Genova, March 17, 2023

Genova ricorda Lawvere

Lawvere metric spaces in Weighted Algebraic Topology
Marco Grandis

1. Lawvere metric spaces as directed and weighted spaces

Lawvere generalised metric space [Lw] (1973), or δ-space:

- a set X equipped with a δ-metric: $\delta: X \times X \rightarrow[0, \infty]$

$$
\delta(x, x)=0, \quad \delta(x, y)+\delta(y, z) \geqslant \delta(x, z)
$$

(notation and terminology as in [Gr], Chapter 5).

1. Lawvere metric spaces as directed and weighted spaces

Lawvere generalised metric space [Lw] (1973), or δ-space:

- a set X equipped with a δ-metric: $\delta: X \times X \rightarrow[0, \infty]$

$$
\delta(x, x)=0, \quad \delta(x, y)+\delta(y, z) \geqslant \delta(x, z)
$$

(notation and terminology as in [Gr], Chapter 5).
a category enriched over R , symmetric monoidal closed category:

- ob. $\lambda \in[0, \infty], \quad$ maps $\lambda \geqslant \mu, \quad$ tensor $\lambda+\mu, \quad[\lambda, \mu]=\mu-\lambda$.

1. Lawvere metric spaces as directed and weighted spaces

Lawvere generalised metric space [Lw] (1973), or δ-space:

- a set X equipped with a δ-metric: $\delta: X \times X \rightarrow[0, \infty]$

$$
\delta(x, x)=0, \quad \delta(x, y)+\delta(y, z) \geqslant \delta(x, z)
$$

(notation and terminology as in [Gr], Chapter 5).
a category enriched over R , symmetric monoidal closed category:

- ob. $\lambda \in[0, \infty], \quad$ maps $\lambda \geqslant \mu, \quad$ tensor $\lambda+\mu, \quad[\lambda, \mu]=\mu-\lambda$.
$\delta \mathbf{M} \mathbf{t r}$: the category of δ-spaces and weak contractions

$$
f: X \rightarrow Y, \quad \delta\left(x, x^{\prime}\right) \geqslant \delta\left(f(x), f\left(x^{\prime}\right)\right)
$$

- symmetric monoidal closed:

$$
X \otimes Y, \quad \delta\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\delta\left(x, x^{\prime}\right)+\delta\left(y, y^{\prime}\right)
$$

$[-,-]$: Lipschitz maps with the δ-metric of uniform convergence.

1. Lawvere metric spaces as directed and weighted spaces

Lawvere generalised metric space [Lw] (1973), or δ-space:

- a set X equipped with a δ-metric: $\delta: X \times X \rightarrow[0, \infty]$

$$
\delta(x, x)=0, \quad \delta(x, y)+\delta(y, z) \geqslant \delta(x, z)
$$

(notation and terminology as in [Gr], Chapter 5).
a category enriched over R , symmetric monoidal closed category:

- ob. $\lambda \in[0, \infty], \quad$ maps $\lambda \geqslant \mu, \quad$ tensor $\lambda+\mu, \quad[\lambda, \mu]=\mu-\lambda$.
$\delta \mathbf{M} \mathbf{t r}$: the category of δ-spaces and weak contractions

$$
f: X \rightarrow Y, \quad \delta\left(x, x^{\prime}\right) \geqslant \delta\left(f(x), f\left(x^{\prime}\right)\right)
$$

- symmetric monoidal closed:

$$
X \otimes Y, \quad \delta\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\delta\left(x, x^{\prime}\right)+\delta\left(y, y^{\prime}\right)
$$

$[-,-]$: Lipschitz maps with the δ-metric of uniform convergence.
δ_{∞} Mtr : the larger category of δ-spaces and Lipschitz maps:

$$
L \delta\left(x, x^{\prime}\right) \geqslant \delta\left(f(x), f\left(x^{\prime}\right)\right)(\text { some } L \geqslant 0)
$$

1A. Complements

1. allowing ∞ : $\rightarrow \delta \mathbf{M} \mathbf{t r}$ is complete and cocomplete (a product has the I_{∞}-metric, by sup)
(δ_{∞} Mtr is finitely (co)complete, but allows path concatenation).

