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Abstract. Directed Algebraic Topology is a recent field, deeply linked
with Category Theory. A ‘directed space’ has directed homotopies
(generally non reversible), directed homology groups (enriched with a
preorder) and fundamental n-categories (replacing the fundamental n-
groupoids of the classical case). On the other hand, directed homotopy
can give geometric models for lax higher categories. Applications have
been mostly developed in the theory of concurrency. Unexpected links
with noncommutative geometry and the modelling of biological systems
have emerged.

1. Introduction

Directed Algebraic Topology (DAT) studies ‘directed spaces’ in some
sense, where paths and homotopies cannot generally be reversed; for in-
stance: ordered topological spaces, ‘spaces with distinguished paths’, ‘in-
equilogical spaces’, or also classical combinatorial structures like simplicial
and cubical sets. Present applications of DAT deal mostly with the analysis
of concurrent processes: see, for instance, [Go, Ga, FRGH] and the papers
by E. Goubault - E. Haucourt and M. Raussen in this volume [GH, Ra]; an-
other field is emerging, in the domain of rewriting systems, see Y. Lafont’s
article [La] also in the present issue. But the natural range of DAT should
cover non reversible phenomena, in any domain.

Here, after a review of a series of papers devoted to this subject ([G4] to
[G11]), we shall give some hints at future developments and new interactions
with other domains. A wider literature can be found in the papers mentioned
above.

Directed spaces can be studied with directed versions of the classical tools
of Algebraic Topology. Thus, the directed homology groups ↑Hn(X) (Sec-
tions 2-3, [G5, G7]) are preordered abelian groups. Similarly, the fundamen-
tal category ↑Π1(X) (Sections 4-6, [G4, G8]) replaces the classical fundamen-
tal groupoid; it also allows one to study situations where all directed loops
are constant (so that the fundamental monoids are trivial, and ↑H1(X) is
reduced to its algebraic part, with the discrete order). The study of higher
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fundamental categories, begun in a strict 2-dimensional version [G9], is now
progressing in lax versions [G10, G11], which seem to be more natural and
adapted to higher extensions (Section 7).

DAT has thus a deep interaction with ordinary and higher dimensional
category theory, clearer than classical Algebraic Topology. Strong connec-
tions with Noncommutative Geometry have already been developed (Section
3, [G5, G6, G7, G12]); these deal with parallel realisations - in Noncommu-
tative Geometry and DAT - of orbit spaces and spaces of leaves which are
trivial in ordinary topology. Other similarities have recently appeared, be-
tween the notion of root of a category developed by A.C. Ehresmann [Eh]
for modelling biological systems, and our study of the fundamental category
(Section 8).

Section 9 contains a review of effective topological settings for DAT, after
the combinatorial ones and the basic topological setting of (pre)ordered
spaces previously considered. Then, we examine some initial steps for an
axiomatic setting (Sections 10, 11), based on abstracting the (co)cylinder
functor and its natural transformations, as in Kan’s approach to homotopy
[Ka]. (Quillen’s model structures are used in [Ga], even if they do not allow
to formalise directed homotopies.) We end with some hints to a recent
enrichment of our domain, ‘weighted algebraic topology’, where paths have
a weight or cost - possibly infinite (Section 12).

This paper is based on my contribution at the conference “Charles Ehres-
mann: 100 ans”, Amiens, 7-9 October 2005, with various extensions and
updates.

2. Combinatorial settings and directed homology

First, directed homotopy and homology can be developed for cubical sets
(as in [G5, G6]) and simplicial sets.

Let us recall that a topological space T has intrinsic symmetries, ap-
pearing - at the lowest level - in the reversion of its paths. Thus, the set
∆nT = Top(∆n, T ) of its singular simplices inherits from the standard
simplex ∆n an obvious action of the symmetric group Sn+1, while the set
�nT = Top([0, 1]n, T ) of its singular cubes has a similar action of the hype-
roctahedral group (the group of symmetries of the n-cube). These combina-
torial structures produce the singular homology of the space T, which can
be equivalently defined as the homology of the chain complex associated to
the simplicial set ∆T, or the homology of the (normalised) chain complex
associated to the cubical set �T. We will follow the cubical approach, also
to use the natural order on In (cf. Section 4).

