Cub = Cub, PY  =  ((Yn+1), (∂αi +1), (ei+1)),

∂α  =  ∂α1 : PY = Y, e  =  e1: Y = PY.

Now, an (elementary) left homotopy  f: f– =L f+: X = Y  is defined as a map  f: IX = Y  with

f∂α = fα.  Or, equivalently (because of the adjunction), as a map  f: X = PY  with  ∂αf = fα.  This

second expression leads immediately to a simple expression of  f  as a family of mappings

(4)  fn: Xn = Yn+1, ∂αi +1 fn  =  fn–1 ∂αi , ei+1 fn–1  =  fn ei,

∂α1  fn  =  fα (α = ±;  i = 1,..., n).

Dually, the right cylinder  SIS(X) = X⊗↑i  has a right adjoint  SPS,  the right cocylinder or right

path functor, which discards the faces and degeneracies of highest index (used again to build the

corresponding natural transformations)
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(5) SPS: Cub = Cub, SPS(Y)  =  ((Yn+1), (∂αi ), (ei)),

∂α: SPS(Y) = Y, ∂α  =  (∂αn +1: Yn+1 = Yn)n≥0,

e: Y = SPS(Y), e  =  (en+1: Yn = Yn+1)n≥0.

An (elementary) right homotopy  f: f– =R f+: X = Y  is a map  f: X = SPS(Y)  with faces  ∂αf =

fα,  i.e. a family  (fn)  such that

(6) fn: Xn = Yn+1, ∂αi  fn  =  fn–1 ∂αi , ei fn–1  =  fn ei,

∂αn +1 fn  =  fα (α = ±;  i = 1,..., n).

Elementary homotopies of cubical sets (without connections) are a very defective notion (like

intrinsic homotopies of 'face-simplicial' sets, without degeneracies): one cannot even contract the

elementary interval  ↑i  to a vertex (a simple computation on (4) shows that this requires a non-

degenerate 2-cube  f(u),  with the same faces as  g–
1(u)  or  g+

1(u)  -  if connections exist). Moreover, to

obtain 'non-elementary' paths, which can be concatenated, and a fundamental category  ↑Π1(X)  one

should use, instead of the elementary interval  ↑i = ↑[0, 1]Z,  the directed integral line  ↑Z  (1.5), as in

[G3] for simplicial sets: paths are parametrised on  ↑Z,  but eventually constant at left and right, so to

have initial and terminal vertices. However, here we are interested in homology, where concatenation is

surrogated by formal sums of cubes, and we will restrain ourselves to proving its invariance up to

elementary homotopies, right and left. Also, we prefer not to rely on the geometric realisation, which

would ignore the directed structure.

The category  Cub  has left and right internal homs, which we shall not need (see [BH2, Ja]). Let

us only recall that the right internal hom  CUB(A, Y)  can be constructed with the left cocylinder

functor  P  and its natural transformations (which produce a cubical object  P*Y)

(7) –⊗A  –  CUB(A, –), CUBn(A, Y)  =  Cub(A, PnY).

1.7. Cones and suspension. The left upper cone  C+X  is defined as the first pushout, below

∂+

  X - -=  IX   X - -= {*}

(1) :ò | – :ò
   γ  ∂– :ò | – :ò

   v–

{*} - -= C+X  IX - -= C–X
v+ γ

i.e., the quotient  (IX+{*})/(∂+X+{*}),  where the upper basis of the cylinder is collapsed to an upper

vertex  v+ = v+(*),  while the lower basis  ∂–: X = IX = C+X  'subsists'. Note that  C+Ø = {*}:  the

cone  C+X  is a quotient of the cylinder  IX  only if  X ≠ Ø.  Dually, the left lower cone  C-X  is defined

as the second pushout, above, obtained by collapsing the lower basis of  IX  to a lower vertex  v– = v–

(*).

Analytically, we can describe  C+X  saying that it is generated by (n+1)-dimensional cubes  u⊗x ∈

IX  (x∈Xn)  plus a vertex  v+,  under the relations arising from  X  together with

(2) 1⊗x  =  en
1(v+) (x∈Xn).

Similarly, the left suspension  ΣX  is defined as the colimit of the left diagram
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  X -= {*} ∂–

 
∂–

:ò  ∂+

:   X - -= C+X

(3)   X - -=  IX ::  v+  ∂+ :ò | – :ò
   j+

:ò ì$σ :ò  C–X - -= ΣX

{*} - - - -= ΣX
j–

v–

obtained by collapsing, independently, the bases of  IX  to a lower and an upper vertex,  v–  and  v+.

Equivalently, it is the right-hand pushout, above.

Thus, the suspension of  s0 = D{0, 1}  yields the 'ordered circle'  ↑o1  (1.5.6)

  v+ _   v+

(4)   u' :! :!    u" u'  =  <0⊗u>, u"  =  <1⊗u>,

  v– _   v–

where  < – >  denotes equivalence classes in the pushout (3). More generally

(5) Σn(s0)  =  ↑on.

But we are more interested in the pointed suspension, which will be studied in Section 5 (and yields

the directed spheres  ↑sn).

1.8. Geometric realisation. We have already recalled, in 1.1, the functor

(1) ∆ : Top = Cub, ∆T  =  Top(I*, T),

which assigns to a topological space  T  the singular cubical set of (continuous) n-cubes  In = T,

produced by the cocubical set of standard cubes  I* = ((In), (δαi ), (εi))  (1.1.2). As for simplicial sets,

the geometric realisation  RX  of a cubical set is given by the left adjoint functor

 R

(2) Cub      –-é   -–=       Top R – ∆,
 ∆

which takes a cubical set  X  to a topological space, by pasting a copy of the standard cube  In  for each

n-cube  x∈Xn,  along faces and degeneracies. This pasting (formally, the coend of the functor  X.I*:

Iop×I  = Top)  comes with a family of structural mappings, one for each cube  x,  coherent with faces

and degeneracies (of  I*  and  X)

(3) x̂: In = RX, x̂.δαi   =  (∂αi x)ˆ,      x̂.εi  =  (eix)ˆ,

and  RX  has the finest topology making all the structural mappings continuous.

This realisation is important, since it is well known that the combinatorial homology of a cubical set

X  coincides with the homology of the CW-space  RX  (cf. [Mu, 4.39], for the simplicial case).  But we

also want a finer 'directed realisation', keeping information about the privileged cubes of  X:  we shall

use a set equipped with a presheaf of distinguished cubes (1.9); other solutions, by distinguished

paths, will be discussed in Section 6.
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1.9. Sets with distinguished cubes. Let us introduce the category  cSet  of sets with distinguished

cubes, or c-sets.

An object  K  is a set equipped with a sub-presheaf  c*K  of the cubical set  Set(I*, K),  such that  K

is covered by all distinguished cubes. In other words, the structure of the set  K  consists of a sequence

of sets of distinguished cubes  cnK ⊂ Set(In, K),  preserved by faces and degeneracies (of the

cocubical set  I*)  and satisfying the covering condition  K = ∪Im(x)  (for  x  varying in the set of all

distinguished cubes); the latter amounts to saying that the canonical mapping  pK: R(c*K) = K  is

surjective. A morphism  f: K = K'  is a mapping of sets which preserves distinguished cubes: if  x: In

= K  is distinguished, also  fx: In = K'  is.

Now, the adjunction  R – ∆  of geometric realisation (1.8.2) can be factored through  cSet

↑R   t

(1) Cub      –-é   -–=       cSet      –-é   -–=       Top, ↑R – c*, t – (–)∆.
 c*    (–)

∆

First, if  T  is a topological space, its cubes cover the underlying set. Thus, we factor the functor  ∆:

Top  = Cub  letting  T∆  be the set  T  with structural presheaf  ∆T ⊂ Set(I*, T),  and letting  c*  be

the forgetful functor assigning to a c-set  K  its structural presheaf  c*K.  Note that  c*  is faithful

(because  pK: R(c*K) = K  is surjective).

Then, the left adjoint of  c*  yields the directed realisation  ↑R(X)  of a cubical set: it is the set  R

underlying the geometric realisation  RX,  without topology but equipped with the distinguished cubes

produced by the n-cubes  x∈Xn,  via the associated mappings  x̂: In = R  (1.8.3), which are closed

under faces and degeneracies

(2) cnR  =  {x̂ | x ∈ Xn}  ⊂  Set(In, R);

the bijection  (↑R(X), K) = (X, c*K)  is easy to construct: given  f: ↑R(X) = K,  define  fn: Xn = cnK

letting  fn(x) = fx̂;  given  g: X = c*K,  take  f = pK.Rf = (RX = R(c*K) = K).

Finally, the functor  t: cSet = Top  (left adjoint of  (–)∆),  acting on a c-set  K,  gives the under-

lying set  t(K)  equipped with the cubical topology, i.e. the finest topology making all distinguished

cubes  In = K  continuous. The bijection  (t(K), T) = (K, ∆T)  is obvious: a mapping  K = T  is

continuous for the cubical topology of  K  if and only if it is continuous on each distinguished n-cube

x: In = K,  if and only if each composite  f˚x  is an n-cube of  ∆T.