1A. Complements

1. allowing ∞ : $\rightarrow \delta \mathbf{M} \mathbf{t r}$ is complete and cocomplete (a product has the I_{∞}-metric, by sup)
($\delta_{\infty} \mathrm{Mtr}$ is finitely (co)complete, but allows path concatenation).
2. no symmetry: \rightarrow privileged direction:

Directed Algebraic Topology (DAT),
\rightarrow weights (length of paths):
Weighted Algebraic Topology (WAT) (an enriched form of DAT).

1A. Complements

1. allowing ∞ : $\rightarrow \delta \mathbf{M} \mathbf{t r}$ is complete and cocomplete (a product has the I_{∞}-metric, by sup)
($\delta_{\infty} \mathrm{Mtr}$ is finitely (co)complete, but allows path concatenation).
2. no symmetry: \rightarrow privileged direction:

Directed Algebraic Topology (DAT),
\rightarrow weights (length of paths):
Weighted Algebraic Topology (WAT) (an enriched form of DAT).
3. The associated symmetric δ-metric (and topology):
!: $\delta \mathbf{M t r} \rightarrow$ Mtr (the reflector):

$$
\begin{aligned}
!\delta\left(x, x^{\prime}\right)=\inf _{\mathbf{x}}\left(\sum_{j}(\right. & \left.\left.\delta\left(x_{j-1}, x_{j}\right) \wedge \delta\left(x_{j}, x_{j-1}\right)\right)\right) \\
& x=\left(x_{0}, \ldots, x_{p}\right), \quad x_{0}=x, \quad x_{p}=x^{\prime}
\end{aligned}
$$

greatest symmetric δ-metric $\leqslant \delta$.
2. Some models and their directed structure The standard δ-line $\quad \delta \mathbb{R}: \quad \delta(x, y)=y-x$ if $x \leqslant y, \mathrm{OR} \infty$ (No going back. Reflector: euclidean metric. Corefl.: discrete).
2. Some models and their directed structure The standard δ-line $\quad \delta \mathbb{R}: \quad \delta(x, y)=y-x$ if $x \leqslant y, \mathrm{OR} \infty$ (No going back. Reflector: euclidean metric. Corefl.: discrete).

The standard δ-interval $\delta \mathbb{I}$: restricted δ-metric
2. Some models and their directed structure The standard δ-line $\quad \delta \mathbb{R}: \quad \delta(x, y)=y-x$ if $x \leqslant y, \mathrm{OR} \infty$ (No going back. Reflector: euclidean metric. Corefl.: discrete).

The standard δ-interval $\delta \mathbb{I}$: restricted δ-metric
The standard δ-cube $\delta \mathbb{I}^{\otimes n}: \quad \delta(\mathbf{x}, \mathbf{y})=\sum\left(y_{i}-x_{i}\right)$ if $\mathbf{x} \leqslant \mathbf{y}$, OR ∞
2. Some models and their directed structure The standard δ-line $\quad \delta \mathbb{R}: \quad \delta(x, y)=y-x$ if $x \leqslant y, \mathrm{OR} \infty$ (No going back. Reflector: euclidean metric. Corefl.: discrete).

The standard δ-interval $\delta \mathbb{I}$: restricted δ-metric
The standard δ-cube $\delta \mathbb{I}^{\otimes n}: \quad \delta(\mathbf{x}, \mathbf{y})=\sum\left(y_{i}-x_{i}\right)$ if $\mathbf{x} \leqslant \mathbf{y}$, OR ∞
The standard δ-sphere $\delta \mathbb{S}^{n}: \quad \delta \mathbb{I}^{\otimes n} / \partial \mathbb{I}^{n}$, quotient δ-space (the boundary is collapsed to a point)
2. Some models and their directed structure The standard δ-line $\quad \delta \mathbb{R}: \quad \delta(x, y)=y-x$ if $x \leqslant y, \mathrm{OR} \infty$ (No going back. Reflector: euclidean metric. Corefl.: discrete).

