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Abstract. Let T be a monad over a category  A .  Then a homotopy structure for  A ,  defined by a
cocylinder  P: A  A ,  or path-endofunctor, can be lifted to the category  AT  of Eilenberg-Moore
algebras over  T,  provided that  P  is consistent with  T  in a natural sense, i.e. equipped with a natural
transformation  !: TP  PT  satisfying some obvious axioms.

In this way, homotopy can be lifted from well-known, basic situations to various categories of
"algebras"; for instance, from topological spaces to topological semigroups, or spaces over a fixed space
(fibrewise homotopy), or actions of a fixed topological group (equivariant homotopy); from categories
to strict monoidal categories; from chain complexes to associative chain algebras.

The interest is given by the possibility of lifting the "homotopy operations" (as faces, degeneracy,
connections, reversion, interchange, vertical composition, etc.) and their axioms from  A  to  AT,  just by
verifying the consistency between these operations and  !: TP  PT.  When this holds, the structure we
obtain on our category of algebras is sufficiently powerful to ensure the main general properties of
homotopy.
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Introduction

The homotopy structure of topological spaces can be defined through the cylinder functor  I: Top
 Top,  IX = [0, 1]×X,  or equivalently through its right adjoint  P: Top  Top,  PY = Y[0, 1],  the

cocylinder or path functor. Each of these endofunctors comes equipped with various operations, i.e.
natural transformations between its powers (or other derived endofunctors), which produce the usual
operations between homotopies of any order; for instance: faces, degeneracy, connections, symmetries
and vertical composition.

An abstract setting of this type was developed in [9]; it yields a simple, yet powerful, approach to
diagrammatic homotopy lemmas, the Puppe sequence of a map, homotopical stability and relations
with triangulated categories. It is an enrichment of the basic situation introduced by Kan [16] and
consisting of a cylinder  I: A  A  over a category, equipped with two faces  "–, "+: 1  I  and one
degeneracy  e: I  1.

Here we work mostly with the dual case of a cocylinder  P: A  A,  which is adequate for
studying algebras over a monad (while a cylinder is more suitable for studying coalgebras over a
comonad). Given a monad  T  over  A,  and its category  AT  of Eilenberg-Moore algebras, the
cocylinder  P  can be lifted to  AT,  provided that  P  is consistent with  T  in a natural sense, i.e.
equipped with a natural transformation  !: TP  PT  satisfying some obvious axioms. In this way, the
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homotopy structure of various categories of "algebras" over  A  can be reduced to the homotopy
structure of the basis.

Other approaches to abstract homotopy theory based on a cylinder functor can be found in Baues
[1] and various papers by Kamps, e.g. [15]. Within Quillen's approach, Crans [5] shows how a closed
model structure on the category  A  can be lifted along a right adjoint functor  A'  A  (not required
to be monadic).

This paper was begun when the second named author was on leave from the University of British
Columbia and a visitor at the University of Genova, with partial support by CNR (Italy). The authors
acknowledge with pleasure helpful suggestions from the referee.

Outline. The first section is a review of our "algebraic" setting for homotopical algebra, based on a
category  A  equipped with a cocylinder endofunctor  P: A  A  and various operations. In Section 2,
the category  A  is assumed to have a monad  T = (T, #, µ)  and a homotopy structure defined by the
endofunctor  P,  consistent with  T  in the above sense, so that  P  can be lifted to the category  AT  of
Eilenberg-Moore algebras over  T;  if moreover the path endofunctor  P  has a left-adjoint  I  and AT

has coequalisers, also the lifting  PT  has a left adjoint  IT  (2.6-7).

This theory is applied to derive the homotopy structure of some types of algebras over spaces (as
topological semigroups, monoids and groups) and categories (strict monoidal categories), in Section 3;
equivariant homotopy, in the category  G-Top  of actions of a topological group  G  over spaces, is
also derived from the general pattern. In Section 4, we recall the homotopy structure of chain
complexes and show it is partially consistent with the "free-semigroup monad", producing the usual,
defective homotopy structure for associative d-algebras, which lacks reversion and sum of homotopies.
Finally, in Section 5, slice categories  A\A  (resp. A/B)  are viewed as categories of algebras (resp.
coalgebras) over  A;  this has applications to the topological case, namely, homotopy under  A  and,
respectively, fibrewise homotopy over  B.

Conventions.  and  denote the terminal and initial object of a category; if they coincide, producing
the zero-object 0, the category is said to be pointed. The morphism  X  $Yi  of components  (fi)  is
written  <fi>.  In a 2-graph, a 2-morphism  %: f  g: A B  is generally called a homotopy, or cell,
and written as  %: f  g  when we just want to specify its vertical domain and codomain. The "vertical
structure" of homotopies is always written additively. Thus, the trivial endohomotopy of a morphism  f
is denoted by  0f: f  f;  the vertical reversion of  %: f g  is written  – %: g  f;  and the vertical
composition of  %  with  &: g  h  is written  %+&: f  h.  Top  and  Top   are respectively the
categories of topological spaces and pointed spaces, while  C D  is the category of unbounded chain
complexes over an additive category  D.

1. Categories with a cocylinder

We give here an outline of an "algebraic" setting for homotopical algebra, based on a category  A
equipped with a cocylinder endofunctor  P: A  A  and various operations, i.e. natural transformations
between powers of  P,  or other derived endofunctors, meant to produce the homotopies of  A,  of any
order, and their operations (see [9]). All notions are exemplified in the category  Top  of topological
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spaces; other basic examples are given in Sections 3, 4: pointed spaces, small categories, groupoids, chain
complexes; and others will be deduced, as categories of algebras over the basic ones.

1.1. The path functor. Our basic setting is dual to an abstract cylinder functor, in the sense of Kan
[16]. A cocylinder is adequate to studying algebras for a monad, while a cylinder would be suitable for
coalgebras over a comonad.

A category with path (or cocylinder) functor, also called P0-category, is thus a category  A
equipped with an endofunctor  P: A  A  and three natural transformations, called lower face  ("–,  or
also  "0),  upper face  ("+,  or also  "1),  degeneracy  (e)

(1) "': P  1, e: 1  P, "'.e  =  1 (' = –, +).

A cubical comonad [7, 8], over the category  A  has also two connections  (g–, g+),  satisfying

(2) g': P  P2 (' = –, +)

(3) g'.e  =  Pe.e  =  eP.e, P"'.g'  =  1  =  "'P.g'

P"'.g#  =  e."'  =  "'P.g# (' ( #).

