
Genova, March 17, 2023

Genova ricorda Lawvere

Lawvere metric spaces in Weighted Algebraic Topology

Marco Grandis



1. Lawvere metric spaces as directed and weighted spaces

Lawvere generalised metric space [Lw] (1973), or δ-space:
- a set X equipped with a δ-metric: δ : X×X → [0,∞]

δ(x , x) = 0, δ(x , y) + δ(y , z) > δ(x , z)

(notation and terminology as in [Gr], Chapter 5).

a category enriched over R, symmetric monoidal closed category:

- ob. λ ∈ [0,∞], maps λ > µ, tensor λ+ µ, [λ, µ] = µ− λ.

δMtr: the category of δ-spaces and weak contractions
f : X → Y , δ(x , x ′) > δ(f (x), f (x ′))

- symmetric monoidal closed:
X ⊗ Y , δ((x , y), (x ′, y ′)) = δ(x , x ′) + δ(y , y ′).

[−,−]: Lipschitz maps with the δ-metric of uniform convergence.

δ∞Mtr : the larger category of δ-spaces and Lipschitz maps:
δ(x , x ′) > Lδ(f (x), f (x ′)) (some L > 0).
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1A. Complements

1. allowing ∞: → δMtr is complete and cocomplete
(a product has the l∞-metric, by sup)

(δ∞Mtr is finitely (co)complete, but allows path concatenation).

2. no symmetry: → privileged direction:

Directed Algebraic Topology (DAT),

→ weights (length of paths):

Weighted Algebraic Topology (WAT)
(an enriched form of DAT).

3. The associated symmetric δ-metric (and topology):

! : δMtr→Mtr (the reflector):
!δ(x , x ′) = infx (

∑
j (δ(xj−1, xj) ∧ δ(xj , xj−1)))

x = (x0, ..., xp), x0 = x , xp = x ′,

greatest symmetric δ-metric 6 δ.
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2. Some models and their directed structure
The standard δ-line δR: δ(x , y) = y − x if x 6 y , OR ∞

(No going back. Reflector: euclidean metric. Corefl.: discrete).

The standard δ-interval δI: restricted δ-metric

The standard δ-cube δI⊗n: δ(x, y) =
∑

(yi − xi ) if x 6 y, OR ∞

The standard δ-sphere δSn: δI⊗n/∂In, quotient δ-space
(the boundary is collapsed to a point)

x ′

x ′′
δS2

δ(x ′, x ′′), δ(x ′′, x ′)
•

•

;;

OO

//
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2A. Complements

The standard δ-circle δS1: δI/∂I, quotient δ-space
(the endpoints of [0, 1] are collapsed to a point).

The weighted structure of a δ-space:

a path a : [0, 1]→ X in a δ-space has a length, or cost:

L(a) = supt Lt(a) ∈ [0,∞],

Lt(a) =
∑
δ(a(tj−1), a(tj)) (t : 0 = t0 < t1 < ... < tp = 1).

The directed structure of a δ-space:

a path a is distinguished, or allowed, if L(a) <∞
(a consequence of the weighted structure).



2A. Complements

The standard δ-circle δS1: δI/∂I, quotient δ-space
(the endpoints of [0, 1] are collapsed to a point).

The weighted structure of a δ-space:

a path a : [0, 1]→ X in a δ-space has a length, or cost:

L(a) = supt Lt(a) ∈ [0,∞],

Lt(a) =
∑
δ(a(tj−1), a(tj)) (t : 0 = t0 < t1 < ... < tp = 1).

The directed structure of a δ-space:

a path a is distinguished, or allowed, if L(a) <∞
(a consequence of the weighted structure).



2A. Complements

The standard δ-circle δS1: δI/∂I, quotient δ-space
(the endpoints of [0, 1] are collapsed to a point).

The weighted structure of a δ-space:

a path a : [0, 1]→ X in a δ-space has a length, or cost:

L(a) = supt Lt(a) ∈ [0,∞],

Lt(a) =
∑
δ(a(tj−1), a(tj)) (t : 0 = t0 < t1 < ... < tp = 1).

The directed structure of a δ-space:

a path a is distinguished, or allowed, if L(a) <∞
(a consequence of the weighted structure).



3. Something on Directed Algebraic Topology (DAT)

DAT arose in the 1990’s ([Gr], 2009; downloadable)

- in abstract settings for homotopy theory,
- in the theory of concurrent processes (Aalborg, Polytechnique,...)

DAT enriches (and generalises) Algebraic Topology:
directed spaces can have a ’direction’, and non-reversible paths.

General aim: modelling (possibly) non-reversible phenomena.

Intended applications: domains where privileged directions appear:

- concurrent processes,

- traffic networks,

- space-time models,

- rewrite systems, etc.
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3A. Settings for DAT
A basic setting and the most used one:

pTop: category of preordered topological spaces,

dTop: cat. of d-spaces, equipped with distinguished paths
closed under: constant paths, concatenation, partial reparam.

Forgetful functors:

- pTop→ dTop distinguished paths: the monotone ones,

- δMtr→ dTop distinguished paths: L(a) <∞,

- δMtr→ pTop preorder: x ≺ x ′ if δ(x , x ′) <∞.

