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Abstract. It is known that factorisation systems in categories can be viewed as unitary pseudo algebras
for the monad  P  = (–)2,  in  Cat.  We show in this note that an analogous fact holds for proper (i.e., epi-
mono) factorisation systems and a suitable quotient of the former monad, deriving from a construct
introduced by P. Freyd for stable homotopy. Some similarities of  P   with the structure of the path
endofunctor of topological spaces are considered.
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Introduction

For a category  X,  the category of morphisms  PX = X2  has a natural factorisation system. So
equipped, it is the free category with factorisation system, on  X.

This system induces a proper, or epi-mono, factorisation system on a quotient  FrX = X2/R  [G3],
the free category with epi-mono factorisation system on  X  (the epi-mono completion), that gener-
alises the Freyd embedding of the stable homotopy category of spaces in an abelian category [Fr].
"Weak subobjects" in  X,  of interest for homotopy categories, correspond to ordinary subobjects in
FrX;  other results in [G3] concern various properties of  FrX  that derive from weak (co)limits of  X.

Now, the "path" endofunctor  P = (–)2  of  Cat  has an obvious 2-monad structure (with diagonal
multiplication), linked to the universal property recalled above (a pseudo adjunction); it is known,
since some hints in Coppey [Co] and a full proof in Korostenski - Tholen [KT], that its (unitary)
pseudo algebras correspond to the factorisation systems of  X.  Similarly, as stated without proof in
[G3], the pseudo algebras for the induced 2-monad on  F rX  correspond to proper factorisation
systems of  X;  more precisely, we prove here, in Theorem 4 (ii), that there is a canonical bijection
between proper factorisation systems in  X  and pseudo isomorphism classes of pseudo Fr-algebras
on  X.  Similar, simpler relations hold in the strict case: strict factorisation systems are monadic on
categories, as well as the proper such. Structural similarities of  P  with the topological path functor
PX = X[0, 1]  are discussed at the end (Section 5).

We shall use the same notation of [G3]. For factorisation systems, one can see Freyd - Kelly
[FK], Carboni - Janelidze - Kelly - Paré [CJKP], and their references; the strict version is much less
used: see [G3] and Rosebrugh-Wood [RW]. Lax P-algebras are studied in [RT]. General lax and
pseudo algebras can be found in Street [St].

(*) Work partially supported by MURST research projects.
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1. The factorisation monad. Let  X  be any category and  X2  its category of morphisms. An
object of the latter is an X-map  x: X'  X",  which we may write as  x  when it is viewed as an
object of  X2;  a morphism  f = (f', f"): x  y  is a commutative square of  X,  as in the left diagram

  f'    f'
  X '   Y'   X '     X '   Y'

(1)    x
 f"

   y    x
 f"

    
!
f    y

 X"   Y"   X"   Y"     Y"

and the composition is obvious. The strict factorisation of  f,  shown in the right diagram, is  f =
(f', 1).(1, f");  note that its middle object is the diagonal  !f  = f"x = yf'  of the square  f.

Thus,  X2  has a canonical factorisation system (fs for short), where the map  f = (f', f")  is in  E
(resp. in  M)  iff  f'  (resp. f")  is an isomorphism. This system contains a canonical strict factorisation
system, where  (f', f")  is in  E0  (resp. in  M0)  iff  f'  (resp. f")  is an identity. (As in [G3, 2.1], this
means that: (i)  E0, M0  are subcategories containing all the identities; (ii) every map  u  has a strictly
unique factorisation  u = me  with  e"E0,  m"M0.  A strict fs  (E0, M0)  is not a fs, of course; but,
there is a unique fs  (E, M)  containing the former, where  u = me  is in  E  iff  m  is iso, and dually.
Two strict systems are said to be equivalent if they span the same fs.)

