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Abstract. Fundamental n-groupoids for a topological space are introduced, by techniques based on
Moore paths, similar to those used in [G3] for symmetric simplicial sets. Also the 'directed case' is
treated, based on a structure introduced in [G6]: a directed topological space, where privileged directions
are assigned and paths need not be reversible; such objects are provided with fundamental n-categories,
as it was done for ordinary simplicial sets in [G3].

We end by comparing the present structures with the previous ones, via a geometric realisation of
symmetric and ordinary simplicial sets, as spaces and directed spaces, respectively. All this essentially
agrees also with the classical treatment of Kan complexes as non-directed structures.
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Introduction

Recently, a homotopy 2-groupoid for Hausdorff spaces [HKK1] has been defined; various
notions of weak n-groupoids have been considered, in connections with homotopy: cf. [Ba, HKK2,
T1, T2] and their references.

Here, to define the higher fundamental groupoids  !nX  of a topological space, we start from the
space  PX  of Moore paths, a (strict) involutive category (2.1). The usual structure (faces, degener-
acy, etc.) produces a cubical object  P*X = (PnX)n"0  with associative concatenations, in fact a cubical
#-category. A quotient  PX  of the underlying set  |PX|,  modulo delays and regressions, has the
effect of annihilating constant paths and converting reverse paths into strict inverses:  PX  is now a
groupoid (2.5), called the groupoid of strongly reduced paths.

From this we derive a cubical #-groupoid  P*X  (with connections); and then we extract from the
latter an ordinary (i.e., globular) #-groupoid  !#X = P*X,  the fundamental #-groupoid of  X  (in the
same way as one extracts a 2-category from a double one). Finally, the fundamental n-groupoid  !nX
= $n(!#X)  is simply obtained by applying the reflector of n-groupoids, i.e. truncating  !#X  at
degree  n  and replacing the last component  PnX  with the coequaliser of the faces  Pn+1X               PnX.

In Section 3, we give a 'directed' version of all this. Directed Algebraic Topology is a recent
subject, whose domain should be distinguished from classical Algebraic Topology by the principle
that directed spaces have privileged directions and directed paths therein need not be reversible. Thus,
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ordinary homotopies and fundamental n-groupoids are replaced with directed homotopies and
fundamental n-categories. Its applications deal with domains where privileged directions appear, like
concurrent processes, traffic networks, space-time models, etc. [FGR, Ga, GG, Go, G3].

Following our setting, in [G6], a directed topological space, or d-space, is a topological space  X
equipped with a set  dX  of 'directed paths'  [0, 1]  X,  containing all constant paths and closed
under increasing reparametrisation and concatenation. Such objects, called directed spaces or d-
spaces, form a category  dTop  which has general properties similar to  Top  (topological spaces):
limits and colimits exist and are easily computed, and all directed intervals  %[i, j] & %R  are
exponentiable (3.2.1).

One can give, now, a treatment parallel to the previous one, omitting all points depending on
reversion. The space  %PX  of directed Moore paths produces a cubical object  %P*X = (%PnX)n"0.
Annihilating constant paths, by the quotient of the set  |%PX|  modulo delays, we obtain the category
%PX  of reduced paths. The induced structure on  %P*X  is a cubical #-category (with connections),
from which we extract the fundamental #-category of  X,  %!#X = %P*X,  and derive the
fundamental n-category %!nX = $n(%!#X)  as above.

The last section compares these constructs with the fundamental categories (groupoids) of
(symmetric) simplicial sets, introduced in previous works [G3, G5]. We view a simplicial set  K  as a
directed notion: it has fundamental n-categories, defined in [G3], and a directed realisation  %RK  as a
directed space, constructed here (4.3-5), from which a comparison with the present fundamental n-
categories is derived (4.6). Its symmetric analogue, a symmetric simplicial set, is a presheaf on the
category  !   of positive finite cardinals (characterised by generators and relations in [G4]); it can be
realised as a space and has fundamental n-groupoids [G3], in comparison with the present ones (4.7).

Finally, let us note that the present approach 'essentially' agrees with the classical use of simplicial
sets as a non-directed structure. First, our directed realisation  %RK  is the ordinary geometric
realisation  RK  with an additional d-structure. Second, the classical homotopy groups  'n(K, x)  of a
simplicial set are defined if  K  is a Kan complex (and coincide with the ones of  RK);  but in this case,
our n-homotopy monoid  %'n(K, x)  is in fact a group and coincides with the former (4.2.2).

Our study of simplicial sets aims to freeing their basic homotopy theory from the classical
restriction to Kan complexes. Theoretically, it is thus possible to obtain general results as the
adjunction  %!n: Smp               n-Cat :Nn  [G3] (or its symmetric analogue); practically, one need not
replace elementary simplicial models with infinite versions satisfying the Kan condition.

1. The standard path functor

We begin by considering the lattice-like structure of the standard interval  [0, 1]  and the derived
structure of the standard path functor in  Top,  the category of topological spaces. The index  (  takes
values –, +.

1.1. The standard interval.  The real interval  I = [0, 1]  will have the usual structure of involu-
tive lattice, with involution  r(t) = 1 – t.  Forgetting some properties which are not relevant for homo-
topy and uselessly restraining, e.g. the idempotence of the lattice operations, the structure we are
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interested in is a commutative, involutive cubical monoid [G1]: a set equipped with two structures of
commutative monoid (the connections  g(),  where the unit (or face  )()  of each operation is an
absorbent element for the other, and the involution (or reversion  r)  turns each structure into the other;
adding the degeneracy  e  and the interchange  s  (which are determined by the cartesian  structure)

)(   g(

(1) {*}            I            I2 r: I  I, s: I2  I2,
 e

)–(*)  =  0, )+(*)  =  1, e(t)  =  *, g–(t, t')  =  t*t', g+(t, t')  =  t+t',

r(t)  =  1 – t, s(t, t')  =  (t', t),

our seven maps satisfy rather obvious axioms (whose dual can be found below, 1.2.2).