A symmetric cubical comonad also has an interchange  s: P2  P2,  satisfying

(4) s.s  =  1, s.Pe  =  eP, P"'.s  =  "'P, s.g'  =  g'.

In a P0-category, a homotopy  %: f  g  between parallel maps  f, g: A  B  is defined in the
obvious way, as determined by a map

(5) %: A  PB, "– %  =  f, "+ %  =  g;

every map has a trivial homotopy (or vertical identity), and there is a reduced horizontal composition
of morphisms and homotopies  (for  a: A'  A,  b: B  B')

(6) 0f: f  f, (0f)   =  eB.f  =  Pf.eA: A  PB

(7) (b°%°a): bfa  bga, (b°%°a)   =  Pb.%.a: A'  PB'.

We write  ) = )A: "–  "+: PA  A  the structural homotopy, represented by  1PA;  for every
homotopy  %,  the representing map  %: A  PB  (often written  %)  is thus the only one such that  % =
)B°%.  The functor  P  can be extended to homotopies, by the interchange  s:  given  %: f0  f1: A 
B,  take (and here  %  should not be confused with its representative map  %)

(8) P(%)  =  s.P% ("'P.P(%)  =  P"'.P%  =  Pf')

If, moreover, the path functor has a reversion  r: P  P

(9) r.r  =  1, r.e  =  e, "–.r  =  "+

g–.r  =  Pr.rP.g+, Pr.s  =  s.rP

then  A  acquires an involutive vertical reversion of homotopies, preserved by  P

(10) (– %)   =  r.%, P(– %)  =  s.Pr.P%  =  rP.s.P%  =  – P(%).

In  Top,  the standard path endofunctor is  P(X) = X[0, 1],  endowed with the compact-open
topology (and right adjoint to the standard cylinder endofunctor,  I(X) = [0, 1]×X). It is a cubical
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comonad with interchange and reversion; faces and degeneracy are obvious; connections and symme-
tries are produced by the natural structure of the unit interval  [0, 1]  as a complemented lattice

(11) g0
– (t, t')  =  t * t', g0

+ (t, t')  =  t + t', s0(t, t')  =  (t', t), r0(t)  =  1–t.

(More precisely,  [0, 1]  should be viewed as a commutative, involutive dioid [7]: the latter term denotes
a set equipped with two monoid structures, the unit of any operation being an absorbant element for
the other; plainly, any lattice with 0 and 1 is a commutative dioid. A monoid is to a dioid what an
augmented simplicial set is to a "cubical set with connections"; the latter were introduced and studied
by Brown and Higgins [3].)

In every P0-category, the faces of  Pn  are indexed as  " i
' = Pn–i"'Pi–1: Pn  Pn–1,  consistently

with the usual face-maps of the standard cubes in  Top

(12) ) i
': [0, 1]n–1  [0, 1]n

(t1, ... tn–1)    (t1, ... , ti–1, ', ... tn–1) (' = 0, 1).

The faces of  P2,  "1
'  = P"'  and  "2

'  = "'P,  are respectively called vertical and horizontal. In  Top,
"'P  takes a parametrised square  ,: [0, 1]2  X  to its horizontal edge  ,(–, ').

1.2. Sum. Let  A  be a P0-category, with  (P, "', e).  A sum (or vertical composition) for  P  is a natural
transformation  k  which allows one to define the sum of (vertically consecutive) homotopies.

First, for every object  A,  we assume the existence of the composition pullback  QA = PA ×A PA,  or
object of composable pairs of paths, or Q-pullback of A

   k–

QA PA
(1) k+

"–
   "+

PA A

with projections  k': QA  PA  (k–  yields the first path of the pair) and three faces  QA  A,
namely  "–– = "–k–,  "± = "+k– = "–k+,  "++ = "+k+.

Second, we assume there is a given natural transformation  k: Q  P,  sum or vertical composi-
tion, satisfying the following axioms (the last two are assumed in the presence of an interchange  s:
P2  P2,  or of a reversion  r: P  P,  respectively)

(2) "–k  =  "–k–, "+k  =  "+k+, keQ  =  e (kP.s'  =  s.Pk,    krQ  =  rk)

where  eQ: A  QA  is induced by  e,  while  s': PQA  QPA  and  rQ: QA  QA  are (possibly)
induced by  s  and  r;  note that  s'  is iso if and only if  P  preserves the composition pullbacks.

The sum, or vertical composition,  %+&: f  h  (also written  %+v&),  of a pair of vertically
consecutive homotopies  %: f g  and  &: g  h,  is then represented by the map

(3) % + &  =  kB.(%+&): A  PB (k–.(%+&)  =  %,    k+.(%+&)  =  &)

where  %+&  denotes the obvious morphism with values in the pullback  QB.  This operation will
acquire a "lax-regular" behaviour under additional structure (1.4). Note for now that a vertical identity
0f: f  f  need not be a strict identity for the sum (even in  Top);  but we do have  0f + 0f  =  0f  (and
– 0f  =  0f), because of (2).
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In particular,  k–  and  k+  are (represent) consecutive homotopies, with vertical composition  k

(4) k–: "––  "±: QA  A, k+: "±  "++: QA  A

k– + k+  =  k: "––  "++.

Q  and  P  are not isomorphic, in general (see Section 4, for chain complexes). But in  Top  they
are, and the (usual) vertical composition can be realised by taking  Q = P  and  k = 1,  with  k–  and  k+

produced by the embeddings of  [0, 1]  into itself, as its first or second half

(5) k0
' : [0, 1]  [0, 1], k0

–(t)  =  t/2, k0
+(t)  =  (t+1)/2.

(More "literally", but equivalently,  QA  can also be realised as the space of pairs of consecutive paths
{(-, -') . PA×PA |  -(1) = -'(0)},  with  k(-, -') = -*-',  the usual path-concatenation.)

1.3. Double homotopies and 2-homotopies.  Let  A  be equipped with a symmetric cubical
comonad  P = (P, "', e, g', s).  A map  /: A  P2B  is considered as representing a double homotopy
(or deformation)  /  of four homotopies, its horizontal and vertical faces (1.1)

(1) %  =  "–P./, &  =  "+P./, 0  =  P"–./, 1  =  P"+./

  &   &
k g f g

(2)    0  /    1    0   /    0

f h f g
  %   %

arranged as in the left-hand square above. Again, we tend to use the same name for  /  and  /.