Now, bypassing topological spaces, an abstract cubical set X is a merely
combinatorial structure, consisting of a sequence of sets Xn, with faces
∂α

i : Xn → Xn−1 and degeneracies ei : Xn−1 → Xn (α = ±; i = 1, ..., n)
satisfying the well-known cubical relations. This structure has been used in
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two ways, in [G5]: to break the symmetries considered above and to per-
form constructions, namely quotients, which would be useless in ordinary
topology.

For the first aspect, note that an ‘edge’ in X1 need not have any coun-
terpart with reversed vertices, nor a 2-cube in X2 any counterpart with
horizontal and vertical faces interchanged. Thus, our structure has ‘privi-
leged directions’ in any dimension (usually ignored), and the ordinary ho-
mology of X can be given a preorder, generated by taking the given cubes as
positive. For instance, the obvious cubical model ↑sn of the n-dimensional
sphere, with one non-degenerate cube in dimension n, has directed homol-
ogy ↑Hn(↑sn) consisting of the group of integers, with the natural order.
Direction should not be confused with orientation, as shown by the model
↑t2 = ↑s1 ⊗ ↑s1 of the 2-dimensional torus, where ↑H1(↑t2) ∼= ↑Z2 has the
product order.

Secondly, it may happen that a quotient T/∼ of a topological space has
a trivial topology, while the corresponding quotient of its singular cubical
set �T keeps a relevant topological information, detected by its homology
and agreeing with the interpretation of such quotients in noncommutative
geometry, as recalled in the next section.

3. Interactions with noncommutative geometry

Let us start from the well-known irrational rotation C*-algebras, also
known as ‘noncommutative tori’.

First, take the line R and its (dense) additive subgroup Gϑ = Z + ϑZ
(with ϑ an irrational number), which acts on the line by translations. In
Top, the orbit space R/Gϑ = S1/ϑZ is trivial: an uncountable set with
the coarse topology. Second, consider the Kronecker foliation F of the torus
T2 = R2/Z2, with irrational slope ϑ, and the set T2

ϑ = T2/ ≡F of its leaves
(in bijective correspondence with the previous set R/Gϑ). Again, topology
gives no information on T2

ϑ, since all leaves are dense and the quotient space
T2/ ≡F is coarse.

In noncommutative geometry, both these sets are ‘interpreted’ as the
(noncommutative) C*-algebra Aϑ, generated by two unitary elements u, v
under the relation vu = exp(2πiϑ).uv, and called the irrational rotation
algebra associated with ϑ, or also a noncommutative torus [Ri, Co]. Both
its complex K-theory groups are two-dimensional. These algebras have been
classified, by proving that K0(Aϑ) ∼= ↑Gϑ as a (totally) ordered subgroup of
R. Thus, Aϑ and Aϑ′ are strongly Morita equivalent if and only if ↑Gϑ

∼= ↑Gϑ′

(as ordered groups), if and only if ϑ and ϑ′ are equivalent modulo the action
of the group PGL(2,Z) [PV, Ri].

Now, for a group G acting properly on an acyclic space T, a classical
result says that the homology of the orbit space T/G is isomorphic to the
homology of the group G; these results can be extended to free actions if we
replace the space T with its singular cubical set �T and take the quotient



4 MARCO GRANDIS

cubical set (�T )/G ([G5], Thm. 3.3). Thus, the trivial orbit space R/Gϑ

can be replaced with a non-trivial cubical set, (�R)/Gϑ, whose homology
is the same as the homology of the group Gϑ

∼= Z2, and coincides with
the homology of the torus T2. Algebraically, all this is in accord with the
noncommutative C*-algebra Aϑ, but our result is independent of ϑ (as soon
as ϑ is irrational) and does not allow us to recover it, at any extent.

This becomes possible with directed homology. The quotient (�R)/Gϑ

can be modified, replacing �R with the cubical set �↑R of the directed line,
formed of all order-preserving maps In → R. Algebraically, the homology
groups are unchanged, but now ↑H1((�↑R)/Gϑ) ∼= ↑Gϑ as an ordered sub-
group of R ([G5], Thm. 4.8): thus the rotation cubical sets Cϑ = (�↑R)/Gϑ

have the same classification up to isomorphism ([G5], Thm. 4.9) as the ro-
tation C*-algebras Aϑ up to strong Morita equivalence, and ϑ is again deter-
mined up to the action of PGL(2,Z). This example shows that the ordering
of directed homology can carry a relevant information, even much finer than
the algebraic one. (The inequilogical spaces C ′

ϑ = (↑R, ≡Gϑ
) give the same

results, cf. Section 9.)
Further, comparison with the stricter classification of the algebras Aϑ up

to isomorphism shows that cubical sets provide a sort of ‘noncommutative
topology’, without the metric character of noncommutative geometry. To
add this character to the present frame, one should enrich cubical sets with
a sort of norm - and turn Directed into Weighted Algebraic Topology (see
[G6] and Section 12).