The standard cylinder  I(X) = X×I  inherits seven natural transformations, which will be denoted
with the same letters:  )(: 1  I,  and so on; they satisfy similar axioms.

1.2. The cubical comonad of paths. The path endofunctor  P: Top  Top,  PX = X[0, 1]

(right adjoint to  I)  also inherits seven natural transformations (produced by the maps 1.1.1,
contravariantly), which collect the basic properties of homotopy: two faces  )(,  a degeneracy  e,  two
connections  g(  and two symmetries, the reversion  r  and the interchange  s

   )( g(

(1) 1            P            P2 r: P  P, s: P2  P2,
    e

)–(a)  =  a(0), e(x)(t)  =  x, g–(a)(t, t')  =  a(t*t'), ...

They satisfy the axioms of a cubical comonad with symmetries [G1, G2]):

(2) )(.e  =  1, g(.e  =  Pe.e  (=  eP.e) (degeneracy),

Pg(.g(  =  g(P.g( P)(.g(  =  1  =  )(P.g( (associativity, unit),

P)(.g,  =  e.)(  =  )(P.g, (absorbency;  ( - ,),

r.r  =  1, r.e  =  e, )–.r  =  )+, g–.r  =  Pr.rP.g+,

s.s  =  1, s.Pe  =  eP, P)(.s  =  )(P, s.g(  =  g(,

Pr.s  =  s.rP (symmetries).

The trivial path at  x.X  will be written  0x = e(x),  while  – a = r(a)  will denote the reverse path.

1.3. Concatenation. Moreover, we have to consider the concatenation  a+b  of two consecutive
paths  a, b,

(1) (a+b)(t)  =  a(2t),  if  0 / t / 1/2, (a+b)(t)  =  b(2t – 1),  if  1/2 / t / 1,

and we need to describe formally also this procedure. This is done by another natural transformation

(2) k: QX  PX, k(a, b)  =  a+b,

defined on the space of pairs of consecutive paths, the concatenation pullback  QX = PX ×X PX
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    k+

   QX  PX
(3) QX  =  {(a, b)  |  )+a = )–b} k–

 )+
   )–

   PX   X

The concatenation  k  satisfies the following axioms [G2]:

(4) )–k  =  )–k–, )+k  =  )+k+, keQ  =  e,

krQ  =  rk, kP.s'  =  s.Pk,

where  eQ: X  QX,  rQ: QX  QX,  and  s': PQX  QPX  are the obvious maps induced by  e,
r,  and  s  respectively.

2. Higher fundamental groupoids for topological spaces

The functor of Moore paths  P   has a similar structure but an associative concatenation, which goes
down to its quotient, the functor of strongly reduced paths  P ;  the latter produces our higher homotopy
groupoids (2.7).

2.1. Moore paths. A first way of obtaining an associative concatenation is to consider Moore
paths, or paths with duration (here slightly modified with respect to the usual presentation), forming
the following space

(1) PX  =  0rs X[i, j],

a sum of compact-open topologies.  The sum is indexed over the set  rs  of supports, the real compact
intervals  [i, j] & R,  where  i / j  are integers, for simplicity.  PX  consists thus of all pairs  ($, a)
where  $ . rs  is a support and  a: $  X  is a continuous mapping. The advantage on concatenation
is paid with the existence of infinitely many constant paths at the same point  x.X,  one for each
support  [i, j].

P  has obvious faces, degeneracy, connections and symmetries, similar to the ones of  P  (1.2) and
described below by simply specifying the resulting support (except for faces)

(2) )–(a: [i, j]  X)  =  a(i), )+(a: [i, j]  X)  =  a(j),

supp(e(x))  =  [0, 0], supp(g(($, a))  =  $×$,

supp(r($, a))  =  – $, supp(s($×1, a))  =  1×$.

Such transformations nearly form a cubical comonad with symmetries: the only axiom which fails
(with respect to the list 1.2.2) is absorbency of connections, 'because' of constant paths. In fact,
P)+.g– = )+P.g–: P  P  does not coincide with  e.)+;  the former map sends a pair  ($, a)  to a
constant path having the same duration, while  e.)+($, a)  has a fixed duration,  [0, 0].

Concatenation makes  PX  into a strict involutive category (in  Top).  Formally, it is defined on
the pullback  QX = PX ×X PX  of consecutive pairs of Moore paths

(3) k: Q  P: Top  Top, k($, a; 1, b)  =  ($+1, a+b),
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and  a+b = c  has support  $+1 = [$– + 1–, $+ + 1+]  and pasting point at  $+ + 1–

(4) c(t)  =  a(t – 1–), for   $– + 1–  /  t  /  $+ + 1–,

c(t)  =  b(t – $+), for   $+ + 1–  /  t  /  $+ + 1+.

Then,  k  does satisfy the axioms of concatenation (1.3.4). Implicitly, we have used on  rs  a
structure of commutative involutive monoid, in additive notation:

(5) [i, j] + [i', j']  =  [i+i', j+j'], 0  =  [0, 0], – [i, j]  =  [– j, – i].

Now, we have to identify all constant paths at the same point, and to force reverse paths to become
inverses; a few technical tools are needed.

2.2. Tolerance sets. As in [G3], a very simple combinatorial structure will be of much use. A
tolerance set  X  is a set equipped with a tolerance relation  x!x'  (reflexive and symmetric); it can be
viewed as an elementary simplicial complex, where a finite subset is distinguished if and only if all its
pairs belong to the tolerance relation. A tolerance map, or combinatorial mapping, between such
objects preserves the tolerance relation. The resulting category  Tol  has all limits and colimits and is
cartesian closed ([G3], 1.4).