/  is a 2-homotopy (or cell-homotopy)  /: %  &: f  g  if its vertical faces are trivial, as in the
right-hand square above; then we write  %  &  (or  % 2 &).

Assume now that  P  has a sum  k: Q  P.  And note that a double homotopy  /: A  P(PB)
also represents a vertical homotopy  /v: %  &  between its horizontal faces  "'P./,  as maps with
values in  PB.  Given two double homotopies  /0  and  /1,  vertically consecutive as in (3), one can
thus define their vertical sum (or vertical pasting)  2 = /0 +v /1  along the common horizontal face
%,  through the sum of the associated vertical homotopies

 %1

  k–P
 10

 /1    11 QPB P2B
(3)    %   k+P    "+P

 00   /0    01 P2B PB
  "–P

 %0

The vertical sum is realised by the Q-pullback of  PB,  represented above, via  kP: QPB P2B

(4) 2  =  /0 +v /1  =  kP.(/0 +v /1): A  P2B, 2v  =  (/0)v + (/1)v: %0  %1

and the vertical faces preserve the vertical sum:  P"'.2 = 0' + 1'.  Symmetrically, one defines the
horizontal sum along an intermediate, common vertical face
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(5) s.(/0 +h /1)  =  s./0 +v s./1 .

Clearly, 2-homotopies are closed under vertical and horizontal sum (since  0f + 0f = 0f).

Assume now that the composition pullbacks are preserved by P (which is necessarily true
whenever  P  has a left adjoint, the cylinder functor). Then the horizontal sum of double homotopies
can be constructed directly, by the P-image of the Q-pullback of  B

  Pk+
PQB P2B

(6)   Pk–

  P"–
   P"+

/0 +h /1  =  Pk.(/0 +h /1)

P2B PB

because  s.Pk.(/0 +h /1) = kP.(s/0 +v s/1) = s/0 +v s/1.  Moreover, the exchange property for
horizontal and vertical sums of double homotopies holds [9].

1.4. P4-categories. We introduce now some additional structure to ensure that  A,  equipped with the
homotopies  (%: f  g),  their operations  (b°%°a,  0f,  – %,  %+&),  and the second-order homotopy
relation  (%  &)  is a sort of "laxified 2-category".  In other words,  is an equivalence relation,
compatible with the operations; the sum is -associative, has -identities and -inverses and satisfies
up to cell-homotopy an obvious "reduced exchange law" with the reduced horizontal composition  °
(precisely,  A  satisfies the axioms of an "h4-category", as proved in [9], thm. 2.9). Consequently
A/   (same objects, same morphisms and tracks  [%]: f  g  as 2-cells) is an ordinary 2-category,
with invertible 2-cells. Note, however, that we want to work in  A:  a comma square there just yields a
weak comma square in  A/ .

Precisely, we want a mapping  %  /  providing a homotopy  %  with a 2-homotopy  /: %  % +
0,  and a mapping  /  2  turning a double homotopy  /  into a 2-homotopy  2: %+1    0+&

  & 0+&
k g f g

(1)    0  /    1    0   2    0

f h f g
  % %+1

and again we want to realise such conversions "algebraically", through operations of  P.

By definition, a P4-category  A  has a symmetric cubical comonad  P  with reversion and sum,
combined with a zero collapse  z: P  P2  and a lens collapse  w: P2  P2  with the following
boundary and degeneracy conditions

)+0 P"–+"+P
"– "+ "–."–P "+."+P

(2)   0    z    0   0  w    0

"– "+ "–."–P "+."+P
  ) "–P+P"+

(3) ze  =  e2, we2  =  e2



7

where  ): "–  "+  is the structural homotopy of  PA  ()  = 1PA)  and  e2 = eP.e = Pe.e: 1  P2  is the
degeneracy of  P2.  These maps  z  and  w  produce the conversions we want,   %  z.%  and  /  2
= w./.

We say that the lens collapse is strong, and that A is strongly P4, if moreover all these lens
conversions  /  w/  are bijective. In other words, for every 4-tuple of homotopies  %: f  h,  0:
f  k,  &: k  g,  1: h  g  (between parallel maps) and every 2-homotopy  2: %+1 0+&,  there
is precisely one double homotopy  /  with boundary as in (1) such that  w/  coincides with  2.

Top  is strongly P4, by means of the zero collapse  z  defined by the map  z0

(4) z: PA  P2A, z(-)  =  -.z0: [0, 1]2  A

z0: [0, 1]2  [0, 1], z0 (t, t')  =  (2t / (2 – t')) + 1

and of the lens collapse  w  defined by the endomap  w0  of the unit square

(5) w: P2A  P2A, w(,)  =  ,.w0: [0, 1]2  A

w0: [0, 1]2  [0, 1]2, w0 (t, t')  =  (t – t*t', t + t*t')

t*t'  =  (1 – |2t – 1|)(2t' – 1) / 2.

The term "lens collapse" is motivated by the graphic representation of  w0  (cf. [9], Introduction). It
may also be useful to see the realisation of  w  for chain complexes, which is simpler (4.3.3).

1.5. Regular P4-categories. Actually, one can derive a "similar" conversion  /  2  from the
connections, pasting  /  with two double homotopies based on its boundary and  g–,  g+

  0   &   0
f k g g

(1)    0 g+0   0   /   1  g–1    0

f f h g
  0   %    1

Often this conversion fails to be bijective and we have to construct a different one (as above, for
Top).  But in the "regular" case exposed below (containing chain complexes) the solution (1) works
well, and we can simplify the structure omitting  w  and  z.

A regular P4-category, or P4-sesquigroupoid  (P, "', e, g', s, r, k)  is a symmetric cubical comonad
over  A  with regular sum and reversion: this means that each set of homotopies  A1(A, B)  (between
maps from  A  to  B)  is a groupoid under the sum, with inverses supplied by reversion. Then, also the
vertical and horizontal sums of double homotopies (which can be reduced to sums of homotopies, by
1.3.4-5) are groupoid laws. Moreover,  A  is strongly P4, with zero and lens collapses derived from the
other transformations

(2) z  =  eP: P  P2

(3) w  =  g+.P"– +h 1 +h g–.P"+ :  P2  P2.

