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Introduction

This paper takes on a study of the theory of weak cubical categories, begun in [G1-G5] with the

aim of extending to higher dimension the study of weak double categories developed in [GP1-GP4].

Here we prove that a strict symmetric (infinite-dimensional) cubical category  A  has an associated

ω-category  Glb(A),  consisting of its 'globular cubes'. Then we examine in low dimension the much

more complex weak case, up to constructing the tricategory associated to a weak symmetric 3-cubical

category. As a general fact, the procedure of globularisation tends to destroy important features of

cubical categories, like the existence of limits and colimits or the presence of symmetries; the main

motivation of this analysis is that, presently, higher categories are mostly studied in the globular form -

with some exceptions like those cited above.

Let us recall that a weak cubical category [G1-G5] has a cubical structure, with faces and

degeneracies; moreover, there are weak compositions in countably many directions, which we call

cubical (or geometric), and one strict composition, in the transversal (or structural) direction.

As a leading example, linked to higher dimensional cobordism (see [G1-G3]), one can think of the

weak cubical category  ωCosp(X)  of cubical cospans in a category with pushouts  X .  An n-

dimensional object is a functor  x: ∧∧∧∧n = X,  where  ∧∧∧∧  is the 'formal cospan' category

(*) Work partially supported by grants of MIUR (Italy), Università di Genova (Italy) and NSERC (Canada).
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 (-1,-1) -=   (0,-1) -é   (1,-1)

:ò :ò :ò
(1) –1  =  0  é  1 ∧∧∧∧  (-1, 0) -=   (0, 0) -é   (1, 0)

:! :! :!
 (-1, 1) -=   (0, 1) -é   (1, 1) ∧∧∧∧2.

An n-dimensional transversal map, or structural map, is a natural transformation  f: x = y: ∧∧∧∧n

= X  of such functors. Their composition is also called transversal, or structural.

The ordinary categories  Cospn(X) = Cat(∧∧∧∧n, X)  form a cubical object in  Cat,  with obvious

faces and degeneracies. Moreover, n-dimensional objects (and maps) have cubical, or geometric,

composition laws  x +i y  in each direction  i = 1,..., n,  which are constructed with pushouts; these

compositions are consistent with faces and degeneracies, but only behave well up to suitable

transversal maps, which yield invertible comparisons for their associativity, unitarity and interchange.

Actually, as already stressed in the papers mentioned above,  ωCosp(X)  is a symmetric weak

cubical category, when equipped with the obvious action of the symmetric group  Sn  on  Cat(∧∧∧∧n, X);

namely, the action of permuting the factors of  ∧∧∧∧n,  i.e. the directions of n-cubical cospans in  X.

These symmetries allow one to only consider the faces, degeneracies and cubical compositions in a

single direction (see 1.3), which greatly simplifies the coherence conditions. Notice also that cubical 1-

truncation, keeping one weak direction and the strict transversal one, yields the weak double category

C osp(X)  of ordinary cospans and their transversal maps, studied in [GP1]; here, symmetries

'disappear', since the groups  S0  and  S1  are trivial.

It should be noted that the importance of considering the transversal maps goes beyond the fact of

containing the comparisons for the associativity, unitarity and interchange of the cubical compositions:

this point only requires invertible transversal maps and disappears in the strict case. In fact, cubical

limits (or colimits) have been dealt with in [G5], extending the theory of double limits developed in

[GP1]: their projections (or injections) are transversal maps. Thus, if our previous category  X. is

(co)complete, then  ωCosp(X)  has all cubical (co)limits, in a way that is consistent with faces,

degeneracies and transposition, and (co)lax functorial with respect to cubical composition. (The last

fact is a general, straightforward consequence of the universal property; but here, where cubical

compositions are based on pushouts, the cubical colimits are actually pseudo functorial.)

Outline. In the first two sections we begin by considering a (strict) symmetric cubical category  A

and its globularisation  GlbA,  a strict ω-category consisting of the 'globes', or globular cubes of  A.  As

an example, the symmetric cubical category  ωRel  of cubical relations of sets (1.8) yields an  ω-

category (2.7); the transversal maps of  A  do not intervene in this procedure of globularisation (but,

again, are essential for the cubical (co)limits of  ωRel).

Then, in Sections 3 and 4, we recall the definition of a weak symmetric cubical category and some

main examples, like cubical cospans on a category with pushouts. We also give a construction of the

weak symmetric cubical category  ωCat  of cubical profunctors, modifying a similar construction given

in [G4] with less adequate transversal maps.

Finally, in the last section, we examine globularisation in the weak case, up to constructing the

tricategory (see Gordon, Power and Street [GPS]) associated to a weak symmetric 3-cubical category;

here, the transversal maps contain the comparisons for associativity, unitarity and interchange, and
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intervene in the globularisation by their companion cubes (see 5.1). The problem of globularisation

becomes very complicated in the (higher or) infinite-dimensional case, and should be based on one of

the many - more or less equivalent - definitions of weak ω-category that have been proposed.

References to the rich literature on higher globular categories can be found in two recent books, by

T. Leinster [Le] and E. Cheng - A. Lauda [CL]. Strict cubical categories with connections (and without

transversal maps) have been studied in [ABS], and proved to be equivalent to (globular) ω-categories.

As a matter of notation, the indices  α, β  take the values  0, 1,  that are more often written as  –, +.

1. Strict symmetric cubical categories

We begin by considering (strict) symmetric cubical categories; their globularisation will be defined

in Section 2.

Some simpler notions will be used as preliminary steps. We use the term 'basic' when transversal

maps have not yet been inserted in the structure, so that a cubical category can be defined as a category

object in the category of basic cubical categories (cf. 1.5).

Moreover, as a preliminary step for the weak case dealt with in the sequel, we use the prefix 'pre'

when we are not assuming the axioms of associativity, unitarity and interchange of the cubical

compositions (and comparisons have not yet been introduced).

We end by constructing, as an example, the symmetric cubical category  ωRel  of cubical relations

(1.8).

1.1. Cubical sets. A cubical set  X = ((Xn), (∂αi ), (ei)),  in the usual sense [K1, K2, BH1, BH2], has

faces  (∂αi )  and degeneracies  (ei)

(1) ∂αi :  Xn       _£)        Xn–1  :ei   (i = 1,..., n;  α = ±),

satisfying the cubical relations :

(2) ∂αi .∂βj   =  ∂βj .∂
α
i +1   (j ≤ i), ej.ei  =  ei+1.ej      (j ≤ i),

∂αi .ej  =  ej.∂αi –1     (j < i), or   id   (j = i), or    ej–1.∂αi    (j > i).

Elements of  Xn  are called n-cubes; vertices and edges for  n = 0  or 1, respectively. Every n-cube

x ∈ Xn  has  2n  vertices:  ∂α1∂
β
2∂

γ
3(x) = ∂γ1∂

β
1∂

α
1 (x)  for  n = 3  and  α, β, γ = ±.

A morphism  f = (fn): X = Y  is a sequence of mappings  fn: Xn = Yn  commuting with faces

and degeneracies.

Small cubical sets and their morphisms form a category  Cub,  which has all limits and colimits

and is cartesian closed. In fact, it is the presheaf category of functors  X: Iop = Set,  where  I   is the

subcategory of  Set  consisting of the elementary cubes  2n = {0, 1}n,  together with the maps  {0, 1}m

= {0, 1}n  which delete some coordinates and insert some 0's and 1's, without modifying the order of

the remaining coordinates [GM].
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The terminal object  Ï  is freely generated by one vertex  *  and will also be written  {*};  but

notice that each of its components is a singleton. The initial object is empty, i.e. all its components are;

the other cubical sets have a non-empty component in each degree.

1.2. Symmetric cubical sets. As in [G1], a symmetric cubical set is a cubical set which is further

equipped with mappings, called transpositions

(1) si: Xn = Xn (i = 1,..., n–1;  n ≥ 2).

These have to satisfy the Moore relations

(2) si.si  =  1, si.sj.si  =  sj.si.sj    (i = j–1), si.sj  =  sj.si    (i < j–1),

 and the following equations of coherence with faces and degeneracies:

j < i j = i j = i+1 j > i+1

(3) ∂αj .si = si–1.∂αj ∂αi +1 ∂αi si.∂αj ,

si.ej =  ej.si–1 ei+1 ei ej.si.

Assigning the mappings (1) under conditions (2) amounts to letting the symmetric group  Sn

operate on  Xn.  Indeed, it is well known that  Sn  is generated, under the Moore relations, by the

'ordinary' transpositions  s1,..., sn–1,  where  si,  acting on the set  {1,..., n},  exchanges  i  with  i+1

(see Coxeter-Moser [CM], 6.2; or Johnson [Jo], Section 5, Thm. 3).

A morphism  f = (fn): X = Y  is a sequence of mappings  fn: Xn = Yn  commuting with faces,

degeneracies and transpositions. The resulting category  sCub  (of small symmetric cubical sets and

their morphisms) is again a category of presheaves  X: Is
op = Set,  for the symmetric cubical site  I s.

The latter can be defined as the subcategory of  Set  consisting of the elementary cubes  2n = {0, 1}n

together with the maps  2m = 2n  which delete some coordinates, permute the remaining ones and

insert some 0's and 1's. It is a subcategory of the extended cubical site  K   of  [GM], which also

contains the 'connections' (higher degeneracies).

The truncated cases will also be of interest. A symmetric n-cubical set  X = ((Xk), (∂αi ), (ei), (si))

has components indexed by  k = 0,..., n.  Of course, also its faces  ∂αi : Xk = Xk–1,  degeneracies  ei:

Xk-1 =  Xk  and transpositions  si: Xk =  Xk  undergo the restriction  k ≤ n,  and satisfy the

symmetric cubical relations as far as appropriate.