We end with some comments on the category  cSet.  Given a c-set  K = (K, c*K),  a c-subset  H =

(H, c*H)  will be a c-set with  c*H ⊂ c*K;  in other words, we are considering a subset  H ⊂ K

equipped with a sub-presheaf  c*H ⊂ c*K∩Set(I*, H)  satisfying the covering condition on  H.  It is a

regular subobject if  c*H = c*K∩Set(I*, H),  that is if the distinguished cubes of  H  are precisely the

ones of  K  whose image is contained in  H;  a regular subobject amounts thus to a subset  H ⊂ K

which is a union of images of cubes of  K  (equipped with the restricted structure).

The quotient  K/≈  of a c-set modulo an equivalence relation (on the set  K)  will be the set-

theoretical quotient, equipped with the projections  In = K = K/≈  of the distinguished cubes of  K

(plainly stable under the faces and degeneracies of  I*).  This easy description of quotients will be

exploited in Section 4, as an advantage of c-sets with respect to cubical sets: one has just to assign an

equivalence relation on the underlying set.
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2. Homology and cohomology of cubical sets

Combinatorial homology of cubical sets is a simple theory with evident proofs. We study its enrich-
ment with a natural preorder, showing that it is preserved and reflected by excision (2.6), preserved by
tensor product (2.7), but not preserved by the differentials of the usual exact sequences (2.4, 2.6) nor by
multiplication, in cohomology (2.8, 2.9).

2.1. Directed homology. Every cubical set  X  determines a collection  DegnX = ∪i Im(ei: Xn-1 =

Xn)  of subsets of degenerate elements  (with  Deg0X = Ø);  this collection is not a cubical subset

(unless  X  is empty), but satisfies weaker conditions (for all  i = 1,..., n)

(1) x ∈ DegnX    ⇒    (∂αi x ∈ Degn–1X   or   ∂–
i x = ∂+

i x), ei(Degn–1X)  ⊂  DegnX.

The cubical set  X  determines a (normalised) chain complex of free abelian groups

(2) Cn(X)  =  (ZXn)/(ZDegnX)  =  Z
−
Xn (

−
Xn = Xn \ DegnX),

∂n(x̂)  =  Σi,α (–1)i+α (∂αi x)^ (x ∈ Xn),

where  ZS  is the free abelian group on the set  S,  and  x̂  is the class of the n-cube  x  up to degenerate

cubes; but we shall generally write the normalised class  x̂  as  x,  identifying all degenerate cubes with

0.

Now, each component can be preordered by the positive cone of positive chains  N
−
Xn,  and will be

written as  ↑Cn(X)  when thus enriched; note that the positive cone is not preserved by the differential

∂n: ↑Cn(X) =; ↑Cn–1(X),  which is just a homomorphism of the underlying abelian groups (as

stressed by marking its arrow with a dot). On the other hand, a morphism of cubical sets  f: X = Y

induces a sequence of preorder-preserving homomorphisms  ↑Cn(X) = ↑Cn(Y).  We have defined a

covariant functor

(3) ↑C*: Cub = dC*Ab,

with values in the category  dC*Ab  of directed chain complexes of abelian groups (directed referring

to the preorder of components, preserved by chain homomorphisms). This produces the directed

homology of a cubical set, as a sequence of preordered abelian groups

(4) ↑Hn: Cub = dAb, ↑Hn(X)  =  ↑Hn(↑C*X),

where the directed homology  ↑Hn(↑C*)  of a directed chain complex is its ordinary homology

equipped with the preorder induced on the subquotient  Ker∂n/Im∂n+1.

When we forget preorders, the usual chain and homology functors will be written as usual

(5) C*: Cub = C*Ab, Hn: Cub = Ab.

If  T  is a topological space, it is well known that its singular homology can be defined by the

singular cubical set  ∆T

(6) Hn(T)  =  Hn(∆T);

(the equivalence with the simplicial definition is proved by acyclic models, cf. [HW]). Notice that -

here - we are not likely losing any essential information with respect to  ↑Hn(∆T).  In fact,  ↑H0(∆T)

has an obvious order generated by the homology classes of points (cf. 2.3.1), while - for instance - the
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preorder of  ↑H1(∆T)  is easily seen to be chaotic: every homology class belongs to the positive cone

(for every 1-cube  I = T,  the reversed cube obtained by precomposing with the reversion  ρ: I = I  is

equivalent to the opposite of the original one, modulo boundaries).

Finally, we shall feel free of applying the functors  ↑C*  and  ↑Hn  to a c-set  K = (K, c*K)  (1.9);

obviously, this means to let them act on the cubical set  c*K  of distinguished cubes of  K

(7) ↑Hn(K)  =  ↑Hn(c*K).

2.2. Preordered coefficients. Implicitly, we have introduced the category  dAb  of preordered abelian

groups: an object  ↑L  is an abelian group equipped with a preorder  λ ≤ λ'  preserved by the sum, or

equivalently with a submonoid, the positive cone  L+ = {λ∈L | λ ≥ 0}.  A morphism is a preorder-

preserving homomorphism.

Plainly, it is an additive category with all limits and colimits, computed as in  Ab  and equipped with

a suitable preorder. It is not an abelian category, since a bijective morphism (mono and epi) need not be

an isomorphism. But the symmetric monoidal structure of abelian groups can be easily lifted to  dAb:

the positive cone of  ↑L⊗↑M  is the submonoid generated by the tensors  λ⊗µ,  for  λ∈L+,  µ∈M+,

while  Hom(↑M, ↑N)  is the abelian group  Hom(M, N)  of all algebraic homomorphisms, with

positive cone given by the increasing ones

(1) (Hom(↑M, ↑N))+  =  dAb(↑M, ↑N)  =  {f ∈ Hom(M, N)  |  f(M+) ⊂ N+}.

The unit of the tensor product is the ordered group of integers,  ↑Z.  The forgetful functor  dAb =

Ab,  written  ↑L ± L,  has left adjoint  ↑dA  and right adjoint  ↑cA,  respectively giving to an abelian

group  A  its discrete preorder  (A+ = {0})  or the chaotic one  (A+ = A) - the latter can also be called

coarse, or codiscrete. On the other hand, the forgetful functor  dAb = Set  has (only) a left adjoint

associating to a set  S  the free ordered abelian group  ↑Z.S:  the usual free abelian group  ZS,

equipped with the submonoid  NS  generated by  S.

We have also introduced the category  dC*Ab  of directed chain complexes of abelian groups (and

their directed homology). Recall that their components are preordered abelian groups, differentials are

not assumed to preserve the preorder, but chain morphisms are. It is again an additive category with all

limits and colimits. Similarly, we have the category of directed cochain complexes of abelian groups,

dC*Ab.

Now, we can consider directed combinatorial homology and cohomology of cubical sets, with

coefficients in a preordered abelian group  ↑L

(2) ↑C*(–; ↑L): Cub = dC*Ab, ↑C*(X; ↑L)  =  ↑C*(X)⊗↑L,

↑Hn(–; ↑L): Cub = dAb, ↑Hn(X; ↑L)  =  ↑Hn(↑C*(X; ↑L)),

(3) ↑C*(–; ↑L): Cubop = dC*Ab, ↑C*(X; ↑L)  =  Hom(↑C*(X), ↑L),

↑Hn(–; ↑L): Cubop = dAb, ↑Hn(X; ↑L)  =  ↑Hn(↑C*(X; ↑L)),

where the components  ↑Cn(X)⊗↑L  and  Hom(↑Cn(X), ↑L)  are defined as above. Of course,  ↑Hn(X)

= ↑Hn(X; ↑Z),  with ordered integral coefficients; below, we generally consider this case, but the

extension is easy.

The algebraic part of the universal coefficient theorems holds, with the usual proof; the preorder

aspect should be examined, but we shall restrict to considering rational and real coefficients (also
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because a preorder on a torsion group cannot be of much interest). First, it is easy to verify that, for the

ordered group of rationals  ↑Q,  the canonical algebraic isomorphism

(4) ↑Hn(X) ⊗ ↑Q = ↑Hn(X; ↑Q), [z]⊗λ  ± [z⊗λ],

which obviously preserves preorder, also reflects it. In fact, a positive chain in  ↑Cn(X; ↑Q)  can plainly

be written as  c = λ.c'  where  λ > 0  is rational and  c'  is a positive chain with integral coefficients;

further, if  c  is a cycle, also  c'  is, and  [c] = [c']⊗λ  belongs to the positive cone of  ↑Hn(X)⊗↑Q.

As a consequence, the same property holds for the ordered group  ↑R:  it suffices to take a positive

basis of the reals on the rationals. More elementarily: a positive chain in  ↑Cn(X; ↑R)  can be rewritten

as a finite linear combination  c = Σ λici  where  the  λi > 0  are real numbers, linearly independent on

the rationals, and all  ci  are positive chains with integral coefficients; since each boundary  λi(∂ci)  still

has coefficients in  λiQ,  one concludes as before: if  c  is a cycle, so are all  ci  and  [c] = Σ [ci]⊗λi

belongs to the positive cone of  ↑Hn(X)⊗↑R.

2.3. Elementary computations. The homology of a sum  X = Σ Xi  is a direct sum  ↑HnX = ⊕i

↑HnXi  (and every cubical set is the sum of its connected components, 1.3). It is also easy to see that, if

X  is connected (non empty), then  ↑H0(X) © ↑Z  (via the augmentation  ∂0: ↑C0X = ↑ZX0 = ↑Z
taking each vertex  x∈X0  to  1∈Z).  Thus, for every cubical set  X

(1) ↑H0(X)  =  ↑Z.π0X,

is the free ordered abelian group generated by the homotopy set  π0X  (1.3).