The combinatorial (integral) line  Z  is the set of integers with the structure of contiguity. Precisely,
Z  is a tolerance set, with tolerance relation  i!j  if  |i – j| / 1.  An integral interval  [i, j]Z & Z  has the
induced structure  (i / j).

The geometric realisation of  Z  (as a simplicial complex) is the real line  R.  A  combinatorial
mapping  f: Z  Z  has a real extension  (denoted by the same letter), its geometric realisation

(1) f: R  R, f(i+t)  =  (1–t).f(i) + t.f(i+1) (0 / t / 1),

which is piecewise affine (affine on each real interval  [i, i+1],  i.Z).  Similarly, a combinatorial
mapping  f: [i, j]Z  [i', j']Z  between integral intervals has a real extension to the corresponding real
intervals. And a product of combinatorial mappings  f1×...×fn . Tol(Zn, Zn)  has a real extension in
Top(Rn, Rn).  (This extension, multi-affine on every 'elementary cube', can be viewed as a cubical
geometric realisation; but can also be derived from the classical geometric realisation of simplicial
complexes, cf. 4.7.)

2.3. Delays and regressions. In particular, we are interested in the elementary delays  2i: Z  Z
([G3], 2.3) and the elementary regressions  2i: Z  Z  ([G3], 3.5)

(1) 2i(t)  =  t   if  t / i, 2i(t)  =  t – 1   otherwise,

(2) 3i(t)  =  t   if  t / i, 3i(t)  =  t – 2   otherwise.

The submonoid of integral delays  D1 & Tol(Z, Z),  generated by the elementary delays, consists
of all surjective increasing mappings (necessarily combinatorial), which are the identity for  t  suffi-
ciently small in  Z,  and strictly increasing for  t  sufficiently large. We write  4D1  the larger
submonoid of generalised integral delays, generated by elementary delays and elementary translations;
it consists of all surjective increasing mappings  Z  Z  which are strictly increasing for  t  suffi-
ciently small or large; finally, we write  51  the submonoid generated by  4D1  and elementary regres-
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sions, which is formed of all surjective combinatorial mappings  Z  Z  which are strictly increasing
for  t  sufficiently small or large (but not necessarily increasing).

Their real extensions are written as  rD1 & r4D1 & r51 & Top(R, R).

Elementary delays and regressions satisfy the following identities

(3) 2i.2j+1  =  2j.2i (i / j),

3 i.3 j+2  =  3 j.3 i (i / j), 3i.3i+2  =  3i.3i+1  =  3i.3i,

2i.3j+1  =  3j.2i (i / j), 2i.3j  =  3j.2i+2    (i " j).

Therefore, the submonoids  D1,  4D1  and  51,  as well as their real extensions, satisfy a cofiltering
property

(4) for any two maps  f1, f2,  there are maps  e1, e2  such that  f1e1 = f2e2,

which derives immediately from (3) for the generators, and can easily be extended to general arrows.

We form now three subcategories of  Tol,  s & dop & cop  (as in [G3], Section 3). Their objects
are the finite integral intervals  [i, j]Z.  The category  s  is discrete; its object-set is equipped with a
structure of commutative involutive monoid, as in 2.1.5. Then  dop  is the category of generalised
delays, or surjective increasing maps  d: [i', j']Z  [i, j]Z;  it is generated by translations and
elementary delays   2i: [h, k]Z  [2i(h), 2i(k)]Z.  Finally,  cop  is the category of all combinatorial
surjective mappings  c: [i', j']Z  [i, j]Z,  and is generated by translations, elementary delays and
elementary regressions.

These categories have (isomorphic) real analogues  rs & rdop & rcop & Top:  the objects are the
compact real intervals with integral extrema, the mappings are the real extensions of the previous
maps. The first category has already been used to define  P,  the others will be used to introduce two
new 'path functors'  P, P.

2.4. Reduced paths. As a second way of getting an associative concatenation, one can identify the
paths of the set  |PX|  'up to delays', and therefore the various results given by concatenation on
different supports; this produces an involutive category  PX  where all constant paths become
identities.

The functor  P: Top  Set  can be obtained as a colimit based on the category  rd & Topop

(2.3)

(1) PX  =  Colimrd Top([i, j], X), PX  PX  =  |PX|/6,

and also as a quotient of the set  |PX|  modulo the congruence up to delays:  ($, a) 6 (1, b)  means that
there exist two real delays  d, d' . rD1 & Top(R, R)  such that  ad = bd'  (2.3). Congruence is an
equivalence relation, by the cofiltering property (2.3.4).

Note that any path is congruent to its (integral) translations, since  a2i(t)  is the path  a  'delayed of
one unit', when  i / $–(a).  Therefore we can equivalently use, in the definition of the previous
congruence  6,  the larger submonoid  r4D1 & Top(R, R)  of generalised real delays. A congruence
class of paths  a•  will be called a reduced path of  X.

It is easy to show that all admissible concatenations of two given paths  a, b  are congruent: let  c
be one of them, derived from supports  $, 1;  then, varying  $–  or  1+  has no effect on  c,  while
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increasing  $+  (resp.  1–)  of one unit yields a concatenation  c' = c2i  delayed of one unit at a suitable
instant. Thus, the concatenation  k: Q   P  induces a concatenation  k: Q  P  defined over the
pullback  QX  of pairs of consecutive reduced paths

(2) k: Q  P: Top  Set, QX  =  PX ×|X| PX  =  (|PX| ×|X| |PX|)/(6 × 6),

and each  PX  is again a strict involutive category on  X.

2.5. Strongly reduced paths. One can transform the involution of  PX  in a strict inversion, by a
further identification of paths 'up to regressions', so that any concatenation  a – a  is identified with
the trivial path at the initial point  )–a.