A symmetric n-cubical set is a presheaf on the truncated site  TrnIs,  namely the full subcategory of

I s  with objects  2k  for  k ≤ n.  We write as  TrnsCub  the category of symmetric n-cubical set and

their (obvious) morphisms.

1.3. A simpler presentation of symmetric cubical sets. In a symmetric cubical set, the presence of

transpositions makes all faces and degeneracies determined by the 1-directed ones,  ∂–
1, ∂+

1  and  e1.  In

fact, from  ∂αi +1 = ∂αi .si  and  ei+1 = si.ei,  we deduce that:

(1) ∂αi   =  ∂α1 .s'i, ei  =  si.e1 (i = 2,..., n;  α = ±),

where we are using the inverse 'permutations'  si  and  s'i

(2) si  =  si–1. ... .s1, s'i  =  s1. ... .si–1.
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This leads to a more economical presentation of our structure, as proved in [G3]. Namely, a

symmetric cubical set can be equivalently defined as a system

(3) X  =  ((Xn), ∂–
1, ∂+

1, e1, (si)),

under the Moore relations for transpositions (1.2.2) and the axioms:

(4) ∂α1 .∂β1  =  ∂β1.∂α1 .s1, e1.e1  =  s1.e1.e1, ∂α1 .e1  =  id,

si.∂α1   =  ∂α1 .si+1, e1.si  =  si+1.e1.

In other words,  X  can be presented as a system  ((Xn), ∂–
1, ∂+

1, e1)  where each  Xn  is an Sn-set

(equipped with an action of the symmetric group  Sn)  and the axioms (4) are satisfied.

1.4. Basic cubical categories. As a further step towards cubical categories, we define now the notion

of a basic cubical category (called a 'reduced' cubical category in [G1, G4]), as a cubical set equipped

with cubical compositions in all directions; these are assumed to be strictly categorical (i.e. strictly

associative and unital, units being given by degeneracies) and to satisfy the interchange property.

More explicitly, our notion is defined as follows.

(cub.1) A basic cubical category  A  is, first of all, a cubical set (1.1):

(1) A  =  ((An), (∂αi ), (ei)).

(cub.2) Moreover, for  1 ≤ i ≤ n,  the i-concatenation  x +i y  (or i-composition) of two n-cubes  x, y  is

defined when the latter are i-consecutive, i.e.  ∂+
i (x) = ∂–

i (y);  the following 'geometric' interactions with

faces and degeneracies are required:

(2)  ∂–
i (x +i y)  =  ∂–

i (x), ∂+
i (x +i y)  =  ∂+

i (y),

( ∂αj (x) +i–1 ∂αj (y), if  j < i,
 ∂αj (x +i y)  = £

4 ∂αj (x) +i ∂αj (y), if  j > i,

( ej(x) +i+1 ej(y), if  j ≤ i ≤ n,
(3)   ej(x +i y)  = £ (nullary interchange).

4 ej(x) +i ej(y), if  i < j ≤ n+1

(cub.3) For  1 ≤ i ≤ n,  we have a category  An
i  = (An–1, An, ∂–

i , ∂
+
i , ei, +i),  where faces give domains

and codomains, and degeneracy yields the identities. In other words, we have the following equations

for i-consecutive n-cubes  x, y, z:

(4) (x +i y) +i z  =  x +i (y +i z), ei∂–
i x +i x  =  x  =  x +i ei∂+

i x.

(cub.4) For  1 ≤ i < j ≤ n,  and n-cubes  x, y, z, u,  we have

(5) (x +i y) +j (z +i u)  =  (x +j z) +i (y +j u) (middle-four interchange),

whenever these compositions make sense:

à - à - à
(6) ∂+

i (x)  =  ∂–
i (y), ∂+

i (z)  =  ∂–
i (u), :    x :    y : à -=    i

à - à - à :ò   j
∂+

j (x)  =  ∂–
j (z), ∂+

j (y)  =  ∂–
j (u), :    z :    u :

à - à - à
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A cubical functor  F: A = B  between basic cubical categories is a morphism of cubical sets which

preserves all composition laws.

1.5. Cubical categories. Now, a cubical category  A  [G1] is a category object in the category of

basic cubical categories (and their cubical functors)

  ∂
α
0  c0

(1) A(0)       _})-∞        A(1)       -é        A(2) (α = ±),
 e0

or, equivalently, a basic cubical category in the category of categories

(2) A  =  ((tvnA), (∂αi ), (ei), (+i)), tvnA  =  (An, Mn, (∂α0 ), e0, c0),

where  An  and  Mn  denote the set of objects and morphisms of the category  tvnA,  respectively.

Explicitly, this statement means that  A  is a basic cubical category where each component  tvnA   is

a category (namely, the category of n-cubes of  A  and their transversal n-maps, called the transverse

category of  A  of degree  n),  while the cubical faces, degeneracies and concatenations are functors

(3) ∂αi : tvnA        _£)        tvn–1A  : ei, +i:  tvnA  ×i tvnA    = tvnA.

(The pullback  tvnA  ×i tvnA    is the category of pairs of i-consecutive n-cubes.) We distinguish

between the cubical compositions  x +i y  or  f +i g  (of i-consecutive n-cubes or n-maps), and the

transversal composition  gf = c0(f, g)  of transversal maps  f: x = y,  g: y = z.

A basic cubical category amounts to a cubical category all of whose transversal maps are identities.

A cubical category  A  has an associated basic cubical category  A(0),  without transversal maps, that will

be called the basic form of  A.

A cubical functor  F: A = B  between cubical categories strictly preserves the whole structure; in

other words,  F  is an internal functor between category objects, as specified above.

A transversal (or structural) transformation  h: F = G: A = B  between cubical functors is an

internal transformation between internal functors. Concretely, it assigns, to every n-cube  x  of  A,  a

transversal map in  B

(4) h(x): F(x) = G(x),

consistently with faces, degeneracies, concatenations, and satisfying the naturality condition

(nat) hy.Ff  =  Gf.hx, for every n-map  f: x = y  in  A.

In a cubical category, as well as in all the weaker cases considered below, a transversal n-map  f:

x = x'  is said to be special if its  2n  vertices are identities

(5) ∂ααααf:  ∂ααααx = ∂ααααx' ∂αααα  =  ∂α1 1 ∂α2 2 ... ∂αn n (αi = ±).

In degree 0, this just means an identity.

1.6. Remarks. (a) In a cubical category, a k-map between k-cubes should be viewed as a (k+1)-

dimensional cell. Therefore an n-truncated cubical category will be called an (n+1)-cubical category.
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Thus, a 1-cubical category is just a category, with objects and 0-maps. A 2-cubical category

amounts to a (strict) double category: its double cells are given by 1-maps, and their boundary consists

of 0-maps and 1-cubes. One level up, a 3-cubical category amounts to a (strict) triple category of a

particular kind, with:

- objects (of one type);

- arrows in directions 0, 1 and 2, where the last two types coincide;

- 2-dimensional cells in directions 01, 02, 12, where the first two types coincide;

- and 3-dimensional cells (of one type).

(b) For fixed positive integers  i ≤ n,  the cubical category  A  has an associated double category  Ani,

whose double cells are the transversal n-maps of  A;  the two composition laws are the transversal

composition and i-concatenation of  A .  More explicitly: objects are the (n–1)-cubes, horizontal arrows

are the transversal (n–1)-maps (with their composition) and vertical arrows are the n-cubes (with i-

concatenation); the faces of a double cell are given by  ∂α0   and  ∂αi .

(c) We speak of a precubical category when we do not want to assume the axioms of associativity,

unitarity and interchange of the cubical compositions (cf. 1.4). This notion will be of interest later, for

the weak case introduced in Section 3, where we will replace such axioms with 'comparisons', realised

as transversal maps (invertible and special).

(d) It should be noted that transversal maps, apart from being essential in the weak case (as mentioned

above) are already important in the present strict case. For instance, they allow us to define (and

construct) cubical (co)products, and more generally cubical (co)limits, as shown in [G5] (or in [GP1]

for the truncated case of double categories).

1.7. Symmetric cubical categories. A symmetric cubical category

(1) A  =  ((tvnA ), (∂αi ), (ei), (+i), (si)),

is a cubical category (1.5) equipped with cubical functors  si: tvnA = tvnA  (1 = 1,..., n–1)  called

transpositions, which make it a symmetric cubical set. Furthermore, concatenations and transpositions

must be consistent, in the following sense

(2) si–1(x +i y)  =  si–1(x) +i–1 si–1(y), si(x +i y)  =  si(x) +i+1 si(y),

sj(x +i y)  =  sj(x) +i sj(y) (j ≠ i–1, i),

where the variables  x, y  can denote cubes or transversal maps.

As with symmetric cubical sets, all faces, degeneracies and concatenations are now determined by

the 1-directed ones (i.e.  ∂α1 ,  e1, +1),  together with transpositions (see 1.3).

The involutive case, further equipped with reversions under axioms which can be easily deduced

from [GM], is also of interest - e.g. for higher relations, higher (co)spans and singular cubes of a

space; however, we will not go here into such details.

A symmetric cubical functor is a cubical functor which also preserves transpositions. A symmetric

transversal transformation (or structural transformation)  h: F =  G: A =  B  between such

functors is defined as above (1.5), by further requiring that the transversal maps  h(x): F(x) = G(x)

commute with all transpositions.
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1.8. Cubical relations. As a simple, non-trivial example we recall here the symmetric cubical category

ωRel  of cubical relations (of sets), introduced in [G4] (Sections 4.1, 4.2). We follow here the direct

construction of cubical relations as subsets of suitable cartesian products, but that paper also gives

another realisation of  ωRel,  as a quotient of the weak symmetric cubical category of spans of sets; the

latter can more easily be extended to other domains.

