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Dedicated to Charles Ehresmann, on the centennial of his birth

Abstract. Directed Algebraic Topology is a recent field, deeply linked with
Category Theory. A 'directed space' has directed homotopies (generally
non reversible), directed homology groups (enriched with a preorder) and
fundamental n-categories (replacing the fundamental n-groupoids of the
classical case). Applications have been mostly developed in the theory of
concurrency. Unexpected links with noncommutative geometry and the
modelling of biological systems have emerged.

1. Introduction. Directed Algebraic Topology (DAT) studies 'directed spaces' in some
sense, where paths and homotopies cannot generally be reversed; for instance: simpli-
cial and cubical sets, ordered topological spaces, 'spaces with distinguished paths',
'inequilogical spaces', etc. Its present applications deal mostly with the analysis of
concurrent processes (see [Go, FRGH] and references there), but its natural range
should cover non reversible phenomena, in any domain.

Here, after a review of a series of papers devoted to this subject ([G4] to [G8]), we
shall give some hints at future developments and new interactions with other domains.
A wider literature can be found in the papers mentioned above.

Directed spaces can be studied with directed versions of the classical tools of
Algebraic Topology. Thus, the directed homology groups  ↑Hn(X)  (Sections 2-3,
[G5, G6]) are preordered abelian groups. Similarly, the fundamental category
↑Π1(X)  (Sections 4-5, [G4, G7]) replaces the classical fundamental groupoid; it also
allows one to study situations where all directed loops are trivial (so that the
fundamental monoids are trivial, and ↑H1(X) is reduced to its algebraic part). The
study of higher fundamental categories has begun, in a strict 2-dimensional version
[G8]; but here we prefer to anticipate a work in preparation on a lax version, which
seems to be more natural and adapted to higher extensions  (Section 6).

DAT has thus a deep interaction with ordinary and higher dimensional category
theory, clearer than classical Algebraic Topology. Natural links with Differential
Geometry are being studied, while unexpected connections with Noncommutative
Geometry have already been developed (Section 3, [G5, G6]); these deal with parallel
realisations - in Noncommutative Geometry and DAT - of orbit spaces and spaces of
leaves which are trivial in ordinary topology. Other interactions have recently
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appeared, between the notion of root of a category developed by A.C. Ehresmann
[Eh] for modelling biological systems, and our study of the fundamental category
(Section 7).

We shall end with a review of topological settings for DAT (Section 8) and a first
step in providing a formal setting (Section 9), based on Kan ideas (abstracting the
(co)cylinder functor, cf. [Ka]) rather than on Quillen model structures, which do not
seem to be able to formalise privileged directions and directed homotopies.

This paper contains my contribution at the conference "Charles Ehresmann: 100
ans", Amiens, 7-9 October 2005. I am particularly grateful for this opportunity, since
the position of Directed Algebraic Topology at the confluence of Topology,
Geometry and Category Theory, can presumably be viewed as coherent with the
research lines pursued by Charles and Andrée C. Ehresmann.

2. Combinatorial settings and directed homology. First, directed homotopy and
homology can be developed for cubical sets (as in [G5]) and simplicial sets.

Let us recall that a topological space  T  has intrinsic symmetries, appearing - at the
lowest level - in the reversion of its paths. Thus, the set  ∆nT = Top(∆n, T)  of its
singular simplices inherits from the standard simplex  ∆n  an obvious action of the
symmetric group  Sn+1,  while the set  ∆nT = Top([0, 1]n, T)  of its singular cubes has
a similar action of the hyperoctahedral group (the group of symmetries of the n-
cube). These combinatorial structures produce the singular homology of the space  T,
which can be equivalently defined as the homology of the chain complex associated
to the simplicial set  ∆T,  or the homology of the (normalised) chain complex associ-
ated to the cubical set  ∆T.  Here, a specific motivation for preferring cubical sets will
be our use of the natural order on  In  (cf. Section 4).