4. A basic topological setting

After the combinatorial setting considered above, the simplest topologi-
cal situation where one can study directed paths and directed homotopies
is likely the category pTop of preordered topological spaces and preorder-
preserving continuous mappings. (Here, a preorder relation is reflexive and
transitive; it is an order if it is also anti-symmetric.)

In this setting, a (directed) path of the preordered space X is a mor-
phism a : ↑[0, 1]→ X, defined on the standard directed interval ↑I = ↑[0, 1],
with euclidean topology and natural order. A (directed) homotopy ϕ : f →
g : X → Y, from f to g, is a map ϕ : X×↑I → Y coinciding with f on the
lower basis of the cylinder I(X) = X×↑I, with g on the upper one. Of
course, this (directed) cylinder is a product in pTop : it is equipped with
the product topology and with the product preorder, where (x, t) ≺ (x′, t′)
if x ≺ x′ in X and t ≤ t′ in ↑I.

The category pTop has all limits and colimits, constructed as in Top
and equipped with the initial or final preorder for the structural maps. The
forgetful functor U : pTop→ Top, with values in the category of topological
spaces, has both a left and a right adjoint, D a U a C, where DX (resp.
CX) is the space X with the discrete order (resp. the coarse preorder).
The standard embedding of Top in pTop will be the coarse one, so that all
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(ordinary) paths in X are directed in CX. Note that the category of ordered
spaces does not allow for such an embedding and would not allow one to
view classical Algebraic Topology within the Directed one; moreover, it has
different colimits, not consistent with the topological ones.

The fundamental category C = ↑Π1(X) has, for arrows, the classes of
directed paths up to the equivalence relation generated by directed homo-
topy with fixed endpoints; composition is given by the concatenation of
consecutive paths. The fundamental category of a preordered space can be
computed by a van Kampen-type theorem, as proved in [G4], Thm. 3.6,
in a much more general setting (‘d-spaces’, cf. Section 9). The obvious
functor ↑Π1(X)→ Π1(UX) with values in the fundamental groupoid of the
underlying space need neither be full (obviously), nor faithful. As a typical
component of directed algebraic topology, a preordered space X has an op-
posite objet RX = Xop, with the reversed preorder, and ↑Π1(Xop) is the
opposite category (↑Π1(X))op.

A map f : X → Y induces a functor f∗ : ↑Π1(X) → ↑Π1(Y ), and a ho-
motopy ϕ : f → g induces a natural transformation ϕ∗ : f∗ → g∗ which
generally is not invertible. Also because of this, there are crucial differ-
ences with the fundamental groupoid Π1(S) of a space, for which a model
up to homotopy invariance is given by the skeleton: a family of fundamen-
tal groups π1(S, xi), obtained by choosing one point in each path-connected
component of S. For instance, if X is ordered, the fundamental category has
no isomorphisms nor endomorphisms, except the identities. Thus: (a) the
category is skeletal, and ordinary equivalence of categories cannot yield any
simpler model; (b) all the monoids ↑π1(X,x0) = ↑Π1(X)(x0, x0) are trivial
and give no information on the fundamental category.

Similarly, the singular cubical set �X consists of all preorder-preserving
maps ↑In → X, and provides the preordered homology groups ↑Hn(X) (stud-
ied in [G7] in a more general setting). All this works because the faces and
degeneracies ↑In−1 � ↑In of the ordered cubes preserve the natural or-
ders; it is not clear how this construction might be transferred to tetrahedra
(consistently with barycentric subdivision).

5. Analysing the fundamental category

An elementary example will give some idea of the analysis developed
in [G8] for the fundamental category of a preordered space. (The paper
[FRGH], devoted to the analysis of concurrent processes, has similar results,
based on different categorical tools: categories of fractions; see also [GH], in
this volume.)