Items will be indexed by the three-element set  {0, u, 1}  and its powers. A 1-cubical relation is an

ordinary relation  a: a0 =; a1  of sets, viewed as a subset  au ⊂ a0 × a1,  and will be written with a dot-

marked arrow; their composition will be written in additive notation. The cubical structure so far is

obvious:

∂α1 (a: a0 =; a1)  =  aα, e1(x)  =  Δ(x): x =; x (for  x  a set),

where  Δ(x)  is the diagonal of  x × x.

A 2-cubical relation  a  consists of:

- four vertices  (aij): 2×2 = Set  (where  2×2 = {0, 1}2  is a discrete category on four objects),

- four (binary) relations on the sides of a square, written  auj  and  aiu  (see the diagram below, where no

condition of commutativity is assumed),

- and one quaternary relation  auu ⊂ Π  aij  whose projection on each side is contained in the

corresponding binary relation

   au0

a00 - à -= a10 à -=    1 auu  ⊂  a00 × a01 × a10 × a11,

(1)    a0u :òà auu :òà   a1u :ò   2 (p0j, p1j)(auu)  ⊂  auj,

a01 - à -= a11 (pi0, pi1)(auu)  ⊂  aiu.
au1

(We write  pij:  a00 × a01 × a10 × a11 = aij  the four cartesian projections.)

The 1-concatenation  c = a +1 b  is defined when the 2-cubes  a, b  are consecutive in direction 1,

i.e.  a1u = b0u,  and is shown below, at the right

au0    bu0    au0 + bu0

a00 - à -= a10 = b00 - à -= b10 a00 - -à -= b10

(2)    a0u :òà auu :òà   a1u =    b0u :òà bu u :òà   b1u    a0u :òà  cuu :òà   b1u

a01 - à -= a11 = b01 - à -= b11 a01 - -à -= b11
au1 bu 1 au1 + bu1

The subset

(3) cuu  =  auu +1 buu  ⊂  a00 × a01 × b10 × b11,

is formed of those 4-tuples  (x00, x01, z10, z11)  for which there is some pair  (y, y') ∈ a10 × a11 = b00 ×

b01  such that  (x00, x01, y, y') ∈ auu  and  (y, y', z10, z11) ∈ buu.  In other words,  auu +1 buu  is an

ordinary composition of relations, provided we view  auu  and  buu  as binary relations, as follows:

(4) auu: a00 × a01 =; a10 × a11, buu: b00 × b01 =; b10 × b11.

This proves that 1-concatenation is strictly categorical, i.e. strictly associative, with strict units

provided by the following degeneracy  e1(a)  of an ordinary relation  a: a0 =; a1
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 e1(a0)

  a0 - à -=   a0 (e1a)u0  =  e1(a0),

(5)  au :òà  (e1a)uu :òà  au (e1a)uu  =  Δ(au),

  a1 - à -=   a1 (e1a)u1  =  e1(a1).
 e1(a1)

Δ(au)  =  {(x0, x1, x0, x1)  ∈  a0 × a1 × a0 × a1  |  (x0, x1) ∈ au},

The same holds for 2-concatenation, which can be defined in the symmetric way, or by

transposition and the previous operation:

(6) a  +2 a'  =  s1(s1(a)  +1 s1(a')), e2a  =  s1e1(a).

We proceed analogously in higher dimension. An n-cube, or n-cubical relation, is a family  a =

(at),  indexed by the n-tuples  t = (t1,..., tn) ∈ {0, 1, u}n  and satisfying the following conditions.

(a) If  t ∈ 2n,  then  at  is a set. Otherwise, let  w = |t|  be its weight, i.e. the number of  u's  in the n-

tuple; then  at  is a 2w-ary relation

(7) at  ⊂  At  =  Π ai1...in,

the cartesian product being indexed by those n-tuples  i = (i1,..., in) ∈ 2n  where  ij  coincides with  tj
when the latter is 0 or 1  (there are  2w  such n-tuples). For instance,  a0u ⊂ a00 × a01,  as in diagram

(1).

(b) If  t'  is a multi-index obtained by replacing one occurrence of  u  in  t  with 0 or 1 (with weight  w'

= w – 1),  then the corresponding projection  ptt'  must send the 2w-ary relation  at  into the 2w'-ary

relation  at'

(8) ptt': At = At', ptt'(at)  ⊂  at'.

We define now a transversal map  f: a = b,  as a natural transformation on the discrete category

2n  which is 'coherent' with the 'multiple' relations inside  a  and  b:

(9) f  =  (fi):  a = b:  2n = Set, fi: ai =  bi (i = (i1,..., in) ∈ 2n),

(coherence condition) for every multi-index  t ∈ {0, 1, u}n,  the mapping  ft: At = Bt  defined by the

cartesian product of the components  fi  singled out in (7), carries the subset  at  into  bt.

Faces are easily defined, using the maps

(10) ∂αi : {0, 1, u}n–1 = {0, 1, u}n, ∂αi (t1,..., tn–1)  =  (t1,..., α,..., tn–1) (α = 0, 1),

Transpositions come from permuting the factors of  {0, 1, u}n.

Degeneracies are defined inductively, extending (5) (here  at  is written as  a(t)  and  α ∈ 2)

(11) (e1a)(α, t2,..., tn)  =  a(t2,..., tn),

(e1a)(u, α,..., tn)  =  (e1∂α1 a)(α,..., tn),

(e1a)(u, u,..., tn)  =  Δ(a(u,..., tn)).

Here, a special transversal map (see 1.5.5) amounts to an inclusion of subsets of cartesian products

of the vertices.
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The importance of transversal maps (in the present strict case, where comparisons are not needed)

is the same as for double categories: the category (or 2-category)  Rel(Ab)  of relations of abelian

groups even lacks finite products and coproducts, while the double category  Rel(Ab)  of abelian

groups, their homomorphisms and relations has all double limits and colimits (cf. [GP1]). Similarly,

the cubical categories of relations (on sets or abelian groups) have all cubical limits and colimits (cf.

[G5]).

2. From symmetric cubical categories to globular categories (the strict case)

A = ((An), (∂αi ), (ei), (si))  is always a symmetric cubical set. In such a structure, we single out the

globular cubes (in direction 1), which form a globular set  Glb(A).  Note that, even though

transpositions do not appear in the definition of a globular cube, without them we would have non-

equivalent notions of globularity in the various directions.

Similarly, a basic symmetric cubical category  A  gives a globular ω-category  Glb(A),  while a

symmetric cubical category  A  has a sort of 'cylindrical' ω-category  Cyl(A).

2.1. Globular cubes. An n-cube  x   of the symmetric cubical set  A  is said to be globular, or an n-

globe (in direction 1), if it satisfies the following condition:

(a)  for each  i = 1,..., n  and  α = ±,  the i-directed face  ∂αi (x)  belongs to the image of the iterated

degeneracy  (e1)i–1: An–i = An–1.

Here  (e1)i–1  is an abuse of notation, for the composite

e1 ... e1  =  ei–1 ... e1: An–i = ... = An–2 = An–1.

Thus, all 0-cubes and 1-cubes are globular; the following diagrams show the cases  n = 2, 3

  x–
2 _   x–

2 à -=    1 

(1) x–
1 :ò   x :ò  x+

1 :ò   2 ∂α2 (x)  =  e1(xα2 ),

   x+
2 _   x+

2

 x–
3 _ _ _  x–

3

: € e1e1(x–
3) € à -=    1

(2) x–
2 :  x–

3 _ _ _  x–
3    3 :ò ì$   2 ∂α2 (x)  =  e1(xα2 ),

:ò  x–
1 : :

 x+
3 :  x+

2 e1(x+
2) :  x+

2 ∂α3 (x)  =  e1e1(xα3 ).
  € :ò :ò

 x+
3 _ _ _  x+

3

In the second, the 1-directed faces  xα1   are arbitrary 2-cubes; the 2-indexed faces  e1(xα2 )  are

degenerate in direction 1; the 3-indexed faces  e1e1(xα3 )  are totally degenerate.

One can notice the following points, made precise in the lemma below.



11

- There is no condition on the 1-directed faces  xα1  = ∂α1 (x) ∈ An-1  (since  (e1)0 = id(An–1)).

- Provided that  n ≥ 2,  we have  ∂α2 (x) = e1(xα2 ),  for some  xα2  ∈ An–2;  but both  xα2   are determined by

x,  as the 1-faces of its 1-faces  xβ1  (independently of  β = ±):

xα2   =  ∂β1e1(xα2 )  =  ∂β1∂
α
2 (x)  =  ∂α1∂

β
1(x)  =  ∂α1 (xβ1).

- And so on. Finally, the highest-directed faces  ∂αn (x)  are totally degenerate, produced by two vertices

∂αn (x)  =  (e1)n–1(pα), pα  =  xαn   =  ∂α1  ∂α2
1  ... ∂αn

1 (x)  =  ∂αn
1  ... ∂α2

n–1 ∂αn (x),

(where the indices  α2,..., αn  are arbitrary).

In the symmetric cubical category  A,  a globular cube is defined in the same way. A transversal

map  f: x = y  is said to be cylindrical if it satisfies the same condition (a); then the cubes  x, y  are

globular, while  f  itself has a sort of 'cylindrical' geometry, analysed in 2.7. We say that  f  is special

cylindrical if, moreover, it is special as defined in 1.5, i.e. if all its  2n  vertices are identities.

2.2. Lemma and Definition (Globular faces). Let  x  be an n-globe of the symmetric cubical set  A.

Its i-indexed faces  ∂αi (x)  are degenerate in the first  i–1  directions, and can be obtained as follows

(independently of  α2,..., αi  = ±):

(1) ∂αi (x)  =  (e1)i–1(dαi (x)),

dαi (x)  =  xαi   =  ∂α1  ∂α2
1  ... ∂αi

1 (x)  =  ∂αi
1  ... ∂α2

i–1 ∂αi (x).

