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Abstract. We investigate a structure for an abstract cylinder endofunctor I which produces a good basis
for homotopical algebra. It essentially consists of the usual operations (faces, degeneracy, connections,
symmetries, vertical composition) together with a transformation  w: I2  I2,  which we call lens collapse
after its realisation in the standard topological case.

This structure, if somewhat heavy, has the interest of being "categorically algebraic", i.e. based on
operations on functors. Consequently, it can be naturally lifted from a category A to its categories of
diagrams  AS  and its slice categories A\X, A/X. Further, the dual structure, based on a cocylinder (or
path) endofunctor P can be lifted to the category of A-valued sheaves on a site, whenever the path
functor P preserves limits, and to the category  MonA  of internal monoids, with respect to any monoidal
structure of A consistent with P.
Mathematics Subject Classification (1991): 55U35, 18D05, 18G55, 55P, 55R05.
Key words: Homotopical algebra, abstract homotopy theory, 2-categories, homotopy, homotopy (co)-
limits, (co)cylinder, cubical objects, connections, presheaves, sheaves, slice categories, internal monoids.

0. Introduction

A basic homotopy structure on a category A can be given through a cylinder endofunctor  I:
A A,  with two faces (!–, !+: 1  I) and a degeneracy (e: I  1), as in Kan [23]. But homotopies
defined on this basis can not even be reversed or composed, and some further structure over I has to be
added, in order to get a good setting.

Among such "operations", the most commonly used (see Brown - Higgins [3, 4, 5], Spencer -
Wong [30]) are the reversion (r: I  I), the composition (k: I  J), the interchange  (s: I2 I2)
and the connections  (g–, g+: I2  I), where – for the composition –  J(A) = IA +A IA  denotes the
pasting of two cylinders, one on top of the other. The vertical reversion and composition of
homotopies, respectively produced by  r  and  k,  will be written in additive notation.

Further, we add here a natural transformation  w: I2  I2,  called lens collapse, having the role of
converting a generic deformation, or double homotopy,  ": I2A  B  of four homotopies  #, $, %, &
(as in (1)) into a cell-homotopy  "w: #+&    $+%  (as in (2)), in a bijective way

  % $+%
k g f g

(1)    $   "    & (2)    0    "w    0

f h f g
  # #+&
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This structure on a cylinder provides a good setting for homotopical algebra and is "categorically
natural", as discussed below.

For chain complexes,  w  is described in 6.8. For topological spaces, it can be realised by means
of the endomap  w  of the unit square [0, 1]2 suggested by the drawing (3), which motivates our name,
"lens collapse"

$ + %

(3) 0f

 $ %

0g

 #  &

   # + &

w collapses the vertical edges of the outer square producing two vertices of the inner one, and is
bijective outside such edges; the other two vertices come from the middle points of the old horizontal
edges; the inner square is then rotated and normalised.

§ 1 is a brief review of the abstract homotopical algebra developed by the author in [8, 9, 12],
founded on the following two notions (weaker than the cubical analogues studied here). An h4-
category is a sort of "relaxed" 2-category whose cells

 f

(4) #: f  g: A  B A # B
g

are thought of as homotopies, with compositions which behave well up to an assigned second-order
homotopy relation  #  $. A right homotopical category is an h4-category having terminal object 
and h-cokernels (standard homotopy cokernels) of maps, which satisfy a regularity property with
respect to  (h4-cokernels). This yields a simple approach to diagrammatical lemmas, the Puppe
sequence of a map, homotopical stability and relations with triangulated categories.

§ 2 introduces the notion of I4-category, consisting of a cylinder functor equipped with the
transformations described above, including the lens collapse and a zero collapse  z: I2  I, having the
effect that  #+0  # (2.7). Such a category has a canonical h4-structure (thm. 2.9), with cell-homotopy
produced by I2 in the usual way (cf. (2)). For an I4-homotopical category A (§ 3) we further require
that all the lens conversions  "  "w  are bijective and that all the pushouts of a certain type
(cylindrical pushouts, necessary and sufficient to form the h-pushouts, 3.2) exist and are preserved by
I. Then A is a right homotopical h4-category, provided it has terminal object (thm. 3.5). The dual P4
case is based on a path functor P; the selfdual case IP4, on an adjunction  I  P.

These notions are "categorically natural" (§ 4-5). Thus, if A is I4- or P4-homotopical, the same
holds for all its categories of diagrams AS (4.1-2), including the category of morphisms (A2), of
actions of a group (AG), of A-valued presheaves over a fixed space, etc. Under natural hypotheses, this
is also true of the slice categories  A\X,  A/Y,  A(X Y) (4.4-6). Further, if A is P4-homotopical the
same holds for the category of A-valued sheaves over an arbitrary site, provided that P preserves the
existing limits (4.3), and for the category  MonA  of monoids in A, with respect to any monoidal
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structure of A consistent with P (5.6). All these categories are therefore, in the appropriate hypotheses,
right or left homotopical and the theory developed in [8, 9, 12] applies to them. This naturality property
depends on the "algebraic" character of the present setting, essentially founded on operations over
endofunctors of A.

Finally § 6 gives some basic examples: topological spaces, chain complexes, small categories,
groupoids and 2-groupoids, from which various others are deduced through the categorical construc-
tions just mentioned: diagrams, sheaves, slices and monoids.

Subsequent works will study homotopy laxifications of such constructions. For instance, in the P4-
homotopical category  CATi  (of categories, functors and functorial isomorphisms), h-diagrams
(indexed categories), h-sheaves (stacks) and h-monoids (monoidal categories) are more important than
the strict analogues. Further, the path structure of chain complexes of modules is only in part
consistent with the tensor product (6.9), which provokes the well-known deficiencies of chain algebras
(the strict monoids) in adding homotopies; but, up to homotopy, this consistence subsists.

Comparing now our two approaches, the previous notions based on h4-categories are simple and
seemingly adapted to develop homotopical algebra within a given situation, while the present cubical
setting has the advantages of categorical naturality exposed above; being stronger, it inherits the
previous results. Finally, even in the prime examples (as Top), it is generally easier to verify the lens
conversion property than – directly – the axiom of regularity for h-pushouts or h-pullbacks.

To further clarify the difference, consider a category of diagrams AS. We can not formally lift a
homotopical h4-structure from A to AS, essentially because of the cell-homotopy relation  #  $. On
the one hand, to lift this relation pointwise to diagrams would not respect naturality (equivariance, for S
a group), producing an (unnatural!) h4-structure, generally not homotopical. On the other hand, to
make it "concrete" (or "algebraic") through second-order homotopies  ": #  $  and their operations
requires a heavy structure; unless we use, as here, a cylinder or path functor to reduce homotopies of
any order to maps, and their higher order operations to the basic, low order ones.

In the same way, a setting which assigns particular classes of maps (weak equivalences,
(co)fibrations), as in the well known approaches of Quillen [29], Heller [18], K.S. Brown [2] and
Baues [1], would not supply by itself such "naturality" results. For instance, one can define a general
structure of cofibration category on the "bilateral" slice category Top(X Y) of spaces under X and
over Y, as shown in [1, I.4]; but this is not achieved defining the cofibrations of Top(X Y) from the
ones of Top, but deriving first the cylinder functor of the new category from the one of Top, through
the obvious categorical procedure (as in 4.5, here), and then defining fibrations and cofibrations on this
basis.

The author acknowledges with pleasure helpful discussions with Timothy Porter.

Conventions.  and  denote the terminal and initial object of a category; if they coincide, producing
the zero-object 0, the category is said to be pointed. In a 2-graph, a cell  #: f  g: A B  is written as
#: f  g  or  #: A ' B  when we just want to specify the vertical domain and codomain (f and g) or
the horizontal ones (A and B). Top and Top  are respectively the categories of topological spaces and
pointed spaces, while C D is the category of unbounded chain complexes over an additive category D;
actually, these categories are always provided with suitable additional structure concerning homotopies,
as specified below. In Top, the cylinder is always realised as  I(X) = [0, 1]×X,  so that  I!(: (t, x) 
(t, (, x)  and  !(I: (t, x)  ((, t, x)  respectively give the horizontal and vertical faces of  I2X  (( = 0, 1).
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1. Basic properties of h-categories

This is an outline of a setting for homotopical algebra studied in the previous papers [8, 9]. The
vertical composition of homotopies is written here as a sum.

1.1. h-Categories. An h-category A [9] is a sort of two-dimensional context, abstracting some of the
nearly 2-categorical properties of topological spaces, continuous maps and homotopies.

Precisely, A is equipped with cells or homotopies  #: f f ': A B, vertical identities 0f: f f
and a reduced horizontal composition  °  of cells and maps (also written by juxtaposition)

(1) k°#°h:  kfh  kf 'h:  A'  B' (h: A'  A,    k: B  B')

satisfying the axiom

(hc) 1B°#°1A  =  #, k°0f°h  =  0kfh, k'°(k°#°h)°h'  =  (k'k)°#°(hh').

Formally, an h-category can be described as a category enriched over the monoidal closed category
of reflexive graphs ([9], 1.3]). An equivalent notion is given in Kamps [21], def. 2.1.

In an h-category the homotopy relation  f  f '  (meaning that there exists a homotopy f  f ' or
f' f) need not be transitive, but it is weakly compositive:  f  f '  implies  kfh  kf'h. The morphism
f: A  B  is a homotopy equivalence if it has a homotopy inverse g (gf  1, fg  1); f is a fibration if
it satisfies the usual lifting property of homotopies, for each orientation of the cells: for every  x: X 
A,  every homotopy  ): fx  y  (resp. ): y fx) lifts to some homotopy  *: x  x'  (resp. *: x' 
x), with  f* = )  (and fx' = y).

An h-functor  F: A  B  preserves the whole structure, between h-categories; more generally, F is
homotopy invariant if the existence of a cell  f  g  in A implies the existence of a cell  Ff  Fg  in
B; then F preserves homotopy equivalences and (co)fibrations; every h-functor is so. If B is a category,
equipped with the trivial h-structure given by formal vertical identities, both properties mean that F is an
ordinary functor turning homotopical arrows of A into equal arrows of B. A morphism  u: F  G: A

 B  of h-functors is required to be 2-natural  (uB°F# = G#°uA).

In an h-category, the terminal object  will always be defined by a 2-dimensional universal
property, implying the usual 1-dimensional one: for every object A there is precisely one cell  A '

(i.e. one map  A: A    and one endocell of the latter, its vertical identity). Similarly, product and
sum will always mean 2-product and 2-sum. Instead, pullback and pushout will refer to the usual 1-
dimensional property, unless we specify 2-pullback, 2-pushout.

1.2. h4-Categories. An h4-category is a sort of relaxed 2-category, abstracting deeper "2-categorical"
properties of Top. Precisely, it is an h-category A equipped with:

a) a vertical involution, turning a cell  #: f  f '  into the reversed (or opposite) cell  – #: f '  f,

b) a vertical composition, turning two cells  #: f  f ',  $: f '  f"  into the sum  #+$: f  f",

c) an equivalence relation  (cell-homotopy ) for cells with the same vertical domain and the same
vertical codomain,

so that these axioms are satisfied:

(hc.1)   – 0f  =  0f, – (– #)  =  #, – (k#h)  =  k(– #)h,
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(hc.2)   0f + 0f  =  0f, (k#h) + (k$h)  =  k(#+$)h,

(hc.3)   – (#+$)  =  (– $) + (– #),

(hc.4a)   k#h  k#'h, – #  – #', #+$  #'+$' (#  #',   $  $'),

(hc.4b)   0f+#  #  #+0f', #+(–#)  0f, – #+#  0f ' , (#+$)+%  #+($+%),

(hc.4c)   k# + +f '  +f + k'# (#: f  f ': A  B,   +: k  k': B  C).

The last property, (hc.4c), will be called weak reduced exchange. Intermediate notions will also be
used: an h1-category has a vertical involution, satisfying (hc.1); an h2-category has a sum, satisfying
(hc.2); an h3-category has both and satisfies (hc.1-3); the homotopy relation  f  f '  is then a
congruence, yielding the associated category A / . The corresponding notions of h1-, ...  h4-functors
are obvious.