Now, bypassing topological spaces, an abstract cubical set  X  is a merely
combinatorial structure, consisting of a sequence of sets  Xn,  with faces  ∂αi :
Xn =  Xn–1  and degeneracies  ei: Xn–1 =  Xn  (α  = ±;  i = 1,..., n)  satisfying the
well-known cubical relations. This structure has been used in two ways, in [G5]: to
break the symmetries considered above and to perform constructions, namely
quotients, which would be useless in ordinary topology.

For the first aspect, note that an 'edge' in  X1  need not have any counterpart with
reversed vertices, nor a 'square' in  X2  any counterpart with horizontal and vertical
faces interchanged. Thus, our structure has 'privileged directions' in any dimension
(classically ignored), and the (usual) combinatorial homology of  X  can be given a
preorder, generated by taking the given cubes as positive. For instance, the obvious
cubical model  ↑sn  of the n-dimensional sphere, with one non-degenerate cube in
dimension  n,  has directed homology  ↑Hn(↑sn)  consisting of the group of integers,
with the natural order. Direction should not be confused with orientation, as shown by
the model  ↑t2 = ↑s1⊗↑s1  of the torus, where  ↑H1(↑t2) © ↑Z2  has the product order.
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Secondly, it may happen that a quotient  T/≈  of a topological space has a trivial
topology, while the corresponding quotient of its singular cubical set  ∆T  keeps a
relevant topological information, detected by its homology and agreeing with the
interpretation of such quotients in noncommutative geometry, as recalled below.

3. Interactions with noncommutative geometry. Let us start from the well-known
irrational rotation C*-algebras, also known as  'noncommutative tori'.

First, take the line  R   and its (dense) additive subgroup  Gϑ  = Z +ϑZ   (ϑ
irrational) acting on the former by translations. In  Top,  the orbit space  R /Gϑ =
S1/ϑZ  is trivial: an uncountable set with the coarse topology. Second, consider the
Kronecker foliation  F  of the torus  T2 = R2/Z2,  with irrational slope  ϑ,  and the set
T2
ϑ = T2/≡F  of its leaves (in bijective correspondence with the previous set  R/Gϑ).

Again, topology gives no information on  T2
ϑ,  since all leaves are dense and the

quotient space  T2/≡F  is coarse.

In noncommutative geometry, both these sets are 'interpreted' as the
(noncommutative) C*-algebra  Aϑ,  generated by two unitary elements  u, v  under the
relation  vu = exp(2πiϑ).uv,  and called the irrational rotation algebra associated with
ϑ,  or also a noncommutative torus [Ri, Co]. Both its complex K-theory groups are
two-dimensional. These algebras have been classified, by proving that  K0(Aϑ) © ↑Gϑ
as a (totally) ordered subgroup of  R .  Thus,  Aϑ  and  Aϑ '  are strongly Morita
equivalent if and only if  ↑Gϑ  ©  ↑Gϑ ',  if and only if  ϑ   and  ϑ '  are equivalent
modulo the action of the group  PGL(2, Z)  [PV, Ri].

For a group  G  acting properly on an acyclic space  T,  a classical result says that
the homology of the orbit space  T/G  is isomorphic to the homology of the group  G;
these results can be extended to free actions if we replace  T  with its singular cubical
set  ∆T  and take the quotient cubical set  (∆T)/G  ([G5], Thm. 3.3). Thus, the trivial
orbit space  R/Gϑ  can be replaced with a non-trivial cubical set,  (∆R)/Gϑ,  whose
homology is the same as the homology of the group  Gϑ ©  Z2,  and coincides with
the homology of the torus  T2.  Algebraically, all this is in accord with the noncom-
mutative C*-algebra  Aϑ,  but our result is independent of  ϑ  and does not allow us to
recover it.