The (n–i)-dimensional cube  dαi (x)  is globular. It will be called a globular face of  x  of dimension

n–i.  In particular, the 1-directed faces

(2) ∂α1 (x)  =  dα1 (x)  =  xα1 ,

will be called the main faces of  x.  They have the same faces

(3) ∂βj (x
α
1 )  =  (e1)j–1(xβj ),

independently of  α.  (We will see in the next lemma that these faces determine the faces of  x.)

Proof. By hypothesis, for each  i = 1,...n,  there exist two cubes  xαi   such that  ∂αi (x) = (e1)i–1(xαi ).

But then  xαi   is determined as in formula (1):

xαi   =  ∂α2
1  ... ∂αi

1  e1 ... e1(xαi )  =  ∂α2
1  ... ∂αi

1  ∂αi (x)  =  ∂α1  ∂α2
1  ... ∂αi

1  (x).

Moreover the (n–i)-cube  xαi   is globular, because its j-directed faces

∂βj (x
α
i )  =  ∂βj  ∂

α
1  ∂α2

1  ... ∂αi
1  (x)  =  ∂α1  ∂α2

1  ...  ∂αi
1  (∂βj +i x),

belong to  ∂α1  ∂α2
1  ... ∂αi

1  (Im(e1)j+i–1)  =  Im(e1)j–1.

Taking  i = 1  in the last computation we get the formula (3)

∂βj (∂
α
1 (x))  =  ∂α1∂

β
j +1(x)  =  ∂α1 (e1)j(xβj )  =  (e1)j–1(xβj ). Δ

2.3. Lemma (Inductive form). Let  x  be an n-cube of the symmetric cubical set  A,  with  n ≥ 1.  Then

x  is globular if and only if:

(i) the main faces  ∂α1 (x)  are (n–1)-globes,
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(ii) the other faces are degenerate in direction 1, i.e.  ∂βi +1(x) ∈ Im(e1),  for  i < n  and  β = ±.

Moreover, when  x  is globular, its main faces  ∂α1 (x)  have the same boundary.

The second condition above can be equivalently replaced with:

(ii')  ∂βi +1(x)  =  e1 ∂βi  ∂
α
1 (x) (for all  i, α, β).

Proof. First, condition (ii') obviously implies (ii). Conversely, if  ∂βi +1(x) = e1(u),  then:

u  =  ∂α1  e1(u)  =  ∂α1  ∂βi +1(x)  =  ∂βi  ∂
α
1 (x).

Now, let  x  be an n-globe, so that  ∂αi (x) = (e1)i–1(xαi ).  We already know from the previous lemma

that the main faces  ∂α1 (x) = dα1 (x) = xα1   are (n–1)-globes and have the same boundary. Property (ii)

also holds:  ∂βi +1(x) ∈ Im(e1)i ⊂ Im(e1).

Conversely, let  x  satisfy (i) and (ii'). Then  ∂βi +1(x) = e1 ∂βi  ∂
α
1 (x).  But  ∂α1 (x)  is an (n-1)-globe,

whence  ∂βi +1(x)  belongs to  e1(Im(e1)i–1) = Im(e1)i,  so that  x  is an n-globe. Δ

2.4. Theorem (Closure properties). In a symmetric cubical set, globular cubes are closed under  e1

and all faces  ∂αi .  In a (possibly basic) symmetric cubical category they are also closed under all i-

concatenations. In a symmetric cubical category, globular transversal maps are closed under transversal

composition and all i-concatenations; the same holds for the special ones.

Proof. First, it is obvious that  e1  preserves globular cubes (because  ∂αi e1 = e1∂αi +1).

We already know from the previous lemma that the (n–i)-dimensional cube  dαi (x)  is a globular

cube; it follows that  ∂αi (x) = (e1)i–1(dαi (x))  is also.

Now, in a basic symmetric cubical category, let us start from noting that all 1-cubes are globular

and obviously closed under 1-concatenation. Suppose that globular cubes of dimension  n–1  are

closed under concatenation in all directions (i.e.  1,..., n–1).  Now, consider the i-concatenation  x +i y

of two globular n-cubes, with  i ≤ n,  and let us prove that it is globular, using the previous lemma.

Let us recall the formulas

( ∂αj (x) +i–1 ∂αj (y), if  j < i ≤ n,
∂αj (x +i y)  = £

4 ∂αj (x) +i ∂αj (y), if  i < j ≤ n.

( ej(x) +i+1 ej(y), if  j ≤ i ≤ n,
 ej(x +i y)  = £

4 ej(x) +i ej(y), if  i < j ≤ n+1.

As to property (i), we must check that the main faces  ∂α1 (x +i y)  are (n–1)-globes. Indeed, for  i =

1,  ∂α1 (x +1 y)  is  x  or  y,  and is globular; for  i > 1 ,  ∂α1 (x +i y)  is a concatenation of lower globular

cubes, hence is globular by the inductive hypothesis.

As to property (ii), suppose that  ∂βj (x) = e1(u)  and  ∂βj (y) = e1(v),  with  j > 1.  We must check

various cases for  ∂βj (x +i y).

(a) Case  j < i  (with  j > 1  and  i > 2):

∂βj (x +i y)  =  ∂βj (x) +i–1 ∂βj (y)  =  e1(u) +i–1 e1(v)  =  e1(u +i–2 v).

(b) Case  1 < i < j:
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∂βj (x +i y)  =  ∂βj (x) +i ∂βj (y)  =  e1(u) +i e1(v)  =  e1(u +i–1 v).

(c) Case  1 = i < j:

∂βj (x +1 y)  =  ∂βj (x) +1 ∂βj (y)  =  e1(u) +1 e1(v)  =  e1(u),

where the existence of  e1(u) +1 e1(v)  means that:  u = ∂+
1e1(u) = ∂–

1 e1(v) = v.

(d) Case  i = j.  This is obvious, because  ∂βi (x +i y)  is  x  or  y.

The last assertion, about transversal maps, is proved in the same way (for i-concatenations), or is

obvious (for transversal composition). Δ

2.5. The globular set associated to a symmetric cubical one. Starting from the symmetric cubical

set  A,  we begin by constructing the associated globular set  GlbA  of its globular cubes.

An n-globe of  GlbA  is a globular n-cube of  A.  Faces and degeneracies come from the 1-directed

faces of cubes (because of Theorem 2.4):

(1) dα: GlbnA        _£)        Glbn–1A  :e, dα  =  ∂α1 ,    e  =  e1.

We have thus a globular set  ((GlbnA), (dα), (e))

  dα  dα dα dα

(2) ... GlbnA        _£∞-)        Glbn–1A       _£∞-)        ...       _£∞-)        Glb1A        _£∞-)        Glb0A  = A0.
  e  e  e    e

This means that faces and degeneracies satisfy the globular identities:

(3) dαd–  =  dαd+, dαe  =  id,

and indeed we already know that  ∂α1∂
β
1(x) = dα2 (x)  does not depend on  β  (cf. 2.2.1).

In any globular set  G = ((Gn), (dα), (e))  one can define the higher faces (or iterated faces)  dαi ,

for  i = 1,..., n  (and independently of  α2,..., αn)

(4) dαi : Gn = Gn–i, dαi   =  dα1  dα2
1  ... dαi

1 .

For  G = GlbA,  this definition plainly agrees with the globular faces defined above (in 2.2). An n-

globe  x ∈ Gn  can be written in the following form, showing all its globular faces:

(5) x: d–
1x  =1  d+

1x: d–
2x  =2  d+

2x:   ...   d–
nx  =n  d+

nx.

We write  Glb  (resp. TrnGlb)  the category of globular sets (resp. n-truncated globular sets) and

their (obvious) morphisms.

2.6. Compositions. If  A  is a basic symmetric cubical category, we make the globular set  GlbA  (on

the underlying symmetric cubical set  A)  into a globular category  GlbA ,  by defining its

compositions.

Let  x, y  be two n-globes of  A,  consecutive in direction  i = 1,..., n.  This is equivalently expressed

by the following conditions, globular or cubical respectively

(1) d+
i (x)  =  d–

i (y), ∂+
i (x)  =  ∂–

i (y),
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because  ∂αi  = (e1)i–1dαi   (by 2.5.2).  Therefore, we define their i-composition  x +i y  as in  A:  the

result is globular, because of Theorem 2.4.

Since our compositions are strictly associative and unitary,  GlbA   is indeed a globular category.

If  A  is an (extended) symmetric cubical category, the same arguments apply to cylindrical

transversal maps (between globular cubes), and we obtain a category object  CylA  in the category of

globular categories. This will be called a cylindrical category.

By a further restriction to special cylindrical transversal maps (between globular cubes) we obtain a

'special' category object  SCylA  in the category of globular categories, where the 'transversal'

morphisms between vertices are identities. This will be called a special cylindrical category.

Cylindrical transversal maps have indeed a cylindrical shape: for instance, a cylindrical 2-map  f: x

= x'  (where the faces  ∂α2 (f)  are 1-degenerate)

  p' _ _ _   p'

  f––  ù° e1(f––)  ù°  ù° :  b' ù°    0

  p _ _ _   p f+ :ò à -=    1

  a :   x  b :  ù°   q' :ò   2
:ò   :ò  ù° f++

  q _ _ _   q

can be pictured as a solid cylinder on a 2-globe

f––

  p - - =  p' x: a =1 b: p =2 q,
fi fl fl x': a' =1 b': p' =2 q',

  a :ò êîx :ò  
b

    -=f
+
:ò

b'
à -=êî    0

ß ∂ ∂ :ò   2 1 f–: a = a', f––: p = p',
  q - - =  q' f+: b = b', f++: q = q'.

  f++

After its transversal 0-faces  x, x',  the map  f  has the following globular faces

(3) fα  =  dα1 (f): ∂α1 (x) = ∂α1 (x'), fαα  =  dα2 (f): dα2 (x) = dα2 (x') (α = ±).