A strict h4-category is an h4-category whose cell-homotopy  is the equality; it is not difficult to
see that this is equivalent to a 2-category whose cells are invertible, i.e. a groupoid-enriched category
([9], 1.4). The 2-category  Cati  of small categories, functors and natural isomorphisms is thus strict
h4, as well as  Gpd  (small groupoids), while Top, Top  and C D, with the usual homotopies and
compositions, are non-strict h4-categories (§ 6). Every h4-category has an associated strict one,  A/ ,
consisting of the same objects, same maps and tracks (homotopies modulo ).

A regular h3-category, or sesquigroupoid, is assumed to have a regular sum, satisfying (hc.4b) for
equality; every set of homotopies  A1(A, B)  is then a groupoid, coherently with left and right
composition with maps. Plainly, C D is so. (In [9], this notion is called "strict h3"; it can be
formulated as an unusual enriched structure.)

1.3. h-Pushouts and h-cokernels. Let A be an h-category. The h-pushout (or standard homotopy
pushout, or double mapping cylinder) of two arrows  f: A  B,  g: A  C  is an object  X = I(f, g)
with two maps  x', x"  and a homotopy  *: x'f  x"g  as in (1), satisfying the obvious universal
property (of co-comma squares)

   f    f
A B A B

(1)   g *    x' (2) A *    x

C X Cf
 x"  x"

-  for every homotopy  ): y'f  y"g: A  Y,  there is exactly one morphism  a: I(f, g)  Y  such that
y' = ax',  y" = ax",  ) = a*.

Of course, the triple  (x', x"; *)  is jointly epi. In particular, if C is the terminal object  (1.1) as in
diagram (2) above, this h-pushout is termed the h-cokernel of f,  hck f = (x, x"; *).  Then  Cf = C–f =
I(f, A)  is the (lower) mapping cone of f, the morphism  x":   Cf  is its vertex and  x = c(f)  the
(main) h-cokernel map of f. CA = C–(1A) = I(1A, A)  is the (lower) cone of A.

The following strict pasting property of h-pushouts and ordinary pushouts will be frequently used
([9], 2.2; but the proof is standard)
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   f    h
A B B'

(3)   g *    x'    y'

C X Y
  x"    y"

-  if the triple  (x', x"; *)  is the h-pushout of f and g, then the "pasted" triple  (y', y"x"; y"*)  is the h-
pushout of hf and g  if and only if  the right-hand square is an ordinary pushout.

If A is h4, the h-pushout  (x', x"; *)  is said to be h4-regular (or an h4-pushout) if, given two maps
a0, a1: X  Y  and two cells  ,: a0x'  a1x': B  Y,  +: a0x"  a1x": C  Y  coherent with *, there
is some cell  #: a0 a1  which extends , and + (, = #x',  + = #x"). The coherence hypothesis means
that we have a -commutative diagram of homotopies, under vertical composition

   +g
a0x"g a1x"g

(4)   a0*    a1* (5) ,f + a1*    a0* + +g.

a0x'f a1x'f
   ,f

Dually one defines the h-pullback  P(f, g)  of two converging arrows. The basic properties of
regular h-pushouts and h-pullbacks, as homotopy invariance, (non-strict) pasting and reflection of
homotopy equivalences, are studied in [9], § 2-3.

In Top,  I(f, g)  is realised pasting the spaces B and C over the bases of the cylinder  IA = [0, 1]×A,
along f and g (a "cylindrical colimit", 3.2.1). For  Cf,  the upper base of the cylinder is collapsed to a
point, and  CA = IA /{1}×A.  Dually, the h-pullback of two maps ending in A can be realised through
the path space PA, as  P(f,  g) = {(b, #, c) - B×PA×C | #(0) = f(b),  #(1) = g(c)}.

1.4. Cylinder and paths. Let A be an h-category. The cylinder IA of the object A is defined to be the
h-pushout of the pair of identities (1A, 1A), and comes equipped with a structural cell  &A  between its
two faces, the lower (written !– or !0, according to convenience) and the upper one (!+, or !1)

(1) &A: !–  !+: A  IA

while its degeneracy  e: IA  A  is determined by  e&A = 0: 1A  1A. If  IA  exists, every homotopy
#: A ' B  is corepresented by a map  #: IA B  (#.&A = #).

If  exists, I  =  (because of its 2-dimensional property, 1.1). Similarly, if all cylinders exist, the
cylinder functor  I: A  A  automatically preserves all the existing sums; moreover, h-pushouts can
be reduced to particular ordinary colimits, as it will be shown below (3.2). It is not difficult to prove
(but not needed here) that, if cylinders exist and are regular h-pushouts, the quotient A/  provides the
category of fractions of A with respect to homotopy equivalences ([9], 2.3, 3.3).

Dually, the path-object PB of the object B is the h-pullback of  (1B, 1B),  with structural cell

(2) &B: !–  !+: PB  B

where we distinguish the corresponding cylinder and path transformations by superscripts and
lowerscripts. Every homotopy  #: A ' B  is then represented by a map  #: A PB  (&B.# = #). If the
path functor  P: A  A  exists, it preserves all the existing products.
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If all cylinder and path objects exist, we obtain a canonical adjunction  I  P  determined by the
bijective correspondence  #  #,  between  A(IA, B)  and  A(A, PB).

1.5. Right homotopical categories. We end by outlining the main results of [9]; they will be at
disposal of the stronger setting developed in the next sections, even if their concrete use in the present
paper is marginal.

A right semihomotopical (resp. right homotopical) category A is an h-category (resp. h4-category)
provided with terminal object  and the h-cokernel  Cf  of any map (resp. h4-cokernel, 1.3).

Every right semihomotopical category has a cone and suspension endofunctors  A  A

(1) CA  =  C (1A) (2) .A  =  C ( A: A  )

where the object .A comes (universally) equipped with two vertices  a', a":   A  and a cell  evA:
a' A  a" A: A  .A  (suspension evaluation of A). Extending the standard topological situation
[28], every map  f: A B  has a natural Puppe sequence, or cofibration sequence

     f     x   &     .f   .x
(3) A B Cf .A .B .Cf ...

where x is the h-cokernel map of f and the differential  &: Cf  .A  is determined by the conditions

(4) & x  =  a' B, & x"  =  a", & *  =  evA (hck f = (x, x"; *)).

The Puppe sequence of f can be linked to the one of  x = c(f)  through the comparison map  s:
Cx .A,  forming a diagram which is commutative, except for the right-hand comparison square

f   x   &  .f
A B Cf .A .B

(5)    s #
B Cf Cx .B

  x   y   &'

(6) s y  =  &, s y"  =  a', s )  =  1: &x  a' A (hck x = (y, y"; ))).

All this behaves well if A is right homotopical. Then, cone and suspension are homotopy invariant.
For each f, the h-cokernel map  c(f)  is a cofibration, the comparison map  s: Cx .A  is a homotopy
equivalence and the comparison square is homotopically anti-commutative (for the reversion of .,
produced by the reversion of homotopies). One can thus construct a homotopically commutative
cofibration diagram, connecting the Puppe sequence of f to the sequence of its iterated h-cokernels  xn
= c(xn–1)  (for x0 = f), through a sequence of homotopy equivalences (each of them being a composite
of iterated suspensions of comparison maps, alternatively r-modified or not).

If moreover A is pointed, with finite sums, the suspension .A has a natural h-cogroup structure;
the two induced structures over a double suspension .2A have the same identity and satisfy the
exchange property up to homotopy. Thus, in A / , .A is an internal cogroup and .2A an abelian one.
In the stable case, A /  is additive (cf. 3.7).

1.6. Homotopical categories. Dually, left semihomotopical and left homotopical categories are based
on the (lower) h-kernel  Kf = K–f = P(f, )  of a morphism  f: A  B
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   f
A B

(1)   x   *     (2) hkr f  =  (x, x"; *)

Kf
  x"

the h-pullback of B:   B along f. We have now the (lower) cocone endofunctor KA = K–A =
K(1A), the loop endofunctor  /A = K(   A)  equipped with two covertices  a', a": A    and a cell
evA: Aa'  Aa": /A  A  (loop evaluation of A), and the fibration sequence of a map. Actually in
[8, 9] it is rather used the upper h-kernel  K+f = P( , f), together with the lower h-cokernel; but the
existence of a reversion makes the upper and lower notions equivalent.

A (semi-)homotopical category is at the same time left and right (semi)homotopical; every map f
has thus a fibration-cofibration sequence. If A is pointed semihomotopical (  = ), the suspension
and loop-endofunctor are canonically adjoint  (.  /),  as well as cone and cocone  (C–  K–).

2. Categories with a cylinder

An abstract cylinder endofunctor I makes the category A into an h-category; if I is provided with
suitable "operations", we obtain an h4-structure. The study of h-pushouts in this frame is deferred to the
next section. Categories with a cylinder functor are dealt with in [1, 10, 11,20, 22].

2.1. Cubical monads. Let A be a category equipped with a "homotopy system" in the sense of Kan
[23], i.e. a cylinder endofunctor  I: A  A  with natural transformations

  !(

(1) 1 I e !(  =  1 (( =  –, +;   or    0, 1)
   e

respectively called lower face or lower unit (!– or !0), upper face (!+ or !1), degeneracy (e).

This produces a semicubical enrichment over A, with morphisms  f: A p B  of degree p
represented by maps  f(p): IpA  B, and the following composition, faces, degeneracies (1 0 i 0 p)

(2) (g°f)(p+q)   =   g(q).Iqf(p), (! i
( f)(p–1)   =   f(p) . Ii–1!(Ip–i, (ei f)(p)   =  f(p–1) . Ii–1eIp–i.

The 0-morphisms are thus the ordinary maps of A, the 1-morphisms are the homotopies (2.2), the
2-morphisms are the deformations (2.5). The indexing of faces is consistent with the usual face-maps
in Top,  & i

( : [0, 1]n–1  [0, 1]n,  (t1,... tn–1)  (t1,... ti–1, (,... tn–1),  for  IX = [0, 1]×X.

Such a structure (I, !–, !+, e) on A will also be termed an I0-category or cubical semimonad or
semidiad, while we call cubical monad or diad ([10], 1.5) on A a collection  (I, !(, e, g()  consisting of
a semidiad and two connections or main operations (g–, g+), satisfying

  !(    g(

(3) 1 I I2

   e

(4) e.!(  =  1, e.g(  =  e2
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(5) g(.I!(  =  1  =  g(.!(I, g).I!(  =  !(.e  =  g).!(I (( 1 ))

where  e2 = e.Ie = e.eI: I2  1  denotes the second-order degeneracy (of I2). The last conditions mean
that  !(  is a unit for the corresponding operation g(, and absorbant for the other, g).

An associative diad, satisfying also the associativity axiom (g(.Ig( = g(.g(I: I3  I), corresponds
to the algebraic notion of dioid (a set with two monoid structures, so that the unit of any operation is
absorbant for the other [10]), in the same way as the categorical notion of monad [25] corresponds to
monoids. Every lattice with 0 and 1 is a dioid, commutative and idempotent. The algebraic character of
cubical monads (and monads) can be made explicit through the notion of PROP, introduced by Mac
Lane [24]. For the study of connections in cubical objects, see Brown-Higgins [3, 4, 5].

Two kinds of symmetry for cubical monads are relevant, reversion and interchange, which –
algebraically – correspond to involutive and commutative dioids,  respectively. (Of course, for an I0-
category, one should discard the conditions involving connections.)  A reversion  r: I  I  exchanges
the lower structure (!–, g–) with the upper one (!+, g+)

(6) r.r  =  1, e.r  =  e, r.!–  =  !+, r.g–  =  g+.Ir.rI  (=  g+.rI.Ir)

while an interchange  s: I2  I2  exchanges the horizontal faces (I!() with the vertical ones (!(I) and
is invariant under the connections

(7) s.s  =  1, eI.s  =  Ie, s.I!(  =  !(I, g(.s  =  g(;

moreover, if both are present, a coherence condition is required

(8) Ir.s  =  s.rI.

In Top, the standard connections and symmetries are produced by the following maps of the unit
interval [0, 1] and the unit square [0, 1]2

(9) g– (t, t')  =  t 2 t', g+ (t, t')  =  t 3 t', r(t)  =  1–t, s(t, t')  =  (t', t).