Let us start from the standard ordered square ↑[0, 1]2, with the euclidean
topology and the product order, and consider the (compact) ordered sub-
space A obtained by taking out the open square ]1/3, 2/3[2, a sort of ‘square
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annulus’
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Its directed paths, the continuous order-preserving maps ↑[0, 1] → A,
move ‘rightward and upward’. The fundamental category C = ↑Π1(A) has
some arrow x → x′ provided that x ≤ x′ and both points are in L or
L′ (the closed subspaces represented above): there are two arrows when
x ≤ p = (1/3, 1/3) and x′ ≥ q = (2/3, 2/3), and one otherwise. This evident
fact can be easily proved with the ‘van Kampen’ theorem recalled above,
using the subspaces L,L′ (whose fundamental category is the induced order).

Thus, the whole category C is easy to visualise and ‘essentially repre-
sented’ by the full subcategory E on four vertices 0, p, q, 1 (the central cell
does not commute)

(2)
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But E is far from being equivalent to C, as a category, since C is already
a skeleton, in the ordinary sense. In [G8] we have introduced two (dual)
directed notions, which take care, respectively, of variation ‘in the future’ or
‘from the past’: future equivalence (a symmetric version of an adjunction,
with two units, see the next section) and its dual, a past equivalence (with
two counits); and studied how to extract minimal models for both relations
and how to combine them.

In the present case, C has a minimal ‘future model’ F (the least full
reflective subcategory) and a minimal ‘past model’ P (coreflective). The
full subcategory E is the join of F and P ; it is at the same time future
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equivalent and past equivalent to C, and a ‘minimal injective model’ of C.

(3)
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Now, the process represented by the ordered space X can be analysed as
follows, in the finite model E :
- the action begins at 0, from where we move to the point p,
- p is an (effective) future branching point, where we have to choose between
two paths,
- which join at q, an (effective) past branching point,
- from where we can only move to 1, where the process ends.

More complex examples can be found in [G8, FRGH, GH].

6. Directed equivalences of categories

Directed homotopy equivalence is a complex notion, which can be devel-
oped in various ways - both for spaces and their algebraic models. Various
such notions for categories have been developed in [G8]; here we only give
a partial review. (For an investigation of this notion for directed spaces see
[Ra], in this volume.)

A future equivalence (f, g;ϕ,ψ) between the categories C,D ([G8], 2.1) is
a ‘symmetric version’ of an adjunction, with two units. It consists of a pair
of functors and a pair of natural transformations (i.e., directed homotopies
in Cat), the units, satisfying two coherence conditions:

(4) f : C � D : g ϕ : 1C → gf, ψ : 1D → fg,

(5) fϕ = ψf : f → fgf, ϕg = gψ : g → gfg (coherence).

Note that the directed homotopies ϕ,ψ proceed from the identities to the
composites gf, fg (‘in the future’). Future equivalences compose (much in
the same way as adjunctions), and yield an equivalence relation of categories.

An adjunction f a g with invertible counit ε : fg ∼= 1 amounts to a
future equivalence with invertible ψ = ε−1. In this case, a ‘split’ future
equivalence, D can be identified with a full reflective subcategory of C (also
called a future retract). But, in a general future equivalence, f need not
determine g. Theorem 2.5, in [G8], shows that two categories are future
equivalent if and only if they can be embedded into a common one, as full
reflective subcategories; the latter is explicitly constructed.



8 MARCO GRANDIS

Dually, past equivalences have counits, in the opposite direction. These
two basic notions can be combined in various ways, to give various self-
dual equivalence relations. First, their conjunction is called past and future
equivalence, while coarse equivalence is the equivalence relation generated
by them (or, equivalently, by the existence of an adjunction between two
categories, as one can easily deduce from two factorisation theorems of [G8],
2.5 and 4.4).

More complex and interesting combinations, where a functor C → D is
at the same time a future and a past equivalence, with (generally) different
‘quasi-inverses’, are injective equivalences and projective equivalences (see
[G8], 4.1).

Correspondingly, we have various notions of contractibility in Cat. First,
it is easy to prove that a category is future contractible (i.e. future equivalent
to the singleton category 1) if and only if it has a terminal object ([G8], 2.6);
dually, it is past contractible if and only if it has an initial object.

Furthermore, a category is injectively contractible (i.e., injectively equiv-
alent to 1) if and only if it has a zero object ([G8], 5.4). On the other hand,
a category with non-isomorphic initial and terminal object is injectively
equivalent to the ordinal 2 = {0 → 1}; the latter is the standard directed
interval of Cat (and is not injectively contractible). Finally, a category is
projectively equivalent to 1 if and only if it has initial and terminal objects
(isomorphic or not), which amounts to being past contractible and future
contractible ([G8], 5.4). But, in general, injective equivalence is stronger
than past and future equivalence.