In particular,  ↑H0(↑s0) = ↑Z2.  Now, it is easy to see that, for  n > 0

(2) ↑Hn(↑sn)  =  ↑Z,

is the group of integers with the natural order: a normalised n-chain  ku  (notation of 1.5) is positive if

and only if  k ≥ 0  (and is always a cycle).

On the other hand,  ↑Hn(↑on) = ↑dZ  has the discrete order: the positive cone is reduced to 0. In

fact, a normalised n-chain  hu' + ku"  (notation of 1.5) is a cycle when  h+k = 0,  and a positive chain

for  h ≥ 0,  k ≥ 0.  The directed homology of the elementary directed torus  ↑t2  is easy to determine;

but we shall compute it for all  ↑tn  (2.9.2).

2.4. Relative directed homology. Relative homology is defined in the usual way. A cubical pair  (X,

A)  consists of a cubical subset  i: A = X;  a morphism  f: (X, A) = (Y, B)  is a map  f: X = Y

whose restriction  A = B  is also a map.

The induced map on directed chain complexes  i*: ↑C*A = ↑C*X  is injective as well (a cube in

A  is degenerate in  X  if and only if it is already so in  A).  We obtain the relative directed chains of

(X, A)  by the usual short exact sequence of (directed) chain complexes

(1) 0 -= ↑C*A -= ↑C*X -= ↑C*(X, A) -= 0

and the relative directed homology as the homology of the quotient

(2) ↑Hn(X, A)  =  ↑Hn(↑C*(X, A)).

The exact sequence of the pair  (X, A)  comes from the exact homology sequence of (1), with

differential  ∆n[c] = [∂nc];  the latter does not preserve the preorder (its arrow is dot-marked)
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   ∆
(3) ... =; ↑HnA = ↑HnX = ↑Hn(X, A) =; ↑Hn–1A = ...

... =; ↑H0A = ↑H0X = ↑H0(X, A) = 0.

Plainly,  ↑C*(X, Ø) = ↑C*(X)  and  ↑Hn(X, Ø) = ↑Hn(X).  More generally, given a cubical triple

(X, A, B),  consisting of cubical subsets  B = A = X,  the snake lemma gives a short exact sequence

of chain complexes  ↑C*(A, B) ≠ ↑C*(X, B) + ↑C*(X, A),  providing the exact homology sequence

of the triple.

Tensoring by  ↑L  our chain complexes (with free preordered components), one gets - as usual - the

analogous results with arbitrary coefficients.

2.5. Invariance Theorem. The homology functor  ↑Hn: Cub = dAb  is invariant for left (or right)

immediate homotopies: given  f: f– =L f+: X = Y,  then  ↑Hn(f–) = ↑Hn(f+).  Similarly for relative

homology.

Proof. We can forget about preorders. By 1.6.4, the homotopy  f: f– =L f+: X = Y  has

(1)  fn: Xn = Yn+1, ∂αi +1 fn  =  fn–1 ∂αi ,    ∂α1  fn  =  fα,    fn ei  =  ei+1 fn–1 (1 ≤ i ≤ n),

and produces a homotopy of the associated (normalised) chain complexes

(2) fn: CnX = Cn+1Y, fn(DegnX)  ⊂  Degn+1Y,

∂n+1fn  =  ∂+
1 fn – ∂–

1 fn – Σiα (–1)i+α ∂αi +1 fn  =  f+
n – f–

n – fn–1 ∂n.

It will be useful to note that the thesis also holds for a generalised left homotopy, replacing the

condition  fn ei = ei+1 fn–1  with  fn(DegnX)  ⊂  Degn+1Y. ∆

2.6. Mayer-Vietoris and excision. Given two cubical subsets  U, V ⊂ X,  their union  U∪V  (resp.

intersection  U∩V)  just consists of the union (resp. intersection) of all components. Therefore,  ↑C*
takes subobjects of  X  to directed chain subcomplexes of  ↑C*X,  preserving joins and meets

(1) ↑C*(U∪V)  =  ↑C*U + ↑C*V, ↑C*(U∩V)  =  ↑C*U ∩ ↑C*V.

These facts have two important consequences

(a) The Mayer-Vietoris sequence. Let the cubical set  X  be covered by its subobjects  U, V,  i.e. X =

U∪V.  Then we have an exact sequence

(i*, j*)  [u*, –v*]    ∆

(2) ... -= ↑Hn(U∩V) - -= (↑HnU)⊕(↑HnV) - -= ↑Hn(X) à-=  ↑Hn–1(U∩V) -= ...

with the obvious meaning of brackets; the maps  u: U = X,  v: V = X,  i: U∩V = U,  j: U∩V = X

are inclusions and the connective  ∆  (which does not preserve preorder!) is:

(3) ∆[c]  =  [∂na], c  =  a + b (a ∈ ↑Cn(U),  b ∈ ↑Cn(V)).

The sequence is natural, for a cubical map  f: X = X' = U'∪V',  which restricts to  U = U',  V =

V'.

(b) Excision. Let a cubical set  X  be given, with subobjects  B ⊂ Y∩A.  The inclusion map  i: (Y, B)

= (X, A)  is said to be excisive whenever  Yn \ Bn = Xn \ An,  for all  n  (or equivalently:  Y∪A = X,
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Y∩A = B,  in the lattice of subobjects of  X).  Then  i  induces isomorphisms in homology, preserving

and reflecting preorder.

Proof. The proof is similar to the topological one, simplified by the fact that here no subdivision is

needed. For (a), it is sufficient to apply the algebraic theorem of the exact homology sequence to the

following sequence of directed chain complexes

   (i*, j*)  [u*, –v*]

(4) 0 -= ↑C*(U∩V) - - -= (↑C*U)⊕(↑C*V) - - -= ↑C*(X) -= 0

whose exactness needs one non-trivial verification. Take  a ∈ ↑CnU,  b ∈ ↑CnV  and assume that

u*(a) = v*(b);  therefore, each cube really appearing in  a  (and  b)  belongs to  U∩V;  globally, there is

(one) normalised chain  c ∈ ↑Cn(U∩V)  such that  i*(c) = a,  i*(c) = b.

For (b), the proof reduces to a Noether isomorphism for directed chain complexes

(5) ↑C*(Y, B)  =  (↑C*Y)/(C*(Y∩A))  =  (↑C*Y)/(C*Y ∩ C*A)

=  (↑C*Y + ↑C*A) / (C*A)  =  (↑C*(Y∪A)) / (C*A)  =  ↑C*(X, A). ∆

2.7. Theorem [Tensor products]. Given two cubical sets  X, Y,  there is a natural isomorphism and a

natural monomorphism

(1) ↑C*(X⊗Y)  =  ↑C*(X) ⊗ ↑C*(Y), ↑H*(X) ⊗ ↑H*(Y)  ≠  ↑H*(X⊗Y).

Proof. It suffices to prove the first part, and apply the Künneth formula.

First, the canonical (positive) basis of the preordered abelian group  ↑Cp(X)⊗↑Cq(Y)  is  
−
Xp×

−
Yq  (as

in 2.1,  
−
Xp = Xp \ DegpX).  Recall now that the set  (X⊗Y)n  is a quotient of  Σp+q=n Xp×Yq  modulo an

equivalence relation which only identifies pairs where a term is degenerate (1.4.1); moreover, a class

x⊗y  is degenerate if and only if  x  or  y  is degenerate (1.4.3). Therefore, the canonical positive basis

of  ↑Cn(X⊗Y)  is precisely the sum (disjoint union) of the preceding sets  
−
Xp×

−
Yq,  for  p+q = n.  We

can identify the preordered abelian groups

(2) ↑Cn(X⊗Y)  =  ⊕p+q=n ↑Cp(X) ⊗ ↑Cq(Y),

respecting the canonical positive bases. Finally, the differential of an element  x⊗y,  with  (x, y) ∈
−
Xp×

−
Yq,  is the same in both chain complexes

(3) Σiα (–1)i+α ∂αi (x⊗y)  =  Σi≤p,α (–1)i+α (∂αi x)⊗y + Σj≤q,α (–1)p+j+α x⊗(∂αj y)

=  (∂px)⊗y + (–1)p x⊗(∂qy). ∆

2.8. Cohomology. The (normalised) cochain complex  ↑C*(X; ↑L) = Hom(↑C*(X); ↑L),  of a cubical

set  X,  with coefficients in a preordered abelian group  ↑L  (2.3) has a simple description

(1) Cn(X; ↑L)  =  {λ: Xn = L  |  λ(DegnX) = 0},

(dnλ)(a)  =  Σi,α (–1)i+α λ(∂αi a) (a ∈ Xn+1),

with components preordered by the cones of positive cochains,  λ: Xn = L+,  again not preserved by

the differential.
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Forgetting preorders and assuming that  L  is a ring, the cochain complex  C*(X; L)  has a natural

structure of differential graded coalgebra, by the cup product (cf. [HW, 9.3])

(2) (λ∪µ)(a)  =  ΣHK  (–1)ρ(HK) λ(∂–
Ha).µ(∂+

Ka) (λ ∈ Cp(X; L),  µ ∈ Cq(X; L),  a∈Xp+q),

where  (H, K)  varies among all partitions of  {1,..., n}  in two complementary subsets of  p  and  q

elements, respectively,  ρ(HK)  is the class of this permutation,  ∂–
Ha  is the lower H-face of  a  and  ∂+

Ka

its upper K-face. Thus,  H*(X; L)  is a graded algebra, isomorphic to  H*(RX; L)  (and graded

commutative).