Now, this similarity can be enhanced. The quotient  (∆R)/Gϑ  can be modified,
replacing  ∆R  with the cubical set  ∆↑R  of the directed line, formed of all order-
preserving maps  In =  R.  Algebraically, the homology groups are unchanged, but
now  ↑H1(↑R/Gϑ) © ↑Gϑ  as an ordered subgroup of  R  ([G5], Thm. 4.8): thus the
rotation cubical sets  Cϑ = ↑R/Gϑ  have the same classification up to isomorphism
([G5], Thm. 4.9) as the rotation C*-algebras  Aϑ  up to strong Morita equivalence,
and  ϑ  is determined up to the action of  PGL(2, Z).  This example shows that the
ordering of directed homology can carry a relevant information. Further, comparison
with the stricter classification of the algebras  Aϑ  up to isomorphism shows that
cubical sets provide a sort of 'noncommutative topology', without the metric character
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of noncommutative geometry.

(The inequilogical spaces  C 'ϑ = (↑R, ≡Gϑ
)  give the same results, cf. Section 8.)

4. A basic topological setting. After the combinatorial setting considered above, the
simplest topological situation where one can study directed paths and directed homo-
topies is likely the category  pTop  of preordered topological spaces and preorder-
preserving continuous mappings. (A preorder relation is reflexive and transitive; it is
called an order if it is also anti-symmetric.)

In this setting, a (directed) path of the preordered space  X  is a morphism  a:
↑[0, 1] =  X,  defined on the standard directed interval  ↑I = ↑[0, 1]  (with euclidean
topology and natural order). A (directed) homotopy  ϕ: f =  g: X =  Y,  from  f  to  g,
is a map  ϕ: X×↑I =  Y  coinciding with  f  on the lower basis of the cylinder  X×↑I,
with  g  on the upper one. Of course, this (directed) cylinder is a product in  pTop:  it
is equipped with the product topology and with the product preorder, where  (x, t) <
(x', t')  if  x < x'  in  X  and  t ≤ t'  in  ↑I.

The category  pTop   has all limits and colimits, constructed as in  Top   and
equipped with the initial or final preorder for the structural maps. The forgetful
functor  U: pTop =  Top  with values in the category of topological spaces has both a
left and a right adjoint,  D –  U –  C,  where  DX  (resp.  CX)  is the space  X  with
the discrete order (resp. the coarse preorder). The standard embedding of  Top  in
pTop  will be the coarse one, so that all (ordinary) paths in  X  are directed in  CX.
Note that the category of ordered spaces does not allow for such an embedding and
would not allow one to view classical Algebraic Topology within the Directed one.

The fundamental category  C = ↑Π1(X)  has, for arrows, the classes of directed
paths up to the equivalence relation generated by directed homotopy with fixed
endpoints; composition is given by the concatenation of consecutive paths. The
fundamental category of a preordered space can be computed by a van Kampen-type
theorem, as proved in [G4], Thm. 3.6, in a much more general setting ('d-spaces', cf.
Section 8). The obvious functor  ↑Π1(X) =  Π1(UX)  with values in the fundamental
groupoid of the underlying space need neither be full (obviously), nor faithful.

A map  f: X =  Y  induces a functor  f*: ↑Π1(X) =  ↑Π1(Y),  a homotopy  ϕ:
f =  g  induces a natural transformation  ϕ*: f* =  g*  which generally is not invert-
ible. Also because of this, there are crucial differences with the fundamental groupoid
Π1(S)  of a space, for which a model up to homotopy invariance is given by the
skeleton: a family of fundamental groups  π1(S, xi),  obtained by choosing one point
in each path-connected component of  S.  For instance, if  X  is ordered, the funda-
mental category has no isomorphisms nor endomorphisms, except the identities.
Thus: (a) the category is skeletal; and ordinary equivalence of categories cannot yield
any simpler model; (b) all the monoids  ↑π1(X, x0) = ↑Π1(X)(x0, x0)  are trivial.

Similarly, the singular cubical set  ∆X  consists of all preorder-preserving maps
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↑In =  X,  and provides the preordered homology groups  ↑Hn(X)  (studied in [G6] in
a more general setting). All this works because the faces and degeneracies
↑In-1

       _£)        ↑In   of the ordered cubes preserve the natural orders, and could hardly be
transferred to tetrahedra.

5. Analysing the fundamental category. An elementary example will give some idea
of the analysis developed in [G7] for the fundamental category of a preordered space.
(The paper [FRGH], devoted to the analysis of concurrent processes, has similar
results, based on different categorical tools, categories of fractions.)