7. Two-dimensional analysis

In [G9], we have extended this analysis of the fundamental category of a
preordered space X (or, more generally, of a d-space) introducing a strict
fundamental 2-category ↑Π2(X). But this construction is complicated, per-
haps non natural, and it is not clear whether it can be extended to higher
dimension.

More naturally, one can define a fundamental biased d-lax 2-category
↑bΠ2(X), as studied in [G10]. It is interesting to note that the geomet-
ric guideline gives precise directions for the comparison cells, different from
the ones previously considered, by Burroni [Br] and Leinster [Le] for lax
2-categories (biased and unbiased, respectively). The term ‘d-lax’ refers to
this choice, while the term ‘biased’ or ‘unbiased’ refers to structures based
on binary or multiple operations, respectively.

An object of ↑bΠ2(X) is a point of X, an arrow a : x→ x′ is a path, and
a cell [α] : a→ a′ : x→ x′ is a homotopy class of homotopies of paths. More
precisely, α is a 2-homotopy a→ a′ (with fixed endpoints), and its class [α]
is up to the equivalence relation generated by 3-homotopies α‘ → α′′ (with
fixed boundary).
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Now, writing a⊗b the concatenation of two consecutive paths, our struc-
ture has comparison cells, for units and associativity, directed as follows:

(6) λ : 1x⊗a→ a, ρ : a→ a⊗1x′ , κ : a⊗(b⊗c)→ (a⊗b)⊗c,

always going from a first concatenation to a second concatenation of the
same paths which, at each instant, has made a longer way than the initial
one.

Then, the coherence theorem for such a structure says that all diagrams
(naturally) constructed with comparison cells commute. This remains true
in an extended structure, where we add higher associativity comparisons
κ′, κ′′ depending on four consecutive arrows, which break Mac Lane’s pen-
tagon into 3 commutative triangles:

(7)

(a⊗b)⊗(c⊗d)
κ
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κ′′
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G
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G
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κ
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a⊗((b⊗c)⊗d) κ //

κ′
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w

w
w

w
w

w
w

w
w

(a⊗(b⊗c))⊗d

κ⊗d

OO

There is also a larger unbiased version, ↑uΠ2(X), with n-ary concatena-
tions a1⊗...⊗an of consecutive paths ([G10], Section 3). Finally, provided
that X has a T1-topology, a further extension, studied in [G11], gives a
fundamental absolute (unbiased) d-lax 2-category ↑LΠ2(X), with the same
objects, arrows and cells as ↑uΠ2(X), but having extended absolute compar-
isons ϕ(a, b) : a → b, which only depend on the actual values of the paths
a, b rather than on their ‘syntactic construction’.

8. Links with categorical models for biological systems

The analysis of a category through minimal past and future models, as
sketched in Section 5 and developed in [G8], has appeared to be closely
related with notions recently introduced by A.C. Ehresmann [Eh], aiming
to model biological and neural systems. Likely, because of the common
design of studying non-reversible actions.

It would be difficult to fully explain this here. Let us only remark two
pairs of neighbouring notions, using the terminology of both papers. First,
a past retract P of a category X (i.e. a full coreflective subcategory), used in
[G8] as a ‘past model’ of X, is plainly a particular case of a corefract (i.e. a
full weakly coreflective subcategory) as defined in [Eh] 1.2. Second, one can
prove that the past spectrum P of a category X having no O−-branching
points, in the sense of [G8], is necessarily a root of X, as defined in [Eh],
Section 2. In [G8], many examples of Section 9 fall in this situation: their
past spectrum is a root and their future spectrum a co-root.
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9. Richer topological settings

In a preordered space, every loop lives in a zone where the preorder is
chaotic, and is reversible; therefore, this setting has no ‘directed circle’ or
‘directed torus’.

We briefly recall more complex directed structures, which allow for non-
reversible loops. All of them contain the directed interval ↑I, so that all the
previous constructions can be easily extended.

(a) In a setting studied in [G4], a d-space X is a topological space equipped
with a set dX of (continuous) maps a : I → X; these maps, called di-
rected paths or d-paths, must contain all constant paths and be closed under
concatenation and (weakly) increasing partial reparametrisation. A d-map
f : X → Y (or map of d-spaces) is a continuous mapping between d-spaces
which preserves the directed paths: if a ∈ dX, then fa ∈ dY.