Plainly, the product of positive cochains need not be positive. Graded commutativity of  H*(X; L)

(for a commutative ring  L)  says that this preservation property can hardly work for cohomology

classes; an actual counterexample is given below (2.9.3).

2.9. Elementary cubical tori. The graded preordered abelian group of a cubical set  X  will be written

as a formal polynomial

(1) ↑H*(X)  =  Σi σi.↑Hi(X),

whose coefficients are preordered abelian group, while the indeterminate  σ  shows the homology

degree. One can think of  σi  as a power of the suspension operator of chain complexes (acting on a

preordered abelian group, embedded in  dC*Ab  in degree 0): then the expression (1) is a direct sum

of graded preordered abelian groups; and the direct sum of such objects amounts to the sum of the

corresponding polynomials (the latter is computed by means of the direct sum of the coefficients, in

the obvious way).

It is easy to see (also using 2.7) that the directed homology of the elementary torus  ↑tn = (↑s1)⊗n

(2) ↑H*(↑tn)  =  (↑Z + σ.↑Z)⊗n  =  ↑Z +  σ.↑Z(n
1) +  σ2.↑Z(n

2) + ... + σn.↑Z,

where, of course, a power  ↑Zk  has the product order.

Finally, to show that the cohomology multiplication (2.8) with coefficients in  ↑Z  need not preserve

the positive cone, we use graded commutativity in odd degree,  [λ]∪[µ] = – [µ]∪[λ],  looking for a case

where cohomology is ordered (not just preordered) and  [λ], [µ], [λ]∪[µ]  are strictly positive (whence

[µ]∪[λ]  is not).

The torus  ↑t2 = ↑s1⊗↑s1  has one 0-cube (*), two non degenerate 1-cubes  (u⊗*, *⊗u)  and one

non degenerate 2-cube  (u⊗u),  which also provide the positive generators of  ↑H*(↑t2).  Similarly, in

cohomology, we have an ordered object

(3) ↑H*(↑t2)  =   ↑Z +  σ.↑Z2 +  σ2.↑Z,

and the positive generators in degree 1, 2 come from the following cocycles (zero elsewhere)

(4) λ(u⊗*)  =  1, µ(*⊗u)  =  1, (λ∪µ)(u⊗u)  =  1.
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3. Group actions

The classical theory of proper actions on topological spaces, up to the spectral sequence, is extended
to free actions on cubical sets.  G  is a group, always written in additive notation (independently of
commutativity); the action of an operator  g∈G  on an element  x  is  written as  x+g.

3.1. Basics. Take a cubical set  X  and a group  G  acting on it, on the right: we have an action  x+g

(x∈Xn, g∈G)  on each component, consistently with faces and degeneracies (or, equivalently, a cubical

object in the category of G-sets). Plainly, there is a cubical set of orbits  X/G,  with components  Xn/G

and induced structure; and a natural projection  p: X = X/G.

Say that the action is free if  G  acts freely on each component: if  x = x+g,  for some  x∈Xn  and

g∈G,  then  g = 0.  This is equivalent to saying that  G  acts freely on the set of vertices  X0  (because

x = x+g  implies that their first vertices coincide).

It is now easy to extend to free actions on cubical sets the classical results of actions of groups on

topological spaces [Ma, IV.11], which hold for groups acting properly on a space, a much stronger

condition (every point has an open neighbourhood  U  such that all subsets  U+g  are disjoint). But

note that all results below which involve the homology of  G  ignore preorder, necessarily (4.6).

Of course, an action of  G  on a c-set  (X, c*X)  (1.9) is defined to be an action on the set  X

coherent with the structural presheaf  c*X:  for every distinguished cube  x: In = X,  all mappings

x+g  are also distinguished. Thus, for a topological space  T,  a G-action on the space gives an action

on the c-set  T∆ = (T, ∆T)  and on the cubical set  ∆T.

3.2. Lemma [Free actions]. (a) If  G  acts freely on the cubical set  X,  then  ↑C*(X)  is a complex of

free right G-modules, with a (positive) basis  Bn ⊂ Xn  which projects bijectively onto  
−
Xn/G,  the

canonical basis of  ↑Cn(X/G).

(b) Moreover, if  ↑L  is a preordered abelian group, viewed as a trivial G-module, then the canonical

projection  p: X = X/G  induces an isomorphism of directed (co)chain complexes, and hence an

isomorphism in (co)homology

(1) p*: ↑C*(X)⊗G↑L = ↑C*(X/G; ↑L), p*n: Hn(↑C*(X)⊗G↑L) = ↑Hn(X/G; ↑L),

p*: ↑C*(X/G; ↑L) = HomG(↑C*(X), ↑L), p*n: ↑Hn(X/G; ↑L) = Hn(HomG(↑C*(X), ↑L).

Proof. (This Lemma adapts [Ma, IV.11.2-4]). It is sufficient to prove (a), which plainly implies (b).

The action of  G  on  Xn  extends to a right action on the free abelian group  ZXn,  consistent with

faces and degeneracies and preserving the canonical basis; it induces thus an obvious action on

↑Cn(X) = ↑Z
−
Xn,  consistent with the positive cone and the differential

(2) (Σ λixi) + g  =  Σ λi(xi + g), ∂(Σ λixi) + g  =  ∂(Σ λixi + g).

Thus  ↑Cn(X)  is a complex of G-modules, whose components are preordered G-modules. Take

now a subset  B0 ⊂ X0  choosing exactly one point in each orbit;  then  B0  is a G-basis of  ↑C0(X).

Letting  Bn ⊂ Xn  be the subset of those non-degenerate n-cubes  x  whose 'initial vertex'  ∂–
1...∂–

nx

belongs to  B0,  we have more generally a G-basis of  ↑Cn(X)  which satisfies our requirements. ∆
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3.3. Theorem [Free actions on acyclic cubical sets]. Let  X  be an acyclic (connected) cubical set and

G  a group acting freely on it. Then, for an abelian group  L  with trivial G-structure, and forgetting

preorder in combinatorial (co)homology (cf. 4.6)

(1) H*(X/G; L)  ©  H*(G; L), H*(X/G; L)  ©  H*(G; L).

Proof. As in [Ma, IV.11.5], the augmented sequence

(2) ... = C1(X) = C0(X) = Z = 0

is exact, since  X  is acyclic (has the homology of the point). By 3.2a, this sequence forms a G-free

resolution of the G-trivial module  Z.  Therefore, applying the definition of  Hn(G; L)  and the

isomorphism 3.2.1, we get the thesis for homology (and cohomology as well)

(3) Hn(G; L)  =  Hn(C*(X)⊗GL)  ©  Hn(X/G; L). ∆

3.4. Corollary [Free actions on acyclic spaces]. Let  T  be an acyclic (path connected) topological

space and  G  a group acting freely on it. Then  H*((∆T)/G) © H*(G),  and  ↑H1((∆T)/G)  has a

chaotic preorder. The same holds in cohomology.

Proof. It suffices to apply the preceding theorem to the singular cubical set  ∆T  of continuous cubes

of  T.  This cubical set has the same homology as  T,  and  G  acts obviously on it, by  (x+g)(t) = x(t)

+g  (for  t∈In).  Moreover, the action is free because so it is on the set of vertices,  T.  Finally, the

remark on preorder is proved as for  ↑H1(∆T),  in  2.1. ∆

3.5. Theorem [The spectral sequence of a G-free cubical set]. Let  X  be a connected cubical set,  G  a

group acting freely on it and  L  a G-module. Then there is a spectral sequence

(1) E2
p,q  =  Hp(G; Hq(X; L))  ⇒p  Hn(X/G; L).

Proof. This result extends Corollary 3.4, without assuming  X  acyclic. The proof is the same as in

[Ma, XI.7.1], where  X  is a path-connected topological space with a proper G-action. The argument is

based on computing the terms  E2
p,q  of the two spectral sequences of the double complex

(2) Kpq = L ⊗ Cp(X) ⊗G Bq(G),

B*(G)  being a G-free resolution of  Z  as a trivial G-module. And it only depends on the fact that

C*(X)  is a chain complex of free G-modules with  C*(X)⊗GL © C*(X/G; L),  which is also true in our

case (Lemma 3.2). ∆

4. Rotation structures and noncommutative tori

We compute the directed homology of various cubical sets, related with 'virtual spaces' of noncom-
mutative geometry: irrational rotation algebras and noncommutative tori of dimension ≥ 2;  ϑ  is always
an irrational real number.

4.1. Rotation algebras. Let us begin recalling some well-known 'noncommutative spaces'.
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First, take the line  R  and its (dense) additive subgroup  Gϑ = Z+ϑZ,  acting on the former by

translations. In  Top,  the orbit space  R/Gϑ = S1/ϑZ  is trivial: an uncountable set with the coarse

topology.