2.2. Homotopies. It is easy to see that an I0-category is the same as an h-category (1.1) where each
object A has a cylinder  IA  (defined as the h-pushout of the pair (1A, 1A), 1.4).

One implication has already been showed (1.4). Conversely, if A is an I0-category, the associated
h-structure consists of homotopies  #: f  g: A B  (the 1-morphisms  #: A 1 B  of the semicu-
bical structure, 2.1), formally represented by maps  # = #(1)

(1) #: IA  B, #!–  =  f, #!+  =  g

vertical identities  0f: f  f  and reduced horizontal composition  k#h, represented by

(2) 0f  =  f.eA  =  eB.If: IA  B

(3) (k#h)  =  k.#.Ih: IA'  B' (h: A'  A, k: B  B')

while the cylinder IA (as a homotopy pushout for the h-structure) is supplied by the endofunctor I
itself, with structural cell  &: !–  !+  represented by the map  &  = 1IA. Note that, in the composition
(3), the homotopy  #h  is represented by the map  #.Ih  (while "#.h " makes no sense, in general). We
shall write # for # when this ambiguity does not risk to produce errors.

In an I0-category, an ordinary terminal object is automatically 2-terminal (1.1), since every object A
has exactly one map  IA  .
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An I1-category A will be an I0-category equipped with a reversion  r: I  I  (2.1). This produces
an h1-structure, with  – #: g  f  represented by  #.r: IA  B.  In other words, an I1-category is the
same as an h1-category with cylinders.

2.3. I3-categories. Let A be I1. In order to introduce the vertical composition of homotopies, we
assume the existence, for every object A, of the composition pushout  J(A) = IA +A IA  (the pasting of
two cylinders, one on top of the other)

   !+

A IA
(1) !–

k+
   k–

IA JA

There are thus two natural transformations  k–, k+: I  J.  They supply three faces 1  J  (lower,
upper and middle face)

(2) !––  =  k- !–, !++  =  k+!+, !±  =  k+ !–  =  k– !+

Moreover, the transformations  e, r  induce a degeneracy e and a reversion r  for J

(3) e: JA  A, e k–  = e k+  =  e, e !––  = e !++  = e !±  =  1

(4) r: JA  JA, r k–  =  k+ r, r . r  = 1, e . r  =  e .

An I3-category will be an I1-category having all the composition pushouts JA, and equipped with
a composition map  k: I  J  satisfying

(5) k !–  =  k– !–, k !+  =  k+ !+, e k  =  e, r k  =  k r.

The vertical composition, or sum,  #+$: f  h,  of a pair of vertically consecutive homotopies  #:
f g  and  $: g  h,  is then represented by the map

(6) (#+$)   =  (#2 $).k:  IA  B

where  #2 $  denotes the obvious map defined over the pushout JA. It follows easily that the vertical
composition satisfies the axioms for an h3-category (1.2). In particular,  k–  and  k+  are (represent)
consecutive homotopies, with vertical composition  k

(7) k–: !––  !±, k+: !±  !++; k– + k+  =  k: !––  !++: A  JA.

For chain complexes,  k: IA  JA  is not iso (6.6). But in Top, one can take  JA = IA  and  k = 1,
with  k–  produced by the "first-half" embedding of the standard interval into itself,  t  t/2.  Thus the
sum of homotopies is the standard one.

Omitting the reversion, one can give the notion of I2-category, similarly related to h2-categories.

2.4. Symmetrical I3-categories. An I0-, or I1-, or I3-category with interchange (or symmetrical) is
further equipped with an interchange  s: I2  I2  (2.1). In the last case, a new coherence condition
between interchange and vertical composition is required.

In fact, the composition pushout  J(IA)  in (1) determines a map  s: JIA  IJA,  and the square (2)
is asked to commute (note that s  is iso whenever I preserves the composition pushouts)
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   I!+

IA I2A
kI

 1   I!–
   !+I

   s
    Ik– I2A JIA

(1) IA I2A (2)  s    s

   !–I
I2A Ik+

IJA I2A IJA

  s k+I
   k–I

  s
Ik

I2A JIA

In every I0-category with interchange, the functor I is homotopy invariant. Indeed, given a
homotopy  #: IA  B,  with  # .!( = f(,  I#.s  is a homotopy from  If0  to  If1  (I#.s.!(I = I#.I!( =
If().  More precisely, and here one should not confuse # with #, we set

(3) I(#)   =  I#.s

making I into an h-functor, which is also h1 (preserves reversion) in the symmetrical I1-case

(4) I(k°#°h)  =  Ik°I(#)°Ih, I(0f)  =  0If, I(– #) = – I#.

Finally, if A is symmetrical I3, I is an h3-functor, i.e. preserves also the sum of homotopies

(5) I(#+$)  =  I# + I$ (#: f  g: A  B,     $: g  h: A  B)

since the pushout  JIA  in (1) shows that  I(#2 $). s  =  (I#.s)2 (I$.s),  and (2) implies that

(6) I(#+$)  =  I(#2 $).Ik.s  =  I(#2 $). s.kI  =  (I#.s)2 (I$.s).kI  =  I# + I$.

2.5. Deformations and their pasting. Let A be I0. A 2-morphism  ": A 2 B  of the semicubical
structure (2.1), represented by a map  " = "(2): I2A  B  defined over a second-order cylinder will
be viewed as a deformation, or double homotopy, of four homotopies, its horizontal and vertical faces,
forming the boundary  !"

  #1
h k (2) #(  =  (!1

(  ")   =  ".I!(

(1)  40  "    41

f g (3) 4(  =  (!2
(  ")   =  ".!(I.

  #0

Also here, we tend to use the same name for " and ". An I0-category will be said to be flat if two
deformations having the same boundary necessarily coincide (see. 6.3-4). The boundaries of  $°#  (for
#: a0  a1: A  B  and  $: b0  b1: B  C, see 2.1.2)  and  g–,  g+: I2A  IA  (if such
connections exist in A) are

$ a1   0   &
b0 a1 b1 a1 !+ !+ !– !+

(4)  b0# $°#    b1# (5)   &   g–    0 (6)   0   g+    &

b0 a0 b1 a0 !– !+ !– !–
$ a0   &   0

Assume now that A is I3. Note (and this remark should be used with care, to avoid confusion with
the stronger notion of cell-homotopy studied below) that the map  ": I(IA)  B  can also be thought
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to represent the associated horizontal homotopy  "h:  40  41  between its vertical faces, as maps
defined over IA. Given two deformations "0 and "1 disposed as in (7), one can thus define their
horizontal pasting, or sum  5 = "0 +h "1  along the common vertical face 4, corresponding to the sum
of the associated horizontal homotopies

#1 $1    #1 + $1

(7)  40     "0   4    "1    41 (8)  40     5    41

#0 $0 #0 + $0

(9) 5  =  "0 +h "1  =  ("02"1).kI: I2A  B, 5h  =  ("0)h + ("1)h: 40  41 .

The pasting is thus realised through the J-pushout (10) of IA and the map  kI: I2A   J(IA)

  !+I

  !+I IA I2A
IA I2A  !(   !–I

 !+
   I!(

    k–I
(10)  !–I

   k+I
   k–I (11) A IA

I2A JIA
!– I2A k+I JIA

  I!(  k+
k–

  J!(

IA JA

and the horizontal faces of  "0 +h "1  are indeed the sum of the horizontal faces of "(, as claimed in
(8), because of the commutative cube (11) whose front pushout defines #(2 $(

(12) 5.I!(  =  ("02"1).kI.I!(  =  ("02"1).J!(.k  =  (#(2 $().k  =  #( + $(.

If the I3-category A is regular, or has a regular sum (i.e., is regular h3, 1.2), then also the
horizontal sum of deformations is regular, and yields a groupoid structure on each set  A(I2A, B),
with identities and inverses given by

(13) 04h  =  e.I4  =  01°4, –h "  =  ".rI.

In a symmetrical I3-category one can define the "vertical pasting" along an intermediate, common
horizontal face

(14) ("0 +v "1).s  =  "0.s  +h  "1.s (0#v   =  #.Ie  =  #°01,      –v "  =  ".Ir).

The vertical pasting can also be defined in an I3-category whose composition pushouts are
preserved by I; and in this case one can prove the exchange property for horizontal and vertical
pastings of deformations. If there is an interchange, the two definitions agree (2.4.1-2).

2.6. Cell homotopies. As usual, a cell-homotopy, or 2-homotopy,  ": #0 #1,  between parallel cells
#(: f  g: A  B,  is a deformation  "  with horizontal faces  #(  and vertical faces degenerate
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  #1
f g

(1)   0   "    0 (2) ".I!(  =  #(, ".!(I  =  0.
f g

  #0

If A is I3, the previous pasting operations restrict to cell-homotopies

a) given two cell-homotopies  "0: #0  #1: f0  g  and  "1: $0  $1: g  f1,  the horizontal pasting
along g is defined through the J-pushout of IA (2.5.10)

(3) "0 +h "1  =  ("0  2 "1).kI:  #0+$0  #1+$1:  f0  f1

b) given two cell-homotopies  "0: #0 $: f  g  and  "1: $ #1: f  g,  the vertical pasting along $

(4) "0 +v "1  =  ("0.s  +h  "1.s).s : #0 #1: f  g

exists, provided A has interchange (recall that  0f + 0f  =  0f,  2.3).

2.7. I4-categories. We need now a mapping  #  "  turning a homotopy # into a cell-homotopy  ":
#  # + 0, and a mapping  "  5  turning a deformation  "  of four homotopies, as in (1), into a
cell-homotopy  5: #+&    $+%,  as in (2)

  % $+%
k g f g

(1)    $  "    & (2)    0  5    0

f h f g
  # #+&

and we want to realise such conversions "algebraically", through transformations of the cylinder.

An I4-category A has a structure  (I, !(, e, g(, r, s, J, k, z, w)  combining a cubical monad with
reversion and interchange (2.1) with a symmetrical I3-structure (2.3-4); further, it has a zero collapse
z: I2  I  and a lens collapse  w: I2  I2  with the following boundary and degeneracy conditions

&+0 !–I + I!+

!– !+ I!–.!– I!+.!+

(3)   0    z    0 (4)   0   w    0

!– !+ I!–.!– I!+.!+
  & I!– + !+I

(5) e.z  =  e2 (6) e2.w  =  e2

where  &: !–  !+: A  IA  is the structural cell of the cylinder IA  (&   =  1IA)  and  e2 = e.Ie = e.eI:
I2  1  is the degeneracy of I2.

These maps  z  and  w  produce the conversions we want,   #  #.z  and  "  5 = ".w

(7) #.z.I!–  =  #.1IA  = #, #.z.I!+  =  #.(&+0)  =  #+0, #.z.!(I  =  0

(8) "w.I!–  =  ".(I!–+!+I)  =  #+&, "w.I!+  =  $+%, "w.!(I  =  ".0  =  0.

We say that the lens collapse is strong, and that A is strong I4, if moreover all these lens
conversions  "  "w  are bijective. In other words, for every fourtuple of homotopies  #: f  h,  $: f
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 k,  %: k  g,  &: h  g  (between parallel maps) and every cell-homotopy  5: #+& $+%,  there
exists precisely one deformation " with boundary (1) such that  "w  coincides with 5. It can be noted
that some results (e.g. thm. 3.5) just need the surjectivity of the conversion, while other (e.g. the
naturality properties of § 4) do need the bijectivity.

Plainly, a flat I4-category (2.5) is strong. Top is strong I4, non flat, through the zero collapse

(9) z: [0, 1]2  [0, 1], z (t, t')  =  (2 t / (2 – t')) 3 1

and the endomap w of the unit square [0, 1]2 described in the Introduction (0.3), which motivates the
name of lens collapse.

2.8. Regular I4-categories. Actually, one can derive a "similar" conversion  "  5  from the
connections, pasting " with two deformations based on  g–, g+

  $   %   0
f k g g

(1)    0  $g+   $   "   &   &g–    0

f f h g
   0    #    &

In general, e.g. in Top, this conversion fails to be bijective and is not sufficient for our purposes.
But in the regular case this works well, and we can simplify the structure omitting  w  (and  z as well,
since here  #+0 = #).