The standard δ-interval $\delta \mathbb{I}$: restricted δ-metric
The standard δ-cube $\delta \mathbb{I}^{\otimes n}: \quad \delta(\mathbf{x}, \mathbf{y})=\sum\left(y_{i}-x_{i}\right)$ if $\mathbf{x} \leqslant \mathbf{y}$, OR ∞
The standard δ-sphere $\delta \mathbb{S}^{n}: \quad \delta \mathbb{I}^{\otimes n} / \partial \mathbb{I}^{n}$, quotient δ-space
(the boundary is collapsed to a point)

$$
\begin{aligned}
& \delta \mathbb{S}^{2} \\
& \delta\left(x^{\prime}, x^{\prime \prime}\right), \quad \delta\left(x^{\prime \prime}, x^{\prime}\right)
\end{aligned}
$$

2A. Complements

The standard δ-circle $\delta \mathbb{S}^{1}: \quad \delta \mathbb{I} / \partial \mathbb{I}$, quotient δ-space (the endpoints of $[0,1]$ are collapsed to a point).

2A. Complements

The standard δ-circle $\delta \mathbb{S}^{1}: \quad \delta \mathbb{I} / \partial \mathbb{I}$, quotient δ-space (the endpoints of $[0,1]$ are collapsed to a point).

The weighted structure of a δ-space:
a path a: $[0,1] \rightarrow X$ in a δ-space has a length, or cost:
$L(a)=\sup _{\mathbf{t}} L_{\mathbf{t}}(a) \in[0, \infty]$,

$$
L_{\mathbf{t}}(a)=\sum \delta\left(a\left(t_{j-1}\right), a\left(t_{j}\right)\right) \quad\left(\mathbf{t}: 0=t_{0}<t_{1}<\ldots<t_{p}=1\right) .
$$

2A. Complements

The standard δ-circle $\delta \mathbb{S}^{1}: \quad \delta \mathbb{I} / \partial \mathbb{I}$, quotient δ-space (the endpoints of $[0,1]$ are collapsed to a point).

The weighted structure of a δ-space:
a path a: $[0,1] \rightarrow X$ in a δ-space has a length, or cost:
$L(a)=\sup _{\mathbf{t}} L_{\mathbf{t}}(a) \in[0, \infty]$,

$$
L_{\mathbf{t}}(a)=\sum \delta\left(a\left(t_{j-1}\right), a\left(t_{j}\right)\right) \quad\left(\mathbf{t}: 0=t_{0}<t_{1}<\ldots<t_{p}=1\right) .
$$

The directed structure of a δ-space:
a path a is distinguished, or allowed, if $L(a)<\infty$ (a consequence of the weighted structure).

3. Something on Directed Algebraic Topology (DAT)

DAT arose in the 1990's ([Gr], 2009; downloadable)

- in abstract settings for homotopy theory,
- in the theory of concurrent processes (Aalborg, Polytechnique,...)

3. Something on Directed Algebraic Topology (DAT)

DAT arose in the 1990's ([Gr], 2009; downloadable)

- in abstract settings for homotopy theory,
- in the theory of concurrent processes (Aalborg, Polytechnique,...)

DAT enriches (and generalises) Algebraic Topology: directed spaces can have a 'direction', and non-reversible paths.

3. Something on Directed Algebraic Topology (DAT)

DAT arose in the 1990's ([Gr], 2009; downloadable)

- in abstract settings for homotopy theory,
- in the theory of concurrent processes (Aalborg, Polytechnique,...)

DAT enriches (and generalises) Algebraic Topology: directed spaces can have a 'direction', and non-reversible paths.

General aim: modelling (possibly) non-reversible phenomena.
Intended applications: domains where privileged directions appear:

- concurrent processes,
- traffic networks,
- space-time models,
- rewrite systems, etc.

3A. Settings for DAT

A basic setting and the most used one:
p Top: category of preordered topological spaces,
dTop: cat. of d-spaces, equipped with distinguished paths closed under: constant paths, concatenation, partial reparam.

3A. Settings for DAT

A basic setting and the most used one:
pTop: category of preordered topological spaces,
d Top: cat. of d-spaces, equipped with distinguished paths closed under: constant paths, concatenation, partial reparam.

Forgetful functors:

- pTop $\rightarrow \mathrm{d}$ Top distinguished paths: the monotone ones,
- $\delta \mathbf{M} \mathbf{t r} \rightarrow \mathrm{d}$ Top \quad distinguished paths: $L(a)<\infty$,
- δ Mtr $\rightarrow \mathrm{p}$ Top \quad preorder: $x \prec x^{\prime}$ if $\delta\left(x, x^{\prime}\right)<\infty$.

3A. Settings for DAT

A basic setting and the most used one:
pTop: category of preordered topological spaces,
dTop: cat. of d-spaces, equipped with distinguished paths closed under: constant paths, concatenation, partial reparam.