Second, consider the Kronecker foliation  F'  of the torus  T2 = R2/Z2,  with slope  ϑ  (recalled in

4.3), and the set  T2
ϑ = T2/≡F'  of its leaves. It is well known, and easy to see, that the sets  R/Gϑ  and

T2
ϑ  are in bijection (cf. 4.3). Again, ordinary topology gives no information on  T2

ϑ,  since the quotient

T2/≡F'  in  Top  is coarse.

In noncommutative geometry, both these sets are 'interpreted' as the (noncommutative) C*-algebra

Aϑ,  generated by two unitary elements  u, v  under the relation  vu = exp(2πiϑ).uv,  and called the

irrational rotation algebra associated with  ϑ,  or also a noncommutative torus [C1, C2, C3, R1, Bl].

Both its complex K-theory groups are two-dimensional.

A relevant achievement of K-theory [PV, R1] classifies these algebras, by proving that  K0(Aϑ) ©

Z+ϑZ  as an ordered subgroup of  R;  more precisely, the traces of the projections of  Aϑ  cover the

set  Gϑ∩[0, 1].  It follows that  Aϑ  and  Aϑ'  are isomorphic if and only if  ϑ' ∈ ± ϑ + Z  [R1, Thm.

2] and strongly Morita equivalent if and only if  ϑ  and  ϑ'  are equivalent modulo the fractional action

(on the irrationals) of the group  GL(2, Z)  of invertible integral 2×2 matrices [R1, Thm. 4]

(1) ( )a b
c d

.t  =  
at + b
ct + d (a, b, c, d ∈ Z;  ad – bc = ± 1),

(or the action of the projective general linear group  PGL(2, Z)  on the projective line). Since  GL(2, Z)

is generated by the matrices

(2) R  =  ( )0 1
1 0

, T  =  ( )1 1
0 1

,

the orbit of  ϑ  is its closure  {ϑ}RT  under the transformations  R(t) = t–1  and  T±1(t) = t±1  (on

R\Q)

A similar result, based on the 1-cohomology of an associated etale topos, can be found in [Ta].

We show now how one can obtain similar results with cubical sets naturally arising from the

previous situations: the point is to replace a topologically-trivial orbit space  T/G  with the correspond-

ing quotient of the singular cubical set  ∆T,  identifying the cubes  In = T  modulo the action of  G.

4.2. Irrational rotation structures. (a) Now, instead of considering the trivial quotient  R/Gϑ  of

topological spaces, we replace  R  with the singular cubical set  ∆R  (on which  Gϑ  acts freely) and

consider the cubical set  (∆R)/Gϑ.  Or, equivalently, we replace  R  with the c-set  R∆ = (R, ∆R)  and

take the quotient  R∆/Gϑ,  i.e. the set  R/Gϑ  equipped with the projections of the (continuous) cubes

of  R.  (In fact, if the cubes  x, y: In = R  coincide when projected to  R/Gϑ,  their difference  g = x –

y: In = R  takes values in the totally disconnected subset  Gϑ ⊂ R,  and is constant; therefore,  x  and

y  also coincide in  (∆R)/Gϑ).

Then, applying Corollary 3.4, we find that the c-set  R∆/Gϑ  (or  (∆R)/Gϑ)  has the same homol-

ogy as the group  Gϑ © Z2,  which coincides with the ordinary homology of the torus  T2

(1) H*(R∆/Gϑ)  =  H*(Gϑ)  =  H*(T2)  =  Z + σ.Z2 + σ2.Z;
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(the last fact follows, for instance, from the classical version of Theorem 3.3 [Ma, IV.11.5], applied to

the proper action of the group  Z2  on the acyclic space  R2).  We also know that directed homology

only gives the chaotic preorder on  ↑H1(R∆/Gϑ)  (again by 3.4).

In cohomology, we have the same graded group. Algebraically, this is in accord with the K-theory

of the rotation algebra  Aϑ,  since both  Heven(R∆/Gϑ)  and  Hodd(R∆/Gϑ)  are two-dimensional.

(b) A much more interesting result (and accord) can be obtained with the c-structure ↑R  of the line

produced by topology and natural order:  cn↑R  is the set of continuous order-preserving mappings  In

= R.  The quotient  Cϑ = ↑R/Gϑ = ↑S1/ϑZ  will be called an irrational rotation c-set (on the directed

circle  ↑S1 = ↑R/Z),  and we want to classify its isomorphism classes, for  ϑ ∉ Q.

We prove below (Theorems 4.8, 4.9) that  ↑H1(↑R/Gϑ) © ↑Gϑ,  as an ordered subgroup of the

line and that the c-sets  Cϑ  have the same classification up to isomorphism as the rotation algebras  Aϑ

up to strong Morita equivalence: while the algebraic homology of  Cϑ  is the same as in (a),

independent of  ϑ,  the (pre)order of directed homology determines  ϑ  up to the equivalence relation

↑Gϑ © ↑Gϑ',  which amounts to  ϑ  and  ϑ'  being conjugate under the action of the group  GL(2, Z).

Note that the stronger classification of rotation algebras up to isomorphism (recalled in 4.1) has no

analogue here: cubical sets lack the 'metric information' contained in C*-algebras.

Note also the role of the ordered cube  In  (with its faces and degeneracies) for defining  ↑R.

Presumably, this cannot be easily transferred to a simplicial approach: the standard realisations of  ∆n

in  Rn+1  or  Rn  are of no use, since the former inherits the discrete order while the latter has a

'diagonal' face not consistent with ordering; other realisations in  Rn  have complicated faces.

4.3. The noncommutative two-dimensional torus. Consider now the Kronecker foliation  F'  of

the torus  T2 = R2/Z2,  with irrational slope  ϑ,  and the set  T2
ϑ = T2/≡F'  of its leaves.  F'  and  ≡F'  are

induced, respectively, from the following foliation  F = (Fλ)  and equivalence relation  ≡  on the plane

(1) Fλ  =  {(x, y) ∈ R2  |  y = ϑx + λ} (λ ∈ R),

(x, y)  ≡  (x', y')   ⇔   y + k – ϑ(x+h)  =  y' + k' – ϑ(x'+h') (for some  h, k, h', k' ∈ Z).

Now, we interpret  T2
ϑ  as the quotient c-set  T2

∆
/≡F',  i.e. the set  T2

ϑ  equipped with the projection of

the cubes of the torus (or of the plane). This is proved below to be isomorphic to the previous c-set  K

= R∆/Gϑ  (4.2a), whose directed (co)homology has been computed above, in accord (algebraically)

with the complex K-theory groups of  Aϑ.

Now, the isomorphism we want can be realised with two inverse c-maps  i': K = T2
ϑ  and  p': T2

ϑ

= K,  respectively induced by the following maps (in  Top):

(2) i: R = R2, i(t)  =  (0, t),

p: R2 = R, p(x, y)  =  y – ϑx.

First, the induction on quotients is legitimate because, for  t ≡ t + h + kϑ  in  R  and  (x, y) ≡ (x', y')

in  R2  (as in (1))

(3) i(t + h + kϑ)  =  (0, t + h + kϑ)  ≡  (1, t + ϑ)  ≡  (0, t)  =  i(t),

p(x, y) – p(x', y')  =  (y – ϑx) – (y' – ϑx')  =  k' – ϑh' – k + ϑh  ∈  Z + ϑZ.

Second,  pi  is the identity,  and  i'p'  as well, because:
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(4) ip(x, y)  =  (0, y – ϑx)  ≡  (x, y) (y – ϑx – ϑ.0  =  y – ϑx).

Finally, it is obvious that distinguished cubes are preserved by  i',  p',  since they are by  i  and  p

   x  i    y

(5)   In -=   R --é -=-   R2 -é   In

:ò
 p

:ò
  K = R/Gϑ --é -=- R2/≡  = T2

ϑ

4.4. Higher foliations of codimension 1. (a) Extending 4.2a and 4.3, take an n-tuple of real numbers

ϑ = (ϑ1,..., ϑn),  linearly independent on the rationals, and consider the additive subgroup  Gϑ = Σj ϑjZ
© Zn,  acting freely on  R.  (The previous case corresponds to the pair  (1, ϑ).)

Now, the c-set  R∆/Gϑ  has the homology (or cohomology) of the n-dimensional torus  Tn

(notation as in 2.9)

(1) H*(R∆/Gϑ)  =  H*(Gϑ)  =  H*(Tn)  =  Z +  σ.Z(n1) +  σ2.Z(n
2) + ... + σn.Z.

And again, this coincides with the homology of a c-set  Tn
∆

/≡F'  arising from the foliation  F'  of the

n-dimensional torus  Tn = Rn/Zn  induced by the hyperplanes  Σj ϑjxj = λ  of  Rn.  (In the previous

proof, one can replace the maps  i, p  (4.3.2) with  i(t) = (t/ϑ1, 0,..., 0)  and  p(x1,..., xn) = Σj ϑjxj.)

(b) Extending now 4.2b (and Theorem 4.8), the c-set  ↑R/Gϑ  has a more interesting directed

homology, with a relevant total order in degree 1:

(2) ↑H1(↑R/Gϑ)  =  ↑Gϑ  =  ↑(Σj ϑjZ) (G+
ϑ = Gϑ ∩ R+).

4.5. Higher foliations. More generally, consider a linear subspace  H ⊂ Rn  of codimension  k  (0 <

k < n)  and such that  H∩Zn = {0}.  (In case (a),  H  is the hyperplane  Σj ϑjxj = 0.)