The endofunctor  P  of strongly reduced paths is defined as a colimit based on the category  rc &
Topop (2.3), or equivalently as a quotient modulo the action of the monoid  r51 & Top(R, R)  (2.3)

(1) PX  =  Colimrc Top([i, j], X)  =  |PX| / r51,

again,  ($, a), (1, b) . |PX|  are identified if there exist two maps  3, 3' . r51  such that  a3 = b3'.
PX  is thus a groupoid.

2.6. The fundamental #-groupoid. In dimension  n,  we shall replace  D1  with the submonoid
Dn &  Tol(Zn, Zn)  of n-dimensional delays, generated by the elementary delays  2i×Zn–1,
Z×2i×Zn-2,...,  Zn–1×2i.  Similarly, we have the submonoids  Dn & 4Dn &  5n &  Tol(Zn, Zn)  and
their real extensions    rDn & r4Dn & r5n & Top(Rn, Rn).

The set-valued functor

(1) P(n)X  =  Colimrdn Top([i1, j1] × ... × [in, jn], X)  =  |PnX|/6n ,

is produced by the congruence  6n  defined by the real extension  rDn & Top(Rn, Rn),  formed of real
n-dimensional delays. In particular,  P(0)(X) = |X|  and  P(1)(X) = PX.

For a space  X,  these functors produce a cubical set  P*X  with connections  (gi)  [BH1, BS] and
symmetries (the interchanges  si  and the involutions  ri)

(2) |X|  =  P(0)(X)            P(1)(X)            P(2)(X)            ...   P(n)(X)            ...

(only faces are displayed); the structural maps (for  1 / i / n;  ( = ±)

(3) )(i : P(n)  P(n–1), ei: P(n–1)  P(n),

g(i : P(n)  P(n+1),

si: P(n+1)  P(n+1), ri: P(n)  P(n),

are induced by the following natural transformations of the powers of the Moore path functor  P

(4) )(i   =  Pi–1)(Pn–i: Pn  Pn–1, ei  =  Pi–1ePn–i: Pn–1  Pn,

g(i   =  Pi–1g(Pn–i: Pn  Pn+1,

si  =  Pi–1sPn–i: Pn+1  Pn+1, ri  =  Pi–1rPn–i: Pn  Pn.

Moreover, there is an i-composition  ki: P(n) ×P(n–1) P(n)  P(n)  (defined on the pullback with
respect to the i-faces  )(i : P(n)  P(n–1)),  induced by the concatenation in direction  i  of the functor
P  (as for  n = 1,  in 2.4)
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(5) ki  =  Pi–1kPn–i: Pi–1QPn–i  Pn.

Finally,  P*X  is a (small) cubical #-category with connections [ABS] and symmetries.

P*X  contains an involutive #-category  P*X  (with involutions  ri  for all composition laws)

(6) |X|  =  P0(X)               P1(X)               ...   Pn(X)               ... (P*X),

obtained in the obvious way. First  Pi(X) = P(i)(X)  for  i = 0, 1;  then  P2(X) & P(2)(X)  is the
subset of those double reduced paths whose first faces are degenerate;  P3(X) & P(3)(X)  contains
those triple cells whose last faces end in  P2(X),  while the first and second are degenerate in their last
direction (i.e., belong to the image of  e2: P1(X)  P2(X));  and so on:

(7) a . Pn(X)   if: - a . P(n)X,

- )((a)  =  )(n (a) . Pn–1X,

- )(i (a)  . Im(en–1
n–1: P(n–2)X  P(n–1)X),  for  0 / i < n,

always keeping in the structure the last faces.

Each component has involutions  ri: P(n)  P(n),  for  1 / i / n  (which can be extended, letting  ri
= 1  for  i > n).  Note that  P*X  and  P*X  'contain the same information': it has been recently proved
in [ABS] that (edge-symmetric) #-cubical categories with connections are equivalent to #-categories
(by the procedure described in (7)).

Replacing  P  with  P  (and  4Dn  with  5n),  in these constructs, we obtain a (strict) cubical #-
groupoid with connections and interchanges  P*X

(8) P(n)X  =  colimrcn Top([i1, j1] × ... × [in, jn], X)  =  |PnX|/r5n,

and, within the latter, the fundamental #-groupoid, defined as in (7)

(9) !#(X)  =  P*X,

Again,  P*X  and  P*X  'contain the same information', since cubical #-groupoids with connec-
tions are equivalent to (globular) #-groupoids, a fact already known from [BH1, BH2].

A congruence class of an n-cube  a: [i1, j1] × ... × [in, jn]  X  in  PnX  (resp. in  PnX)  will be
written as  a•  (resp.  a••);  one can always use a representative defined on a cube  [i, j]n.

2.7. Fundamental n-groupoids. Finally, the fundamental n-groupoid of a space  X

(1) !n(X)  =  $nP*(X),

is produced by the reflector  $n: #-Gpd  n-Gpd  of the (skeletal) embedding  n-Gpd & #-Gpd.
Explicitly,  !n(X)  only differs in degree  n  from the n-globular set produced by truncation

(2) |X|  =  P0(X)              P1(X)              ...   Pn–1(X)              !n(X)

and the set  !n(X)  (containing all lower cells as degenerate elements) is the coequaliser of the two
faces ending in  Pn(X),  i.e. the quotient  Pn(X)/ n+1  modulo the equivalence relation  a n+1 b:
there exists  A . Pn+1(X)  with  )–A = a,  )+A = b.

For a pointed space  (X, x),  the group of endocells of  !n(X)  at the degenerate n-tuple strongly
reduced path at the base point coincides with the usual n-homotopy group  (n " 1)
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(3) 'n(X, x)  =  !n(X)(x, x)  =  7(n)(X, x)/ n+1  =  [Sn, (X, x)],

since it can be viewed as the quotient of the involutive n-category  7(n)(X, x)  of n-loops (those
strongly reduced n-tuple paths  a . P(n)(X)  whose faces are constant at the base point), modulo the
(n+1)-homotopy relation n+1;  and 5n-congruence implies the latter ([G3], 3.5).