It is special cylindrical if its vertices  fαα = dα2 (f)  are identities.

2.7. Globular relations. The basic cubical category  ωRel(0)  of cubical relations yields a globular

category  Glb(ωRel(0)),  where a 2-globe  a  consists of a 2-cubical relation (as in 1.8.1) whose 2-faces

are 1-degenerate. Writing  a: a' =1 a": x =2 y,  we have

- two sets  x, y,

- two (binary) relations  a' ⊂ x × y,  a" ⊂ x × y,

- and one quaternary relation  a  satisfying the following conditions (where  Δ(x)  is the diagonal of  x

× x)
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  x
fi   a fl a  ⊂  x × y × x × y,

(1)  a' :ò - = :ò  a" à -=    1 (p1, p3)(a)  ⊂  Δ(x), (p2, p4)(a)  ⊂  Δ(y),

ß ∂ :ò   2 (p1, p2)(a)  ⊂  a', (p2, p4)(a)  ⊂  a".
  y

On the other hand, the cubical category  ωRel  (including transversal maps) yields a cylindrical

category  Cyl(ωRel).  Recalling the description of a special transversal map of  ωRel  as an inclusion

of subsets of cartesian products of the vertices (at the end of 1.8), the special cylindrical category

SCyl(ωRel)  can be called an ordered ω-category.

As to low-dimensional truncated cases, the double category of relations  2Rel = tr1(ωRel)  stays

unchanged under  Cyl  (since all 1-cubes are globular), while  SCyl(2Rel)  is the ordinary 2-category

of relations (an ordered category). One level up, the triple category of relations  3Rel = tr2(ωRel)

yields:

- a structure  Cyl(3Rel),  which is a category object in the category of 2-categories,

- an ordered 2-category  SCyl(3Rel)  (having consistent orderings of 1-cells and 2-cells with the same

0-dimensional faces).

3. Weak symmetric cubical categories

We now recall the definition of a weak symmetric cubical category, introduced in [G1, G4].

3.1. Symmetric precubical categories. First, a basic symmetric precubical category

(1) A  =  ((An), (∂αi ), (ei), (si), (+i)),

is a symmetric cubical set with compositions, satisfying the consistency axioms (cub.1-2) of 1.4, where

compositions are consistent with transpositions (in the sense of 1.7.2). Notice that we are not

assuming that the i-compositions behave in a categorical way or satisfy interchange, in any sense, even

weak. The morphisms of this structure are obvious.

Second, a symmetric precubical category is a category object  A  in the category of basic

symmetric precubical categories (as defined above)

  ∂
α
0  c0

(2) A(0)       _})-∞        A(1)       -é        A(2) (α = ±).
 e0

Explicitly, this means the following data and axioms.

(wcub.1) A basic symmetric precubical category  A(0) = ((An), (∂αi ), (ei), (si), (+i)),  whose entries are

called n-cubes, or n-dimensional objects of  A.

(wcub.2) A basic symmetric precubical category  A(1) = ((Mn), (∂αi ), (ei), (si), (+i)),  whose entries are

called n-maps of  A,  or also (n+1)-cells.
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(wcub.3) Symmetric cubical functors  ∂α0   and  e0,  called  0-faces and 0-degeneracy, with  ∂α0 .e0 = id.

Also here, an n-map is written as  f: x = x',  where  ∂–
0f = x,  ∂+

0f = x'  are n-cubes. Every n-

dimensional object  x  has an identity  e0(x): x = x.  Note that  ∂α0   and  e0  preserve cubical faces  (∂αi ,

with  i > 0),  cubical degeneracies  (ei),  transpositions  (si)  and cubical concatenations  (+i).  In

particular, given two i-consecutive n-maps  f, g,  their 0-faces are also i-consecutive and we have:

(3) f +i g:  x +i y =  x' +i y' (for  f: x = x',  g: y = y';  ∂+
i f = ∂–

i g).

(wcub.4) A composition law  c0  which assigns to 0-consecutive n-maps  f: x = x',  h: x' = x"  (of

the same dimension), an n-map  hf: x = x"  (also written  h.f).  This composition law is (strictly)

categorical, and forms a category  An = (An, Mn, ∂α0 , e0, c0).  It is also consistent with the basic

symmetric precubical structure, in the following sense

(4) ∂αi (hf)  =  (∂αi h).(∂αi f), ei(hf)  =  (eih)(eif), si(hf)  =  (sih)(sif),

 ∂–
i f  ∂–

i h

(h +i k).(f +i g)  =  hf +i kg, à - -= à - -= à
 x :ò – f = :ò – h = :ò  x"

à - -= à - -= à à -=    0

 y :ò – g = :ò – k = :ò  y" :ò   i
à - -= à - -= à

 ∂+
i g  ∂+

i k

The last condition is the (strict) middle-four interchange between the strict composition  c0  and

any weak one.

An n-map  f: x = x'  is said to be special if its  2n  vertices  ∂ααααf  are identities, where:

(5) ∂ααααf:  ∂ααααx = ∂ααααx' ∂αααα  =  ∂α1 1 ∂α2 2 ... ∂αn n (αi = ±).

In degree 0, this just means an identity.

3.2. Comparisons. We now define a weak symmetric cubical category  A  as a symmetric precubical

category (3.1), which is further equipped with invertible special transversal maps, playing the role of

comparisons for units, associativity and cubical interchange, as follows. (We only assign the

comparisons in direction 1; all the others can be obtained with transpositions.)

(wcub.5) For every n-cube  x,  we have a special invertible n-map  λ1x,  which is natural on n-maps

and has the following faces (for  n > 0)

(1) λ1x: (e1∂–
1x) +1 x  =  x (left-unit 1-comparison),

∂α1λ1x  =  e0∂α1 x, ∂αj λ1x  =  λ1∂αj x      (1 < j ≤ n)
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∂–
1x ∂–

1x

à - - - à à - - - à
 μ e0∂

–
1x  μ :  μ : : ù°    0

à - - - à : ∂+
j x à :    x : ∂+

j x à -=    j

˙    e1∂
–
1x ˙ λ1∂

+
j x : ˙ λ1∂

–
j x : : :ò   1

à - - - à à à à - - - à
∂–

j x :    x :  μ ∂–
j x :  μ e0∂

+
1x  μ (1 < j ≤ n).

à - - - à à - - - à
∂+

1x ∂+
1x

The naturality condition means that, for every n-map  f: x = x',  the following square of n-maps

commutes

λ1x
(e1∂–

1x) +1 x - -=   x

(2) (e1∂
–
1f) +1 f  :ò :ò   f

(e1∂–
1x') +1 x' - -=   x'

λ1x'

(wcub.6) For every n-cube  x,  we have an invertible special n-map  ρ1x,  which is natural on n-maps

and has the following faces (the naturality diagram, similar to diagram (2), is not written down)

(3) ρ1x: x +1 (e1∂+
1x)  =  x, (right-unit 1-comparison),

∂α1ρ1x  =  e0∂α1 x, ∂αj ρ1x  =  ρ1∂αj x      (1 < j ≤ n),

∂–
1x ∂–

1x

à - - - à à - - - à
 μ e0∂

–
1x  μ :  μ : : ù°    0

à - - - à : ∂+
j x à :    x : ∂+

j x à -=    j

:    x : ρ1∂
+
j x : : ρ1∂

–
j x : : :ò   1

à - - - à à à à - - - à
∂–

j x ˙    e1∂
+
1x ˙  μ ∂–

j x ˙  μ e0∂
+
1x  μ (1 < j ≤ n).

à - - - à à - - - à
∂+

1x ∂+
1x

(wcub.7) For three 1-consecutive n-cubes  x, y, z,  we have an invertible special n-map  κ1(x, y, z),

which is natural on n-maps and has the following faces

(4) κ1(x, y, z):  x +1 (y +1 z)  =  (x +1 y) +1 z (associativity 1-comparison),

∂–
1κ1(x, y, z)  =  e0∂–

1x, ∂+
1κ1(x, y, z)  =  e0∂+

1z,

∂αj κ1(x, y, z)  =  κ1(∂αj x, ∂αj y, ∂αj z)      (1 < j ≤ n),
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∂–
1x ∂–

1x

à - - - à à - - - à
 μ e0∂

–
1x  μ : ∂+

j x  μ : : ∂+
j x

à - - - à à à à  x +1 y à

: : : ∂+
j y : : : ∂+

j y ù°    0

 ∂–
j x :    x : à  ∂–

j x : à - - - à à -=    j
: :   κ1∂

+
j : :   κ1∂

–
j : : :ò   1

à - - - à : ∂+
j z à :     z : ∂+

j z

 ∂–
j y : : :  ∂–

j y : : :

à  y +1 z à à à à - - - à
 ∂–

j z : :  μ ∂–
j z :  μ e0∂

+
1z  μ (1 < j ≤ n).