Let  F  be the foliation of  Rn  whose leaves are the (n–k)-dimensional planes  H+x,  parallel to  H.

These can be parametrised letting  x  vary in some convenient k-dimensional subspace transverse to  H;

equivalently, choose a projector  e: Rn = Rn  with  H = Ker(e)  and an epi-mono (linear) factorisation

of the latter through  Rk

  p i

(1) Rn      -=      Rk      -=      Rn ip  =  e,      pi  =  id,

so that the leaves of  F  are bijectively parametrised on  Rk

(2) Fλ  =  {x ∈ Rn  |  p(x) = λ} (λ ∈ Rk).

The projection  Rn = Tn = Rn/Zn  is injective on each leaf  Fλ  (because  Ker(p)∩Zn = H∩Zn =

{0}).  Therefore,  F  induces a foliation  F'  of  Tn  with codimension  k,  and an equivalence relation

≡F'  (to belong to the same leaf). The set of leaves  Tn/≡F'  can be identified with the quotient  Rn/≡,

modulo the equivalence relation  ≡  generated by the translations of  Zn  and the equivalence relation  x

≡F y  of the original foliation (i.e.,  p(x) = p(y)):

(3) x ≡ x'  in  Rn  if and only if  p(x) – p(x') ∈ p(Zn).
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Note that  Gp = p(Zn)  is an additive subgroup of  Rk  isomorphic to  Zn,  by  Ker(p)∩Zn = {0}

again. Now, we are interested in the c-set  Tn
∆

/≡F',  isomorphic to  Rn
∆

/≡.  Because of (3), the maps  p, i

in (1) induce a bijection of sets

  p'  i'

(4) Rn/≡      -=      Rk/Gp      -=      Rn/≡,

and an isomorphism of c-sets

(5) Tn
∆

/≡F'  ©  Rn
∆

/≡  ©  Rk
∆/Gp.

Since the cubical set  ∆Rk  is acyclic and  Gp © Zn,  we conclude by 3.3 (and its classical version)

that the homology of  Tn
∆

/≡F'  is the same as the ordinary homology of the torus  Tn  (cf. 2.9)

(6) H*(Tn
∆

/≡F')  =  H*(Rk
∆/Gp)  =  H*(Gp)  =  H*(Tn).

It should be interesting to study the relations of the above with the general n-dimensional

noncommutative torus  AΘ  [R2]. This is the C*-algebra generated by  n  unitary elements  u1,..., un

under the relations  ukuh = exp(2πiϑhk).uhuk  produced by an antisymmetric matrix  Θ = (ϑhk);  it has

the same K-groups as  Tn.

4.6. Remarks. The previous results show also that it is not possible to preorder group-homology so

that the isomorphism  H*(G) © H*(X/G)  (3.3.1) be extended to  ↑H*(X/G):  a group  G  can act

freely on two acyclic cubical sets  Xi  producing different preorders on some  ↑Hn(Xi/Gϑ).

In fact, it is sufficient to take  Gϑ = Z+ϑZ,  as above, and recall that  ↑H1(R∆/Gϑ)  has a chaotic

preorder (3.4) while  ↑H1(↑R/Gϑ) = ↑Gϑ  is totally ordered (4.8).

Another example comes from a different c-structure  Rϑ  on the real line, defined by the sub-

presheaf  X = c*Rϑ ⊂ Set(I*, R)  having the following non-degenerate n-cubes (stable under the action

of  Gϑ  on  R):

(1) x: {*} = R,  (n = 0,  x ∈ Gϑ ⊂ R),

c1x, c2x: I = R,      c1x(t)  =  x + t, c2x(t)  =  x + tϑ (n = 1,  x∈Gϑ),

ax: I2 = R,       ax(t, t')  =  x + tϑ + t' (n = 2,  x∈Gϑ),

∂α1 (ax)  =  c1,x+αϑ, ∂α2 (ax)  =  c2,x+α.

Now,  (c*Rϑ)/Gϑ  has precisely four non-degenerate cubes  ([0], [c10], [c20], [a0])  and is plainly

isomorphic to the cubical set  ↑t2.  Thus, all the homology groups ↑Hn(Rϑ/Gϑ) © ↑Hn(↑t2)  are

ordered (2.9.2). And it is not difficult to show that the cubical set  X  itself is indeed acyclic: in degree

2, take a chain  z = Σx λxax  and let  y∈Gϑ  be the lowest index with non-zero coefficient (if any); then

the lower faces  ∂–
i (ay) = ciy  are distinct, and different from all faces of the other summands in  z;  we

conclude that the only 2-cycle is 0. A similar argument shows that the only 1-cycle is 0.

We end this section by proving the main results on the directed homology of the rotation c-set  Cϑ

=  ↑R/Gϑ,  already announced in 4.2.

4.7. Lemma. Let  ϑ, ϑ'  be irrationals. Then  Gϑ = Gϑ',  as subsets of  R,  if and only if  ϑ' ∈ ± ϑ + Z.

Moreover the following conditions are equivalent

(a)  ↑Gϑ © ↑Gϑ'  as ordered groups,
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(b)  ϑ  and  ϑ'  are conjugate under the action of  GL(2, Z)  (4.1),

(c)  ϑ'  belongs to the closure {ϑ}RT  of  {ϑ}  under the transformations  R(t) = t–1  and  T±1(t) = t±1.

Further, these conditions imply the following one (which will be proved to be equivalent in 4.8)

(d)  ↑R/Gϑ © ↑R/Gϑ'  as c-sets.

Proof. First, if  Gϑ = Gϑ',  then  ϑ = a + bϑ'  and  ϑ' = c + dϑ,  whence  ϑ = a + bc + bdϑ  and d =

±1;  the converse is obvious.

We have already seen, in 4.1, that  (b) and (c) are equivalent, because the group  GL(2, Z)  is

generated by the matrices  R, T  (4.1.2),  which give the transformations  R(t) = t–1  and  Tk(t) = t+k

(on  R\Q;  for  k∈Z).  To prove that (c) implies (a) and (d), it suffices to consider the cases  ϑ' = ϑ+k

and  ϑ' = ϑ–1.  In the first case, ↑Gϑ  and  ↑Gϑ'  coincide (as well as their action on  ↑R);  in the

second, the isomorphism of c-sets

(1) f: ↑R = ↑R, f(t)  =  |ϑ|.t,

restricts to an isomorphism  f': ↑Gϑ = ↑Gϑ',  obviously consistent with the actions  (f(t + g) = f(t) +

f'(g)),  and induces an isomorphism  ↑R/Gϑ = ↑R/Gϑ'.

We are left with proving that (a) implies (c). Let us begin noting that any irrational  ϑ  defines an

algebraic isomorphism  Z2 © Gϑ,  which becomes an order isomorphism for the structure  ↑ϑZ2

(2) ↑ϑZ2 = Gϑ, (a, b) ± a + bϑ,

(a, b) >ϑ 0   ⇔   a + bϑ > 0,

and the number  ϑ  is (completely) determined by this order, as an upper bound in  R

(3) ϑ  =  sup{ – a/b  |  a, b ∈ Z,  b > 0,  (a, b) >ϑ 0}.

Take now an algebraic isomorphism  f: Z2 = Z2.  Since  GL(2, Z)  is generated by  R  and  T,

this isomorphism can be factored as  f = fn...f1,  with factors  fR,  fk
T

(4) fR(a, b)  =  (b, a), fk
T(a, b)  =  (a + kb, b).

Now, take  ↑ϑZ2  and replace  ϑ  with a positive representative in  {ϑ}RT.  Then  fR  (resp.  fk
T)  is an

order isomorphism  ↑ϑZ2 = ↑ζZ2  with  ζ = R(ϑ)  (resp.  ζ = T–k(ϑ)),  still belonging to  {ϑ}RT

(5) (a, b) >ϑ 0   ⇔   a + bϑ > 0   ⇔   b + aϑ–1 > 0   ⇔   (b, a) >ζ 0 (ζ = ϑ–1),

(a, b) >ϑ 0   ⇔   a + bϑ > 0   ⇔   a + kb + b(ϑ – k) > 0   ⇔   (a + kb, b) >ζ 0 (ζ = ϑ – k).

Thus,  f = fn...f1  can be viewed as an isomorphism  ↑ϑZ2 =  ↑ζZ2  where  ζ  belongs to the

closure  {ϑ}RT.  Finally, given  ϑ, ϑ',  an isomorphism  ↑Gϑ © ↑Gϑ'  yields an iso  ↑ϑZ2 = ↑ϑ'Z2;

but we have seen that the same algebraic isomorphism is an order isomorphism  ↑ϑZ2 = ↑ζZ2  where

ζ  belongs to the closure of  {ϑ};  by (3),  ϑ' = ζ  and the thesis holds. ∆

4.8. Theorem. The c-set  ↑R  (4.2b) is acyclic. The directed homology of  ↑R/Gϑ  is the homology of

T2,  with a total order on  ↑H1  and a chaotic preorder on  ↑H2

(1) ↑H1(↑R/Gϑ)  =  ↑Gϑ  =  ↑(Z + ϑZ) (G+
ϑ = Gϑ ∩ R+),

↑H2(↑R/Gϑ)  =  ↑cZ,
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and obviously  ↑H0(↑R/Gϑ) = ↑Z.  The first isomorphism above has a simple description on the

positive cone  Gϑ ∩ R+

(2) ϕ: ↑Gϑ = ↑H1(↑R/Gϑ), ϕ(ρ)  =  [paρ] (ρ ∈ Gϑ ∩ R+),

aρ: I = R, aρ(t)  =  ρt,

where  p: ↑R = ↑R/Gϑ  is the canonical projection.