The full embedding that identifies the object  X  of  X,  with  1X

(2) #X: X  X2, (f: X  Y)    (f, f):  1X  1Y,

makes  X2  the free category with factorisation system on  X,  in the "ordinary" sense (as well as in a
strict sense): for every functor  F: X  A  with values in a category with fs (resp. strict fs), there is
an extension  G: X2  A  that preserves factorisations (resp. strict factorisations), determined up to
a unique functorial isomorphism (resp. uniquely determined):  G(x) = ImA(Fx).  The (obvious) proof
is based on the canonical factorisation of  #X(x) = (x, 1).(1, x):  1X'  1X"  in  X2

  x
  X '     X '   X" (1, x) (x, 1)

(3)    1
x

   x    1 X '   x̂ X".
  X '   X"     X"

One might now expect that "factorisation systems be monadic on categories", but this is only true
in a relaxed 2-dimensional sense.

First, by the strict universal property, the forgetful 2-functor  U0: Fs0Cat  Cat  (of categories
with strict fs) has a left 2-adjoint  F0(X) = (X2; E0, M0),  and we shall see that  U0  is indeed 2-
monadic: the comparison 2-functor  K0: Fs0Cat  P-Alg  establishes an isomorphism of  Fs0Cat
with the 2-category of algebras of the associated 2-monad,  P = U0F0: Cat  Cat,  P(X) = X2.

Secondly, by the "relaxed" universal property, the forgetful 2-functor  U: FsCat  Cat  (of cate-
gories with fs) acquires a left pseudo adjoint 2-functor  F(X) = (X2; E, M):  the unit  #: 1  UF  is 2-
natural, but the counit is pseudo natural and "ill-controlled", each component  $A: (|A|2; E, M)  A
depending on a choice of images in  A;  the triangle conditions are – rather – invertible 2-cells. This
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would give an ill-determined pseudo monad structure on  P = UF = U0F0,  isomorphic to the previous
2-monad; we will therefore settle on the latter and "by-pass" the pseudo adjunction.

In fact, the structure of the category  2 = {0  1}  as a diagonal comonoid  (with  e: 2  1,  d:
2  2×2)  produces a diagonal monad on the endofunctor  P = (–)2  of  Cat,  precisely the one we
are interested in. The unit  #X = Xe: X  X2  is the canonical embedding considered above,  #X(X)
= 1X.  The multiplication  µX = Xd: P2X  PX  is a "diagonal functor" defined on  P2X = X2×2:

-  an object of  P2X  is a morphism  %0 = (a0, b0): x0  y0  of  PX,  and a commutative square in  X
(the front square of the diagram below);  µX(%0) = d0 = b0x0 = y0a0  is the diagonal of this square;

-  a morphism of  P2X  is a commutative square  &  of  PX,  and a commutative cube in  X;  µX(&)
is a diagonal square of the cube

  x1
  X'1   X"1

   f'
x0

   a1
  d1   f"    b1

&  =  ((f', g'), (f", g")):  %0  %1,
  X '0   X"0 %i  =  (ai, bi):  xi  yi,

(4) a0  g'
  Y"1 µX(&)  =  (f', g"): d0  d1;

y0

  d0    b0    g"

  Y'0   Y"0

µ  coincides with the multiplication coming from the strict adjunction,  U0$0F0 : P2  P  (and would
also coincide with the pseudo multiplication  U$F,  if one might control the choice of images in  FX
by its strict fs).

P  will also be called the factorisation monad on  Cat,  while a P-algebra  (X, t)  will also be called
a factorisation algebra; it consists of a functor  t: X2  X  such that  t.#X = 1X,  t.Pt = t.µX.

2. The proper factorisation monad. Consider now the quotient  F rX  = X2/R,  modulo the
"Freyd congruence" [Fr]: two parallel  X2-morphisms  f = (f', f"): x  y  and  g = (g', g"): x  y
are R-equivalent whenever their diagonals  !f ,  !g  coincide (cf. 1.1); the morphism of  F rX  repre-
sented by  f  will be written as  [f]  or  [f', f"].  As a crucial effect of this congruence,  if  f'  is epi
(resp.  f"  is mono)  in  X,  so is  [f]  in  FrX .