A regular I4-category, or I4-sesquigroupoid  (I, !(, e, g(, r, s, J, k)  will be thus a symmetrical I3-
structure (over A) with consistent connections and regular sum (1.2). Then A is strong I4, with zero
and lens collapses derived from the other transformations

(2) z  =  Ie: I2  I (3) w  =  (!–I.g+) +h 1 +h (!+I.g–):  I2  I2.

Direct calculations show that these maps do satisfy our boundary and coherence requirements
(2.7.3-6); further, the conversion defined by  w  works precisely as in diagram (1)

(4) "    5  =  "w  =  $g+ +h " +h &g– ($ = !–I.",     & = !+I.")

and is bijective (in the sense specified above, 2.7) because of the regular behaviour of the sum of
deformations (2.5): given  5, take  "  =  –h  $g+  +h  "  –h  &g–.

Top is strong I4, neither flat nor regular. Chain complexes form a regular, non flat I4-category.
Cati and Gpd are examples of the flat, regular case. (One could further reduce the redundancy of the
regular structure deducing the reversion,  r = – &,  and one connection.)

2.9. Theorem. Every I4-category A is h4, with respect to the h3-structure previously considered (2.3)
and the cell-homotopy relation  defined by  I2  (2.6). The functor I is h4.

Proof. a) The cell-homotopy relation  is an equivalence. The transitive property follows from the
vertical pasting of cell-homotopies (2.6 b), which is possible because of the interchange. Moreover

-  for  #: f0  f1: A  B,  take  " = #.Ie: I2A  B,  so that  ": #  #

(1) ".I!(  =  #.Ie.I!(  =  #, ".!(I  =  #.Ie.!(I  =  #.!(.e  =  f(.e  =  0.
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-  for  ": # $: f0  f1: A  B,  take  5  =  ".Ir: I2A  B,  so that  5: $  #

(2) 5.I!(  =  ".I(r!()  =  ".I!)    (( 1 )), 5.!(I  =  ".Ir.!(I  =  ".!(I.r  =  0.

b)  #0   #1   implies  k#0h  k#1h  (for  #(: f0  f1: A  B,  h: A'  A,  k: B  B'). Choose
": #0 #1  and consider the map  5 = k.".I2h: I2A'  B'

(3) 5.I!(  =  k.".I2h.I!(  =  k.".I!(.Ih  =  k.#(.Ih  =  k #( h

5.!(I  =  k.".I2h.!(I  =  k.".!(I.Ih  =  k.0.Ih  =  0.

c)  #0  #1   implies  – #0  – #1. Taking  5  =  ".rI,  we have

(4) 5.I!(  =  ".rI.I!(  =  ".I!(.r  =  – #(, 5.!(I  =  ".rI.!(I  =  ".!(I.r  =  0.

d) Given  "0: #0 #1: f0  g  and  "1: $0 $1: g  f1,  define  5: #0+$0 #1+$1: f0  f1  as the
horizontal pasting of the cell-homotopies  "0  and  "1  (2.6 a).

e) We already know that  # + 0g  #,  because of the zero collapse (2.7); the symmetrical property
follows by reversion:  0f + # = – (– # + 0f)  – (– #) = #. A cell-homotopy  – # + #  0f  is
provided by the connection  g–, through the composition  " = #.g–.rI.w: I2A  B  whose boundary is
shown here below (check from right to left)

 0    0    0

  w   rI    g–   #
(5)    0 "    0   0    #   #    0

   – # + # – #    #

f)  To prove the -associativity of the sum,  (#+$) + %  # + ($+%),  note that the deformations  "0 =
#.g–: I2A  B  and  "1 = $.g+: I2A  B  have a horizontal pasting  "  in (7)

0 $  0 + $  0 + %

(6)  #    "0   0    "1    $ (7)  #     "   $    5    %

# 0 # + 0  $ + 0

which can be further pasted along $ with the deformation 5 similarly constructed from $ and %,
producing a deformation 6. By lens conversion,  6w: I2A  B  is a cell-homotopy which implies the
thesis, through the previous results

(8) 6w:   ((#+0) + ($+0)) + %    # + ((0+$) + (0+%)).

g) As to the weak reduced exchange, for  #: f  f ': A  B  and  +: k  k': B  C

(9) +f + k'#  k# + +f ':  kf  k'f':  A  C

it suffices to compose # and + (in the cubical enriched structure supplied by I) and apply lens
conversion to get a cell-homotopy  "  =  +.I#.w: I2A  C   as required
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k#++ f '   + f '

  w   I#   +
(10)    0 "    0 k#    k'#

+ f+k'#   +f

h) Finally, we already know that I is an h3-functor, with  I(#)  = I#.s  (2.4.3), and we must prove it
preserves the cell-homotopy relation . Given a cell-homotopy  ": #0 #1,  we turn it into the cell-
homotopy  I": I(#0)  I(#1), through the composed symmetry  s' = sI.Is: I3  I3

(11) ": #0 #1: f0  f1: A  B (".I!(  =  #(, ".!(I  =  0f()

(12) (I")   =  I".sI.Is: I2(IA)  IB

(13) I".sI.Is.I!(I  =  I".sI.II!(  =  I".II!(.s  =  I(".I!().s  =  I#(.s  =  I(#()

(14) I".sI.Is.!(II  =  I".sI.!(II.s  =  I".I!(I.s  =  I(".!(I).s  =  I(0f().s  =  I(0f()  =  0If(.

2.10. P4- and IP4-categories. Dualising 2.7, a P4-category A is equipped with a cubical comonad
with reversion and interchange  (P, !(, e, g(, r, s)  [10], together with vertical composition  k,  zero
collapse  z  and lens collapse  w

(1) k:  QA = PA ×A PA   PA, z: P  P2, w: P2  P2

where k acts on the composition pullback  QA = PA ×A PA,  or object of composable paths (the
pullback of  !+,  !–: PA  A).

An IP0- (resp IP4-) category is a category equipped with adjoint endofunctors  I  P  and with
consistent I0- and P0- (resp. I4- and P4-) structures, determining each other through the adjunction.
For instance, if  (I, !(, e, g()  is a cubical monad and  I  P,  one gets a cubical comonad  (P, !(•, e•, g(•)
for P, through the unit and counit of the adjunction  (): 1  PI,  ,: IP  1)

(2) !(•  =  ,.!(P  =  (P  IP  1) (3) e•  =  Pe.)  =  (1  PI  P)

(4) g(•  =  P2,.P2g(P.P)IP.)P  =  (P  PIP  P2I2P   P2IP  P2).

In this way, the horizontal faces  I!(  of I2 correspond to the faces  !(• P  of P2, which are thus
considered as horizontal.

In a P0-category, one has thus the following situation, parallel to the one of I0-categories (2.5-6). A
deformation  ": A P(PB)  also represents the associated vertical homotopy  "v: #0  #1
between its horizontal faces  !(P.",  as maps with values in PB. A cell-homotopy  ": #0 #1  is a
deformation with vertical faces degenerate, as in 2.6  (!(P." = #(,  P!(." = 0), and the boundary of the
deformation  $°#  is the same as in the cylinder case (2.5.4), with vertical faces  P!(.($°#) = (!($).#.
The faces of Pn are indexed as  ! i

( = Pn–i!(Pi–1,  consistently with the ones of In (2.1.2; and with the
usual face-maps  & i

(  in Top).

An IP4-category is strong I4 iff it is strong P4, since the lens conversion can be equivalently
realised through the cylinder or the path functor

(5) "  "wA (": I2A  B) (6) "  wB " (": A  P2B).
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3. I4-homotopical categories

For I0-categories, the existence of h-pushouts reduces to the existence of particular pushouts, the
"cylindrical" ones (3.2); similarly, in the I4 case, the regularity of h-pushouts can be reduced to the
preservation of such colimits by I (3.3-4). These properties yield the definition of I0- and I4-
homotopical category. As noted in 3.2, it is not convenient to assume the existence of all pushouts.

3.1. Some remarks on pushouts. a) First, we say that a map  t: X  Y  in the category A has all
pushouts (or that A has all t-pushouts)

    f    f    g
X X

(1)     t
*

   t' (2)    t
*

   t'
*

   t"

Y Y

if the pushout of t along an arbitary map f exists; this yields a map t' which again has all pushouts, as
proved in (2) – use the pushout of t along a composite gf, and "factorise" it through (1).

b) Consequently, if t has all pushouts and a functor  F: A  B  preserves them, then F preserves also
the pushouts of t'.

c) It will be useful to note once and for all that pushouts preserve pushouts. Precisely, given a
commutative diagram (3) formed by the pasting of two "divergent" cubes (hidden vertices and edges
are not drawn), if the faces "A", "B", "C" are pushouts and all four pairs  (fi, gi)  of horizontal maps
have a pushout, then the resulting new face "D" in (4) is a pushout (as it is easy to check)

   f2  g2
B2 A2 C2

  f4   g4
(3) B1 B4 A4 C4

f3   g3
B3 A3 C3

 k2   h2
B2 D2 C2

 k4   h4
(4) B1 B4 D4 C4

   k3    h3
B3 D3 C3

3.2. I0-homotopical categories. We say that the I0-category A is I0-homotopical if it satisfies the
following equivalent conditions (applying to any pair of arrows  f, g  with the same domain)

(i)   the h-pushout  I(f, g)  exists,

(ii)  the (ordinary ) colimit  I(f, g)  of the following diagram exists (A has cylindrical colimits)
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     f     !–  !+   g
(1) B            A            IA            A            C

(iii) the three ordinary pushouts in (2) exist (A has cylindrical pushouts)

   f    1    f
A B A A B

 !+
   !–

*
  1 &    !–

(2) A IA I–f (3) A IA    x'

   g
* *

  g   !+

 x"

 *

C I+g I(f, g) C I(f, g)

The equivalence of (i) and (iii) follows from 1.3.3; that of (ii) and (iii) is trivial. The presentation of
I(f, g)  as a cylindrical colimit is shown in (3).

The upper pushout in (2) yields a particular double mapping cylinder  I–f  =  I(f, 1),  the lower
mapping cylinder of f (which pastes B on the lower base of IA, along f). Also the composition pushout
JA (2.3.1) is a particular cylindrical pushout, since it can be obtained as the mapping cylinder  I–(!+)
= I(!+, 1),  or symmetrically as  I+(!–) = I(1, !–).

If A is I0-homotopical and has a terminal object, it is right semihomotopical as an h-category (1.5).
The h-cokernel  Cf = C–f = I(f, A)  can equivalently be obtained through the h-pushout 1.3.2, or the
conical colimit of the diagram (4), or the two conical pushouts exhibited in (5)

      f      !–   !+

(4) B            A            IA            A            

   f
A B

  !+
!–

(5) A IA    !    x'

  
* *

 C–A C–f

where  !: A  C–A  is the embedding of the base of the cone.

Finally, some remarks on the assumption of cylindrical colimits. Requiring the existence of all
pushouts would be of scarce utility here, and even mask the real points of interest. For instance, the h-
structure of the category C D of chain complexes is founded on the pre-additive structure of D; h-
pushouts and cylindrical pushouts, as well as h-pullbacks, exist as soon as D is additive, which is the
real situation of interest for the homotopy of chain complexes; but arbitrary pushouts exist iff D has
them; e.g., it is not the case for free abelian groups. On the other hand, it would be possible to restrict
our assumption to the existence of h-cokernels, or conical colimits. But this condition is somewhat
unnatural in a setting based on cylinders; and there are cases where the terminal object is missing, but
one can nevertheless consider h-cokernels with respect to some generalisation of the latter.
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3.3. I4-homotopical categories. An I4-homotopical category A will be a strong I4-category
satisfying the following conditions (which are easily seen to be equivalent, by 3.2 and interchange)

(i)   h-pushouts  I(f, g)  exist and are preserved by the functor  I  (I(I(f, g)) = I(If, Ig))

(ii)  cylindrical colimits (3.2.1) exist and are preserved by I (as colimits)

(iii) cylindrical pushouts (3.2.2) exist and are preserved by I (as pushouts).