Forgetful functors:

- pTop $\rightarrow \mathrm{d}$ Top \quad distinguished paths: the monotone ones,
- δ Mtr $\rightarrow \mathrm{d}$ Top \quad distinguished paths: $L(a)<\infty$,
- δ Mtr $\rightarrow \mathrm{p}$ Top \quad preorder: $x \prec x^{\prime}$ if $\delta\left(x, x^{\prime}\right)<\infty$.

Remarks: the p-space associated to $\delta \mathbb{S}^{n}(n \geqslant 1)$ has no interest (chaotic preorder),
the associated d-space $\uparrow \mathbb{S}^{n}$ is important
(directly: $\uparrow \mathbb{I}^{n} / \partial \mathbb{I}^{n}$, quotient d-space; or by pointed suspension).

3A. Settings for DAT

A basic setting and the most used one:
pTop: category of preordered topological spaces,
dTop: cat. of d-spaces, equipped with distinguished paths closed under: constant paths, concatenation, partial reparam.

Forgetful functors:

- pTop $\rightarrow \mathrm{d}$ Top \quad distinguished paths: the monotone ones,
- δ Mtr $\rightarrow \mathrm{d}$ Top distinguished paths: $L(a)<\infty$,
- δ Mtr $\rightarrow \mathrm{p}$ Top \quad preorder: $x \prec x^{\prime}$ if $\delta\left(x, x^{\prime}\right)<\infty$.

Remarks: the p-space associated to $\delta \mathbb{S}^{n}(n \geqslant 1)$ has no interest (chaotic preorder),
the associated d-space $\uparrow \mathbb{S}^{n}$ is important
(directly: $\uparrow \mathbb{I}^{n} / \partial \mathbb{I}^{n}$, quotient d-space; or by pointed suspension).
Other settings: cubical sets, inequilogical spaces, flows, etc.

4. DAT: elementary examples in pTop

Euclidean plane \mathbb{R}^{2} with order relation:

$$
(x, y) \leqslant\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow\left|y^{\prime}-y\right| \leqslant x^{\prime}-x
$$

- cone of the future at the point p (the set of points $\geqslant p$),
- directed path a from p^{\prime} to $p^{\prime \prime}$ (a monotone map $[0,1] \rightarrow \mathbb{R}^{2}$),
- there is no (directed) path from $p^{\prime \prime}$ to p^{\prime},
- every loop is constant.

4A. DAT: elementary examples in pTop, continued

Two subspaces X, Y, with directed paths from p^{\prime} to $p^{\prime \prime}$

4A. DAT: elementary examples in pTop, continued

Two subspaces X, Y, with directed paths from p^{\prime} to $p^{\prime \prime}$

Their fundamental categories have 3 or 4 arrows $p^{\prime} \rightarrow p^{\prime \prime}$ arrows of $\uparrow \Pi_{1}(-)$: homotopy classes of paths (directed).

4A. DAT: elementary examples in pTop, continued

Two subspaces X, Y, with directed paths from p^{\prime} to $p^{\prime \prime}$

Their fundamental categories have 3 or 4 arrows $p^{\prime} \rightarrow p^{\prime \prime}$ arrows of $\uparrow \Pi_{1}(-)$: homotopy classes of paths (directed).
Interpretations:

1. a stream with two islands; order: upper bound for relative v,
2. time and one-dim. space, with linear obstacles; order: $v \leqslant 1$,
(3. execution paths of two concurrent automata with conflict of resources; order: time progression [FGR].)

4B. Remarks

1. DAT distinguishes here between obstructions which intervene essentially together or one after the other (islands, temporary obstacles, conflicts of resources).
Topology (General or Algebraic) cannot: $X \cong Y$ as spaces.

4B. Remarks

1. DAT distinguishes here between obstructions which intervene essentially together or one after the other (islands, temporary obstacles, conflicts of resources).
Topology (General or Algebraic) cannot: $X \cong Y$ as spaces.
2. Here the fundamental monoids $\uparrow \pi_{1}(-)$ are trivial.