à - - - à à - - - à
∂+

1z ∂+
1z

(wcub.8) Given four n-cubes  x, y, z, u  which satisfy the boundary conditions making the following

concatenations possible, we have an invertible n-map  χ1(x, y, z, u),  which is natural on n-maps and has

the following faces (partially displayed below)

(5) χ1(x, y, z, t): (x +1 y) +2 (z +1 t)  =  (x +2 z) +1 (y +2 t) (interchange 1-comparison),

∂–
1χ1(x, y, z, t)  =  e0(∂–

1x +2 ∂–
1z), ∂+

1χ1(x, y, z, t)  =  e0(∂+
1y +2 ∂+

1t),

∂–
2χ1(x, y, z, t)  =  e0(∂–

2x +1 ∂–
2y), ∂+

2χ2(x, y, z, t)  =  e0(∂+
2z +1 ∂+

2t),

∂αj χ1(x, y, z, t)  =  χ1(∂αj x, ∂αj y, ∂αj z, ∂αj t) (2 < j ≤ n),

∂–
2x ∂–

2y ∂–
2x ∂–

2y

à - à - à à - à - à
 μ e0  μ : ∂+

1y  μ :   x :   y : ∂+
1y ù°    0

à - à - à à à à   +2 à   +2 à à -=    1

 ∂–
1x :   x +1 y :  e0 : ∂+

1t  ∂–
1x : e0 :   z :   t : ∂+

1t :ò   2
à - à - à à à à - à - à

 ∂–
1z :   z +1 t :  μ  ∂–

1z :  μ e0  μ
à - à - à à - à - à

 ∂+
2z   ∂+

2t  ∂+
2z  ∂+

2t

(wcub.9) Finally, these comparisons must satisfy some conditions of coherence, listed in 3.3 below.

There is a more general 'u-lax' case, dealt with in [G6], which will not be used here. For a u-lax

symmetric cubical category we do not assume the comparisons for left and right unitarity to be

invertible (writing them as directed towards simpler expressions, as above); but we still require that the

comparisons for associativity and interchange be invertible. The main example is the cubical structure

Sng(X)  of singular cubes of a topological space, with transversal maps defined by reparametrisations.

In that version, the axioms above are denoted as (ucub.5-9).

3.3. Coherence. The coherence axiom (wcub.9) means that the following diagrams of transversal

maps commute (assuming that all the cubical compositions make sense).
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(i) Coherence pentagon for  κ = κ1:

(x +1 y)  +1  (z +1 u)
 κ ù° ì$ κ

(1) x +1 (y +1 (z +1 u)) ((x +1 y) +1 z) +1 u

1+κ ì$   κ
ù°  κ+1

x +1 ((y +1 z) +1 u) - -= (x +1 (y +1 z)) +1 u

(ii) Coherence conditions for the unit comparisons:

   κ
e1∂–

1x +1 (x +1 y) - -= (e1∂–
1x +1 x) +1 y

(2)  λ â êî äö ëλ+1

  x +1 y

   κ
x +1 (e1∂–

1y +1 y) - -= (x +1 e1∂+
1x) +1 y

(3) 1+λ â êî äö ëρ+1

  x +1 y

   κ
x +1 (y +1 e1∂+

1y) - -= (x +1 y) +1 e1∂+
1y

(4) 1+ρ â êî äö ëρ
  x +1 y

(iii) Coherence hexagon for χ = χ1  and  κ = κ1

κ+κ

(x +1 (y +1 z)) +2 (x' +1 (y' +1 z')) - -=    ((x +1 y) +1 z) +2 ((x' +1 y') +1 z')

   χ :ò :ò   χ

(5) (x +2 x') +1 ((y +1 z) +2 (y' +1 z'))   ((x +1 y) +2 (x' +1 y')) +1 (z +2 z')

     1+χ :ò :ò   χ+1

(x +2 x') +1 ((y +2 y') +1 (z +2 z')) - -=   ((x +2 x') +1 (y +2 y')) +1 (z +2 z')
  κ

(iv) Coherence conditions for  χ = χ1,  λ = λ1  and  ρ = ρ1

λ+λ  ρ+ρ

 (e1∂–
1x +1 x) +2 (e1∂–

1y +1 y) - -=    x +2 y -é -    (x +1 e1∂+
1 x) +2 (y +1 e1∂+

1 y)

   χ :ò / :ò   χ

(6) (e1∂–
1x +2 e1∂–

1y) +1 (x +2 y) / (x +2 y) +1 (e1∂+
1 x +2 e1∂+

1 y)

/ / /
 e1∂–

1(x +2 y) +1 (x +2 y) - -=   x +2 y -é -    (x +2 y) +1 e1∂+
1(x +2 y)

   λ    ρ
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(The equality in the left and right column of this diagram follows from the 'geometric interactions'

of axiom (cub.2), in 1.4.)

Truncation works as described in1.8. Again, a 1-truncated symmetric weak cubical category has no

transpositions and is the same as a pseudo double category.

3.4. Remarks. As in 1.6(b), given two positive integers  i ≤ n,  the weak symmetric cubical category  A

has an associated weak double category  Ani,  whose double cells are the transversal n-maps of  A;

again, the two composition laws are the transversal composition and i-concatenation of  A.

The axioms (wcub.5-7) and (wcub.9)(i)(ii)  just express this fact, for  i = 1  (which is sufficient,

because of symmetry).

3.5. Unitarity. The weak symmetric cubical category  A  is said to be unitary if, for every cube  x,  its

comparisons  λ1x  and  ρ1x  are transversal identities, namely  e0(x).  (By symmetry, the same holds

for every cubical i-composition.)

Then, for a transversal map  f: x = y,  the naturality of  λ1  and  ρ1  proves that:

(i) e1∂–
1f +1 f  =  f  =  f + e1∂+

1f.

  e1∂–
1x +1 x _ _    x _ _    x +1 e1∂+

1x

e1∂–
1f +1 f :ò :ò   f :ò   f +1 e1∂+

1f

  e1∂–
1y +1 y _ _    y _ _    y +1 e1∂+

1y

But there is a more general notion, that is sufficient to ensure that globular cubes be closed under

concatenation, and can often be 'forced' on weak symmetric cubical categories without heavy

modifications. We say that  A  is preunitary if, for every 1-degenerate cube  e1(x),  its comparisons

λ1(e1(x))  and  ρ1(e1(x))  are transversal identities, actually the same:  e0e1(x): e1(x) +1 e1(x) = e1(x).

4. Examples: cubical cospans and cubical profunctors

We recall, from [G1], the construction of the weak symmetric cubical category  ωCosp(X)  of

cubical cospans on a category with pushouts  X.  Then, starting from the structure  ωCosp(Emb)  of

cubical cospans of full embeddings of categories, we give a construction of the weak symmetric cubical

category  ωCat  of cubical profunctors. (This modifies a similar construction given in [G4]: besides

using more general transversal maps, we also correct an error of that paper with respect to cubes.)

Here, an embedding of categories always means a faithful functor, injective on objects.

4.1. Cubical cospans. We follow a construction given in [G1] for cubical cospans. Modifications of

this structure for higher dimensional cobordism can be found in [G2, G3].

Let  X  be a category with pushouts, and equipped with a choice of them, called distinguished

pushouts. A cospan in  X  is a diagram of shape

(1) u  =  (u–: X– = X0 é X+ :u+),
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viewed as a morphism  u: X– =; X+;  they are composed with distinguished pushouts, forming a

bicategory; or, also, the weak arrows of a larger structure, the pseudo double category  Cosp(X),  as in

[GP1].

The model of the construction is the formal cospan  ∧∧∧∧,  together with its cartesian powers  ∧∧∧∧n

 (-1,-1) -=   (0,-1) -é   (1,-1) à -=    1

:ò :ò :ò :ò   2
(2) –1  =  0  é  1 ∧∧∧∧,  (-1, 0) -=   (0, 0) -é   (1, 0)

:! :! :!
 (-1, 1) -=   (0, 1) -é   (1, 1) ∧∧∧∧2.

(In these diagrams, identities and composed arrows are understood.)

An n-cubical cospan in  X  is thus defined as a functor  x: ∧∧∧∧n = X.

Faces and degeneracies are obvious, and these diagrams form a cubical set. Moreover, for  i = 1,...,

n,  there are compositions  x +i y  of i-consecutive n-cubes, computed by distinguished pushouts.

These operations behave 'categorically' and satisfy interchange in a weak sense, up to suitable

comparisons.

To make room for the latter, the n-th component of  ωCosp(X)

(3) C ospn(X)  =  Cat(∧∧∧∧n, X),

is not reduced to the set of functors  x: ∧∧∧∧n =  X  (the n-cubes, or n-dimensional objects, of the

structure), but is the category of such functors and their natural transformations  f: x = x': ∧∧∧∧n = X.

The latter are the n-maps of the structure, or (n+1)-cells.

The comparisons are invertible special n-maps (between different realisations of the same colimit);

but general n-maps are also important, e.g. to define limits and colimits (cf. [G1], Section 4.6, or [G5]

for a general theory of cubical limits).

4.2. Remarks. Let us make precise that our choice of pushouts in  X  assigns, to each span  (f, g)  one

distinguished pushout  (f', g')  (in a symmetric way, i.e. consistently with permutation of pairs)

 f  1
à - -= à    x - -=    x

(1)    g :ò | – :ò
   f'    1 :ò | – :ò

   1

à - -= à    x - -=    x
 g'  1

We assume a first unitarity constraint:

(i) each square of identities is a distinguished pushout,

so that  ωCosp(X)  is preunitary (3.5).

If one assumes a stronger unitarity constraint (as in [G1]):

(ii) the distinguished pushout of the span  (f, 1)  is  (1, f),  and symmetrically,
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the weak symmetrical cubical category  ωCosp(X)  becomes unitary, which would simplify even more

our procedures of globularisation, in the next section. But we prefer not to oversimplify this example.

4.3. Profunctors as cospans. Now, to deal with cubical profunctors, we start from cubical cospans of

full embeddings of (small) categories.

The crucial point is the fact that an ordinary profunctor  x: x–1 =; x1  has a collage  x0,  which

consists of the sum of the categories  x–1  and  x1,  supplemented with new homs  x0(a, b) = x(a, b),

for  a  in the domain and  b  in the codomain. (Formally, the collage of a profunctor is a double colimit,

the cotabulator, in the weak double category of categories, functors and profunctors, see [GP1].)