In fact, direct calculations show that these maps do satisfy our boundary and coherence
requirements (1.4.2-3); further, the conversion defined by  w  works precisely as in diagram (1)

(4) /    2  =  w/  =  g+0 +h / +h g–1 (0 = P"–./,     1 = P"+./)
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and is bijective (in the sense specified above, 1.4): given  2,  take  /  =  –h g+0 +h 2 –h g–1.

Chain complexes,  Cat  and  Gpd  have a regular P4-structure (Sections 4, 3). On the other hand,
Top  is strongly P4, but not regular.

Our definition of a regular P4-category is still redundant, as the reversion is here determined by
the sum, and each connection determines the other via the reversion (1.1.9). However, this definition
leads to a simple presentation of the axioms, and is also suited for a "lax extension" to the homotopy
structure of Stasheff's strongly homotopy associative algebras [21], as presented in [10].

1.6. Homotopy pullbacks. Let  A  be a P0-category (more generally, it would be sufficient to have a
"category with homotopies", or h-category [6]).

The h-pullback (or standard homotopy pullback, or double mapping cocylinder) of two converging
arrows  f: A  C,  g: B  C  is an object  P(f, g)  with two maps  x', x"  and a homotopy  3: fx' 
gx"  as in (1), satisfying the obvious universal property (of comma squares)

   f
A C

(1)  x'   3    g

P(f, g) B
  x"

-  for every  y': Y  A,  y": Y  B  and every homotopy  #: fy'  gy": Y  C,  there is exactly one
morphism  a: Y  P(f, g)  such that   y' = x'a,  y" = x"a,  # = 3°a.

In an h-pullback, the triple  (x', x"; 3)  is jointly monic. In  Top,  P(f, g)  can be realised as a
subspace of the product  A×PC×B

(2) P(f, g)  =  {(a, -, b) . A×PC×B |  -(0) = f(a),  -(1) = g(b)}.

By definition of homotopies,  PA = P(1A, 1A).  Conversely, we show below that h-pullbacks can be
constructed through path objects and ordinary pullbacks (as clearly suggested by the topological
realisation (2)); the tool is the following strict pasting property of h-pullbacks and ordinary pullbacks,
which is easy to verify

  h    f
A' A C

(3)   y'   x'   3    g

Y X B
  y"   x"

-  if the triple  (x', x"; 3)  is the h-pullback of  f  and  g,  then the "pasted" triple  (y', x"y"; 3°y")  is the
h-pullback of  fh  and  g  if and only if  the left-hand square is an ordinary pullback.

1.7. P4-homotopical categories. A P0-homotopical category is a P0-category  A  satisfying the
following equivalent conditions (for each pair of arrows  (f, g)  with the same codomain)

(i)   the h-pullback  P(f, g)  exists  (A  has h-pullbacks),

(ii)  the (strict) limit  P(f, g)  of the following diagram exists  (A  has cocylindrical limits)
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    f      "–  "+    g
(1) A            C            PC            C           B

(iii) the pair of (strict) pullbacks in the left-hand diagram (2) exists  (A  has cocylindrical pullbacks)

   f    f    1
A C A C C

* "– "–   )    1

(2) P-f PC C  x' PC C

*
  "

+
   g

3 
 x"

  "+
   g

P(f, g) B P(f, g) B

The relations between the presentation of  P(f, g)  as an h-pullback or a cocylindrical limit are
shown in the right-hand diagram (2). The equivalence of (ii) and (iii) is trivial; that of (i) and (iii)
follows from the previous pasting property (1.6.3).

Note that the upper pullback in the left-hand diagram (2) yields a particular h-pullback  P–f =
P(f, 1),  the lower mapping cocylinder of  f.  Also the composition pullback  QA  is a particular
cylindrical pullback, since it can be obtained as  P–("+) = P("+, 1),  or symmetrically as  P(1, "–).

Similarly, a P4-homotopical category A is a strong P4-category satisfying the following equivalent
conditions, applying to arbitrary pairs of converging arrows  (f, g):

(i')  h-pullbacks  P(f, g)  exist and are preserved by  P  (P(P(f, g)) = P(Pf, Pg)),

(ii')  cocylindrical limits exist and are preserved by  P  (as limits),

(iii') cocylindrical pullbacks exist and are preserved by  P  (as pullbacks).

The first characterisation proves (directly) that every power of  P  has then the same preservation
properties. The second and third show that such preservation properties are automatic whenever  P  is a
right adjoint. Since the composition pullbacks  QA  are a particular instance of the cocylindrical ones,
(iii') implies that they are preserved by  P;  in particular, the exchange property for horizontal and
vertical pastings of double homotopies holds (1.3).

1.8. I4- and IP4-categories. Dualising the previous part, an I4-category  A  is equipped with a
cylinder functor  I: A  A  with operations  ("', e, g', s, r, k, z, w),  which form a symmetric cubical
monad with reversion  r,  vertical composition  k,  zero collapse  z  and lens collapse  w

(1) "': 1   I, e: I  1, g': I2   I

s: I2  I2, r: I  I, k: IA JA  =  IA +A IA

z: I2  I, w: I2  I2.

Here,  k  takes values in the composition pushout  JA = IA +A IA,  or J-pushout of  A,  i.e. the
pushout of  "+,  "–: A  IA  (obtained in  Top  by pasting two cylinders, one on top of the other). A
strong I4-category has a bijective lens conversion  /  / wA  (/: I2A  B).

An I4-homotopical category is a strong I4-category having I-preserved h-pushouts  I(f, g)  of
diverging arrows, or equivalently having all cylindrical colimits, preserved by  I  (as colimits)
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   f   "–   "+    g
(2) A           C            IC           C            B;

the latter also include J-pushouts.

Now, an IP0- (resp IP4-) category is a category equipped with adjoint endofunctors  I  P  and
with consistent, or adjoint, I0- and P0- (resp. I4- and P4-) structures, determining each other by the
adjunction as we make precise now.

To begin with, let  (P, "', e)  be a P0-structure over  A  and  I  P;  then one gets for free the
unique I0-structure  (I, 4"', 4e)  consistent with the original data (and the unique IP0-structure
completing them), transforming the original operations of  P  via the unit and counit of the adjunction
(u: 1  PI,  v: IP  1)  into the adjoint operations  of  I

(3) 4
"'  =  "'I.u  =  (1  PI  I) 4e  =  v.Ie  =  (I  IP  1).