As in [G3], a canonical epi (resp. mono) of  FrX  will be a morphism which can be represented as
[1, f"]  (resp.  [f', 1]).  Every map  [f]  has a precise canonical factorisation  [f] = [f', 1].[1, f"],
formed of a canonical epi and a canonical mono (both their diagonals being  !f ).  F rX   has thus a
proper strict fs  (E0, M0),  which spans a (proper) fs  (E, M):  the map  [f]: x  y  belongs to  E  iff
there is some  u: Y'  X'  such that  yf'u = y  (y  sees  f'  as a split epi).

The full embedding  #'X = p.#X: X  F rX  takes  f: X  Y  to  [f, f]: 1X  1Y;  FrX  is thus
the free category with proper factorisation system on  X  [G3, 2.3], called the Freyd completion, or
epi-mono completion of  X.  The 2-monad structure of  Fr,  induced by the one of  P  (by-passing
again a pseudo adjunction  F '  U'),  will be called the proper factorisation monad on  Cat.  The unit
is  #'.  For the multiplication  µ'X: Fr2X  FrX,  note that now

-  an object of  Fr2X  is a morphism of  FrX,  %0 = [a0, b0]: x0  y0,

-  a morphism of  Fr2X  is an equivalence class  &  of commutative squares of  FrX
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(1) &  =  [[f', g'], [f", g"]]:  (%0: x0  y0)  (%1: x1  y1),

and we have

(2) µ'X(%0)  =  d0, µ'X(&)  =  [f', g"]: d0  d1;

in fact, the class  [f', g"]: d0  d1  is well defined, since its diagonal  g"d0 = g"b0x0  only depends
on the class  [f", g"]  and the object  x0.  The projection  p  is thus a strict morphism of monads
(P, #, µ)  (Fr, #', µ'),  as shown in the left diagram below (with  p2 = Fr(p).pP = pFr.P(p))

#   µ # '   µ'
  X PX P2X   X    FrX    Fr2X

(3)
# '

   p
 µ'

   p2    t'
 t'

   Fr(t')

  X    FrX    Fr2X   X  X FrX

Moreover, any Fr-algebra  t': FrX  X  determines a P-algebra  t = t'p: PX  X,  while a P -
algebra  t: PX  X  induces a Fr-algebra  t': FrX  X  (with t = t'p)  iff  t  is compatible with  R.

3. Pseudo algebras. Actually, we want to compare the 2-category  FsCat  (of categories with fs,
functors which preserve them, and natural transformations of such functors) with the 2-category
Ps-P-Alg  of pseudo P-algebras, always understood to be unitary (or normalised).

According to a general definition (cf. [St], §2), a (unitary) pseudo P-algebra   (X, t, '),  or
factorisation pseudo algebra, consists of a category  X,  a functor  t  (the structure) and a functorial
isomorphism  '  (pseudo associativity), so that

(1) t: X2  X , t.#X  =  1,

(2) ':  t.Pt    t.µX:  P2X  X,

(3) '(P#X)  =  1t  =  '(#PX):  t  t:  PX  X,

(4) '(PµX).t(P')  =  '(µPX).'(P2t):  t.Pt.P2t    t.µX.µPX:  P3X  X,

µP µP
P3X P2X P3X P2X

   P2t
   Pµ

µ

   µ
   P2t

µ
 Pt

   µ

P2X    P2X PX P2X PX PX

 Pt    
P'    Pt

 t
 '     t  Pt

   t  '    
'    t

PX   X PX   X

but here (i.e., for  P)  the conditions (3), (4) follow from the rest (as proved below, 4 (A), (B)).