The category of d-spaces is written as dTop. It has all limits and colimits,
constructed as in Top and equipped with the initial or final d-structure for
the structural maps. Again, the forgetful functor U : dTop → Top has a
left and a right adjoint; a topological space is viewed as a d-space by its
natural structure, where all (continuous) paths are directed (via the right
adjoint to U). Also pTop has an obvious functor with values in dTop.

Reversing d-paths, by the involution r(t) = 1 − t, yields the reflected, or
opposite, d-space RX = Xop. The standard directed circle ↑S1 = ↑I/∂I has
the obvious d-structure, where paths have to follow a precise orientation.

(b) Another setting for Directed Algebraic Topology comes from a directed
version of Dana Scott’s equilogical spaces [Sc, BBS], which was introduced
in [G7].

An inequilogical space X = (X],∼X) is a preordered topological space X]

endowed with an equivalence relation ∼X . The quotient |X| = X]/∼X is
viewed as a preordered topological space (with the induced preorder and
topology), or a topological space, or a set, as convenient. A map f : X →
Y ‘is’ a mapping f : |X| → |Y | which admits some continuous preorder-
preserving lifting f ′ : X] → Y ].

This category is denoted as pEql. The category pTop fully embeds in
the latter, identifying a preordered space X with the pair (X,=X). The new
category has all limits and colimits, and is cartesian closed (like the one of
equilogical spaces). Directed homotopy is defined by the standard directed
interval ↑I. Various models for the directed circle are considered in [G7]; the
simplest is perhaps (↑R,≡Z), i.e. the quotient in pEql of the directed real
line modulo the action of the group of integers.

(c) Recently, S. Krishnan [Kr] has proposed a ‘convenient category of lo-
cally preordered spaces’ which, in contrast with the previous versions of this
notion, has all colimits and therefore allows for the usual constructions of
homotopy theory, like mapping cones and suspension.
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10. The beginning of a formal setting for Directed Algebraic
Topology

The phenomena we are studying make sense in a category A equipped
with 2-cells (homotopies) which, generally, cannot be reversed - but reflected.

More precisely, as a variation of Kan’s notion of a category equipped with
an abstract cylinder endofunctor [Ka], A is a dI1-category. By this we mean
that it comes equipped with:
(a) a reflector R : A→ A, i.e. an involutive (covariant) automorphism (also
written R(X) = Xop, R(f) = fop),
(b) a cylinder endofunctor I : A → A, with four natural transformations:
two faces (∂α), a degeneracy (e) and a reflection (r)

(8) ∂α : id−→−→←− I : e, r : IR→ RI (α = ±),

satisfying the equations

(9) e∂α = 1: id→ id, RrR.r = 1: IR→ IR,
Re.r = eR : IR→ R, r.∂−R = R∂+ : R→ RI.

Since RR = 1, the transformation r is invertible with r−1 = RrR : RI →
IR and r.∂+R = R∂−.

A homotopy ϕ : f− → f+ : X → Y is defined as a map ϕ : IX → Y with
ϕ.∂αX = fα (also written ϕ̂ to distinguish it from the homotopy). Each
map f : X → Y has a trivial endohomotopy, 0f : f → f, represented by
f.eX = eY.If : IX → Y.

Every homotopy ϕ : f → g : X → Y has a reflected homotopy

(10) ϕop : gop → fop : Xop → Y op, (ϕop)̂ = R(ϕ̂).r : IRX → RY,

and (ϕop)op = ϕ, (0f )op = 0(fop).

An object X is said to be reversible if it coincides with Xop, and reflexive
or self-dual if it is isomorphic to the latter. (The setting itself is reversible
when R = idA; then, a homotopy has a reversed homotopy ϕop : g → f.
Such settings have no ‘privileged directions’.)

Dually, a dP1-category has a reflection (as above) and a cocylinder, or
path endofunctor P : A → A, with natural transformations in the opposite
direction

(11) e : id←−←−−→ P : ∂α, r : RP → PR.

satisfying the dual axioms.
It is easy to see that a dI1-structure where the cylinder functor has a

right adjoint, I a P, automatically produces the natural transformations of
the cocylinder, and a dP1-structure; we say then that A is a dIP1-category.
Both endofunctors produce the same homotopies, equivalently represented
by maps IX → Y or X → PY.