The faces of  In  are indexed as  4" i
' = Ii–14"'In–i,  consistently with the adjoint ones for  Pn  (1.1)

and with the usual face-mappings of cubes   ) i
'   in  Top  (1.1.12). The horizontal faces  "2

'  = "'P  of
P2  correspond thus to the horizontal faces  4" 2

'  = I4"'   of  I2.  Diacritic bars will be generally omitted;
but we may distinguish the components of the operations of  P  and  I  by writing the object as a sub-
or superscript, respectively; for instance,  eA: A  PA  and  eA: IA  A.

One proceeds in the same way for connections, reversion, and interchange; for instance

(4) 4g'  =  vI.IvPI.I2g'I.I2u  =  (I2  I2PI  I2P2I   IPI  I).

Let now  A  be a P4-category with  I  P,  and assume that  A  has also all composition-pushouts
JA.  Then  A  is IP4, through the derived operations for  I;  these are obtained as before, after
remarking that  J  Q  (in order to define the new sum  k: I  J).  Indeed, the adjunction  (u, v): I

 P  produces precisely one adjunction  (u', v'): J  Q  consistent with the projections  k': Q  P
and the injections  k': I  J

(5) u': 1  QJ, k'J.u'  =  Pk'.u: 1  PJ

v': JQ  1, v'.k'Q  =  v.Ik': IQ  1.

An IP4-category is strongly I4 iff it is strongly P4, since the lens conversion can be equivalently
realised through the cylinder  (/  / wA)  or the path functor  (/  wB /).

Finally, an IP0-homotopical category is obviously an IP0-category having all h-pullbacks and h-
pushouts, or equivalently having all cocylindrical limits and cylindrical colimits. And an IP4-
homotopical category is an IP4-category having all cocylindrical limits and cylindrical colimits
(automatically preserved by  P  and  I,  respectively); by the previous argument, this reduces to a P4-
homotopical category having a left adjoint  I  P  and all cylindrical colimits.

2. Algebras for a monad

In this section, we consider a monad  T = (T, #, µ)  over a category  A.  Then a homotopy structure
for  A ,  defined by a path endofunctor  P  can be lifted to the category  AT  of Eilenberg-Moore
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algebras over  T,  provided that  P  is consistent with  T  in a natural sense. We refer to Mac Lane's text
[18] for the standard theory of monads, their algebras and their relations with adjunctions.

2.1. Lifting functors to algebras. Let  T = (T, #, µ)  be a monad over the category  A;  as usual,  AT

denotes the category of (Eilenberg-Moore) T-algebras,  UT: AT  A  the forgetful functor and  FT: A
 AT  its left adjoint, the free-algebra functor  (FT(A) = (TA, µA)).

  It is well known that the forgetful functor  UT: AT  A  creates the (existing) limits. For instance,
given two morphisms of T-algebras  fi: (Ai, ti)  (B, u)  (i = 1, 2),  if their underlying maps  fi: Ai 
B  have a pullback  A  in  A,  there is precisely one structure  t: TA  A  making the pullback-
projections into T-morphisms (determined by  pi.t = ti.Tpi).  And  (A, t)  is then the pullback of
(f1, f2)  in  AT,  with the same projections  pi

     p1
(A, t) (A1, t1)

(1) p2 *
f2

   f1 pi.t  =  ti.Tpi: TA  Ai .
(A2, t2) (B, u)

We need now to consider an endomorphism  P: A  A,  typically a path-endofunctor, "consis-
tent" with the monad. But we prefer to deal, more generally, with two monads over two categories, as
this distinction appears to clarify things.

In fact, monads are the objects of a 2-category  MON  (which can be formally motivated by
viewing a monad as a 2-functor  T: m  CAT,  see 2.8). Given a second monad  S = (S, #', µ')  over
B  (with forgetful functor  US: BS  B  and free-algebra functor  FS),  a (lax) morphism of monads
(P, !): T  S  is a functor  P: A  B  equipped with a natural transformation  ! = !P: SP  PT
satisfying

(2) !.#'P  =  P#, !.µ'P  =  Pµ.!2

 #'P   µ'P
P SP S2P

(3) P#    !
  Pµ

   !2 (!2 = !T.S!: S2P  PT2).
PT PT2

The morphism  (P, !)  is said to be strong if  !  is an isomorphism, and strict if the latter is an
identity; it will generally be written  P,  leaving  !P  understood. The composition with  P': S  R  is
obvious

(4) !P'P  =  (P'°!P).(!P'°P):  R.P'P  P'SP  P'P.T.

A 2-cell, or natural transformation  %: P  Q: T  S,  is an ordinary natural transformation  %:
P  Q: A  B  making the following square commute, for any object  A

    S%
SPA SQA

(5) !P  

 %T
   !Q %T.!P  =  !Q.S%.

PTA QTA

Any morphism  P: T  S  has a canonical lifting  4P: AT  BS,  with  US.4P = PUT
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(6) 4P(A, t)  =  (PA, Pt.!A), 4P(f)  =  P(f)

and any natural transformation  %: P  Q has a unique lifting  4%: 4P  4Q,  with  US.4% = %UT,  which
will also be written  %: 4P  4Q  as its components are "the same" as the ones of  %

(7) 4
%(A, t)  =  %A: 4P(A, t)  4Q(A, t).

The lifting respects the various compositions, forming a 2-functor  (–)–  from  MON  to  CAT
which takes the monad  T  to its category of algebras  AT.  The lifting of adjunctions will be
considered later (2.7).

For  T = S,  an endomorphism of monads  (P, !): T  T  will also be called a T-functor;  it is an
endofunctor  P: A  A  equipped with a natural transformation  ! = !P: TP  PT  such that

(8) !.#P  =  P#, !.µP  =  Pµ.!2 (!2  =  !T.T!: T2P  PT2).

Note that  P2  is a T-functor through  !P2 = (P°!P).(!P°P): T.P2  P2.T,  whose lifting coincides
with  (PT)2.

2.2. Remarks. a) As noted in Johnstone [14] (Lemma 1, attributed to Appelgate's thesis), it is easy to
see that, given two monads  T  and  S  as above and a mere functor  P: A  B,  there is a bijective
correspondence between natural transformations  !: SP  PT  satisfying the conditions above (2.1.2,
i.e. making  P  into a morphism of monads) and liftings  4P: AT  BS  of  P.  We have already given
this correspondence in one direction. Conversely, let such a lifting  4P  be given; there is a natural
transformation  !: FSP  4PFT,  the transpose of  P#: P  PUTFT = US4PFT,  and  ! = US!: SP 
PT  satisfies our conditions (2.1.2). The two directions are inverse.

b) It is also relevant to note that an op(-lax) morphism of monads can be extended to the categories of
Kleisli algebras [18], yielding a 2-functor  (–)–: MON'  CAT  which takes the monad  T  to the
Kleisli category  AT .