4B. Remarks

1. DAT distinguishes here between obstructions which intervene essentially together or one after the other
(islands, temporary obstacles, conflicts of resources).
Topology (General or Algebraic) cannot: $X \cong Y$ as spaces.
2. Here the fundamental monoids $\uparrow \pi_{1}(-)$ are trivial.
3. DAT studies spaces by directed homotopy and homology (enriched versions):
$-\uparrow \Pi_{1}: d$ Top \rightarrow Cat, fundamental category of a d-space,
$-\uparrow H_{n}: \mathrm{d} \mathbf{T o p} \rightarrow \mathrm{pAb}, \quad n$-th homology preordered group.

4B. Remarks

1. DAT distinguishes here between obstructions which intervene essentially together or one after the other (islands, temporary obstacles, conflicts of resources).
Topology (General or Algebraic) cannot: $X \cong Y$ as spaces.
2. Here the fundamental monoids $\uparrow \pi_{1}(-)$ are trivial.
3. DAT studies spaces by directed homotopy and homology (enriched versions):
$-\uparrow \Pi_{1}: d$ Top \rightarrow Cat, fundamental category of a d-space,
$-\uparrow H_{n}: \mathrm{d} \mathbf{T o p} \rightarrow \mathrm{pAb}, \quad n$-th homology preordered group.
4. Examples:
$\uparrow \Pi_{1}\left(\uparrow \mathbb{S}^{1}\right)=$ a subcategory of the groupoid $\Pi_{1}\left(\mathbb{S}^{1}\right)$,
$\uparrow H_{1}\left(\uparrow \mathbb{S}^{1}\right)=(\mathbb{Z}, \leqslant)$, ordered abelian group.

5. Something on Weighted Algebraic Topology

Weighted Algebraic Topology: Reference: [Gr], Chapter 6. An enriched version of DAT:
paths have a length (or cost, duration,...) in $[0, \infty]$, which enriches the truth-values of DAT: yes: $\lambda<\infty$, no: ∞.

5. Something on Weighted Algebraic Topology

Weighted Algebraic Topology: Reference: [Gr], Chapter 6. An enriched version of DAT:
paths have a length (or cost, duration,...) in $[0, \infty]$, which enriches the truth-values of DAT: yes: $\lambda<\infty$, no: ∞.

Settings:
$\delta \mathrm{Mtr}$ category of δ-spaces and weak contractions,
wTop: category of w-spaces and cost-decreasing maps
w_{∞} Top: category of w-spaces and 'Lipschitz' maps.
(w-space: equipped with a weight function $w: X^{\mathbb{I}} \rightarrow[0, \infty]$).

5. Something on Weighted Algebraic Topology

Weighted Algebraic Topology: Reference: [Gr], Chapter 6. An enriched version of DAT:
paths have a length (or cost, duration, ...) in $[0, \infty]$, which enriches the truth-values of DAT: yes: $\lambda<\infty$, no: ∞.

Settings:
$\delta \mathrm{Mtr}$ category of δ-spaces and weak contractions,
wTop: category of w-spaces and cost-decreasing maps
w_{∞} Top: category of w-spaces and 'Lipschitz' maps.
(w-space: equipped with a weight function $w: X^{\mathbb{I}} \rightarrow[0, \infty]$).
Forgetful functors:
δ Mtr \rightarrow wTop: $\quad w(a)=L(a)$,
wTop \rightarrow dTop: distinguished paths: $w(a)<\infty$,
$\delta \mathbf{M} \operatorname{tr} \rightarrow \mathrm{d}$ Top: \quad distinguished paths: $L(a)<\infty$.

6. Non-commutative Geometry and Lawvere metric sp.

Non-commutative Geometry: introduced by Alain Connes [C1, C2] non-commutative C^{*}-algebras 'are' non-commutative spaces.
6. Non-commutative Geometry and Lawvere metric sp.

Non-commutative Geometry: introduced by Alain Connes [C1, C2] non-commutative C^{*}-algebras 'are' non-commutative spaces.

C*-algebra: involutive Banach \mathbb{C}-algebra, with

$$
(x y)^{*}=y^{*} x^{*}, \quad\left\|x x^{*}\right\|=\|x\|^{2} .
$$

Gelfand duality: $C: \mathbf{H C m p} \rightarrow \mathrm{UComC}^{*} \mathbf{A l g}^{\mathrm{op}}$, equivalence of cat. $C(X)=\operatorname{Top}(X, \mathbb{C})$, unital commutative C^{*}-algebra.