3. Higher fundamental categories for directed topological spaces

The fundamental category  %!1X  of a directed topological space, introduced in [G6], is extended to
any dimension / #,  by techniques similar to the previous ones and to those used in [G3] for the higher
fundamental categories of simplicial sets.

3.1. Directed topological spaces. Let us begin recalling some basic notions of [G6].

A directed topological space  X = (X, dX),  or d-space, is a topological space equipped with a set
dX  of (continuous) maps  a: I  X,  defined on the standard interval  I = [0, 1];  these maps, called
directed paths or d-paths, must contain all constant paths and be closed under (weakly) increasing
reparametrisation and concatenation.

A directed map  f: X  Y,  or d-map, or map of d-spaces, is a continuous mapping between d-
spaces which preserves the directed paths: if  a . dX,  then  fa . dY.  The category of d-spaces is
written as  dTop.  It has all limits and colimits, constructed as in  Top  and equipped with the initial
or final d-structure for the structural maps; for instance a path  I  !Xk  is directed if and only if all
its components  I  Xk  are so. The forgetful functor  U: dTop  Top  preserves all limits and
colimits; its right adjoint  C0: Top  dTop  equips a space  X  with the natural d-structure, where all
paths are distinguished.

Reversing d-paths, by the involution  r(t) = 1 – t,  gives the reflected, or opposite, d-space  RX =
Xop,  where  a . d(Xop)  iff  aop = ar . dX.  A d-space is symmetric if it is invariant under reflection.
More generally, it is reflexive, or self-dual, if it is isomorphic to its reflection.

The category  pTop  of preordered topological spaces (equipped with a reflexive, transitive
relation) has an obvious embedding in  dTop:  a path  I  X  is directed if it is (weakly) increasing.
But  dTop  is more general, and has pastings (colimits) and homotopy constructs like mapping cones,
which cannot be obtained with preorders, nor with 'local preorders' ([G6], 1.4).

The directed real line, or d-line  %R,  is the euclidean line with d-structure derived from the usual
order. Similarly, its cartesian power in  dTop,  the n-dimensional real d-space  %Rn,  derives from the
product order  (x / x'  iff  xi / x'i   for all  i).  A directed interval  %[i, j]  has the subspace structure of
the d-line; the standard d-interval is  %I = %[0, 1];  the standard d-cube  %In  is its n-th power, and a
subspace of  %Rn.  The directed sphere  %Sn = %In/)In  (n > 0)  is defined as a quotient in  dTop,
collapsing to a point the boundary of the directed n-cube; thus,  %S1  derives from an (obvious) 'local
order', while the higher directed spheres cannot be so obtained [G6]. These d-spaces are not
symmetric (for  n > 0),  yet reflexive.
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3.2. Directed homotopies. The directed interval  %I = %[0, 1]  has the same 'lattice-like' structure
considered in 1.1, except reversion (which is not a d-map). It is exponentiable ([G6], thm. 1.7): the
cylinder functor  %I = –×%I  has a right adjoint, the (directed) path functor, or cocylinder  %P

(1) %P: dTop  dTop, %P(Y)  =  Y%I,

where the d-space  Y%I  is the set of d-paths  dTop(%I, Y)  with the usual compact-open topology and
the d-structure where a map  c:  I    dTop(%I, Y)  is directed if, for all increasing maps  h, k: I 
I,  the derived path  t  c(h(t))(k(t))  is in  dY.

Again, the structure of  %I  in  dTop  produces a cubical comonad on  %P,  as in 1.2.2, with inter-
change but without reversion; concatenation works as in 1.3,  by the concatenation pullback  %QX =
%PX ×X %PX.

A (directed) homotopy  8: f  g: X  Y  is defined as a map  X  %PY = Y%I  whose two
faces,  )±(8) = )±.8: X  Y  are  f  and  g,  respectively. In particular, a path is a homotopy between
two points,  a: x  x': {*}  X.  The structure of d-homotopies essentially consists of

(a)  whisker composition of maps and homotopies:

v˚8˚u:  vfu  vgu (v˚8˚u  =  %Pv.8.u: %X'  %PY'),

(b)  trivial homotopies: 0f: f f (0f  =  ef: X  %PY),

(c)  concatenation of homotopies: 8+9: f h;

the last is defined via  %Q  (for  8: f  g,  9: g  h).

The homotopy relation  f  g  is the equivalence relation generated by the existence of a directed
homotopy between two maps; for an analysis of this relation, see [G3] 2.4, 2.7.

3.3. Step sets. We need now the directed counterpart of tolerance sets (2.2). As in [G3], a step set
X  is a set equipped with a precedence relation, or step relation  x  x'  (just reflexive). A step map, or
combinatorial mapping between such objects preserves the step relation. The resulting category is
written  Stp.  It will be useful to note that a step set can be viewed as a simplicial set: an n-simplex of
X  is any word  (x0,..., xn)  in  X  where  i / j  implies  xi  xj.

The directed combinatorial (integral) line  %Z  is the set of integers with the structure of
consecutivity:  i  j  if  0 / j – i / 1.  Integral intervals  %[i, j]Z & %Z  have the induced structure. The
directed geometric realisation of  %Z  ([G6], 4.5) is the d-line  %R.  Again, as in 2.2.1, a step map  f:
%Z  %Z  has a real extension  f: %R  %R  in  dTop,  affine on each elementary interval with
integral bounds  [i, i+1];  and a product of step maps  f1×...×fn: %Zn  %Zn  has a real extension in
dTop(%Rn, %Rn).  (This extension is simplicial and cubical at the same time, cf. 4.6.)

3.4. Higher fundamental categories. Higher homotopies in  dTop  can be treated as in the
reversible case (Section 2), except of course that reversion, regressions (2.3) and all their
consequences are missing. Let  X  be a directed topological space.