Proof. First, let us consider the cubical subset  ↑[x, +∞[  (x ∈ R)  of  ↑R  and the following left

homotopy of cubical sets (1.6.4; noting that it does preserve directed cubes)

(3) fn: cn(↑[x, +∞[) = cn+1(↑[x, +∞[),

fn(a):  (t1,..., tn+1)  ±  x + t1.(a(t2,..., tn+1) – x),

∂αi +1 fn  =  fn–1 ∂αi , fn ei  =  ei+1 fn–1.

Computing its faces  ∂α1 ,  f  is a homotopy between the identity  f+ = (∂+
1fn)  and the map  f– =

(∂ -
1fn),  constant at  x;  therefore,  every  ↑[x, +∞[  is contractible (to its minimum  x). Since cubes of

↑R  have a compact image in the line, it follows easily that also  ↑R  is acyclic.

Now, Theorem 3.3 proves that the cubical homology of  ↑R/Gϑ  coincides, algebraically, with the

homology of the group  Gϑ,  or of the space  T2.  It also proves that  H1(↑R/Gϑ)  is generated by  the

homology classes  [pa1]  and  [paϑ].  Since  [paρ+ρ'] = [paρ] + [paρ'],  the mapping  ϕ  in (2) is an

algebraic isomorphism. By construction, it preserves preorders, and we still have to prove that it reflects

it.

To simplify the argument, a 1-chain  z  of  ↑R  which projects to a cycle  p*(z)  in  ↑R/Gϑ,  or a

boundary, will be called a pre-cycle or a pre-boundary, respectively. (Note that, since  p*  is surjective,

the homology of  ↑R/Gϑ  is isomorphic to the quotient of pre-cycles modulo pre-boundaries.) Let  z =

Σi λiai  be a positive pre-cycle, with all  λi > 0;  let us call  λ = Σi λi  its weight. We have to prove that

z  is equivalent to a positive combination of pre-cycles of type  aρ  (ρ ∈ G+
ϑ),  modulo pre-boundaries.

Let  z = z'+z",  putting in  z'  all the summands  λiai  which are pre-cycles themselves, and replace

any such  ai,  up to pre-boundaries, with  aρi
,  where  ρi = ∂+ai – ∂–ai ∈ G+

ϑ.  If  z" = 0  we are done,

otherwise  z" = z – z'  is still a pre-cycle; let us act on it. Reorder its paths  ai  so that  a1  has a minimal

coefficient  λ1  (strictly positive); since  ∂+a1  has to annihilate in  ∂p*(z'),  there is some  ai  (i > 1)

with  ∂+a1 – ∂–ai ∈ Gϑ.  By a Gϑ-translation of  ai  (leaving  pai  unaffected), we can assume that  ∂–

ai = ∂+a1,  and then replace (modulo pre-boundaries)  λ1a1 + λiai  with  λ1â1 + (λi – λ1)ai  where  â1 =

a1*ai  is the concatenation (and  λi – λ1 ≥ 0).  Now, the new weight is  λ – λ1 < λ,  strictly less than the

previous one.

Continuing this way, the procedure ends in a finite number of steps; this means that, modulo pre-

boundaries, we have changed  z  into a positive combination of pre-cycles of the required form,  aρ.

Finally, it is easy to see that  H2(↑R/Gϑ) = Z  gets the chaotic preorder. In fact, we already know

that the 2-cycle

(4) pa: [0, 1]2 = R/Gϑ, a(t, t')  =  tϑ + t',

gives a (positive) generator of  ↑H2.  But the interchange  s: [0, 1]2 = [0, 1]2  preserves the natural

order of the square, whence  pa˚s  is also a positive cycle and  [pas] = – [pa]  is also (weakly) positive.

∆
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4.9. Theorem. The c-sets  ↑R/Gϑ  and  ↑R/Gϑ'  are isomorphic if and only if the ordered groups  ↑Gϑ

and  ↑Gϑ'  are isomorphic, if and only if  ϑ  and  ϑ'  are conjugate under the action of  GL(2, Z)

(4.1.1), if and only if  ϑ'  belongs to the closure  {ϑ}RT  (4.1.2).

Proof. Follows immediately from Lemma 4.7 and Theorem 4.8, which gives the missing implication of

the Lemma: if our c-sets are isomorphic, also their ordered groups  ↑H1  are, and  ↑Gϑ © ↑Gϑ' ∆

5. Pointed suspension and homology

Pointed suspension is well linked with directed pointed homology; the latter can also be viewed as a
form of reduced homology, well adapted to preorder.

5.1. Pointed cubical sets. Unpointed and pointed suspension produce different results on the discrete

two-point cubical set  s0 = {0, 1},  since  Σs0 = ↑o1  (1.7.4) while, plainly,  Σ(s0, 0) = ↑s1  (cf. 5.2);

these cubical sets have different directed homology (2.3).

Since we are more interested in the spheres  ↑sn,  we shall consider the suspension (and homology)

of pointed cubical sets. The latter form the category  Cub*:  an object  (X, x0)  is a cubical set with a

base point  x0 ∈ X0;  morphisms  f: (X, x0) = (Y, y0)  preserve the base points.

Again, limits and colimits are obvious: limits and quotients are computed as in  Cub  and pointed in

the obvious way, whereas sums are quotients of the corresponding unpointed sums, under

identification of the base points (as for pointed sets).

5.2. Pointed homotopies. The pointed left (elementary) cylinder is

(1) I: Cub* = Cub*, I(X, x0)  =  (IX/I{x0}, [0⊗x0]),

(2) ∂α: (X, x0) = I(X, x0),    ∂α(x)  =  [α⊗x],

e: I(X, x0) = (X, x0),   e[u⊗x]  =  e1(x).

Its right adjoint, the pointed left (elementary) cocylinder, is

(3) P: Cub* = Cub*, P(Y, y0)  =  (PY, ω0), ω0  =  e1(y0) ∈ Y1.

Again, an (immediate) pointed left homotopy  f: f– =L f+: (X, x0) = (Y, y0)  is defined as a map  f:

I(X, x0) = (Y, y0)  with  f∂α = fα.  Or, equivalently (because of the adjunction), as a map  f: (X, x0) =

P(Y, y0)  with  ∂αf = fα,  which amounts to a family

(4)  fn: Xn = Yn+1, ∂αi +1 fn  =  fn–1 ∂αi , ∂α1  fn  =  fα,

ei+1 fn–1  =  fn ei, f0(x0)  =  ω0 (α = ±;  i = 1,..., n).

The pointed left upper cone  C+(X, x0)  is a quotient of the pointed cylinder

∂+

  (X, x0) - -=  I(X, x0)

(5) :ò | – – :ò
   γ C+(X, x0)  =  (IX)/(I{x0}∪∂+X).

{*} - -= C+(X, x0)
v+
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The pointed left suspension is the quotient

(6) Σ(X, x0)  =  (IX)/(∂–X∪I{x0}∪∂+X).

Thus, the pointed suspension of  (s0, 0)  yields the elementary directed circle  ↑s1  (1.5.3)

  * _   *

(7) / :!   <1⊗u>

  * _   *

and, more generally

(8) (↑sn, *)  =  Σn(s0, 0).

5.3. Pointed homology. A pointed cubical set  (X, x0)  produces naturally a chain complex  ↑C*(X,

x0)  where the 0-component is the free preordered abelian group generated by the pointed set  (X, x0),

so that the base point is annihilated

(1) ↑C0(X, x0)  =  ↑Z(X0, x0)  =  (↑ZX0)/(Zx0),

(the functor  ↑Z(–, –)  being left adjoint to the forgetful functor  dAb = Set*,  A ± (A+, 0)).

We have thus the pointed directed homology of a pointed cubical set

(2) ↑Hn: Cub* = dAb, ↑Hn(X, x0)  =  ↑Hn(↑C*(X, x0)),

which only differs from the unpointed one in degree zero, where  ↑H0(X, x0)  is the free ordered

abelian group generated by the pointed set of connected components of  (X, x0),  or equivalently by the

set of components different from the one of the base point.

Algebraically,  H0(X, x0)  is plainly isomorphic to the reduced homology  
~
H0(X)  of the underlying

cubical set (defined as the kernel of the natural homomorphism  H0(X) = Z).  But this is not true for

preorders: this kernel inherits from  ↑H0(X)  a trivial (discrete) preorder, since the trace of the positive

cone  Σ λi[xi]  (λi ∈ N)  on this kernel is  {0}.  One can also note that, independently of directions or

preorders, and also for topological spaces, pointed homology (of pointed objects) preserves sums

while reduced homology (of unpointed objects) does not.

Our next result gives again the ordered homology  ↑Hn(↑sn) = ↑Z  (n > 0;  cf. 2.3).