A morphism  (F, (): (X, t, ')  (Y, t', '')  of pseudo P-algebras is a functor  F: X  Y  with a
functorial isomorphism  (: F.t  t'.PF: PX  Y  satisfying the following coherence conditions
(again, the second is redundant for  P,  cf. 4 (A), (B))

(5) (.#X  =  1F: X  Y,

(6) (µX.F'  =  ''P2F.t'P(.(Pt:  F.t.P t  t'.µY.P2F:  P2X  Y.
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Finally, a 2-cell  ): (F, ()  (G, *)  is just a natural transformation  ): F  G;  it is automati-
cally coherent (cf. 4 (B))

(7) *.)t  =  t'P).(:  F.t  t'.PG:  PX  Y.

Similarly, we have the 2-category  Ps-F r-Alg  of pseudo F r-algebras, or proper-factorisation
pseudo algebras; these amount to pseudo P-algebras  (X, t, ')  where both  t  and  '  are consistent
with  R  (the consistency of  '  being redundant, cf. 4 (D).). Again, (3), (4), (6), (7) are redundant.

4. Theorem (The comparison of factorisation algebras). (i) (Coppey-Korostenski-Tholen)
With respect to the diagonal 2-monad for the endofunctor  P = (–)2  of  Cat,  there is a canonical
equivalence of categories – described below – between  FsCat  and  Ps-P-Alg,  which induces a
bijection between fs on a category  X  and pseudo isomorphism classes of pseudo P-algebras on  X.
In the strict situation, the canonical comparison functor  K0: Fs0Cat  P-Alg,  between strict fs and
P-algebras, is an isomorphism.

(ii) With respect to the 2-monad of the endofunctor  Fr,  the previous equivalence induces an equiva-
lence between categories with proper factorisation systems and pseudo F r-algebras, as well as a
bijection between proper fs on a category  X  and pseudo isomorphism classes of pseudo Fr-algebras
on  X.  The comparison functor  K'0: PFs0Cat  Fr-Alg,  of proper strict fs, is an isomorphism.

Proof. Part (i) is mostly proved in [KT], and we only need to complete a few points.

(A) First, there is a canonical 2-functor  L: Ps-P-Alg  FsCat.  Given a (unitary) pseudo P-algebra
(X, t, '),  every map  x: X'  X"  in  X  inherits a precise t-factorisation through the object  t(x̂),
by letting the functor  t  act on the canonical factorisation of  #X(x) = (x, 1).(1, x)  in  X2  (1.3)

  x
  X '     X '   X"    +–(x)    ++(x)

(1)    1
x

   x    1 X ' t(x̂) X"
  X'   X"     X"

(2) +–(x̂)  =  t(1, x):  X'  t(x̂), ++(x̂)  =  t(x, 1):  t(x̂)  X",

++(x̂).+–(x̂)  =  t((x, x): X'  X")  =  t.#(x)  =  x.

E  is defined as the class of X-maps  x  such that  ++(x̂)  is iso; dually for  M.  This is indeed a fs,
as proved in [KT], thm. 4.4, without assuming the coherence condition 3.3 (cf. the Note at the end of
the paper) nor 3.4; the fact that these properties will be obtained in (B), from the backward procedure,
shows that they are redundant. (In the strict case, a strict  P-algebra  t  gives a strict fs, where  E0
contains the maps  x  such that  ++(x̂)  is an identity, and dually for  M0.)

Given a morphism  (F, (): (X, t, ')  (Y, t', '')  of pseudo P-algebras, the fact that the functor
F: X  Y  preserves the associated fs follows from the following diagram, commutative by the
naturality of  (: F.t  t'.PF  on  (1, x): X'  x̂,  (x, 1): x̂  X",  (1, y)  and  (y, 1)
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+–Fx    ++Fx
FX'  t'(Fx)ˆ FX"

 
F+–x

    (x    t'(Ff)   
    Ff"

(3) FX'    Ft(x̂) FX"
FY'  t'(Fy)ˆ FY"

Ff'   F+–y
 Ft(f)

  (y   F++y
   Ff"  

FY'   Ft(ŷ) FY"

Again, we do not need the condition 3.6: any natural iso  (  such that  (.#X = 1F  has this effect.