The first property proves (directly) that every power of I has then the same preservation properties.
The second and third show that such preservation properties are automatic whenever I is a right adjoint.
Since composition pushouts are a particular instance of the cylindrical ones (3.2), (iii) implies that they
are preserved by I, so that the exchange property for horizontal and vertical pastings of deformations
holds (final remark in 2.5). It is also useful to recall that the zero and lens collapses are superfluous in
the regular case (2.8).

If A is I4-homotopical with terminal object, also the cone functor  C: A  A  preserves the
cylindrical pushouts; indeed, C is defined by a pushout, and "pushouts preserve themselves" (3.1 c).

The notion of I4-homotopical subcategory A' is obvious – the whole structure, including the
cylindrical colimits and their structural maps, can be restricted to A', where the colimit properties still
hold. If A' is a full subcategory of A, all this simply means that the functor I restricts to A', which is
closed in A under cylindrical colimits.

3.4. Cubical h-pushouts. Note first that the ordinary pushout  (X, x, y)  of the maps  f: A B,  g: A
 C,  is preserved by I iff it is a 2-pushout, with respect to I-homotopies: given two homotopies  $: B

' Y,  %: C ' Y  such that  $°f = %°g: A ' Y,  there exists precisely one homotopy  #: X ' Y  such that
# °x = $,  #°y = %.

A similar characterisation for I-preserved h-pushouts can be given through the semicubical
structure over A defined by I (2.1). The diagram 1.3.1  (*: x'f  x"g: A  X)  is an I-preserved h-
pushout iff, given two homotopies  $: B ' Y,  %: C ' Y  and a deformation (2.5)  "  with horizontal
faces  $°f,  %°g: A ' Y,  there is exactly one homotopy  #: X ' Y  such that   #°x' = $,  #°x" =  %,  #°*

= ".  Moreover, if this is the case, the boundary  a( = #.!(  of # is determined by the boundaries of $
and %, together with the vertical faces  ".!(I  of the deformation

(1) a( x'  =  $.!(, a( x"  =  %.!(, ".!(I = a(°*.

Indeed, take  ".s: $.If  %.Ig: IA  Y.  If  *: x'f  x"g  is an I-preserved h-pushout, there is one
map  #: IX Y  such that  $ = #.Ix',  %   =  #.Ix"  and  " .s = #°I(*) = #.I(*).s = (#°*) .s;  and
conversely.  One can also prove that, in an I4-homotopical category, h-pushouts (being preserved by all
powers of I) satisfy a stronger universal property, for maps of every degree (cubical h-pushouts).

3.5. Theorem. Every I4-homotopical category A has h4-pushouts; the cylinder is homotopically
invariant. If A has a terminal object, then it is right-homotopical with respect to the h4-structure
produced by the cylinder; also the cone and suspension functors are homotopically invariant.

Proof. We already know that A is h4 and has h-pushouts, while I is invariant (thm. 2.9; 2.4). We
prove now the h4-regularity of h-pushouts, essentially from the preservation of cylindrical colimits by I
and the strong lens-conversion property. If  exists, the invariance of C and . follows from 1.5.
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Consider the h-pushout  X = I(f, g) in (1). Given two maps  a0, a1: X  Y  and two cells  ,:
a0x'  a1x': B  Y,  +: a0x"  a1x": C  Y  forming a -commutative diagram (2) of cells, we
have to prove that there is some homotopy  #: a0  a1: X  Y  such that  , = #x'  and  + = #x"

   f    +g
A B a0x"g a1x"g

(1)    g *    x'
a0

(2)   a0*    a1*

C X Y a0x'f a1x'f
  x"  a1    ,f

Choose a cell-homotopy  5: I2A  Y  representing (2). By hypothesis (2.7), it can be lifted to a
deformation  ": I2A  Y  as in (4), whose lens conversion is  "w = 5

a0* + +g  +g

(3)    0   5    0 (4)   a0*   "    a1*

,f + a1*  ,f

Now, the last remark above (3.4) would allow us to conclude, factoring " through the homotopy *.
More elementarily, without using the cubical enriched structure, consider the h-pushout  IX = I(I(f, g))
= I(If, Ig),  with  I(*) = I(*).s

  If
IA IB

(5)  Ig I*    Ix'

IC IX Y
 Ix"    #

Since  "s.!–I = (,°f)  = ,.If,  and  "s.!+I = +.Ig,  the triple  (,,  +, "s)  determines a homotopy
#: IX  Y  which lifts  ,,  +

(6) #.Ix'  =  ,, #.Ix"  =  +, #.I*  =  ".s

and links  a0  and  a1,  as detected by the jointly epi triple  (x', x"; *)

(7) (#.!().x'  =  #.Ix'.!(  =  ,.!(  =  a(.x' (#.!().x"  =  a(.x"

(#.!().*   =  #.I* .!(I  =  #.I*.s.!(I  =  ".!(I  =  (a(.*)   =  a(.* .

3.6. P4-homotopical and IP4-homotopical categories. Dually, a P4-homotopical category A is a
strong P4-category with P-preserved h-pullbacks (or path limits, or path pullbacks).

Clearly, for every pair of arrows  f, g  with the same codomain, the path limit  P(f, g)  is the h-
pullback of f and g, presented as the ordinary  limit of the following diagram

     f       !–    !+   g
(1) B            A            PA            A            C.

The composition pullback QA (2.10.1) is a particular path pullback. If A has initial object , we
also have the (lower) h-kernel, or homotopy fibre,  Kf = K–f = P(f, A).
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An IP0- (resp IP4-) homotopical category is an IP0- (resp. IP4-) category with cylindrical colimits
and path limits. Such colimits and limits are automatically preserved by I and P, respectively, because
of the adjunction. The notion of IP4-subcategory is obvious (cf. 3.3).

3.7. Triangulated categories. The relations between stable right homotopical and triangulated
categories studied in [12] can be easily converted into the present setting; the interested reader is
referred to this paper for the terminology.

Let A be a pointed I4-homotopical category. Then A satisfies always the "3×3 condition for h-
cokernels" ([12], 3.2-3), linked to the octahedral axiom of Verdier. Consequently, if A is also strictly
stable homotopical with finite sums, the category  A/   is triangulated with respect to its suspension
and the triangles defined by the beginning of the Puppe sequences of maps.

Indeed, we already know that A is (pointed) right homotopical (3.5); applying the theorem 3.4 of
[12], it suffices to verify two conditions. First, the fact that C preserves the pushouts of the structural
maps  !: A  CA;  since these are particular conical pushouts, this property has already been
remarked (3.2-3). Second, the existence of an interchange for C, i.e. an involution  s: C2  C2

exchanging its faces  (s.C! = !C);  but it is known, and easy to verify, that in the pointed case the
interchange  s: I2  I2  of the cylinder induces one for the cone ([10], 3.7 b).

4. Categories of diagrams, sheaves and slices

We consider, here and in the next section, various situations in which our cubical notions can be
naturally lifted from a ground category A to a second category E provided with a forgetful functor U:
E  A (or with a family Ui: E  A).

Here we prove that this holds for every category of diagrams A S  (4.1-2) and, under natural
conditions, for the slice categories A\X, A/X, A(u) (4.4-6). For the category of sheaves over a site, the
lifting is fairly easy for the path functor (4.3), while it would require stronger hypotheses – and a
sheafification procedure to start with – to construct the cylinder (we do not work out this part here).

For homotopy in categories of diagrams and equivariant homotopy, see Dror Farjoun [7], Brown -
Loday [6], Moerdijk - Svensson [27] and their references. For sheaves in general categories, over a
space, see J. Gray [13]; for set-valued sheaves over a site, see Mac Lane - Moerdijk [26]. For the
homotopy theory of (strict or relaxed) slice categories of spaces see James [19], Baues [1], Hardie -
Kamps [14, 15, 16], Hardie - Kamps - Porter [17] and their references.

4.1. Categories of diagrams. Consider the category of diagrams AS, i.e. functors  S  A defined
over a small category  S  with their natural transformations. An object  A = ((Ai), (A7))  is thus a
collection indexed over the objects  i  and the arrows  7: i  j  of S, satisfying the functorial properties.
This includes, for instance:

- the power  AS,  for any set  S  (as a discrete category),

- the category  A2   of morphisms of A  (2 is the ordinal category {0  1}),

- the category  A    of unbounded towers of A  (  is the order category of integers),

- the category  AG  of actions in A of a fixed group, or monoid,  G  (as a one-object category),

- the category  Psh (X, A) = AS  of presheaves of A over a fixed topological space X  (Sop is the
category of open subsets of X, with their inclusion mappings).
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We are interested in lifting the structure of A to AS, along the (jointly faithful) family of evaluation
functors  Ui: AS  A,  A  Ai.  Equivalently, one can embed  AS  into  AOb S.

As a first step, if A is an h-category, AS has a canonical h-structure. A (natural or equivariant)
homotopy  #: f  g: A  B  in AS is defined to be a family of A-homotopies  #i: fi  gi: Ai Bi
(i-Ob S) which is natural in the obvious sense provided by the reduced horizontal composition of A

(1) B7 ° #i  =  #j ° A7  (7: i  j   in S).

4.2. Proposition. If A is I0 (resp. I4, strong I4, I0-homotopical, I4-homotopical), the category of
diagrams AS has a canonical structure of the same kind, by a pointwise lifting I of the cylinder.
Consequently, if A is I4-homotopical and has ,  AS  is right homotopical. Similar results hold for the
P- and IP-analogues.

(As already stressed in the Introduction, the cell-homotopy relation  #  $  in AS is produced by
the second-order cylinder I2 (2.6), and is stronger than the pointwise lifting of the corresponding
relation of A (#i  $i, for every i in S), which is not of interest.)

Proof. For an I0-category A, the I0-structure  (I, !(, e)  of  AS  is plainly

(1) (IA)i  =  I(Ai), (IA)7   =   I(A7); (!(A)i  =  !(Ai, (eA)i  =  eAi.

Similarly, one lifts pointwise an I4-structure  (I, !(, e, g(, r, k, s, z, w);  note that the composition
pushouts  J(A) = IA +A IA  exist and are pointwise calculated in AS, which allows one to lift the vertical
composition  k: I  J.

If the I4-structure of A is strong, take in AS a fourtuple of homotopies  #, $, %, &  disposed as in
(2), together with a cell-homotopy  5: #+&  $+%.  For every index  i  there exists precisely one
deformation  "i  in A with boundary (3) whose lens conversion  "iw  coincides with  5i

   %   %i
k g ki gi

(2)    $    ?    & (3)   $i   "i    &i

f h fi hi  #   #i

and the family  " = ("i)  is indeed a morphism  I2A  B,  i.e. makes each diagram (4) commute,
because the (injective) lens conversion turns (4) into (5), which commutes by hypothesis

 "i  5i
I2Ai Bi I2Ai Bi

(4)  I2A7    B7 (5)  I2A7    B7

I2Aj Bj I2Aj Bj  "j  5j

In the I0-homotopical case, h-pushouts (or, equivalently, cylindrical limits) exist in AS and are
pointwise calculated in A. In the I4-homotopical case, the preservation of cylindrical limits by I
automatically lifts to AS. The P-case follows now by duality, and the IP-case from the previous ones.

4.3. Theorem. Let A be P0, or P4, or strong P4, or P0-homotopical, or P4-homotopical, and assume
that the path functor P preserves all the existing limits (as it certainly happens if it is a left adjoint).
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Then the category  Shv(S, A)  of sheaves of A over a small site S is a subcategory of the same kind
(P0, or P4, etc.) in the category of presheaves  Psh(S, A) = ASop.

Proof. Also to fix notation, recall that a sieve  s  of the object i in S is a right ideal of maps having
codomain i (if 7-s, also  7+  does, whenever the composition is defined). By hypothesis, S is a small
category equipped with a Grothendieck topology J; this assigns to every object  i  a set J(i) of sieves of
i (those which "cover" i), under three well known axioms abstracting the behaviour of the (downwards
closed) open coverings of open subsets in a space ([26], III.2, Def. 1).

Shv(S, A)  is the full subcategory of  Psh(S, A)  consisting of those presheaves  A = ((Ai), (7*))
which are sheaves, i.e. satisfy the following limit condition. For each object  i  and each sieve  s - J(i),
consider the (small) diagram  A|s  in A having the following vertices and arrows

(1)   A7  =  Adom 7 (7-s)

(2)   (x7,+:  A7  A7+)  =  (+*: Adom 7  Adom +) (7-s,   cod+ = dom 7)

then  Ai  is required to be the limit in A of this diagram, through the projections

(3)   7*:  Ai  A7  =  Adom 7 (7-s).