Now, an op-morphism of monads  (K, 5): T  S  is a functor  K: A  B  equipped with a
natural transformation  5: KT  SK  making the appropriate diagram commute ("dual" to 2.1.3)

 #'K   µ'K
K SK S2K

(1)   K#    5
   Kµ

   52 (52 = S5.5T: KT2  S2K).
KT KT2

The category of Kleisli algebras  AT  has the same objects as  A,  a morphism  fT: A  A'  being
represented by any  f . A(A, TA').  Its canonical adjunction is

(2) FT: A  AT , FT(A)  =  A, FT(a: A  A')  =  (#A'.a)T: A  A'

(3) UT: AT  A, UT(A)  =  TA, UT(fT: A  A')  =  µA'.Tf: TA  TA'.

An op-morphism  (K, 5): T  S  has a canonical extension to Kleisli algebras,  K: AT  BS
(KFT = FSK)  defined as follows

(4) K(A)  =  K(A), K(fT: A  A')  =  (5A'.Kf:  KA  KTA'  SKA')S

(5) KFT(a: A  A')  =  K(#A'.a)T  =  (5A'.K#A'.Ka)S  =  (#'KA'.Ka)S  =  FSK(a).
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c) If  (P, !): T  T  is an endomorphism of monads and  P  is part of a comonad  (P, ', ))  then  !  is
called a bialgebra distributivity in case  'T.! = T'  and  )T.! = P!.!P.T),  see MacDonald and Stone
[19]; a similar case, in which  P  is part of a monad, is dealt with in Beck ([2], p. 120).

2.3. Monads and path-functors. By definition, a P0-structure over  A,  consistent with our monad
T,  is given by an ordinary P0-structure

(1) P: A  A, "': P  1, e: 1  P ("'e  =  1)

together with a natural transformation  !: TP  PT  making  P  into a T-functor and  "',  e  into T-
natural transformations (2.1); in other words, the following equations hold

(2) !.#P  =  P#, !.µP  =  Pµ.!T.T!

"'T.!  =  T"', eT  =  !.Te.

Then  (P, "', e)  lifts to a P0-structure for algebras, yielding a path endofunctor  PT = 4P

(3) PT: AT  AT, PT(A, t)  =  (PA, Pt.!)

whose faces and degeneracy will still be written  "': PT  1,  e: 1  PT.  The forgetful functor  UT:
AT  A  extends obviously to homotopies, double homotopies and 2-homotopies, preserving faces

(4) (UT(%))   =  UT(%), (UT(/))   =  UT(/).

Recalling that the lifting of  P2  is  (PT)2,  the same lifting property holds for a cubical comonad  (P,
"', e, g')  consistent with  T;  this means that, moreover, the connections have to satisfy

(5) g'T.!  =  P!.!P.Tg' .

Also an interchange  s: P2  P2  or a reversion  r: P  P  can be similarly lifted to  PT,  provided
it satisfies the following condition, respectively

(6) sT.P!.!P  =  P!.!P.Ts rT.!  =  !.Tr.

Plainly, the same terminology can be used for a category  C  monadic over  A.  This means that  C
is equipped with a functor  U: C  A  which has a left adjoint  F: A  C  ((#, 6): F  U);  and
that the monad  T = UF: A  A  derived from the adjunction has a comparison functor  K  which is
an isomorphism (so that we can identify  C  and  AT)

(7) K: C  AT, K(C)  =  (UC, U6: UFUC  UC).

2.4. The functor Q of composable paths. Let  P  be a cubical comonad over  A  consistent with  T,
and assume that  A  has all Q-pullbacks

 k–
QA PA

(1) k+    *
  "–

  "+

PA A

Then the functor  Q: A  A  has a canonical T-structure  !Q: TQ  QT,  making the following
diagram commute (the *-marked square is the Q-pullback of  TA)
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 Tk–
TQA TPA

  !Q

 k–T
   !

(2) Tk+ QTA PTA
k+T     *    "+T

TPA PTA TA
!  "–T

since the conditions

(3) !Q.#Q  =  Q#: QA  QTA, !Q.µQ  =  Qµ.!QT.T!Q: T2QA  QTA

are easily deduced from the analogues for  P,  by composing with the projections  k'T  of  QTA;  for
instance

(4) k'T.(!Q.#Q)  =  !.Tk'.#Q  =  !.#P.k'  =  P#.k'  =  k'T.(Q#).

Moreover, the lifted functor  QT(A, t) = (QA, Qt.!QA)  is the composition-pullback for algebras,
through the lifting of projections  k': QT  PT

 k–
QT(A, t) PT(A, t)

(5) k+

"–
   "+

PT(A, t) (A, t)

since the structure  Qt.!QA  is precisely the one created by  UT  over the composition-pullback in  A
(2.1.1):  k'.(Qt.!QA)  =  Pt.k'T.!QA  =  Pt.!A.Tk'.

2.5. The remaining second-order structure. In the same way, we say that a P4-category structure
(P, "�', e, g', r, s, k, z, w)  over  A  is consistent with the monad  T,  if  P  and all the listed natural
transformations are so. Then, also by the previous results on the lifting of  Q,  AT  is a P4-category,
and is strong iff  A  is so.

Homotopy pullbacks can be viewed as cocylindrical limits (1.7), and are thus created by the
forgetful functor  UT: AT  A.  Finally, we get the following results.

2.6. Theorem. a) Let  A   be a category with a monad  T.  A structure of P0-, or P4-, or P0-
homotopical, or P4-homotopical category over  A,  made consistent with T by a natural transformation
!: TP  PT  (as specified above, 2.3-5) can always be lifted to a structure of the same type over the
category of algebras, with cocylinder

(1) PT: AT  AT, PT(A, t)  =  (PA, Pt.!).

b) If  A  is a P4-homotopical category consistent with  T,  PT  has a left adjoint  IT  and  AT  has all
cylindrical colimits, then  AT  is IP4-homotopical.

c) If  A  is a P0-category consistent with a monad  T,  AT  has coequalizers and  P  has a left adjoint  I,
then  PT  has a left adjoint  IT,  which extends  I,  in the sense that  ITFT  FTI  (of course,  IT  is not a
lifting of  I,  generally; see for instance the case of topological semigroups in 3.2).
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Proof. a) and b) just summarise the results of this Section, together with the previous ones on IP4-
homotopical categories (1.8); c) is a particular case of the following well-known theorem, which can be
found in [14] (Thm. 2), together with various references to its earlier appearances.