Thus, the profunctor  x  can be described as a cospan

  x–    x+

(1)   x–1 --= x0 -é  x1

satisfying the following conditions (which imply that  x–, x+  have disjoint images)

(i)  x–, x+  are full embeddings,

(ii) the embeddings  x–, x+  cover all the objects of  x0,

(iii) there are no arrows in  x0  going from an object coming from  x1  to one coming from  x–1.

We have already seen how a profunctor yields such a cospan. Conversely, given the cospan (1), the

profunctor is reconstructed as:

(2) x: (x–1)op × x1 = Set, (a, b)  ±  x0(x–(a), x+(b)).

Note that condition (ii) is not closed under concatenation; we shall modify this operation (in 4.5).

In particular a functor  f: x = y  is identified with the profunctor

f: xop × y = Set, f(a, b)  =  y(f(a), b),

and can be described as a cospan  x = z é y  where  z  is the coproduct  x + y,  supplemented with

new arrows  z(a, b) = y(f(a), b),  for each object  a  of  x  and  b  of  y.

4.4. Cospans of categories. We begin from considering condition 4.3(i). Let  C  = ωC osp(Cat)  be

the weak symmetric cubical category of cubical cospans of functors between small categories. Let

Emb  be the category of small categories and their full embeddings, and  E  the transversally full

substructure of  C   whose cubes belong to  ωCosp(Emb).

Thus, an n-cube of  E  is a functor  x: ∧∧∧∧n = Emb,  but an n-map is a natural transformation  f: x

= y: ∧∧∧∧n = Cat.

To show that this is legitimate, we prove that  Emb  has pushouts, which are also pushouts in  Cat.

Given a span of full embeddings  A é X = B,  let us rename the items of  A  and  B  so that

these functors are full inclusions and  X = A ∩ B.  (The letters  a, a', α, α'  will denote objects and

arrows of  A,  while  b, b', β, β'  belong to  B  and  x, x'  are objects of  X.)

Now, the pushout  W  contains the obvious set-theoretical union  A ∪ B,  supplemented with:



23

(a) new arrows  [βα]: a = x = b,  for  α: a = x  in  A  and  β: x = b  in  B,  modulo the equivalence

relation generated by identifying  βα = β'α'  if there exists some  ξ: x = x'  in  X  such that  α' = ξα  in

A  and  β = β'ξ  in  B,

(b) and, symmetrically, new arrows  [αβ]: b = x = a.

The composition in  W  is easily defined, as in the following examples:

(1) [βα].α'  =  [β(αα')], for  α': a' = a,   α: a = x,   β: x = b,

[α'β'].[βα]  =  α'.(β'β).α, for  α: a = x,  β: x = b,   β': b = x',   α': x' = a',

where the last composition is in  A  (since  β'β: x = x'  belongs to the full subcategory  X = A ∩ B).

4.5. Essential cubical cospans. We now take condition 4.3(ii) into account, and construct a weak

symmetric cubical category  E'  of essential cubical cospans of full embeddings; it is contained in  E ,

but has different cubical compositions. (It might be viewed as a quotient of  E,  but using such a

construction would be longer.)

We say that an n-cospan (of full embeddings)  x: ∧∧∧∧n = Emb  is essential if, in each category  x(t)
(t ∈ Ob∧∧∧∧n),  every object is the image of some object in a category occupying a vertex of the cube.

(Plainly, there is nothing to check about such categories.)

Every n-cospan  x: ∧∧∧∧n = Emb  has an associated essential cospan  x̂,  obtained as follows: the

vertices of the cube (marked with bigger bullets, in the 2-dimensional case below) are left unchanged,

but we replace each other category  x(t)  (t ∈ Ob∧∧∧∧n)  with the full subcategory  x̂(t)  determined by the

objects which are the image of some object of a vertex

` -= à -é `
:ò :ò :ò

(1) à -= à -é à
:! :! :!
` -= à -é `

Essential cubical cospans form a structure  E '  that inherits from  E   faces, degeneracies,

transpositions and transversal maps. But we redefine the i-composition  x +̂i y  of i-consecutive

essential n-cubical cospans as the essential n-cubical cospan associated to their i-composition in  E

(2) x +̂i y  =  (x +i y)ˆ.

It is easy to see that the associativity comparisons restrict to (invertible) comparisons

(3) κ̂i(x, y, z):  x +̂i (y +̂i z)  =  (x +̂i y) +̂i z,

and similarly for unitarity and interchange.

Finally,  E'  is again a weak symmetric cubical category.

4.6. Cubical profunctors. Finally, we take care of condition 4.3(iii), and construct a weak symmetric

cubical category  ωCat  of cubical profunctors; it is contained in  E',  but has different degeneracies.
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 We say that an n-cube  x  of  E'  is an n-profunctor if, for each ordinary cospan which appears in  x

in a given direction  i

(1) x(t') = x(t) é x(t") (t'i = –1,  ti = 0,  t"i  = 1;   t'j = tj = t"j   for  j ≠ i ),

condition (iii) of 4.3 is satisfied: there are no arrows in  x(t)  going from an object coming from  x(t")

to one coming from  x(t').

Cubical profunctors inherit from  E'  faces, transpositions, transversal maps, compositions and

comparisons for associativity and interchange. Degeneracies make some problems (as it is also the

case for cospans in the domain of cobordism, see [G3]). Indeed, already in degree 1, the degenerate

cospan of a (non-empty) category

e1(x)  =  (x = x = x),

is essential but does not satisfy condition (iii). However (as in [G3]) we can replace degeneracies with

cylindrical degeneracies: the 1-cube  E1(x)  on the category  x  is the following essential cospan of

disjoint embeddings (which is also reduced):

  x–   x+

(2)   x --= x0 -é  x

where the category  x0 = x × 2  is the collage of the identity profunctor of  x  (and  x–, x+  are the

obvious embeddings). It is easy to see that  E1(x)  is a weak identity for concatenation with 1-

profunctors (but not with general 1-cubes of  E').  Similarly one defines the cylindrical degeneracy

E1(x)  of any n-cube.

We restrain the construction of composition so that  E1(x) +1 E1(x) = E1(x).

Finally, we have obtained a preunitary weak symmetric cubical category  ωCat  of cubical

profunctors, contained in  E';  the embedding preserves all the structure, except degeneracies (and their

comparisons), and is transversally full.

Notice that the bicategory of ordinary profunctors can be realised as a strict 2-category, as recalled

in [GP1]: a profunctor  u: A =; B  can be defined as a colimit-preserving functor

(3) u^: SetA = SetB, u^(F)(b)  =  Ùa u(a, b) × F(a).

This realisation might perhaps be used for another construction of  ωCat  as a strict symmetric

cubical category.

5. Globularisation in the weak case

For a weak symmetric cubical category  A,  a globularisation procedure has to make use of the

transversal maps, that contain the comparisons. This can be done associating to any transversal n-map

its companion, an (n+1)-cube.

Companions in double categories have been introduced and studied in [GP2-4]. They are related

with connections in cubical sets, in the sense of Brown-Higgins [BH1, BH2, ABS].
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In this section we suppose, for the sake of simplicity, that  A  is preunitary, as defined in 3.5. This

ensures that the globes of  A  are closed under cubical compositions.

5.1. Companions. A companion of a transversal n-map  f: x– = x+  is an (n+1)-cube  x  such that

∂αn +1(x) = xα,  equipped with (n+1)-maps  η: e1(x–) =0 x  and  ε: x =0 e1(x+)

 e0(x-)   f
  x– - - -=   x–   x– - - -=   x+ à -=    0

(1)  en+1(x–) :ò  η :ò   x  x :ò  ε :ò   en+1(x+) :ò   n+1

  x– - -=  x+   x+ - -=  x+

  f e0(x+)

such that  ε.η = en+1(f)  and  η +n+1 ε  coincides with  e0(x)  up to unitarity comparisons, as in the
following diagram:

e0(x-) e0(x-) e0(x-)
  x– - - -=   x– - - -=   x– - - -=   x– x– - -=   x–

:    en+1(x–) :ò    η  x :ò  ρn+1(x) : :  :
(2)  x :   x– - - -=  x+ :   x =    x : e0(x) :   x

:ò  λ
–1
n+1(x) :ò   x    ε :ò   en+1(x+) :ò :ò  :ò

  x+ - - -=  x+ - - -=  x+ - - -=  x+  x+ - -=   x+

e0(x+) e0(x+)   e0(x+)

The companion is determined up to invertible (n+1)-maps.

We say that  A  has structural companions if every transversal n-map  f: x– = x+  is equipped

with a companion  f*,  and the global assignment is consistent with faces and degeneracies, in the sense

that:

(3) (∂αi (f))*  =  ∂αi (f*), (ei(f))*  =  ei(f*) (i = 1,..., n).

Below, we only work with low-dimensional cases, up to 2-truncation (and dimension 3). As a

consequence, we only need companions for transversal 1-maps.

5.2 Low-dimensional cases. Let  A  be a weak symmetric cubical category.

(i) Truncating  A  in degree 1 we get a weak 2-cubical category  2A = tr1(A),  with one strict direction

and one weak direction; in other words, a weak double category. Its 1-cubes and special transversal

maps form a bicategory.

(ii) Truncating  A  in degree 2 we get a weak symmetric 3-cubical category  3A = tr2(A),  with one strict

direction and two weak directions.

We want now to show that, if  A  has structural companions, we can use the 2-globes and certain

cylindrical 2-maps to construct a tricategory  T,  as defined in Gordon, Power and Street [GPS].

(TD1) the objects of  T  are the 0-globes (or 0-cubes)  p, q,...  of  A.