 Note that the diagram  A|s  is defined over the category  cat(s),  with objects  7-s,  arrows  (7,+):

7 7+  (7-s, cod+ = dom 7) and composition  (7+,8).(7,+) = (7,+8).  Since A is not required to be
complete, the sheaf condition can not be given via products and equalisers; also, the direct formulation
is often more manageable.

Assume now that A is equipped with a (path) endofunctor P which preserves the existing limits.
Then the path functor of presheaves (4.2),  PA = ((PAi), (P7*)),  restricts trivially to sheaves.

Because of 3.3, we just need to show that this full subcategory is closed in  Psh(S, A)  under
composition or path pullbacks, whenever they exist in A (and therefore in Psh(S, A)). This follows
from the following elementary fact: if  X  is the pullback of  A  B  C  in Psh(S, A), and A, B, C
are sheaves, so is X. Indeed, the proof of the sheaf condition for X reduces to a straightforward
diagram-chasing in (4), for  7-s  and  cod+ = dom 7  (again, hidden edges are not drawn)

   7*    +*
Ai A7 A7+

 7*  +*
(4) Xi Ci C7 C7+

   7*    +*
Bi B7 B7+

4.4. Slice categories. Let A be an h-category. The classical topological example of a slice category is
Top  = Top\ ,  the category of pointed spaces or "spaces under the point"  = {*}. An object  (A, x)
is a map  x:   A  in Top; pointed maps and pointed homotopies are defined coherently, producing
an h-category.

In the same way, if A is an h-category and X an object, the slice category  A\X  of objects under X
has a canonical h-structure making the forgetful functor  U: A\X  A  an h-functor. A cell  #: (A, x)
' (A', x')  in  A\X  is given by a cell  #: A 'A'  in A such that  #°x = 0x',  as in (1)
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   #
X X A ' A'

(1)    x
#

9 0x' (2)     0y 9    y'

A ' A' Y Y

Dually, we have the slice h-category  A/Y  (Aop\Y)op  of objects under Y, whose cells make the
diagram (2) commutative. To unify the argument, one can consider a self-dual situation (as, for
instance, in [19] and [1, I.4.3], for  A = Top).

Given a fixed map  u: X  Y  in A, one has the h-category  A(u) = A\X/(Y, u) = A/Y\(X, u)  of
objects under X and over Y. An object is a triple  (A,x,y)  with  yx = u,  and a cell  #: (A,x,y) '
(A',x',y')  is a homotopy  #  of A making (4) commute

   x  0y

  x  y
X A ' Y

(3)  X      A      Y (4)  
0x'

9 #   y'
X ' A' Y

A(u) extends the previous two cases, since  A\X  A(X  )  and  A/Y  A(   Y)  as h-
categories, provided A has initial and terminal object (no real restriction here, since such objects can
always be formally and easily added). Recall that  P  =   and  I  =  (1.4). On the other hand,  A(u)
has the following initial and terminal object (under no assumptions on A)

(5)   =  (X, 1, u) (6)   =  (Y, u, 1).

One could similarly consider the larger category of objects  (A,x,y)  with no assumption on the
composite yx. But the extension is only apparent, because this category breaks into the sum of its
connected components, consisting of the various  A(u),  for  u - A(X, Y),  each with its own initial and
terminal object (5), (6).

4.5. Cylinder and path. If A is I0 and the X-degeneracy  eX: IX  X  has all pushouts, also A(u) is
I0. The new cylinder functor I is constructed through the (*-marked) eX-pushout and the commutative
diagram

   !(     e
X IX X X

(1)  x  Ix
*

   xI

 yI    u

A IA I(A,x,y) Y
  !(

0y

with the induced faces  !(: (A,x,y)  I(A,x,y)  and degeneracy  e: I(A,x,y)  (A,x,y).  Note the
abuse of notation in (1): formally,  I(A,x,y)  is a triple containing also the maps xI, yI.

Dually, if A is P0 and the Y-degeneracy  eY: Y  PY  has all pullbacks, also A(u) is P0, with path
functor P given by an eY-pullback
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P(A,x,y) PA
(2) yP  *

   e
   Py

Y PY

In particular (take Y = ), if A is P0 also A\X is so, with path functor

(3) P(A, x)  =  (PA, 0x), 0x  =  eA.x  =  Px.eX: X  PA.

More complete results for the cylinder of A(u) are given here below (4.6). Those concerning the
path functor are obtained by duality.

4.6. Theorem. Let A be an h-category. Consider an arbitrary ("bilateral") slice category  A(u),  for  u:
X  Y  in A.

a) If A is I0 (resp. I0-homotopical), so is A(u), provided that the X-degeneracy  eX: IX  X  has all
pushouts in A (3.1); the cylinder functor I of A(u) is described above (4.5.1). (The condition on eX is
trivial for  X =   and  A(u) = A/Y.)

b) If A is I4, or strong I4, or I4-homotopical, so is A(u), provided that all the above eX-pushouts exist
and are preserved by I. (Again, this holds trivially for  X =   and  A(u) = A/Y.)

Proof. a) The I0 case has already been considered above (4.5). In the I0-homotopical case, the h-
pushout  I(f, g)  of the maps  f: (A,x,y)  (A',x',y'),  g: (A,x,y)  (A",x",y")  is the A-colimit

    x     x
A X A

f  !– !+    g

(1) A' I(A,x,y) A"

i '
   *

i"
I(f, g)

equipped with the morphism  xI = i'x' = i"x": X  I(f, g)  and the morphism  yI: I(f, g)  Y  whose
components from  A',  A",  I(A,x,y)  are respectively  y',  y"  and  yI : I(A,x,y)  Y.

b) The proof depends on some formal properties of the slice category A(u), which in part we have
implicitly used in defining the cylinder I, its faces and degeneracies:

(i)   assume that the functor  F: A  A  is equipped with a natural transformation  e: F  1
(degeneracy)  whose X-component  eX: FX  X  has all pushouts; then F can be lifted to an
endofunctor  F  of A(u),  defined through the following pushout, as I in 4.5.1

    e
FX X X

(2) Fx
  p *

   xF
 yF    u

FA F(A,x,y) Y
y.eA

(ii)  every morphism  (F, e)  (F', e')  of such pairs lifts to  (F, e)  (F', e'),
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(iii) given such a pair (F, e),  F2  lifts  F2 with respect to the "derived" degeneracy  e2 = Fe.e = eF.e:
1 F2,  provided that F preserves the pushouts along  eX: FX  X

Fe  e
F2X FX X

(3)   F2x
Fp *

   FxF

*
   x

F2A FF(A,x,y) F2(A,x,y)

Let now A be an I4-category. The previous arguments allow one to lift I and I2, together with
connections, reversion and interchange. The composition pushout  JA  =  IA +A IA  in A lifts to the
slice category, together with its transformation  k: I  J,  provided we prove that the degeneracy  e: JX

 X  has pushout along any map  f: JX  Y.  First form the eX-pushouts of the restrictions f(,
producing two maps u(, each of them having all pushouts; then form their pushout Z; it is easy to
check that this is the pushout of f along e, through the maps  h = v( u(: Y  Z  and  h' = h f k– !+ = h
f k+ !–: X  Z

h–

X

e   
 f–   u–

IX Y     v–

 e
k–  

f    h
(4) X JX Y Z

k+  
f+

IX Y     v+

e  

 h+
   u+

X

The lifted functor J has transformations  k–, k+ : I  J,  which still form the pushout of  !–, !+:
1 I, because "pushouts preserve pushouts" (3.1 c).

For the strong I4 case, take four parallel homotopies  #, $, %, &: I(A,x,y)  (A',x',y')  in A(u),
disposed as in (5) and a cell-homotopy  5: #+&    $+%  as in (6)

   % $+%
k g f g

(5)    $    ?    & (6)    0   5    0

f h f g
  # #+&

Lift all these morphisms in A, by composing with the canonical projections  IA  I(A,x,y)  and
I2A  I2(A,x,y). We get a cell-homotopy  5: #+&   $+%  in A, as it results from the commutative
diagram below, where !• is any of the four faces of the second-order cylinder
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   q 5
I2A I2(A,x,y) (A',x',y')

(7)  !•    p
   !•

IA I(A,x,y) (A',x',y')

Applying the strong lens conversion property in A, there is precisely one A-map  ": I2A  A'  in
A, whose boundary is  (#,  $,  %,  &)  and such that  "w = 5. It suffices to prove that " induces a map
I2(A,x,y)  (A',x',y')  through the pushout (3), i.e. that   ".I2x = x'e2: I2X  A';  again, this equality
is detected by the (injective) conversion mapping in A

(8)  ".I2x.w  =  ".w.I2x  =   5.I2x  =  x'e2  =  x'e2.w

(9) !(".I2x)  =  (#.Ix,  $.Ix,  %.Ix,  & .Ix)  =  (0x', 0x', 0x', 0x')  =  !(x'e2).

The I4-homotopical case is now a trivial consequence of the previous ones.

5. Monoids in monoidal homotopical categories

Monoids in a category agree with limits and the path endofunctor. We show that the category  MonA
of internal monoids in a monoidal P4-homotopical category is P4-homotopical, with an enriched path
functor P which lifts the original P of A . The dual results concern the cylinder structure for internal
comonoids. Instead, a cylinder functor  I  P  for MonA may very well exist, but generally does not lift
the original I (cf. 6.2, 6.9). Given a homotopy  #: A ' B,  the map  A  PB  which represents it will be
written here as # or #, instead of  #.

5.1. Monoidal categories. In this section the ground category A is always equipped with a monoidal
structure  (:, E),  whose coherence isomorphisms are not named. As usual, the term "monoidal" is
replaced by cartesian when the structure is defined by the categorical product.

A (lax) monoidal (endo)functor  F = (F, e, t): A  A  comes with a morphism  e  and a natural
transformation  t

(1) e: E  FE , tAB: FA:FB  F(A:B)

satisfying three coherence conditions, which can be written as follows once the coherence
isomorphisms of the tensor are understood

(2) t.(e:1F)  =  1F  =  t.(1F:e), t.(t:1F)  =  t.(1F:t).

(More precisely, the third is given by

(t.t:1F:  (FA:FB):FC  F(A:B):FC  F((A:B):C)  F(A:(B:C)))   =

=  (t.1F:t:  (FA:FB):FC  FA:(FB:FC)  FA:F(B:C)  F(A:(B:C))).)

F is strong monoidal if  e  and  t  are iso, and strict monoidal if they are identical; the identity of A
is strict monoidal. The composite  HF  of two monoidal endofunctors has structure

(3) eHF  =  HeF.eH:  E    HFE (4) tHF  =  HtF.tH:  HFA :  HFB    HF(A:B).

A monoidal transformation  u: F  G: A  A  is a natural transformation of monoidal functors
consistent with their structure  (e, t),  in the obvious sense
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(5)   eG  =  u.eF: E    GE (6) tG.u:u  =  u.tF: FA:FB  G(A:B).

5.2. Definition. A monoidal h-category amounts to a monoidal category  A = (A, :, E)  provided
with a consistent h-structure, i.e., the tensor product  -:-: A×A  A  is an h-functor. Similarly one
defines monoidal hi-categories, for i = 1 to 4. But we are mostly interested in such structures as
produced by a path functor.

First, a monoidal P0-structure on the monoidal category  A = (A, :, E)  consists of a monoidal
functor  (P, e0, t)

(1) P: A  A, e0: E  PE, tAB: PA : PB  P(A:B)

together with a P0-structure  (P, !(, e)  whose transformations  !(: P  1  and  e: 1  P  are
monoidal. The map  e0  coincides with the component  eE: E  PE  (5.1.5), and will be written thus.