2.7. Theorem (Lifting adjunctions to algebras). Consider a morphism of monads  P = (P, !): T
 S  over the categories  A,  B  (2.1).  Assume that the underlying functor  P: A  B  has a left

adjoint  I: B  A  and the category of algebras  AT  has coequalizers. Then, the lifted functor  P: AT

 BS  (P(A, t) = (PA, Pt.!A))  has a left adjoint  I: BS  AT,  which extends  I  with respect to the
free-algebra functors  (IFS  FTI).

(In particular, if  P: A  A  is the identity,  !: S  T  is a morphism of monads (or triples) over
A,  i.e.  !.#S = #T  and  !.µS = µT.!2;  this case can also be found in Beck [2], p. 119.)

Proof. The proof is outlined in [14], Thm. 2. We give a detailed argument here along the same lines.

First, let us note that, if  P  has a left adjoint  I,  then  IFS  and  FTI  are both left adjoints to  USP =
PUT,  hence canonically isomorphic.

Recall that  ! = !P: SP  PT  satisfies the equations  !.#'P = P#,  !.µ'P = Pµ.!T.S!.  Write the
unit and counit of  I  P  as  u: 1B  PI  and  v: IP  1A,  and the free-algebra adjunctions of  T =
(T, #, µ)  and  S = (S, #', µ')  as

(1) FT :  A           AT  : UT, UT(A, t)  =  A, FT(A)  =  (TA, µA)

#: 1  T = UTFT, ': FTUT  1; UT'(A, t)  =  t: TA  A;

(2) FS :  B           BS  : US, #': 1  S = USFS, '': FSUS  1.

To construct  I,  note that the functor  I,  because of the adjunction  I  P,  inherits a natural
transformation  !*: IS  TI,  often called the "mate" of  !: SP  PT  (by composing unit,  !,
counit)

(3) !*  =  vTI.I!I.ISu:  IS  ISPI  IPTI  TI

and let us record the fact that

(4) P!*.uS  =  PvTI.PI(!I.Su).uS  =  PvTI.uPTI.!I.Su  =  !I.Su.

Now,  !*  makes  I  into an op-morphism of monads (which would just allow us to extend  I  to
free algebras, according to 2.2 b). However (since every algebra is a coequaliser of free ones, and left
adjoints have to preserve the existing colimits), we get the value of  I  over the S-algebra  (B, s: SB 
B)  as the coequaliser in  AT  of the following two maps of free T-algebras

(5) FTIUS''(B, s)  =  FTIs:  FTIS(B) = (TISB, µISB)  (TIB, µIB) = FTI(B)
4
!   =  'FTIUS.FT!*US:  FTIS(B)  FTTI(B) = FTUT.FTI(B)  FTI(B)

 FTIUS''     p
FTISUS(B, s) FTIUS(B, s) I(B, s)

 4!

and its structure  4s : TUTI(B, s)  UTI(B, s)  makes  p  an S-morphism
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  UTp
TI(B) UTI(B, s)

(6) µIUT

 TUTp
    4s

T2I(B) TUTI(B, s)

       The functor  I  is certainly well defined since we can let its value on morphisms be the induced
map on coequalizers. And the coequaliser-maps form a natural transformation  p: FTIUS  I.

We next proceed by giving a unit and counit for the new adjunction. For the unit  u: 1  PI,  we
want its underlying transformation  USu: US  USPI = PUTI  to be the composite

(7) USu  =  PUTp.P#IUS.uUS:  US  PIUS  PUTFTIUS  PUTI;

in fact, for an S-algebra  (B, s: SB  B),  we do get a BS-morphism with values in  PI(B, s)  (whose
structure is  P4s .!UTI(B, s),  by 2.1.6)

(8) USu(B, s).s  =  PUTp(B, s).(P#I.u)B.s  =  PUTp(B, s).PUTFTIs.(P#I.u)SB

=  PUTp(B, s).PµIB.PUTFT!*B.P#ISB.uSB (by (5))

=  PUTp(B, s).PµIB.P#TIB.P!*B.uSB  =  PUTp(B, s).!IB.SuB (by (4))

(9) P4s .!UTI(B, s).SUSu(B, s)  =  P4s .!UTI(B, s).SP(UTp(B, s).#IB).SuB

  =  P4s .PT(UTp(B, s).#IB).!IB.SuB

  =  PUTp(B, s).PµIB.PT#IB.!IB.SuB  =  PUTp(B, s).!IB.SuB (by (6)).

For the counit  v: IP  1,  we require that

(10) v.pP  =  '.FTvUT:  FTIUSP  =  FTIPUT  FTUT  1.

The solution exists (and is unique), provided we show that the following natural transformations  f,
g: FTIUSFSUSP  1  coincide

(11) f  =  '.FTvUT.FTIUS''P, g  =  '.FTvUT.'FTIUSP.FT!*USP.

Applying these to an object  (A, t)  of  AT  we get a pair of AT-morphisms; it is sufficient to show
that the underlying A-morphisms,  f0 = UTf(A, t)  and  g0 = UTg(A, t)  are equal

(12) f0  =  t.TvA.TIUS''(PA, Pt.!A)  =  t.TvA.TIPt.TI!A

=  t.Tt.TvTA.TI!A  =  t.µA.TvTA.TI!A

(13) g0 = UTg(A, t)  =  t.TvA.UT'FTIPA.UTFT!*PA

=  t.TvA.µIPA.TvTIPA.TI!IPA.TISuPA (by (3))

=  t.TvA.(µ.TvT.TI!)IPA.TISuPA

 =  t.(µ.TvT.TI!)A.TISPvA.TISuPA  =  t.µA.TvTA.TI!A.

Finally, to verify the triangle identities for  u, v,  it is sufficient to show that  US(Pv.uP) = 1  and
(vI.Iu).p = p;  this follows from (7) and (10) and the triangle identities of  u, v.
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2.8. Formal remarks. The morphisms and 2-cells of monads we have considered above (2.1) are
"natural", as soon as we consider the 2-category  m  generated by one object  *,  one arrow  t: *  *,
and two cells  e: 1  t,  m: t2  t  subject to the relations

(1) m.et  =  1  =  m.te, m.mt  =  m.tm

((t, e, m)  can be viewed as a monad on the object  * of the 2-category  m;  see Kelly and Street [17]
for further information regarding monads on objects of a 2-category.)