We have now the endofunctor  %P: dTop  dTop  of directed Moore paths and the functor  %P:
dTop  Set  of directed reduced paths, related by a natural transformation

(1) |%PX|  %PX,
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%PX  =  0rs X%[i, j], %PX  =  Colimrd dTop(%[i, j], X)  =  |%PX|/6,

since  rs &  rd &  dTopop:  all generalised delays are step-maps  %Z   %Z.  Similarly,  Dn &
Stp(%Zn, %Zn),  and we have set-valued functors corresponding to 2.6.1

(2) %P(n)X  =  Colimrdn dTop([i1, j1] × ... × [in, jn], X)  =  |%PnX|/6n .

The family  %P*(X) = (%P(n)(X))n"0  of all n-dimensional directed reduced path sets is a cubical set
with connections and interchange (but no reversion). The concatenation of consecutive reduced paths
makes  %P*(X)  into a cubical #-category with interchange (only faces and degeneracies are drawn)

(3) |X|  =  %P(0)(X)               %P(1)(X)              ...   %P(n)(X)              ... (%P*(X)).

This contains the fundamental #-category  %!#X = %P*(X),  defined as in 2.6.6

(4) |X|  =  %P0(X)               %P1(X)               ...   %Pn(X)               ... (%!#X).

The reflector  $n: #-Cat  n-Cat  produces the fundamental n-category  %!nX = $n(%!#X)

(5) |X|  =  %P0(X)               %P1(X)               ...   %Pn–1(X)               %!nX;

again, the set  %!n(X)  is the coequaliser of the faces  %Pn+1(X)             %Pn(X),  i.e. the quotient
%Pn(X)/ n+1  modulo the equivalence relation spanned by the relation: there exists  A . %Pn+1(X)
with  )–A = a,  )+A = b.

In particular,  %!1X  coincides with the fundamental category of a d-space defined in [G6], where
an arrow is a path up to homotopy with fixed endpoints.

For a pointed d-space  (X, x),  the n-dimensional homotopy monoid  (n " 1)  is the monoid of
endomaps at the degenerate n-tuple reduced path at the base point, and is abelian for  n " 2:

(6) %'n(X, x)  =  %!n(X)(x, x)  =  [%Sn, (X, x)],

the last expression is proved as in 2.7.3;  the directed sphere  %Sn  is defined in 3.1.

3.5. Comparison with topological spaces. For a d-space  X,  there is an obvious comparison

(1) %!n(X)    !n(UX), a•  a••,   [a]  [a],

sending a reduced p-dimensional d-path to the corresponding strongly reduced path, and similarly for
their homotopy classes (for  p = n).

Now, for a topological space  X  with the natural d-structure  C0X  (3.1), a p-dimensional d-path
%[i, j]p  C0X  is the same as an ordinary path  [i, j]p  X,  so that our monoids (and fundamental
category) coincide with the ordinary homotopy groups (and fundamental groupoid)

(2) %'n(C0X, x)  =  'n(X, x), %!1(C0X)  =  !1(X).

In higher fundamental categories, the relation is more complicated: the reversion of p-dimensional
paths in  %!n(C0X)  does not produce inverses if  p < n  (because regression is not taken into
account); on the other hand, for (n–1)-dimensional paths  a, b

(3) %!n(C0X)(a•, b•)  =  !n(X)(a••, b••).
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4. Comparison with simplicial sets and symmetric simplicial sets

We end by a comparison with the homotopy of simplicial sets, based on previous works [G3, G4, G5].

4.1. Synopsis. A simplicial set  K  (even though a directed notion in itself) is classically treated as a
non-directed structure. Thus, its ordinary geometric realisation  RK  is just a space; moreover, if  K  is
a Kan complex, it has intrinsic homotopy groups  'n(K, x)  which coincide with the ones of  RK.
The classical homotopy theory of simplicial sets, mostly based on Kan complexes, can be found in
[Ma, Cu, GZ, GJ].

We recall below a homotopy theory developed in [G3, G5], with the purpose of freeing the bases
of combinatorial homotopy from the restriction to Kan conditions.

In this approach, simplicial sets have directed homotopies, parametrised on  %Z,  and homotopy
monoids (as recalled in 4.2); a directed realisation  %R  with values in directed spaces (constructed
below, in 4.3-5); a comparison with the present homotopy monoids of d-spaces (4.6)

 %R
 Smp   dTop

(1) Sym
R

   U

!Smp   Top
 R

On the other hand, the category  !Smp  of symmetric simplicial sets (recalled in 4.7) has reversible
homotopies parametrised on the integral line  Z  (with the tolerance structure of contiguity, 2.2);
homotopy groups; a realisation  R  with values in ordinary spaces; a comparison with ordinary
homotopy groups.

The diagonal of the commutative diagram (1) shows that the classical realisation  R: Smp  Top
is coherent with the other realisations we are considering here, via the forgetful functor  U  and a
symmetrisation functor  Sym  (4.7); this 'coherence' also holds for homotopy monoids and groups,
as discussed in 4.2.

4.2. A review of directed homotopy of simplicial sets [G3]. We have already noted that the
category  Smp  of simplicial sets contains the category  Stp  of step sets (3.3). Thus, the directed
integral line  %Z,  with the precedence relation of consecutivity  (i  j  if  i / j / i+1)  is a simplicial set;
and so are the integral intervals  %[i, j]Z  and  %2 = %[0, 1]Z = {0 < 1}.