A dI1- or dP1-structure is often generated by a ‘standard directed interval’
(equipped with faces and degeneracy), by cartesian (or tensor) product and
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internal hom, respectively. In these frames, one can define directed homology
and ‘first order’ homotopy theory.

11. Higher structure

Of course, much structure has to be added to develop higher directed homo-
topy theory. In part, this has already be done in the 90’s [G1, G2, G3], but
these papers were focused on the reversible case, even if taking into account
more general situations and some non-reversible examples (especially [G2]).
They need to be rethought, at the light of the recent ideas and developments
of Directed Algebraic Topology.

A main ingredient will certainly be the notion of a cubical monad with
reflection and interchange (A, R, I, ∂α, e, r, gα, s), already present in [G2]. In
many cases (like preordered spaces, d-spaces and inequilogical spaces) the
new structure derives from the lattice structure of the euclidean interval,
with the binary operations g−, g+

(12) gα : [0, 1]2 → [0, 1],
g−(t, t′) = max(t, t′), g+(t, t′) = min(t, t′),

which commute with respect to the interchange of coordinates, s : [0, 1]2 →
[0, 1]2.

Formally, we are adding to the previous structure of dI1-category (Section
10), three natural transformations: the lower and upper connections g−, g+

and the interchange s. Globally, we have now seven natural transformations
∂α, e, r, gα, s (with α = ±)

(13) id
∂α

// // I
e

oo I2
gα

oooo I2 s // I2 IR
r // RI

under the following axioms (which include the ones of dI1-categories)

(14)

e∂α = 1, egα = e.Ie (= e.eI) (degeneracy),
gα.Igα = gα.gαI, gα.I∂α = 1 = gα.∂αI (associativity, unit),
gβ .I∂α = ∂αe gβ.∂αI = ∂αe (absorbency; α 6= β),
RrR.r = 1, Re.r = eR,
r.∂−R = R∂+, r.g+R = Rg−.r2,
s.s = 1, Ie.s = eI,
s.I∂α = ∂αI, gα.s = gα,
RR = 1, Rs.r2 = r2.sR (symmetries).

Here, r2 = rI.Ir : (I2R → IRI → RI2) is the reversion of the double
cylinder.

(A cubical monad corresponds to a simple algebraic structure, which ex-
tends a lattice with minimum and maximum: a cubical monoid is a set
with two monoid structures, such that the identity of each operation is an
absorbent element for the other operation. Thus, a monoid is to a cubi-
cal monoid what a monad is to a cubical monad, or what an augmented
simplicial set is to cubical set [G1, G2].)
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Now, we have to add structure and axioms for concatenation; this requires
some care, in order to include the previous settings (and others), and cannot
be sketched here.

12. From directed to weighted algebraic topology

We end with some hints to a quite recent enrichment of the main subject of
this review, weighted algebraic topology, which replaces the two-valued logic
of directed algebraic topology (where a path is licit or not) with a measure of
costs, taking values in the interval [0,∞] of positive real extended numbers
and marking illicit paths with an infinite cost.

The general aim can now be expressed as: measuring the cost of phenom-
ena, where cost can mean energy, price, duration, etc., and is not assumed
to be invariant under direction. Weighted algebraic topology will study
‘weighted spaces’, using ‘weighted’ algebraic structures, like the fundamental
weighted (or seminormed) category [G12], and the weighted (or seminormed)
homology groups already developed in [G6] for normed cubical sets.

Lawvere’s generalised metric spaces [Lw], which are endowed with a (gen-
erally) non-symmetric distance taking values in [0,∞], are a prime setting
where weighted algebraic topology can be developed. Now, homotopies
are based on the standard generalised metric interval δI, with distance
δ(x, y) = y − x, if x ≤ y, and δ(x, y) = ∞ otherwise; the cylinder func-
tor is I(X) = X⊗δI, where the tensor product is the cartesian product of
the underlying sets with the l1-type metric. This allows us to define the
fundamental weighted category wΠ1(X) of a generalised metric space, and
begin its study [G12].

Note that the previous formal setting (Sections 10, 11) applies also in
this situation, with Xop equipped with the opposite distance δop(x, y) =
δ(y, x) and the natural transformations of the cylinder defined by the ‘same’
structure on δI.

We also introduce, in the same article, the more flexible setting of w-
spaces, or spaces with weighted paths, which has finer quotients and is able
to express irrational rotation structures, as previously done with cubical sets
(see Section 3) and - even more similarly - with the normed cubical sets of
[G6].
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