Our setting reduces thus, more explicitly, to a P0-structure  (P, !(, e)  on A together with a natural
transformation  t: P(-):P(.)  P(-:.)  satisfying the following coherence conditions

(2) t.(P:eE)  =  1P  =  t.(eE:P), t.(t:1P)  =  t.(1P:t)

(3) t.(e:e)  =  e: A:B    P(A:B) (4) !(t  =  !(:!(: PA:PB    A:B

showing that  t  can be viewed as a homotopy  t: !–:!–  !+:!+: PA:PB  A:B,  trivial over A:B
(t°(e:e) = 01: A:B ' A:B). The definition of  #:$  is clear, because of (4)

(5) #: f0  f1: A  C, $: g0  g1: B  D

(6) #:$: f0:g0  f1:g1: A:B  C:D, (#:$)  =  t.(#:$): A:B P(C:D)

and straightforward calculations show that A is now a monoidal h-category

(7) 0f:0g  =  0f:g , (k':k")°(#:$)°(h':h")  =  (k'°#°h'):(k"°$°h").

It is also natural to define the tensor product of a homotopy with a map as follows (of course, the
result need not be a trivial homotopy, notwithstanding the additive notation)

(8) #:g  =  #:0g, f:$  =  0f:$.

Finally, given two deformations  ": A  P2C,  5: B  P2D,

(9) ":5  =  Pt.t.(":5)  =  (A:B  P2C:P2D  P(PC:PD)  P2(C:D))

and it is straightforward to check that

(10) !(P (":5)  =  (!(P"):(!(P5), P!( (":5)  =  (P!("):(P!(5)

(11) (%:&)°(#:$)  =  (%°#):(&°$)

so that cell-homotopies are closed under tensor product.

5.3. Monoids. Consider now the category  MonA  of (strict) monoids in the monoidal category A. An
object  A = (|A|, i, m)  is an object  |A|  of A, equipped with a unit and a multiplication

(1) i: E  |A|, m: |A|: |A|  |A|

satisfying the usual axioms  (m(i:1) = 1 = m(1:i);  m(m:1) = m(1:m)).  A (homo)morphism  f:
A B  is given by an A-morphism  f: |A|  |B|  consistent with the structure  (fiA = iB, fmA =
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mB(f:f)).  The forgetful functor  | - |: MonA  A  will often be omitted. There is also an intermediate
forgetful functor with values in the slice category A\E, of interest for h-kernels (5.4)

(2) U: MonA  A\E, U(A, i, m)  =  (A, i).

The path-functor P of MonA is constructed by enriching P|A| with the following multiplicative
structure, which combines the multiplicative structures of P and A,  (eE, t)  and  (i, m)  respectively

(3) P(A)  =  (PA, iP, mP), P(f)  =  P|f|

(4) iP  =  (Pi.e: E   PE   PA) mP  =  (Pm.t: PA : PA  P(A:A)  PA).

Now, the P0-structure (!(, e) of A can be easily lifted to monoids, making MonA into a P0-
category. For instance,  eA: A  PA  is a homomorphism because  t.e:e = e  (5.2.3)

  i    m
E A A:A

(5)
Pi.e

   e
Pm.t

   e:e

E PA PA:PA

In the same way, we get general properties for lifting monoidal functors and transformations to
MonA  (similar to the general properties considered for slice categories in 4.6 (i-iii)).

(i)   Every monoidal endofunctor  F: A  A  lifts to a functor  F: MonA  MonA. The lifting
preserves the composition; in particular,  F2  lifts  F2.

(ii)   Every monoidal transformation  u: F  G  of such functors lifts to  u: F  G.

(iii) The forgetful functor  MonA  A  creates pullbacks: given two homomorphisms  fj:  Aj  B  (j
= 1, 2) and their pullback  pj: A  Aj  in A, there is precisely one monoid structure (i, m) over A
which makes the projections  pi  into homomorphisms

(6) pj i  =  ij: E  Aj, pj m  =  mj.pj:pj:  A:A  Aj:Aj  Aj

and under this structure, A is the pullback in MonA. The associativity of m in A derives from the same
property in Aj, through the following diagram (j = 1, 2)

1:mj
Aj:Aj:Aj Aj:Aj

1:m     mj
(7) A:A:A A:A

Aj:Aj Aj
m:1

 m

 m
  pj

A:A A

where all faces – except the front one – are known to commute, and the pair  (p1, p2)  is jointly monic;
analogously one proves the unit axiom.

(iv) if the monoidal P0-category A has all composition pullbacks  QA = PA ×A PA  (with projections k(:
QA  PA), the monoidal structure of P determines a similar structure for the functor  Q  of
composable paths
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(8) k( eQ  =  eP: E  PE, k( tQ  =  tP.k(:k(: QA:QB P(A:B)

and the lifting  Q: MonA  MonA  of Q coincides with the pullback functor provided by (iii).

5.4. h-Pullbacks. We say that A  is monoidal P0-homotopical if it is monoidal P0 and P0-
homotopical. We have thus the path limit  P(f, g)  in A of every diagram

     f       !–    !+   g
(1) B            A            PA            A            C

and, as in 5.3 (iii), the forgetful functor creates a monoid structure  P(f, g)  on this limit, whenever f and
g are in  MonA.  In other words, if A is monoidal P0-homotopical, then  MonA  is P0-homotopical.

MonA has always an initial object, provided by the canonical monoid structure on the unit E of :
(E = E  E:E);  taking  g = e: E  A,  P(f, e)  supplies the (lower) homotopy fibre  Kf  in  MonA.
The initial object is preserved by  U: MonA  A\E  (5.3.2) (not by   | - |: MonA  A,  in general;
the initial object of A may have no monoid structure, as in Top). Thus, the h-kernels of MonA are
created by U: they are the h-kernels of A\E, equipped with the unique monoid structure consistent with
the structural maps.

5.5. The P4 case. A monoidal P4-structure on the monoidal category  A = (A, :, E)  will consist of a
monoidal path functor  (P, eE, t)

(1) P: A  A, eE: E  PE, tAB: PA : PB  P(A:B)

together with a P4-structure  (!(, e, g(, r, k, s, z, w)  for P consisting of monoidal transformations; we
implicitly use the fact that the functor  Q  of composable paths in A is monoidal (5.3.iv). Assuming the
structure is monoidal P4, it is monoidal strong P4 or monoidal regular P4 or monoidal P4-
homotopical if it is so in the ordinary (non-monoidal) sense. Clearly, in these four cases, MonA is
respectively P4, or strong P4, or regular P4, or P4-homotopical. Monoidal P1- or P3-structures are
similarly defined. The main results on MonA here obtained are summarised below.

5.6. Theorem. If A is monoidal P0, or P0-homotopical, or P4, or strong P4, or regular P4, or P4-
homotopical, the category MonA of strict internal monoids has a canonical structure of the same kind
(i.e. P0 or P0-homotopical, etc.), described above. Moreover, if the monoidal strong P4-category A has
all pullbacks, preserved by P, then it is monoidal P4-homotopical.

5.7. Tensor and sum of homotopies. Let A be monoidal P3. Then it is monoidal h3, i.e. the tensor
product is consistent with the reversion and the sum of homotopies

(1) (– #):(– $)  =  – #:$:  f1:g1  f0:g0 (#: f0  f1, $: g0  g1)

(2) (#+#') : ($+$')  =  (#:$) + (#':$'):  f0:g0  f2:g2 (#': f1  f2, $': g1  g2).

The proof is based on the fact that  r, k  are monoidal transformations; for (2), one also uses the
commutativity of the left-hand square in (3), "detected" by the jointly monic pair  k(  through the right-
hand square (which commutes by definition of tQ, 5.3.8)
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   (#2#') : ($2 $ ')   k(:k(

A:B QC:QD PC:PD

(3)    tQ    tP

A:B Q(C:D) P(C:D)
  (#:$)  2 (#':$')   k(

It follows that biadditivity holds for tensors of a homotopy with a map (5.2.8), and all tensors of
homotopies can be reduced to such particular ones

(4) (– #):g  =  – #:g, f : (– $)  =  – f:$

(5) (#+#'):g  =  #:g + #':g, f:($+$')  =  f:$ + f:$'

(6) #:$  =  #:g0 + f1:$  =  f0:$ + #:g1 .

Finally, if A is monoidal P4, it is also monoidal h4, i.e. the tensor product preserves the cell-
homotopy relation, as already proved (see the final remark of 5.2). Moreover, since the interchange is
monoidal, it is easy to show that  (s"):(s5) = s(":5).

6. Applications

Spaces, small categories and chain complexes give rise to basic IP4-homotopical structures, from
which other are deduced through the categorical procedures of the two previous sections.

6.1. Spaces. a) The category Top of topological spaces is IP4-homotopical, with respect to the usual
cylinder and path functors, the usual operations recalled above (connections and symmetries in 2.1;
vertical composition in 2.3) plus the zero collapse constructed in 2.7.9 and the lens collapse described
in the Introduction. Of course the whole left-homotopical structure is trivial (all h-kernels are empty),
because the initial object  = Ø is absolute (every map and every cell to  is an identity).

b) The (pointed) category Top  of pointed topological spaces is IP4-homotopical (4.6). As well
known, the P-structure comes directly from the one of Top (4.5.3) while the cylinder  I(A, x) =
(IA/I{x}, xI)  is formed by collapsing the subspace  I{x}  in the non-pointed cylinder IA (4.5.1).

c) More generally, if  u: X  Y  is a continuous map, the category  Top(u)  of spaces under X and
over Y is IP4-homotopical, with cylinder and path functor as in 4.5. This includes the categories
Top\X  of spaces under X (take Y = ) and  Top/Y  of spaces over Y (take X = ).

Note that  Top (u)  does not produce anything new. Indeed, if  u: X  Y  is in Top  and |u| is its
underlying map in Top, the forgetful functor from  Top (u)  to  Top(|u|)  is an isomorphism.

d) The categories  TopS  and  (Top )S  of S-diagrams of spaces or pointed spaces are IP4-
homotopical. This includes Top2, Top , G-spaces, presheaves of spaces on a fixed space and the
pointed analogues. Further, for any site S,  Shv(S, Top)  and  Shv(S, Top )  are P4-homotopical.

6.2. Topological monoids. Clearly, Top is cartesian P4-homotopical (5.6). The path functor P, which
preserves limits, is strong monoidal

(1) t: PA × PB  P(A×B), t(#, $)  =  ;#, $<:  [0, 1]    A×B
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and it is easy to check that all the transformations of the P4-structure are monoidal; for instance, for the
path-reversion  r(#)(=) = #(1 – =),  we have  t (r×r) (#, $) = ;r #, r $< = r ;#, $< = r.t (#, $).

The category  MonTop  of topological monoids is thus P4-homotopical. The enriched path functor
P has pointwise multiplication  (#.$)(=)  =  #(=).$(=),  and the h-kernels are created by the forgetful
functor  U: MonTop  Top\E = Top

(2) K–f  =  {(a, $) - A×PB  |  $(0) = f(a),  $(1) = eB}.

MonTop is IP4. The left adjoint  I  P  is easy to construct (and does not lift I). Take the "free
object" functor F, left adjoint to the forgetful one

(3) F: Top  MonTop,  F(X)  =  X+  =  .n>0 Xn

which turns the space X into the free monoid of words over the underlying set, with the sum of the
product topologies Xn. Now, given a topological monoid A, consider  FI|A|,  consisting of words  (=1,
a1, ... =n, an)  over [0, 1]×A; and divide it out modulo the monoid-congruence spanned by the relations
provided by the algebraic structure of A

(4) I(A)  =  (FI|A|) / , (=, eA)  e, (=, a, =, b)  (=, a.b)

so to make the obvious mapping  ): A  PI(A),  )(a)(=) = [(=, a)],  into a (continuous) homomor-
phism, the unit of our adjunction  I  P.

Also  Top   is cartesian P4-homotopical, but its monoids are again the topological monoids.
Instead, under the smash product  A3B = (A×B) / (A+B), with identity  S0  and

(5) t: PA3PB  P(A3B), t [#, $]  =  p.;#, $<:  [0, 1]    A×B    A3B

P is monoidal, non-strong, and  (Top , 3)  is monoidal P4-homotopical. Its monoids are the
topological monoids with zero (an absorbant element).

6.3. Categories and natural equivalences. We show now that the 2-category  Cati  of small
categories, functors and functorial isomorphisms (as homotopies) is IP4-homotopical. Various more
complex homotopical constructs can be derived, through diagrams, sheaves and slice procedures.