Let us start from the standard ordered square  ↑[0, 1]2,  with the euclidean topol-
ogy and the product order, and consider the (compact) ordered subspace  A  obtained
by taking out the open square  ]1/3, 2/3[2,  a sort of 'square annulus'

<≥ ≥ ≥ ≥ ≥ ˙ : - - - - - : : - - - - - : : - - :< ˙ : | – – – à|
  x' : : : : :

(1) < <≥  È  ≥ ˙ ˙ : |! : „  È  „ :
à |! : : : „ „ „ : :

< è< è ˙ ˙ : ||  x à
: - - : | : : : : „ „ „

: :
<≤ ≤ ≤ ≤ ≤ ˙ : ∑|à – ∑ – ∑ – ∑| ∑ : : ∑ ∑ : : ∑ ∑ ∑ ∑ ∑ :

A      L L'

Its directed paths, the continuous order-preserving maps  ↑[0, 1] =  A,  move
'rightward and upward'. The fundamental category  C = ↑Π1(A)  has some arrow
x =  x'  provided that  x ≤ x'  and both points are in  L  or  L'  (the closed subspaces
represented above): there are two arrows when  x ≤  p = (1/3, 1/3)  and  x' ≥  q =
(2/3, 2/3), and one otherwise. This evident fact can be easily proved by the 'van
Kampen' theorem recalled above, using the subspaces  L, L'  (whose fundamental
category is the induced order).

Thus, the whole category  C  is easy to visualise and 'essentially represented' by the
full subcategory  E  on four vertices  0, p, q, 1  (the central cell does not commute)

| – – – – –ù |à
1

| – – fi = - - :à
1

| – – – – – || ù° | | : : |   q |
(2) | :! „  È  „ :

à
! 
  q | | : – È

– | :! |: fi |„ „  È  „ :
à |

| ù à
: - - : | |    p à

: ∑ |∑ ∂ | :!
| – – : |

|à –ù° –
 p

– – – | | – – – – – | :à - = - ∂ – – |   0
E F

  0
P

But  E  is far from being equivalent to  C,  as a category, since  C  is already a
skeleton, in the ordinary sense. In [G7] we have introduced two (dual) directed



6

notions, which take care, respectively, of variation 'in the future' or 'from the past':
future equivalence (a symmetric version of an adjunction, with two units) and its dual,
a past equivalence (with two counits); and studied how to extract minimal models for
both relations and how to combine them.

In the present case,  C  has a minimal 'future model'  F  (the least full reflective
subcategory) and a minimal 'past model'  P  (coreflective). The full subcategory  E  is
the join of   F  and  P;  it is at the same time future equivalent and past equivalent to
C,  and a 'minimal injective model' of  C.

Now, the process represented by the ordered space  X  can be analysed as follows,
in the finite model  E:

- the action begins at 0, from where we move to the point  p,

-  p  is an (effective) future branching point, where we have to choose between two
paths,

- which join at  q,  an (effective) past branching point,

- from where we can only move to 1.

6. Two-dimensional analysis. In [G8], we have extended this analysis introducing a
strict fundamental 2-category  ↑Π2(X).  But this construction is complicated, perhaps
non natural, and it is not clear whether it can be extended to higher dimension.

More naturally, one can define a fundamental biased d-lax 2-category  ↑bΠ2(X),
as studied in a work in progress [G9]. It is interesting to note that the geometric
guideline gives precise directions for the comparison cells, different from the ones
previously considered, by Burroni [Br] and Leinster [Le] for lax 2-categories (biased
and unbiased, respectively). The term 'd-lax' refers to this choice, while 'biased' (resp.
'unbiased') refers to structures based on binary (resp. multiple) operations.

An object of  ↑bΠ2(X)  is a point of  X,  an arrow  a: x =  x'  is a path, and a cell
[α]: a =  a': x =  x'  is a homotopy class of homotopies of paths. More precisely,  α
is a 2-homotopy  a =  a'  (with fixed endpoints), and its class  [α]  is up to the equiva-
lence relation generated by 3-homotopies  α' =  α"  (with fixed boundary).