The path functor  %P(K) & K%Z  introduced in [G3] contains, as 0-simplices, those lines  a:
%Z  K  which are eventually constant, at the left and at the right. A directed homotopy  8: f–  f+:
A  K  is a map  8: A  P(K)  with faces  )(8 = f(.  It is bounded if it takes values in some
bounded-path object  K%[i, j];  in particular, an immediate homotopy  8: A  K%2  is the same as an
ordinary simplicial homotopy, and a bounded homotopy is a finite concatenation of immediate ones. If
A  is finite, every homotopy  8: f–  f+: A  K  is bounded; whereas, if  K  is Kan, immediate
homotopy is an equivalence relation and every bounded homotopy (with values in  K)  can be replaced
with an immediate one. (Note that  %Z  is contractible by general homotopies, but not by bounded
ones: cf. [G3], 4.3 and [G5], 3.2).
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The fundamental n-categories  %!n(K)  (n / #)  of a simplicial set have been introduced in [G3],
via 'path functors'  %P,  %P,  %P  similar to the present ones for d-spaces (Section 3). It was proved
there that  %!n  preserves all colimits, and is left adjoint to an n-nerve functor  Nn: n-Cat  Smp  (n
/ #).  This produces the n-homotopy monoids of a pointed simplicial set, which can also be
expressed as a colimit on a system of finite directed combinatorial spheres ([G3], 4.4):

(1) %'n(K, x)  =  %!n(K)(x, x)  =  colimk [%sn
k, (K, x)].

Precisely, the directed k-collapsed n-sphere  %sn
k = %Zn/ k  is obtained by collapsing to a point all

the points of  %Zn  out of the cube  [1, k]n  (for  k " 2);  it can be viewed as the surface of a 'pyramid'
with basis  [1, k]n  and vertex at the base-point [0]. The maps  qn

k: %sn
k+1  %sn

k  of the system are the
canonical projections. The ordinary realisation of  %sn

k  is the sphere  Sn;  the realisation of  qn
k  is a

homeomorphism.

Thus, if  K  is a Kan complex, by our preceding remarks on bounded homotopies and the
simplicial approximation theorem

(2) %'n(K, x)  =  [%sn
k, (K, x)]  =  [Sn, (RK, x)]  =  'n(RK, x),

in other words, the present n-homotopy monoid of a pointed Kan complex is a group and coincides
with the classical n-homotopy group.

4.3. Standard ordered simplices. But a simplicial set can be realised as a directed space,
enriching the usual geometric realisation and pasting ordered simplices in  dTop.  (Similarly, one can
realise cubical sets by pasting ordered cubes  %In  [G6]).

First, we realise the representable simplicial set  :[n]  as an ordered subspace  %:n  of  %Rn,  the
standard n-simplex, so that the natural order  t / t'  induce the order we want on faces

(1) %:n  =  {t . %Rn  |  1 " t1 " ... " tn " 0}  &  %Rn,

t2 e1+e2

 )1
)0 %:2

t10  )2      e1

%:n  is the convex hull of the chain of its vertices, a totally ordered subset of  %Rn  (isomorphic to
the positive ordinal  [n] = n+1 = {0,... n})

(2) v0  <  v1  <  v2  <  ...  <  vn, vi  =  e1 + ... + ei (v0 = 0),

where  (ei)  is the canonical linear basis of  Rn.  A point  t . %:n  can be uniquely written as a convex
combination of the vertices (two fixed coordinates  t0,  tn+1  are added, to simplify formulae)

(3) t  =  (1–t1).v0 + (t1–t2).v1 + (t2–t3).v2 + ... + (tn–0).vn  =  0i (ti – ti+1).vi,

ti – ti+1  "  0,  0i (ti – ti+1)  =  1 (t0 = 1,  tn+1 = 0).

Note that  t . :°n  (the interior) iff  1 > t1 > ... > tn > 0,  iff all barycentric coordinates  ui = ti – ti+1
are positive, for  i = 0,..., n.  (To realise  %:n  in the hyperplane  0 ui = 1  of  Rn+1  one should equip
the latter with a complicated order, derived from the change of coordinates  t  u,  namely:  un / u'n,
un + un–1 / u'n + u'n–1,...)
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Every d-map  x: [n]  %Rm,  i.e. every (weakly) increasing sequence  x0 / ... / xn,  has an affine
extension to  %:n

(4) x: %:n  %Rm, x(t)  =  0i (ti – ti+1) xi  =  x0 + t1.(x1 – x0) + ... +  tn.(xn – xn–1);

the right-hand expression shows that  x  is increasing, i.e. a map  x: %:n   %Rm.  Moreover,

(5) x(%:n)  &  :(x), x(%:°n)  &  :°(x),

where  :(x)  is the convex hull of the points  x0,..., xn  in  Rm  and  :°(x)  is the interior of  :(x)  in
the affine subspace which it spans.

4.4. Directed geometric realisation. The category    of positive finite ordinals has thus a
canonical embedding  %::   pTop & dTop,  with cofaces and codegeneracies obtained by
extending the ones of    (i = 0,..., n)

(1) )i: %:n–1  %:n, )i(t0, t1,..., tn)  =  (t0, t1,..., ti, ti,..., tn),

ei: %:n+1  %:n, ei(t0, t1,..., tn+2)  =  (t0, t1,..., t̂i+1,..., tn+2).

The directed singular simplicial set of a d-space  X,  and its left adjoint, the directed geometric
realisation of a simplicial set  K,  can now be constructed as in the ordinary case (cf. [GJ])

(2) %R :  Smp               dTop :  %S ,

%Sn(X)  =  dTop(%:n, X), %R(K)  =  [n] Kn•%:n,

the d-space  %R(K)  being the pasting in  dTop  of  Kn  copies of  %:n  (n " 0),  along faces and
degeneracies (the coend of the functor  K•%:: op×   dTop).  Every simplicial map  f: K  L
has a canonical realisation

(3) f̂  =  %R(f): %R(K)  %R(L).

The adjunction  U  C0  (3.1)  between spaces and d-spaces gives back the usual realisation  R  =
U.%R: Smp  Top,  left adjoint to the usual singular functor  S = %S.C0: Top  Smp.