6. Non-commutative Geometry and Lawvere metric sp.

Non-commutative Geometry: introduced by Alain Connes [C1, C2] non-commutative C^{*}-algebras 'are' non-commutative spaces.

C*-algebra: involutive Banach \mathbb{C}-algebra, with

$$
(x y)^{*}=y^{*} x^{*}, \quad\left\|x x^{*}\right\|=\|x\|^{2} .
$$

Gelfand duality: $C: \mathbf{H C m p} \rightarrow \mathrm{UComC}^{*} \mathbf{A l g}^{\mathrm{op}}$, equivalence of cat. $C(X)=\operatorname{Top}(X, \mathbb{C})$, unital commutative C^{*}-algebra.

An example: $\quad \vartheta$ is an irrational number.
$G_{\vartheta}=\mathbb{Z}+\vartheta \mathbb{Z}$: ordered subgroup of \mathbb{R}; acts on \mathbb{R} by translations (algebraically isomorphic to \mathbb{Z}^{2}, but totally ordered).
Orbit space $\mathbb{R} / G_{\vartheta}$: chaotic topology (G_{ϑ} dense in \mathbb{R}).
6. Non-commutative Geometry and Lawvere metric sp.

Non-commutative Geometry: introduced by Alain Connes [C1, C2] non-commutative C^{*}-algebras 'are' non-commutative spaces.

C*-algebra: involutive Banach \mathbb{C}-algebra, with

$$
(x y)^{*}=y^{*} x^{*}, \quad\left\|x x^{*}\right\|=\|x\|^{2} .
$$

Gelfand duality: $C: \mathbf{H C m p} \rightarrow \mathrm{UComC}^{*} \mathbf{A l g}^{\mathrm{op}}$, equivalence of cat. $C(X)=\operatorname{Top}(X, \mathbb{C})$, unital commutative C^{*}-algebra.

An example: $\quad \vartheta$ is an irrational number.
$G_{\vartheta}=\mathbb{Z}+\vartheta \mathbb{Z}$: ordered subgroup of \mathbb{R}; acts on \mathbb{R} by translations (algebraically isomorphic to \mathbb{Z}^{2}, but totally ordered).
Orbit space $\mathbb{R} / G_{\vartheta}$: chaotic topology (G_{ϑ} dense in \mathbb{R}).
This 'object' should have H_{1} generated by two cycles, of length 1 and ϑ ! (Non-trivial and independent in DAT and WAT).

6A. Interpretation in Non-commutative Geometry

This trivial space is replaced by a non-commutative C^{*}-algebra:
A_{ϑ} : the irrational rotation algebra associated with ϑ
generated by two unitary elements $u, v: v u=\exp (2 \pi \vartheta)$. $u v$.
Also called a noncommutative torus: K-groups of the torus.

6A. Interpretation in Non-commutative Geometry

This trivial space is replaced by a non-commutative C^{*}-algebra:
A_{ϑ} : the irrational rotation algebra associated with ϑ

generated by two unitary elements $u, v: v u=\exp (2 \pi \vartheta) . u v$.

Also called a noncommutative torus: K-groups of the torus.
Classifications (up to isomorphism or strong Morita equivalence):
$A_{\vartheta} \cong A_{\vartheta^{\prime}} \quad \Longleftrightarrow \quad \vartheta^{\prime} \in \pm \vartheta+\mathbb{Z}$,
$A_{\vartheta} \sim_{M} A_{\vartheta^{\prime}}:$ also characterised
by fractional action of 2×2 matrices with integral entries.

6B. Interpretation in Weighted Algebraic Topology

This trivial space is replaced by a w-space:
$W_{\vartheta}=\mathrm{w} \mathbb{R} / G_{\vartheta}$: the irrational rotation w-space associated with ϑ
a quotient of the w-line (associated to $\delta \mathbb{R}$).