Now, writing  a⊗b  the concatenation of two consecutive paths, our structure has
comparison cells, for units and associativity, directed as follows:

(1) λ: 1x⊗a =  a, ρ: a = a⊗1x', κ: a⊗(b⊗c) =  (a⊗b)⊗c,

always going from a first concatenation to a second concatenation of the same paths
which, at each instant, has made a longer way than the initial one.

Then, the coherence theorem for such a structure says that all diagrams (naturally)
constructed with comparison cells commute. This remains true in an extended
structure, where we add higher associativity comparisons  κ', κ"  depending on four
consecutive arrows, which break Mac Lane's pentagon into 3 commutative triangles:
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  κ
  (a⊗b) ⊗ (c⊗d)

  κ

(2) a⊗(b⊗(c⊗d))
ä
êî
ëï

æ°   κ' κ" œ$
â êî

ëï
 ((a⊗b)⊗c)⊗d

a⊗κ
a⊗((b⊗c)⊗d) -=  (a⊗(b⊗c))⊗d

κ⊗d

   κ

A further exension provides an unbiased version,  ↑uΠ2(X),  with n-ary concate-
nations  a1 ⊗ ... ⊗ an  of consecutive paths.

7. Links with categorical models for biological systems. Unexpectedly again, the
analysis of a category through minimal past and future models, as sketched above
(Section 5) and developed in [G7], has appeared to be closely related with notions
recently introduced by A.C. Ehresmann [Eh], within a series of papers with J.P.
Vanbremeersch, dedicated to modelling biosystems, neural systems, etc. Likely,
because of the common design of studying non-reversible actions.

It would be difficult to fully explain this here. Let us only remark two pairs of
neighbouring notions, using the terminology of both papers. First, a past retract  P  of
a category  X  (i.e. a full coreflective subcategory), used in [G7] as a 'past model' of
X,  is plainly a particular case of a corefract (i.e. a full weakly coreflective subcate-
gory) as defined in [Eh] 1.2. Second, one can prove that the past spectrum  P  of a
category  X  having no O--branchings, in the sense of [G7], is necessarily a root of  X,
as defined in [Eh], Section 2. In [G7], many examples of Section 9 fall in this
situation: their past spectrum is a root and their future spectrum a coroot.

8. Richer topological settings. In a preordered space, every loop lives in a zone where
the preorder is chaotic, and is reversible; therefore, this setting has no 'directed circle'
or 'directed torus'.

We briefly recall more complex directed structures, which allow for non-reversible
loops. All of them contain the directed interval  ↑I  with the structure considered
above, so that all the previous constructions can be easily extended.

(a) In a setting studied in [G4], a d-space  X = (X, dX)  is a topological space
equipped with a set  dX  of (continuous) maps  a: I =  X;  these maps, called directed
paths or d-paths, must contain all constant paths and be closed under concatenation
and (weakly) increasing reparametrisation. A d-map  f: X =  Y  (or map of d-spaces)
is a continuous mapping between d-spaces which preserves the directed paths: if  a ∈
dX,  then  fa ∈ dY.

The category of d-spaces is written as  dTop .  It has all limits and colimits,
constructed as in  Top  and equipped with the initial or final d-structure for the struc-
tural maps. Again, the forgetful functor  U: dTop =  Top   has a left and a right
adjoint; a topological space is viewed as a d-space by its natural structure, where all
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(continuous) paths are directed (via the right adjoint to  U).  Also  pTop   has an
obvious functor with values in  dTop.

Reversing d-paths, by the involution  r(t) = 1 – t,  yields the reflected, or opposite,
d-space  RX = Xop.  The standard directed circle  ↑S1 = ↑I/∂I  has the obvious d-
structure, where paths have to follow a precise orientation.

(b) Another setting for Directed Algebraic Topology comes from a directed version
of Dana Scott's equilogical spaces [Sc, BBS], which was introduced in [G6].