Recall that the category  Cat  of small categories is cartesian closed, with  [X, Y] = YX  the category
of functors X  Y and their natural transformations; Cat is actually a 2-category (with the natural
transformations). But we are interested in the sub-2-category  Cati,  which has invertible cells; it is
thus a groupoid-enriched category, or in other words a strict h4-category.

Clearly, the homotopies are corepresentable and representable, through the undiscrete groupoid i
on two objects (say 0, 1) "representing the free isomorphism" (a groupoid is undiscrete if each hom-
set has one element)

(1) IX  =  i×X (2) PX  =  Xi

where  Xi  "is" the full subcategory of X2 whose objects are the isomorphisms of X. This  i  is a
commutative, involutive dioid-object in  (Cat, ×).  i×i  is the undiscrete groupoid on four objects

(0, 1) (1, 1)
(3)

(0, 0) (1, 0)
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and the structural functors are determined by their action on the objects, as follows ((, i, j  =  0, 1)

(4) !(: 1  i, e: i  1, g(: i×i  i, r: i  i, s: i×i  i×i

!((0)  =  (, g–(i, j)  =  i2j, g+(i, j)  =  i3j, r(i)  =  1 – i, s(i, j)  =  (j, i).

Further, i has a (regular) vertical composition k. Note that  i +1  i  is the undiscrete groupoid on
three objects; writing them as  "0,  1/2,  1",  the functor  k  is the inclusion  i  ?  i +1  i.

This structure, transferred to the cylinder and path functors, makes  Cati  into a strict IP4-category.
It is flat (2.5), because the diagonal maps in (3) are determined by the boundary ones. Since  Cat  is
complete and cocomplete,  Cati  is IP4-homotopical. All h-kernels, produced by the initial category  
= 0,  are empty; instead the right homotopical structure is not trivial (and h-cokernels are easily
calculated). The lens collapse  w: i×i  i×i  is determined as in 2.8.3; it collapses "vertically"  i×i  on
its main diagonal  (w(i, j)  =  (i, i)).

All this plainly restricts to the 2-category  Gpd  of groupoids, functors and natural transformations
(necessarily iso). For the larger 2-category  Cat  (with all natural transformations), the groupoid i
should be replaced with the ordinal category  2 = {0 < 1}, and the groupoid i×i with the order category
2×2. The structure considered above can thus be extended, except of course for the reversion, which
can only be partially surrogated by a generalised reversion  r: 2 2op   [10].

Cati  and  Gpd are also cartesian P4-homotopical.  MonCati  is the P4-homotopical category of
(small) strict monoidal categories. In order to get monoidal categories in the usual relaxed sense, one
should consider h-monoids in CAT i, satisfying the monoid axioms up to specified, coherent
homotopies (functorial isomorphisms); this will be studied in the sequel.

6.4. Two-dimensional groupoids. Homotopy properties of 2-groupoids are considered in [27], to
which we refer for basic definitions and terminology. We show that the 2-category  2-Gpd  of small 2-
groupoids, homomorphisms (i.e., 2-functors) and natural transformations is IP4-homotopical.

The category  2-Cat  of small 2-categories is cartesian closed, with  [X, Y] = YX  the 2-category of
2-functors X  Y, their natural transformations and their modifications. Similarly for 2-Gpd.

Take the undiscrete 2-groupoid  # = i2  on two objects, 0 and 1, "representing the free cell" (a 2-
groupoid X is undiscrete if each hom-groupoid X(x, y) is isomorphic to i). It corepresents and
represents homotopies, through the following cylinder and path functors

(1) IX  =  #×X, (2) PX  =  X#

(an object of  X#  can be identified to an arbitrary cell  #: f  g: x  y  in X).

This # is a commutative, involutive internal dioid in 2-Gpd. Indeed,  #×#  is the undiscrete 2-
groupoid on four objects (0, 0), ... (1, 1); the structural functors  (!(,  g(, r, s)  are again described by
their action on the objects, as in the 1-dimensional case (6.3.4). Also  #  +1  #  (the undiscrete 2-
groupoid on three objects, 0,  1/2,  1), the  (regular) vertical composition  k,  the lens collapse  w  are
defined as in 6.3.

Transferring these operations to the cylinder and path functors, 2-Gpd becomes a flat, strict IP4-
category. Since 2-Gpd is complete and cocomplete, it is also IP4-homotopical.
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6.5. Chain complexes. Finally, we show that the category  C D  of unbounded chain complexes  A =
((An), (!n))  over an additive category  D  is a regular IP4-homotopical category, and therefore
homotopical. Of course, homotopies are the usual ones and the basic structure is classical; but the
connections are less known, the lens collapse map and its lifting property seemingly new.

Some general remarks on duality will reduce calculations. Writing X*, f* the object and arrow
corresponding to X and f in the opposite category, the anti-isomorphism

(1) C D  C (Dop), A = ((An), (!n))      A' = ((A*–n), (!*–n+1))

shows that  (C D)op  is again a category of chain complexes, and allows one to derive the cylinder
functor I of C D from the path functor  Pop  of C (Dop)

(2) I(A)  =  (Pop(A'))'

and similarly for cones, suspensions, h-pushouts. We also note that here  (C D)S  C (DS)  is
nothing new; again, if D is complete,  Shv(S, C D)  C (Shv(S, D)).

A D-map between finite biproducts  f: @Aj  @Bi  of components  fij  will be written "on
variables", as  f(x1, ... xn)  =  (. f1j xj, ...  . fmj xj);  this allows one to calculate as in a category of
modules, and can be formally justified by setting  xj = prj: @Aj  Aj.

6.6. The path functor. To fix notation, a homotopy in C D is written as in (1), and satisfies (2)

(1) #: f  g: A  B, #  =  (f,  #•,  g)

(2) – f + g  =  !#• + #•! (– fn + gn  =  !n+1 #n + #n–1 !n)

where  #• = (#n): |A|  |B|  is a map of graded objects, of degree 1, the centre of #. The reduced
horizontal composition and the vertical identities are

(3) k#h  =  (kfh,  k#•h,  kgh), 0f  =  (f, 0, f).

Homotopies are represented by a path endofunctor  P,  with structural homotopy  &

(4) (PA)n  =  An@An+1@An, !(a, h, b)  =  (!a, – a – !h + b, !b)

(5) &: !–  !+: PA  A, !((a–, h, a+)  =  a(, &n(a, h, b)  =  h.

The P3-structure is given by the above transformations !–, !+: P  1,  with the obvious degener-
acy  (e(a) = (a, 0, a)),  vertical reversion (–v) and composition (+v)

(6) –v: PA  PA, –v (a, h, b)  =  (b, – h, a)

(7) +v: PA ×
A

 PA   PA, (a, h, c) +v (c, k, d)  =  (a, h+k, d)

which produce the usual, regular sum of homotopies. By duality (6.5), homotopies are also corepre-
sented by a cylinder

(8) (IA)n  =  An@An–1@An, !(a, h, b)  =  (!a – h, – !h, !b + h)

and we have an IP3-structure. P and I respectively preserve the existing limits and colimits; both
preserve finite biproducts.

6.7. The cubical comonad. P is a cubical comonad with interchange. The second order path-object
has the following components and differential  (with  z' = – h + u + !z – v + k)
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(1) (P2A)n  =  (An@An+1@An) @ (An+1@An+2@An+1) @ (An@An+1@An)

(2) !(a, h, b;  u, z, v;  c, k, d)  =

=  (!a,  – a – !h + b,  !b;   – a – !u + c,  z',  – b – !v + d ;   !c,  – c – !k + d,  !d).

It is convenient to represent the "variable"  * = (a, h, b;  u, z, v;  c, k, d)  of P2A as a square diagram,
so that its faces  !(P  and  P!(  appear as horizontal or vertical edges, respectively

 k
c d !–P (*)  =  (a, h, b), !+P (*)  =  (c, k, d)

(3)   u  z     v

a b P!– (*)  =  (a, u, c), P!+ (*)  =  (b, v, d)
 h

The connections  g–  and  g+ completing the P-structure appear thus in their geometrical meaning

  0   h
b b a b

(4)    h  0     0 (5)   0  0     h

a b a a
 h  0

(6) g–(a, h, b)  =  (a, h, b;  h, 0, 0;  b, 0, b) (7) g+(a, h, b)  =  (a, 0, a;  0, 0, h;  a, h, b).

Similarly, the interchange  s: P2A  P2A  is obtained through a reflection with respect to the
"main diagonal", as in  Top,  together with a sign-change in the central term

  k   v
c d b d

(8)   u  z     v   h – z     k

a b a c
 h  u

(9) s (a, h, b;  u, z, v;  c, k, d)   =   (a, u, c;  h, – z, k;  b, v, d)

and  s  is obviously involutive, turns the horizontal faces into the vertical ones, makes the connections
g(  commutative  (g–.s = g–,  since  g–  in (4) is invariant under such reflection and change) and is
consistent with the degeneracy  e.  As a consequence of  s,  P is homotopy invariant (2.4).

Finally, C D is a regular IP4-homotopical category (and therefore h4 and homotopical). Indeed, all
path limits exist (and are preserved by P): for  f: A  C,  g: B  C

(10) (P(f, g))n  =  An@Cn+1@Bn, !(a, c, b)  =  (!a, – fa – !c + gb, !b).

6.8. Lens collapse. Let be given four homotopies  #, $, %, &: X PA,  connecting four maps  a, b, c,
d: X A,  as below. By 6.7.1-2, a deformation  ": X  P2A  with boundary  (#, $, %, &)

 %
c d #  =  (a, h, b):  a  b, $  =  (a, u, c):  a  c

(1)   $     "     &

a b %  =  (b, k, d):  b  d, &  =  (c, v, d):  c  d
#
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amounts to a map  z = "•: |X|  |A|  of graded objects, of degree 2, the centre of ",  satisfying a
differential condition related to the (anti-clockwise) endohomotopy  # + & – % – $  of  a

(2) !z – z!  =  h + v – k – u:  |X|  |A| (h + v – k – u  =  (# + & – % – $)•).

The (strong) lens collapse  w: P2A  P2A  follows from the regular structure: the formula 2.8.3
(w = !–I.g+ +h 1 +h !+I.g–)  supplies the (geometrically obvious) solution

 k    u+k
c d a d

(3)   u  z     v   0  z     0

a b a d
 h   h+v

(4) w (a, h, b;  u, z, v;  c, k, d)  =  (a, h+v, d;  0, z, 0;  a, u+k, d).

It is easy to verify directly that w is strong. Given four homotopies  #, $, %, &: X PA  disposed
as above, in (1), the lens conversion turns a deformation  ": X P2A  with this boundary into the
cell-homotopy  w": #+&  $+%,  preserving the centre  (" and w" have the same associated
endohomotopy  # + & – % – $)  and is therefore bijective.

6.9. Chain algebras. The category  Dm = C (R-Mod)  of chain complexes of modules over the
commutative unitary ring R is monoidal (closed), with unit  R  (in degree zero)

(1) (A:B)n  =  @
p+q=n

  Ap:Bq , !(a:b)  =  (!a):b + (–1)deg a a:(!b).

The path-functor P (6.6.4) becomes lax-monoidal when equipped with the natural transformation

(2) t: (PA):(PB)  P(A:B)

(3) t ((a', a, a"):(b', b, b"))  =  (a':b',  a:b" + (–1)deg a' a':b,  a":b").

DA = MonDm,  the category of associative, unitary chain R-algebras, is thus P0-homotopical. The
symmetrical cubical comonad structure  (!(, e, g(, s)  consists of monoidal transformations and lifts to
algebras. This structure, studied in [11], is already sufficient to develop the basic notions of
homotopical algebra. Instead, the reversion, composition and lens collapse are just monoidal up to
homotopy; Dm is not monoidal P4, which is "why"  DA  lacks "algebraic" reversion and sum of
homotopies (as well known). Again, this makes evident the interest of studying homotopy relaxations
of § 5; a work on the homotopy structure of Stasheff's AA-algebras is in preparation.

As in the case of topological monoids (6.2), the cylinder functor I left adjoint to P can be
constructed as a quotient of the free chain algebra  FI|A|  over the cylinder of the underlying chain
complex, imposing some relations which come from the multiplicative structure of A [11].
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