6B. Interpretation in Weighted Algebraic Topology

This trivial space is replaced by a w-space:
$W_{\vartheta}=\mathrm{w} \mathbb{R} / G_{\vartheta}$: the irrational rotation w-space associated with ϑ
a quotient of the w-line (associated to $\delta \mathbb{R}$).
Classifications (up to isometric or Lipschitz isomorphism):

$$
\begin{aligned}
& \left.W_{\vartheta} \cong W_{\vartheta^{\prime}} \quad \text { in wTop }\right) \quad \Longleftrightarrow \vartheta^{\prime} \in \pm \vartheta+\mathbb{Z} \\
& W_{\vartheta} \cong W_{\vartheta^{\prime}}\left(\text { in } \mathrm{w}_{\infty} \text { Top }\right) \Longleftrightarrow A_{\vartheta} \sim_{M} A_{\vartheta^{\prime}} .
\end{aligned}
$$

6B. Interpretation in Weighted Algebraic Topology

This trivial space is replaced by a w-space:
$W_{\vartheta}=\mathrm{w} \mathbb{R} / G_{\vartheta}$: the irrational rotation w-space associated with ϑ
a quotient of the w-line (associated to $\delta \mathbb{R}$).
Classifications (up to isometric or Lipschitz isomorphism):

$$
\begin{aligned}
& W_{\vartheta} \cong W_{\vartheta^{\prime}} \quad(\text { in wTop }) \quad \Longleftrightarrow \vartheta^{\prime} \in \pm \vartheta+\mathbb{Z} \\
& W_{\vartheta} \cong W_{\vartheta^{\prime}}\left(\text { in } \mathrm{w}_{\infty} \text { Top }\right) \Longleftrightarrow A_{\vartheta} \sim_{M} A_{\vartheta^{\prime}} .
\end{aligned}
$$

In DAT we only have the second classification, by irrational rotation d-spaces:
$D_{\vartheta}=\uparrow \mathbb{R} / G_{\vartheta}$: a quotient of the d-line (increasing paths)

$$
D_{\vartheta} \cong D_{\vartheta^{\prime}}(\text { in } \mathrm{d} \text { Top }) \Longleftrightarrow A_{\vartheta} \sim_{M} A_{\vartheta^{\prime}} .
$$

6B. Interpretation in Weighted Algebraic Topology

This trivial space is replaced by a w-space:
$W_{\vartheta}=\mathrm{w} \mathbb{R} / G_{\vartheta}$: the irrational rotation w-space associated with ϑ
a quotient of the w-line (associated to $\delta \mathbb{R}$).
Classifications (up to isometric or Lipschitz isomorphism):

$$
\begin{aligned}
& W_{\vartheta} \cong W_{\vartheta^{\prime}} \quad(\text { in wTop }) \quad \Longleftrightarrow \vartheta^{\prime} \in \pm \vartheta+\mathbb{Z}, \\
& W_{\vartheta} \cong W_{\vartheta^{\prime}}\left(\text { in } \mathrm{w}_{\infty} \text { Top }\right) \Longleftrightarrow A_{\vartheta} \sim_{M} A_{\vartheta^{\prime}} .
\end{aligned}
$$

In DAT we only have the second classification, by irrational rotation d-spaces:
$D_{\vartheta}=\uparrow \mathbb{R} / G_{\vartheta}$: a quotient of the d-line (increasing paths)

$$
D_{\vartheta} \cong D_{\vartheta^{\prime}}(\text { in } \mathrm{d} \text { Top }) \Longleftrightarrow A_{\vartheta} \sim_{M} A_{\vartheta^{\prime}} .
$$

- DAT gives a 'Non-commutative Topology', without weights.
- The quotient $\delta \mathbb{R} / G_{\vartheta}$ has the chaotic δ-metric and topology.

7. References

[C1] A. Connes, C^{*}-algèbres et géométrie différentielle, C.R. Acad. Sci. Paris Sér. A 290 (1980), 599-604.
[C2] A. Connes, Noncommutative geometry, Academic Press, San Diego CA 1994.
[FGR] L. Fajstrup, E. Goubault and M. Raussen, Algebraic topology and concurrency, Theor. Comput. Sci. 357 (2006), 241-178. (Revised version of a preprint at Aalborg, 1999.) [Gr] M. Grandis, Directed Algebraic Topology, Models of non-reversible worlds, Cambridge Univ. Press, 2009. http://www.dima.unige.it/~grandis/BkDAT_page.html [Lw] F.W. Lawvere, Metric spaces, generalized logic and closed categories, Rend. Sem. Mat. Fis. Univ. Milano 43 (1973), 135-166. Republished in: Reprints Theory Appl. Categ. 1 (2002). http://www.tac.mta.ca/tac/reprints/articles/1/tr1.pdf