(TD2) For objects  p–, p+  we have a bicategory  T(p–, p+)  where:
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(a) a 0-cell  u  is a 1-globe  u: p– =1 p+  (i.e. a 1-cube with  ∂α1 u = pα),  called a 1-cell of  T,

(b) a 1-cell  x: u– =1 u+  is a 2-globe  x: u– =1 u+: p– =2 p+  (i.e. a 2-cube with  ∂α1 x = uα,  ∂α2 x =

e1(pα)),  called a 2-cell of  T,

(c) a 2-cell  f: x– =0 x+: u– =1 u+  is a globular 2-map  f: x– =0 x+: u– =1 u+: p– =2 p+  (i.e. a

2-map  f: x– =0 x+  whose cubical faces  ∂αi f  are transversal identities, for  i = 1, 2),  called a 3-cell of

T.  (Such globular 2-maps are necessarily cylindrical, because

∂α2 (f)  =  e0(∂β0 ∂α2 (f))  =  e0(∂α2  ∂β0(f))  =  e0(∂α2  xβ)  =  e0(e1(pα))  =  e1(e0(pα)). )

(d) 2-cells of  T  have a composition law, defined by the 1-composition of 2-cubes (taking into account

the preunitarity property, which ensures that 2-globes are closed under 1-composition):

(1) x +1 y (for  ∂+
1x = ∂–

1y).

(e) 3-cells of  T  have two composition laws, defined by transversal composition and 1-composition in

A:

(2) f +0 g  =  gf  (for  ∂+
0f = ∂–

0g),

(3) f +1 g (for  ∂+
1f = ∂–

1g).

(f) The 0-composition of 3-cells is categorical, i.e. strictly associative and unitary.

(g) The 1-composition of 2-cells is associative up to its 0-invertible comparisons in  A:

(4) κ1(x, y, z):  x +1 (y +1 z)  =0  (x +1 y) +1 z,

  p– _   p– _   p– _   p– à -=    1

:ò x :ò y :ò z :ò :ò   2
  p+ _   p+ _   p+ _   p+

We verify now that  κ1(x, y, z)  is a globular 2-map (i.e. 2-cells of  T(p–, p+)):

∂–
1κ1(x, y, z)  =  e0∂–

1x, ∂+
1κ1(x, y, z)  =  e0∂+

1z,

∂α2κ1(x, y, z)  =  κ1(∂α2 x, ∂α2 y, ∂α2 z)  =  κ1(e1(pα), e1(pα), e1(pα))  =  e0(e1(pα)).

where the penultimate equality comes from a partial unitarity property (cf. 3.3(v)).

Their naturality with respect to transversal maps  f: x– =0 x+,  g: y– =0 y+,  h: z– =0 z+  holds in

A.

(h) The composition of 2-cells is unitary up to its comparisons in  A,  which again are globular (also

because of preunitarity).

(TD3) For objects  p, q, r,  the last composition is defined as a weak functor of bicategories:

(5) C: T(p, q) × T(q, r)  =  T(p, r),

C(u: p =1 q,  v: q =1 r)  =  (u +1 v: p =1 r),

C(x: u– =1 u+: p =2 q,  y: v– =1 u+: q =2 r)  =  (x +2 y: u– +1 v– =1 u+ +1 v+: p =2 r),

C(f: x– =0 x+: u– =1 u+: p =2 q,  g: y– =0 y+: v– =1 u+: q =2 r)

=  (f +2 g: x– +2 y– =0 x+ +2 y+: u– +1 v– =1 u+ +1 v+: p =2 r).
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To define the comparison of  C  with respect to the 1-composition of 2-cells (2-globes of  A),  take

four 2-cells  x, y, z, t  disposed as below. Then the interchange comparison of  A

χ1(x, y, z, t): (x +1 y) +2 (z +1 t)  =0  (x +2 z) +1 (y +2 t),

  p _   p _   p

:ò   x :ò   y :ò à -=    1

  q _   q _   q :ò   2
:ò   z :ò   t :ò

  r _   r _   r

yields the comparison we want:

(6) χ1(x, y, z, t): C(x +1 y, z +1 t) =0 C(x, z) +1 C(y, t).

This is indeed a globular cell (also because of preunitarity):

∂–
1χ1(x, y, z, t)  =  e0(∂–

1x +2 ∂–
1z), ∂+

1χ1(x, y, z, t)  =  e0(∂+
1y +2 ∂+

1t),

∂–
2χ1(x, y, z, t)  =  e0(e1(p))  =  e1(e0(p)), ∂+

2χ2(x, y, z, t)  =  e0(e1(r))  =  e1(e0(r)).

(TD4) The unit of an object  p  is a strict functor of bicategories, defined on the singleton 2-category

1:

(7) U: 1  =  T(p, p),

U(*)  =  (e1(p): p =1 p),

U(1: 1 =1 1: * =2 *)  =  (e1e1(p): e1(p) =1 e1(p): p =2 p),

U(1: 1 =0 1: 1 =1 1: * =2 *)  =  (e0e1e1(p): e1e1(p) =0 e1e1(p): e1(p) =1 e1(p): p =2 p).

(TD5) For objects  p, q, r, s  we define a pseudo natural equivalence of pseudo functors:

(8) k: C(1 × C) = C(C × 1): T(p, q) × T(q, r) × T(r, s)  =  T(p, s).

First, for a triple of 1-cells  (u, v, w)  forming an object of  T(p, q) × T(q, r) × T(r, s),  we have a

comparison 2-cell:

(9) k(u, v, w): u +1 (v  +1 w)  =1  (u +1 v) +1 w:  p =2 s,

k(u, v, w) = (κ(u, v, w))*,

given by the companion of the 1-map

κ(u, v, w): u +1 (v  +1 w)  =0  (u +1 v) +1 w.

Second, for a triple of 2-cells  (x, y, z)  forming a 1-cell of  T(p, q) × T(q, r) × T(r, s)

(10) x: u– =1 u+: p =2 q, y: v– =1 v+: q =2 r, z: w– =1 w+: r =2 s,

we construct a comparison 3-cell:

(11) k(x, y, z):  x +2 (y +2 z) +1 k(u+, v+, w+) =0 k(u–, v–, w–) +1 (x +2 y) +2 z:

u– +1 (v– +1 w–) =1 (u+ +1 v+) +1 w+: p =2 s.

As a first step we consider the cell   ζ = η +1 (κ(x, y, z) +1 ε),  obtained by 1-composition of the

comparison 3-cell  κ(x, y, z)  with a unit  η  and counit  ε  of companionship for  κ(uα, vα, wα)
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  e0(-)
  u– +1 (v– +1 w–) - - - -=   u– +1 (v– +1 w–)

e1(-) :ò η :ò   k– à -=    0

  u– +1 (v– +1 w–) – κ(u–,v–,w–)=   (u– +1 v–) +1 w– :ò   1
X :ò   κ(x, y, z) :ò   Y

  u+ +1 (v+ +1 w+) – κ(u+,v+,w+)=   (u+ +1 v+) +1 w+ kα  =  k(uα, vα, wα),

k+ :ò  ε :ò   e1(-) X  =  x +2 (y +2 z),

  (u+ +1 v+) +1 w+ - - - -=   (u+ +1 v+) +1 w+ Y  =  (x +2 y)  +2 z.
   e0(-)

Then we obtain  k(x, y, z)  by correcting the previous 3-cell  ζ  with the appropriate comparisons for

units, as follows:

  u–+1(v–+1w–) _ u–+1(v–+1w–)  _   u–+1(v–+1w–) _    u–+1(v–+1w–)

: λ–
1

1(X +1 k+) :ò e1(-) ζ k– :ò e1k– +1 ρ1Y :
X +1 k+ :  u–+1(v–+1w–)   (u–+1v–)+1w–   :   k– +1 Y

:ò :ò X Y+1e1(-) :ò :ò

  (u++1v+)+1w+ _ (u++1v+)+1w+  _   (u++1v+)+1w+ _   (u++1v+)+1w+

5.3. Lemma (Cospans and companions). The weak symmetric cubical categories  ωCosp(X)  and

ωC at  have structural companions.

Proof. (a) We first address cubical cospans. The natural transformation  f: x– = x+: ∧∧∧∧n = X  can be

viewed as a functor  f: 2 × ∧∧∧∧n = X.  The functors  p, η, ε    defined as follows (on the objects)

(1) p: ∧∧∧∧ = 2, p(– 1)  =  0, p(0)  =  p(1)  =  1 ,

η: 2 × ∧∧∧∧ = 2, η(0, i)  =  0, η(1, i)  =  p(i),

ε: 2 × ∧∧∧∧ = 2, ε(0, i)  =  p(i), ε(1, i)  =  1,

yield an (n+1)-cube and (n+1)-maps that satisfy our conditions:

(2) f*  =  f.(p × ∧∧∧∧n): ∧∧∧∧n+1 = X,

ηf  =  f.(η × ∧∧∧∧n): 2 × ∧∧∧∧n+1 = X, εf  =  f.(ε × ∧∧∧∧n): 2 × ∧∧∧∧n+1 = X.

(b) A natural transformation  f: x– = x+: ∧∧∧∧n = Cat  between cubical profunctors can be transformed

into an (n+1)-cubical profunctor  f*,  following the procedure sketched at the end of 4.3 for the 0-

dimensional case (when  f  is a functor between small categories. Δ

5.4. Globularisation of cubical cospans. Truncating the cubical structure  ωCosp(X)  in degree 1,

we get a weak 2-cubical category  2Cosp(X) = tr1(ωCosp(X)),  with one strict direction and one weak

direction. This coincides with the pseudo (or weak) double category defined and studied in [GP1,

GP2]. Its associated special cylindrical structure  SCyl(2Cosp(X))  is the ordinary bicategory of

cospans.
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Truncating  ωCosp(X)  in degree 2 we get a weak symmetric 3-cubical category  3Cosp(X) =

tr2(ωC osp(X)),  with one strict direction and two weak directions. Then the procedure expounded in

5.2 gives a tricategory,

The same can be done with  ωCat.
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