5.4. Theorem [Homology of suspension]. There is a natural isomorphism of preordered abelian

groups (where  < – >  denotes equivalence classes in  Σ(X, x0)  as a quotient of  I(X, x0),  and  u  is the

generator of the elementary interval  ↑i)

(1) ↑Hn(X, x0) = ↑Hn+1(Σ(X, x0)), [Σ λkxk]  ±  [Σ λk<u⊗xk>] (n ≥ 0).

Proof. First, let us note that, for  x∈Xn,  we have the following relation in  ↑Cn+1(Σ(X, x0))

(2) ∂<u⊗x>  =  <1⊗x – 0⊗x> – Σi,α (–1)i+α <u⊗∂αi  x>  =  – <u⊗∂x>.

Now, the isomorphism is induced by the following inverse isomorphisms of preordered abelian

groups, which anti-commute with differentials

(3) fn: ↑Cn(X, x0) = ↑Cn+1(Σ(X, x0)), f(x)  =  <u⊗x> (x∈Xn),
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∂f(x)  =  ∂<u⊗x>  =  – <u⊗∂x>  =  – f(∂x), f(x0)  =  <u⊗x0>  =  0,

f(eky)  =  <u⊗eky>  =  <ek+1(u⊗y)>  =  0 (for  n > 0,  y∈Xn–1);

(4) gn: ↑Cn+1(Σ(X, x0)) = ↑Cn(X, x0), g<u⊗x>  =  x,

g∂<u⊗x>  =  – g<u⊗∂x>  =  – ∂x  =  – ∂g<u⊗x>. ∆

6. Comparisons with other structures

Cubical sets have other directed realisations, besides  ↑RX  (1.9): for instance as spaces with directed
paths, a structure studied in two previous works as a setting for directed homotopy [G4, G5]. Finally, we
show that the algebraic part of our results on noncommutative tori can also be obtained using Scott's
equilogical spaces [Sc], instead of cubical sets.

6.1. Spaces with directed paths. In [G4, G5] we used the following setting, to develop a theory of

directed homotopy. A space with directed paths, or d1-space  T,  is a topological space equipped with a

set  d1T  of (continuous) maps  a: I = T,  called directed paths (or distinguished paths, or d-paths),

satisfying three axioms:

(i) (constant paths)  every constant map  I = T  is distinguished,

(ii) (reparametrisation)  d1T  is closed under composition with (weakly) increasing maps  I = I,

(iii) (concatenation)  d1T  is closed under path-concatenation: if the d-paths  a, b  are consecutive in  T

(a(1) = b(0)),  then their ordinary concatenation  a+b  is also a d-path

(1) (a+b)(t)  =  a(2t),  if  0 ≤ t ≤ 1/2, (a+b)(t)  =  b(2t – 1),  if  1/2 ≤ t ≤ 1.

A directed map, or d1-map  f: T =  T',  is a continuous mapping between d1-spaces which

preserves the directed paths: if  a ∈ d1T,  then  fa ∈ d1T'.  This category will be denoted as  d1Top  (it

was written  dTop  in [G4, G5]; here, we want to stress the one-dimensional character of the structure,

just consisting of paths instead of general cubes). Directed homotopy has been developed on the basis

of the standard directed interval  ↑I,  i.e. the euclidean interval equipped with all (weakly) increasing

maps  I = I.

There is now a directed realisation of cubical sets as d1-spaces, produced by an adjunction

   ↑R1

(2) Cub      –-é   -–=       d1Top, ↑R1 – cub1,
cub1

and intermediate between the ordinary realisation  RX  (1.8) and the directed realisation  ↑RX  (1.9), as

we show below (6.3).

Here,  cub1T  is the cubical set of all mappings  x: In = T  such that, whenever we precompose

with a continuous order-preserving mapping  a: I = In,  we get a distinguished path. On the other

hand, the d1-space  ↑R1X  is the geometric realisation  RX  (with its topology), equipped with the finite

concatenations of paths  x̂a: I = In = RX,  where  a: I = In  is an order-preserving map and  x̂

corresponds to some cube  x∈Xn,  as in 1.8.3.
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We only need to show that the classical bijection  Top(RX, T) = Cub(X, ∆T)  (1.8.2), which sends

f: RX = T  to the family  gn: Xn = ∆nT,  gn(x) = fx̂,  restricts to a bijection  (↑R1X, T) = (X, cub1T);

in fact, the map  f  is a morphism of the specified type if and only if, for every  x∈Xn  and every order-

preserving mapping  a: I = In,  f(x̂a)  is a distinguished path in  T  (then, finite concatenations of paths

of type  x̂a  also work, because  T  is a d1-space); but  f(x̂a) = (fx̂)a = gn(x).a,  and our condition is

equivalent to saying that  gn(x)  is an n-cube of  cub1T  (for all  x∈Xn).

6.2. Comments. This category  d1Top  is insufficient for our purposes here, because it only breaks

reversion, and not the interchange symmetry. Thus, the directed 2-sphere  ↑R1(↑s2)  living there (called

↑S2  in [G4, G5]) would get the chaotic preorder on  ↑H2.

Yet, it seems difficult to develop a reasonable homotopy theory without the interchange symmetry,

which is required - for instance - to prove the homotopy invariance of the cylinder, cone and

suspension functors, and deduce important properties of the (co)fibration sequence [G5]. One could

use sets with distinguished cubes closed under connections and interchange; but then, it is perhaps

simpler and more effective to use objects with distinguished paths, whose cubes automatically have

connections and interchange.

6.3. Comparison of directed realisations. Finally, we link the three realisations we have considered,

RX  (1.8),  ↑RX  (1.9) and  ↑R1X  (6.1),  showing that  R  factors through  ↑R1  and the latter through

↑R   (including their adjunctions).

This will be better seen introducing a variant of  d1Top:  the category  d1Set  of d1-sets,

constructed as  d1Top  using sets and mappings instead of spaces and maps, with the exception that

reparametrisation is still required for increasing maps  I = I.  (It works similarly to  d1Top  and has

the advantage of being cartesian closed.) Then we can construct the following chain of adjunctions (left

adjoints as dashed arrows)

| – – – – – – – – – – – – – – – – – – – – – – – – – – –– – – – – – |
| |

   ↑R   d1  t1
|ò
   
↑R1

  U
|ò   R

(1) Cub      –-é   -–=       cSet      –-é   -–=        d1Set      –-é   -–=       d1Top      –-é   -–=       Top
c*  v1  u1   C0

↑R1  =  t1d1.↑R, R  =  U.↑R1.

At the right hand, we have the forgetful functor  U: d1Top = Top  (forgetting distinguished

paths); its right adjoint  C0  equips a topological space with the natural d1-structure, where the

distinguished paths are the continuous ones [G4, 1.1]. Then, the forgetful functor  u1: d1Top =

d1Set  has a left adjoint  t1  which equips a d1-set with the finest topology making all its distinguished

paths continuous. Finally, the functor  d1: cSet = d1Set  completes the distinguished paths of  c1K

under the closure conditions (i)-(iii), while its right adjoint  v1: d1Set = cSet  produces a c-structure

on a d1-set  X,  saying that a mapping  In =  X  is distinguished if and only if, whenever we

precompose with a continuous order-preserving mapping  I = In,  we get a distinguished path.

Now, it is easy to verify that every standard cube  In  has the final topology for the maps  I = In.

Therefore, a mapping  In = T  with values in a topological space is continuous if and only if all those

precomposites are: this proves that  (–)∆ = v1u1C0: Top = cSet  (1.9.1),  whence also their left



29

adjoints coincide,  Ut1d1 = t: cSet = Top  (1.9). Similarly,  cub1: d1Top = Cub  coincides with

c*v1u1  and  ↑R1 = t1d1.↑R.  Finally,  U.↑R1 = Ut1d1.↑R = t.↑R = R.

6.4. Equilogical spaces. We end with some remarks, to be developed elsewhere, on a structure

introduced by D. Scott [Sc]. An equilogical space  (T, R)  is a topological space  T  equipped with an

equivalence relation  R;  a map  f: (T, R) = (T', R')  is a mapping  T/R = T'/R'  which admits some

continuous lifting  T = T'.  The category  Eql  thus obtained contains  Top  as a full subcategory,

identifying the space  T  with the pair  (T, =T);  moreover,  Eql  is cartesian closed. (We are dropping

the condition that the support spaces be T0, generally assumed but inessential; cf. [Ro].)

Singular cubes and singular homology have an obvious extension to equilogical spaces, setting

∆n(T, R) = Eql(In, (T, R)).  And there is an embedding of equilogical spaces in c-sets (or in cubical

sets)

(1) Eql = cSet, (T, R) ± T∆/R,

consistent with singular cubes and singular homology, since a cube  In = (T, R)  is the same as a

mapping  In = T/R  which can be continuously lifted to  T,  that is a distinguished cube of  T∆/R.

Now, it is easy to see that our result 4.2a on the group  Gϑ = Z+ϑZ  acting on the real line can also

be stated in terms of the equilogical space  (R, ≡Gϑ
)

(2) H*(R, ≡Gϑ
)  =  H*(R∆/Gϑ)  ©  H*(T2).

The deeper results on the cubical sets  Cϑ = ↑R/Gϑ  can be obtained with equilogical spaces

equipped with an ordering. However, the directed homology of such a structure could hardly avoid the

general drawbacks we have considered above, for d1-spaces (6.2).
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