The directed realisation of  %2,  %Z  and  %s1 = {*  *}  are the directed interval  %I,  the directed
line  %R  and the directed  circle  %S1,  respectively. A directed homotopy can be viewed as a
simplicial map  K×%

4Z  L  (on the extended integral line) and realised as a homotopy  %RK×%
4R 

%RL  (on the extended real line  %[–;, +;]).

4.5. Proposition (Directed realisation of cubes). For all  n " 0:

(1) %R(%2n)  =  %In, %R(%Zn)  =  %Rn.

Proof. We already know that this is true for  n / 1.  Forgetting about direction (which here simply
appears as order), the topological aspect follows from the fact that the ordinary geometric realisation
preserves finite products of countable simplicial sets [Ma, 14.4].

Taking order into account, recall that a non-degenerate n-simplex of  %2n  is a strictly increasing
sequence  (z0,..., zn)  of vertices of  %2n,  corresponding to a permutation  1 . Sn

(2) z1  =  (0, e1(1), e1(1) + e1(2),..., e1+...+ en),
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t2
 
e2

  z21

   e1+e2

%:2
z12

t1
   0    e1

Thus, its extension  z1: %:n  %Rn  (4.3.4) gives an isomorphism of ordered sets, between  %:n

and the corresponding elementary n-tetrahedron of  %Rn

(3) ẑ1: %:n    z1(:n)  &  %Rn.

Pasting these extensions along faces, we get  %In.  Finally, the simplicial set  %Zn  is an obvious
pasting (a colimit) of cubes  %2n.  Since realisation (a left adjoint) preserves colimits, also the second
formula of the thesis is proved.

4.6. The directed comparison.  It follows that the realisation of a simplicial cube  a: %2n  K
is a directed topological cube  â: %[0, 1]n  % K;  while an n-tuple path  a: %Zn  K  has a
realisation  a: %Rn  % K,  affine on all elementary n-tetrahedra (4.4.3) and eventually constant, at
the left and the right, in each real variable.

The geometric realisation of a delay is a real delay (2.3; 3.4); the same holds for their products
f1×...×fn: %Zn  %Zn  (by 4.5). Moreover, if certain faces of  a  are trivial (constant at the base
point), so are the corresponding faces of  a.  This defines our two natural comparisons, a
homomorphism and an #-functor

(1) 8n: %'n(K, x)  %'n(% K, x), 8n[a]  =  [a],

<#: %!#(K)  %!#(% K), <#(a•)  =  a•;

and it would be interesting to have results on their being isomorphisms or n-equivalences,
respectively.

Finally, let us note a lucky coincidence. Our extension of a product of step maps  f1×...×fn:
%Zn  %Zn  is a geometric realisation with respect to the structure of simplicial set of  %Zn  and, at the
same time, with respect to its structure of cubical set. Indeed, for a combinatorial mapping  g: Zn 
Zn,  the cubical realisation is multi-affine on every 'elementary cube', while the simplicial one is affine
on every 'elementary tetrahedron';  but, if  g  is of the previous type, the two extensions coincide.
Thus, our construction of  %!n  and  %'n  would also give a comparison with the homotopy groups of
cubical sets.

4.7. Realisation of symmetric simplicial sets. A symmetric simplicial set  K  [G3] is a
presheaf on the category  !   of positive finite cardinals; its structure, besides faces and degeneracies,
has a coherent action of the symmetric group  Sn+1  on the component  Kn.  A simplicial complex  A
can be viewed as such a presheaf, by letting an n-simplex be any word  (x0,..., xn)  of elements of  A
whose support is a distinguished subset; thus, the category of simplicial complexes is embedded in the
category  !Smp  of symmetric simplicial sets (as the cartesian closed full subcategory of simple
presheaves, where every item is determined by the indexed family of its vertices [G3]). The forgetful
functor  !Smp  Smp  has a left adjoint, where  (SymK)n = Sn+1×Kn  is the set obtained by freely
permuting the original n-simplices.



16

The fundamental n-groupoids  !n(K)  (n / #)  and the homotopy groups  'n(K, x)  have been
introduced in [G3], by techniques similar to the present ones (in Section 2): an n-dimensional path in
K  is map  Zn  K  which is eventually constant, at the left and the right, in each variable (where the
integral line  Z  has the structure of contiguity, 2.2).  It was proved there that  !n: !Smp  n-Gpd
preserves all colimits, and is left adjoint to a symmetric nerve functor  Mn: n-Gpd  !Smp.

The realisation  R: !Smp  Top  of symmetric simplicial sets can be easily defined (see [G4],
Section 6): the representable presheaf  !:[n]  is realised by the usual standard simplex  :n  (with the
obvious action of the permutation group  Sn+1,  derived from permuting vertices); then the procedure
is extended by colimits. This extends the classical realisation of simplicial complexes (cf. [Sp]).

Now, the realisation of  2n,  the codiscrete simplicial complex on  2n  points, is not  In,  but  :2n-1;
thus,  22  becomes a solid tetrahedron and  Z2  becomes a sort of 3-dimensional 'bubble wrap'.
However, we can embed  In  in  :2n–1,  by the multi-affine mapping sending the vertex  ( =
((1,..., (n) . {0, 1}n  to the vertex  e(  of the canonical basis of  R2n

(1) (t1,..., tn)    0( u(.e(, u(  =  r1+(i(t1).r1+(2(t2). ... .r1+(n(tn),

(where  r(t) = 1–t).  Thus, an n-tuple path  a: Zn  X  can be realised as a real n-dimensional path

(2) â: Rn  RX,

restricting the geometric realisation on  :2n–1.  Again, we have two natural comparisons, a
homomorphism and an #-functor

(3) 8n: 'n(K, x)  'n( K, x), <#: !#(K)  !#( K),

and it would be interesting to prove, in all generality, that  8n  is iso. In [G5], this fact has been
proved for a relevant particular case: when  K  'is' a simplicial complex.
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