(B) Conversely, one can construct a 2-functor  K : FsCat  Ps-P-Alg  depending on choice. Let
(X, E, M)  be a category with fs; for every map  x: X'  X",  let us choose one structural factorisa-
tion  x = ++(x).+–(x): X'  t(x)  X",  respecting all identities: 1 = 1.1  (We are not saying that this
choice comes from a strict fs contained in  (E, M)).  By orthogonality, this choice determines one
functor  t: X2  X  with this action on the objects and such that  +–: ,–  t,  ++: t  ,+  are natural
transformations  (,–, ,+: X2  X  being the domain and codomain functors)

 +–x ++x
  X ' t(x)   X"

(4)    f'
+–y

   t(f)
++y

   f" f = (f', f"): x  y.
  Y' t(y)   Y"

Now  t.#(X) = t(1X) = X.  Moreover, let  t.Pt  and  t.µX: P2X  X  operate on the object
(f', f"): x  y  of  P2X,  producing  t.Pt(f', f") = Z'  and  t.µX(f', f") = t(!f ) = Z"

 x ' x" x
  X ' t(x)   X"   X'   X"

   z'    d'  

(5)    f'   Z'     f"    f' Z"     f"

y '
   z"

y" y
  d"

  Y' t(y)   Y"   Y'   Y"

so that there is precisely one isomorphism  '(f): Z'  Z"  linking the two EM-factorisations we have
obtained for the diagonal,  !f  = (y"z").(z'x') = d".d'  (a strict fs would give an identity, for  '(f))

(6) '(f): t.Pt(f)  t.µX(f), y"z"  =  d".'(f),      '(f).(z'x')  =  d'.

The coherence relations for  '  do hold: the first (3.3) is obvious; the second (3.4) is concerned
with two natural transformations,  '(PµX).t(P')  and  '(µPX).'(P2t),  that take a commutative cube
& " Ob(P3X)  to the unique isomorphism linking two precise EM-factorisations of the diagonal arrow
of  &,  through  t.Pt.P2t(&)  and  t.µX.µPX(&), respectively.

By similar arguments, a functor  F: (X, E, M)  (Y, E', M')  that preserves fs is easily seen to
produce a morphism  (F, (): (X, t, ')  (Y, t', '')  of the associated pseudo P-algebras. Note that
(: F.t  t'.PF: PX  Y  is determined by the choices which give  t  and  t',  and does satisfy the
coherence condition 3.6,  (µX.F' = ''P2F.t'P(.(Pt;  these two natural transformations take a
commutative square  % " Ob(P2X)  to the unique isomorphism linking two precise EM-factorisations
of the diagonal arrow of the square, through  F.t.Pt(%)  and  t'.µY.P2F(%).  Similarly, a natural
transformation  ): F  G  satisfies automatically the condition 3.7.
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(C) The composite  FsCat  Ps-P-Alg  FsCat  is the identity. Let  (E, M)  be a fs on a category
X,  (t, ')  the associated pseudo P-algebra and  (E', M')  the fs corresponding to the latter. Then  E' =
{x | ++(x)  is iso}  plainly coincides with  E,  and  M' = M.

The other composite,  Ps-P-Alg  FsCat  Ps-P-Alg,  is just isomorphic to the identity. It is
now sufficient to consider two pseudo P-algebras  (t, '), (t', '')  on  X,  giving the same factorisa-
tion system  (E, M),  and prove that they are pseudo isomorphic, in a unique coherent way. Actually,
for each  x: X'  X"  in  X  there is one iso  ((x)  linking the t- and t'-factorisation (both in  (E, M))

+–x ++x
  X ' t(x̂)   X"

(7)
+'–x

   (x
+'+x

  X '    t'(x̂)   X"

this gives a functorial isomorphism  (: t  t': PX  X  such that  (1X, (): (X, t, ')  (X, t', '')
is a pseudo isomorphism of algebras.