Remarks: the p-space associated to δSn(n > 1) has no interest

(chaotic preorder),

the associated d-space ↑Sn is important

(directly: ↑In/∂In, quotient d-space; or by pointed suspension).

Other settings: cubical sets, inequilogical spaces, flows, etc.



3A. Settings for DAT
A basic setting and the most used one:

pTop: category of preordered topological spaces,

dTop: cat. of d-spaces, equipped with distinguished paths
closed under: constant paths, concatenation, partial reparam.

Forgetful functors:

- pTop→ dTop distinguished paths: the monotone ones,

- δMtr→ dTop distinguished paths: L(a) <∞,

- δMtr→ pTop preorder: x ≺ x ′ if δ(x , x ′) <∞.

Remarks: the p-space associated to δSn(n > 1) has no interest

(chaotic preorder),

the associated d-space ↑Sn is important

(directly: ↑In/∂In, quotient d-space; or by pointed suspension).

Other settings: cubical sets, inequilogical spaces, flows, etc.



3A. Settings for DAT
A basic setting and the most used one:

pTop: category of preordered topological spaces,

dTop: cat. of d-spaces, equipped with distinguished paths
closed under: constant paths, concatenation, partial reparam.

Forgetful functors:

- pTop→ dTop distinguished paths: the monotone ones,

- δMtr→ dTop distinguished paths: L(a) <∞,

- δMtr→ pTop preorder: x ≺ x ′ if δ(x , x ′) <∞.

Remarks: the p-space associated to δSn(n > 1) has no interest

(chaotic preorder),

the associated d-space ↑Sn is important

(directly: ↑In/∂In, quotient d-space; or by pointed suspension).

Other settings: cubical sets, inequilogical spaces, flows, etc.



3A. Settings for DAT
A basic setting and the most used one:

pTop: category of preordered topological spaces,

dTop: cat. of d-spaces, equipped with distinguished paths
closed under: constant paths, concatenation, partial reparam.

Forgetful functors:

- pTop→ dTop distinguished paths: the monotone ones,

- δMtr→ dTop distinguished paths: L(a) <∞,

- δMtr→ pTop preorder: x ≺ x ′ if δ(x , x ′) <∞.

Remarks: the p-space associated to δSn(n > 1) has no interest

(chaotic preorder),

the associated d-space ↑Sn is important

(directly: ↑In/∂In, quotient d-space; or by pointed suspension).

Other settings: cubical sets, inequilogical spaces, flows, etc.



4. DAT: elementary examples in pTop

Euclidean plane R2 with order relation:

p

p′
p′′

a

x

y

•
•

•
,,

//

OO

(x , y) 6 (x ′, y ′) ⇐⇒ |y ′ − y | 6 x ′ − x .

- cone of the future at the point p (the set of points > p),

- directed path a from p′ to p′′ (a monotone map [0, 1]→ R2),

- there is no (directed) path from p′′ to p′,

- every loop is constant.



4A. DAT: elementary examples in pTop, continued

Two subspaces X ,Y , with directed paths from p′ to p′′

• • • ••p′ p′′ p′ p′′

X Y

×

×
×

×

77

33

''

22

22

,,

''

Their fundamental categories have 3 or 4 arrows p′ → p′′

arrows of ↑Π1(−): homotopy classes of paths (directed).

Interpretations:

1. a stream with two islands; order: upper bound for relative v ,

2. time and one-dim. space, with linear obstacles; order: v 6 1,

(3. execution paths of two concurrent automata with conflict of
resources; order: time progression [FGR].)
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4B. Remarks

1. DAT distinguishes here between obstructions which intervene
essentially together or one after the other

(islands, temporary obstacles, conflicts of resources).

Topology (General or Algebraic) cannot: X ∼= Y as spaces.

2. Here the fundamental monoids ↑π1(−) are trivial.

3. DAT studies spaces by directed homotopy and homology
(enriched versions):
- ↑Π1 : dTop→ Cat, fundamental category of a d-space,
- ↑Hn : dTop→ pAb, n-th homology preordered group.

4. Examples:

↑Π1(↑S1) = a subcategory of the groupoid Π1(S1),

↑H1(↑S1) = (Z,6), ordered abelian group.
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5. Something on Weighted Algebraic Topology

Weighted Algebraic Topology: Reference: [Gr], Chapter 6.

An enriched version of DAT:

paths have a length (or cost, duration,...) in [0,∞],
which enriches the truth-values of DAT: yes: λ <∞, no: ∞.

Settings:

δMtr: category of δ-spaces and weak contractions,

wTop: category of w-spaces and cost-decreasing maps

w∞Top: category of w-spaces and ’Lipschitz’ maps.
(w-space: equipped with a weight function w : X I → [0,∞]).

Forgetful functors:

δMtr→ wTop: w(a) = L(a),

wTop→ dTop: distinguished paths: w(a) <∞,

δMtr→ dTop: distinguished paths: L(a) <∞.
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6. Non-commutative Geometry and Lawvere metric sp.

Non-commutative Geometry: introduced by Alain Connes [C1, C2]
non-commutative C*-algebras ’are’ non-commutative spaces.