An inequilogical space  X = (X#, ≈X)  is a preordered topological space  X#

endowed with an equivalence relation  ≈X  (or  ≈).  The quotient  |X| = X#/≈   is
viewed as a preordered topological space (with the induced preorder and topology),
or a topological space, or a set, as convenient. A map  f: X =  Y  'is' a mapping  f:
|X| =  |Y|  which admits some continuous preorder-preserving lifting  f': X# =  Y#.

This category is denoted as  pEql.  The category  pTop  fully embeds in the latter,
identifying a preordered space  X  with the pair  (X, =X).  This category has all limits
and colimits, and is Cartesian closed (like the one of equilogical spaces). Directed
homotopy is defined by the standard directed interval  ↑I.  Various models for the
directed circle are considered in [G6]; the simplest is perhaps  (↑R , ≡Z),  i.e. the
quotient in  pEql  of the directed real line modulo the action of the group of integers.

(c) Finally, let us observe that extending preordered spaces by some local notion of
ordering, as frequently done in the theory of concurrency, seems not to provide a
good setting, with all limits and colimits; the usual attempts cannot realise the cone on
the directed circle (cf. [G4], 4.6).

9. Sketching a formal setting for DAT. The phenomena we want to study make sense
in a category  A   equipped with 2-cells (homotopies) which, generally, cannot be
reversed - but reflected.

More precisely, as a variation of Kan's notion of a category equipped with an
abstract cylinder endofunctor [Ka],  A   is a dI1-category. By this we mean that it
comes equipped with:

(a) a reflection  R: A =  A,  i.e. an involutive (covariant) automorphism (also written
R(X) = Xop,  R(f) = fop),

(b) a cylinder endofunctor  I: A =  A,  with four natural transformations: two faces
(∂α),  a degeneracy  (e)  and a reflection  (r)

(1) ∂α :  1      _£∞-)       I  : e, r: IR =  RI (α = ±),

satisfying the equations

(2) e∂α  =  1:  id =  id, RrR.r  =  1:  IR =  IR,

Re.r  =  eR:  IR =  R, r.∂–R  =  R∂+:  R =  RI.

Since  RR = 1,  the transformation  r  is invertible with  r–1 = RrR: RI =  IR  and
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r.∂+R = R∂–.

A homotopy  ϕ: f– =  f+: X =  Y  is defined as a map  ϕ: IX =  Y  with  ϕ.∂αX =
fα  (also written  ϕ̂  to distinguish it from the homotopy). Each map  f: X =  Y  has a
trivial endohomotopy,  1f: f =  f,  represented by  f.eX = eY.If: IX =  Y.

Every homotopy  ϕ: f =  g: X =  Y  has a reflected homotopy

(3) ϕop: gop =  fop: Xop =  Yop, (ϕop)ˆ  =  R(ϕ̂).r: IRX =  RIX =  RY,

and  (ϕop)op = ϕ,  (0f)op = 0(fop).

An object  X  is said to be reversible if it coincides with  Xop,  and reflexive or self-
dual if it is isomorphic to the latter. (The structure itself is reversible when  R = idA;
then, a homotopy has a reversed homotopy  ϕop: g =  f.  Such structures have no
'privileged directions'.)

Dually, a dP1-category has a reflection (as above) and a cocylinder, or path endo-
functor  P: A =  A,  with natural transformations in the opposite direction

(4) e :  1      _})-∞       P  : ∂α, r: RP =  PR.

satisfying the dual equations.

It is easy to see that a dI1-structure where the cylinder functor has a right adjoint,
I –  P,  automatically produces the natural transformations of the cocylinder, and a
dP1-structure; we say then that  A  is a dIP1-category. Both endofunctors produce the
same homotopies, represented equivalently by maps  IX =  Y  or  X =  PY.

A dI1- or dP1-structure is often generated by a standard directed interval, by
cartesian (or tensor) product and internal hom, respectively. In these frames, one can
define directed homology and 'first order' homotopy theory. Much structure has to be
added to develop higher directed homotopy theory, which will be done in a sequel
(following the line of [G1, G2] and, for the reversible case, [G3]).
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