(D) For Part (ii), we only need now to prove that, in the previous transformations, pseudo Fr-algebras
(i.e., pseudo P-algebras consistent with the Freyd congruence  R)  correspond to proper fs.

First, the consistency of  t: X2  X  with  R  is sufficient to give an epi-mono factorisation
system. Take, for instance,  m"M  (so that  u = +–(m)  is iso)  and  mf1 = h = mf2  in the left-hand
diagram below; then, the naturality of the transformation  +–: ,–  t  on the R-equivalent maps
(fi, h): X'  m  of  X2  gives  uf1 = t(f1, h) = t(f2, h) = uf2  and  f1 = f2

  X '     X '   X '     X '
(8)    fi

m
   h    fi

 u
   t(fi, h)

  X   Y   X  t(m)

Finally, if  (E, M)  is epi-mono, then  t(f)  in (3) only depends on the diagonal  !f   of  f = (f', f"):
x  y  in  X2,  and similarly for  '(f)  in (5). Therefore they induce a functor  t': FrX  X  and a
functorial iso  '': t'.Fr(t')  t'.µ'X,  which form a pseudo Fr-algebra.

5. Remarks. A crucial tool for the proof of point (A), above, is the structure of  PX = X2  as a
"path functor" (representing natural transformations): it forms a cubical comonad [G1, G2], well
linked to the previous monad structure. This interplay already arises in the exponent category  2  – a
comonoid and a lattice (more precisely, a cubical monoid [G1]) – and was exploited in this form in
[KT], Section 1.

The cubical comonad structure, relevant for formal homotopy theory [G2], has one degeneracy  #:
1  P  (the previous unit), two faces or co-units  ,±: P  1  (domain and codomain) and two
connections or co-operations  g±: P  P2

x
  X'   X"   X'   X '

(1)    x g–(x̂) g+(x̂)    x

  X"   X"   X'   X"
x
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(The connections have appeared above in the canonical factorisation  #X(x) = g–X(x̂).g+X(x̂);  the
natural transformations  +–,  ++  can thus be obtained as  +– = Pt.g+X,  ++ = Pt.g–X.)

A cubical comonad satisfies axioms [G1, G2] essentially saying that  ,$  ($ = ±)  is a co-unit for
the corresponding connection  g$  and co-absorbant for the other, while  #  makes everything degen-
erate; moreover, the connections are co-associative. Here the two structures, monad and cubical
comonad, are linked by some equations (after the coincidence of the monad-unit with the degeneracy;
the last formula is actually a consequence of the co-associativity of connections):

(2) ,$µ  =  ,$.P,$  =  ,$.,$P, µg$  =  1PX,

Pµ.g$P.g$'  =  #P, Pµ.g$P.g$  =  Pµ.Pg$.g$  =  g$ ($ - $').

A natural question arises – if the previous arguments have a non-trivial rebound in the usual range
of homotopy, the category  Top  of topological spaces. Replace the categorical interval  2  with the
topological one,  I = [0, 1],  which is, again, a diagonal comonoid and a lattice (and an exponentiable
object); thus, the path functor  PX = XI  is a monad and a cubical comonad, consistently as above.
But here, the interest of (pseudo?) P-algebras is not clear (once we have excluded the trivial,
"universal" ones: for a fixed  a " I,  every space  X  has an obvious strict structure,  eva: PX  X;  in
the same way as each category  X  has two trivial P-algebras, ,±: PX  X,  and two trivial fs). On
the other hand, one can readily note that the Kleisli category of  P  has for morphisms the homotopies,
with "diagonal" horizontal composition:  (.˚))(x; t) = .()(x; t); t),  for  t " I.
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