C*-algebra: involutive Banach C-algebra, with
(xy)∗ = y∗x∗, ||xx∗|| = ||x ||2.

Gelfand duality: C : HCmp→ UComC∗Algop, equivalence of cat.
C (X ) = Top(X ,C), unital commutative C*-algebra.

An example: ϑ is an irrational number.

Gϑ = Z + ϑZ: ordered subgroup of R; acts on R by translations
(algebraically isomorphic to Z2, but totally ordered).

Orbit space R/Gϑ: chaotic topology (Gϑ dense in R).

This ‘object’ should have H1 generated by two cycles, of length 1
and ϑ! (Non-trivial and independent in DAT and WAT).
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6A. Interpretation in Non-commutative Geometry

This trivial space is replaced by a non-commutative C*-algebra:

Aϑ: the irrational rotation algebra associated with ϑ

generated by two unitary elements u, v : vu = exp(2πϑ).uv .

Also called a noncommutative torus: K-groups of the torus.

Classifications (up to isomorphism or strong Morita equivalence):

Aϑ
∼= Aϑ′ ⇐⇒ ϑ′ ∈ ±ϑ+ Z,

Aϑ ∼M Aϑ′ : also characterised
by fractional action of 2×2 matrices with integral entries.
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6B. Interpretation in Weighted Algebraic Topology

This trivial space is replaced by a w-space:

Wϑ = wR/Gϑ: the irrational rotation w-space associated with ϑ

a quotient of the w-line (associated to δR).

Classifications (up to isometric or Lipschitz isomorphism):

Wϑ
∼= Wϑ′ (in wTop) ⇐⇒ ϑ′ ∈ ±ϑ+ Z,

Wϑ
∼=∞Wϑ′ (in w∞Top) ⇐⇒ Aϑ ∼M Aϑ′ .

In DAT we only have the second classification, by irrational
rotation d-spaces:

Dϑ =↑R/Gϑ: a quotient of the d-line (increasing paths)

Dϑ
∼= Dϑ′ (in dTop) ⇐⇒ Aϑ ∼M Aϑ′ .

- DAT gives a ’Non-commutative Topology’, without weights.

- The quotient δR/Gϑ has the chaotic δ-metric and topology.



6B. Interpretation in Weighted Algebraic Topology

This trivial space is replaced by a w-space:

Wϑ = wR/Gϑ: the irrational rotation w-space associated with ϑ

a quotient of the w-line (associated to δR).

Classifications (up to isometric or Lipschitz isomorphism):

Wϑ
∼= Wϑ′ (in wTop) ⇐⇒ ϑ′ ∈ ±ϑ+ Z,

Wϑ
∼=∞Wϑ′ (in w∞Top) ⇐⇒ Aϑ ∼M Aϑ′ .

In DAT we only have the second classification, by irrational
rotation d-spaces:

Dϑ =↑R/Gϑ: a quotient of the d-line (increasing paths)

Dϑ
∼= Dϑ′ (in dTop) ⇐⇒ Aϑ ∼M Aϑ′ .

- DAT gives a ’Non-commutative Topology’, without weights.

- The quotient δR/Gϑ has the chaotic δ-metric and topology.



6B. Interpretation in Weighted Algebraic Topology

This trivial space is replaced by a w-space:

Wϑ = wR/Gϑ: the irrational rotation w-space associated with ϑ

a quotient of the w-line (associated to δR).

Classifications (up to isometric or Lipschitz isomorphism):

Wϑ
∼= Wϑ′ (in wTop) ⇐⇒ ϑ′ ∈ ±ϑ+ Z,

Wϑ
∼=∞Wϑ′ (in w∞Top) ⇐⇒ Aϑ ∼M Aϑ′ .

In DAT we only have the second classification, by irrational
rotation d-spaces:

Dϑ =↑R/Gϑ: a quotient of the d-line (increasing paths)

Dϑ
∼= Dϑ′ (in dTop) ⇐⇒ Aϑ ∼M Aϑ′ .

- DAT gives a ’Non-commutative Topology’, without weights.

- The quotient δR/Gϑ has the chaotic δ-metric and topology.



6B. Interpretation in Weighted Algebraic Topology

This trivial space is replaced by a w-space:

Wϑ = wR/Gϑ: the irrational rotation w-space associated with ϑ

a quotient of the w-line (associated to δR).

Classifications (up to isometric or Lipschitz isomorphism):

Wϑ
∼= Wϑ′ (in wTop) ⇐⇒ ϑ′ ∈ ±ϑ+ Z,

Wϑ
∼=∞Wϑ′ (in w∞Top) ⇐⇒ Aϑ ∼M Aϑ′ .

In DAT we only have the second classification, by irrational
rotation d-spaces:

Dϑ =↑R/Gϑ: a quotient of the d-line (increasing paths)

Dϑ
∼= Dϑ′ (in dTop) ⇐⇒ Aϑ ∼M Aϑ′ .

- DAT gives a ’Non-commutative Topology’, without weights.

- The quotient δR/Gϑ has the chaotic δ-metric and topology.



7. References
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