Plainly, a monad  (T, #, µ)  amounts to a strict 2-functor  T: m  CAT,  with  T = T(t),  # = T(e),
µ  = T(m)  (its domain-category being  A = T(*)).

Now, given a second monad  S  over  B,  a lax natural transformation of 2-functors  T  S:
m  CAT  amounts precisely to a functor  P: A  B  (corresponding to the object  *)  and a
natural transformation  !: SP  PT  (corresponding to the generating arrow  t: *  *  of  m)
satisfying our conditions (2.1.2),  i.e. a lax morphism  (P, !): T  S.  Similarly, a modification  %: P

 Q: T  S  of lax natural transformations amounts to an ordinary natural transformation  %: P 
Q: A  B  (corresponding to the object  *)  satisfying the appropriate condition (2.1.5).

Equivalently, one could also view a monad as a lax functor  T: 1  CAT,  consisting of a category
A = T(*),  an endofunctor  T = T(1*)  and two natural transformations

(2) #: 1T(*)  T(1*), µ: T(1*).T(1*)  T(1*.1*)

under conditions coinciding with the axioms of monads. Lax natural transformations of such lax
functors, and their modifications, would give the same notions as above.

3. Applications to topological spaces and small categories

The previous theory is applied to derive the homotopy structure of some types of algebras over
spaces (topological semigroups, monoids and groups) and categories (strict monoidal categories).
Equivariant homotopy, for spaces equipped with an action of a fixed topological group, is considered in
3.4; see Cordier and Porter [4], Moerdijk and Svensson [20].

3.1. Topological semigroups and monoids. The category  Top  of topological spaces is IP4-
homotopical, with respect to the standard cylinder and path functors  I  P  (1.1), with the usual
operations recalled above (connections and symmetries in 1.1; vertical composition in 1.2) plus the
zero collapse and the lens collapse described in 1.4. We recall now that the category  SgrTop  of
topological semigroups is monadic over  Top  (a category of algebras), and we show below (3.2) that
the IP4-homotopical structure lifts to  SgrTop.

Consider the forgetful functor  U: SgrTop  Top  and its left adjoint  F

(1) FX  =  (7n>0 Xn, *) (x1,... xp) * (xp+1,... xn)  =  (x1,... xn)

#: X 8 UFX, 6: FUA  A, 6(x1,... xn)  =  x1. ... .xn

noting that  FX  is the free semigroup over the underlying set  |X|,  endowed with the sum of the
product topologies (the finest topology making all the embeddings  Xn 8 FX  continuous).  FX  is a
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topological semigroup, since the juxtaposition  *: Xp×Xq  Xp+q  is plainly continuous and every
cartesian product in  Top  distributes over arbitrary sums (whence  TX×TX = 7p,q>0 Xp×Xq).  It
follows easily that  FX  is indeed the free topological semigroup over the space  X.

The adjunction produces, in the standard way, a monad over  Top  (the "free-semigroup" monad
for topological spaces)

(2) T  =  UF: Top  Top, TX  =  7n>0 Xn

µ  =  U6F: T2  T, µ((x11,... x1p1),... (xn1,... xnpn))  =  (x11,... xnpn).

A T-algebra  (X, t)  is "the same" as a topological semigroup  (X, .)  with  multiplication  . = t2: X2

 X,  and a map of T-algebras is a continuous homomorphism. We identify  TopT = SgrTop.

Similarly, the category  MonTop  of topological monoids is monadic over  Top,  and inherits a P4-
homotopical structure. One uses now the "free-monoid" monad for  Top,  with  TX  =  7n90 Xn.

3.2. The homotopy structure of topological semigroups. First, the cocylinder  P: Top  Top
preserves powers (as a right adjoint) and also sums. It is a strong T-functor, as proved by the
following relations (for  -, -i, -ij . PX)

(1) !: TP  PT, !X: 7n>0 (PX)n    P (7n>0 Xn)

(-1,... -n)    <-1,... -n>: [0, 1]  Xn

(2) !.#P(-)  =  -  =  P#(-)

!.µP((-11,... -1p1), ... (-n1,... -npn))  =  !(-11,... -npn)  =  <-11,... -npn>  =

  =  Pµ (<<-11,... -1p1>,... <-n1,... -npn>>)  =  Pµ.!T.T!((-11,... -1p1),... (-n1,... -npn)).

P  can thus be canonically lifted to topological semigroups

(3) PT: TopT  TopT, PT(X, t)  =  (PX, Pt.!)

which simply means that  PT(X, .)  is the path-space  PX = X[0, 1]  with the pointwise multiplication
-.-' (:) = -(:) . -'(:).

Moreover, all the operations of the P4-structure of  Top  are T-transformations. Leaving apart, for
the moment,  k: Q  P,  each of the remaining transformations  "�', e, g', r, s, z, w  is defined by some
continuous function between powers of the unit interval, via contravariant composition

(4) f0: [0, 1]q  [0, 1]p

fX: PpX  PqX, (,: [0, 1]p  X)    (,f0: [0, 1]q  X)

and all such transformations are consistent with  !,  i.e.  fT.!Pp = !Pq.Tf.  In fact, after noting that the
transformation making  Pq  a T-functor is

(5) !Pq  =  Pq–1!. ... .P!Pq–2.!Pq–1:  T.Pq  Pq.T

!PqX: 7n>0 (PqX)n    Pq (7n>0 Xn), (,1,... ,n)    <,1,... ,n>: [0, 1]q  Xn

the property above is an easy consequence

(6) fT.!Pp (,1,... ,n)  =  fT <,1,... ,n>  =  <,1f0,... ,nf0>  =  !Pq (,1f0,... ,nf0)

=  !Pq.Tf (,1,... ,n).
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Finally, recall our choice of  Q = P  for  Top  (1.2), with  k': Q  P  produced by embeddings
k0
' : [0, 1]  [0, 1]  (1.2.5) and  k = 1.  Then the lifting of  k'  to topological semigroups makes  PTA

into the composition-pullback of  A;  now,  k = 1 obviously lifts.

By 2.6, we have thus proved that  TopT = SgrTop  is IP4-homotopical, with path functor  PT.  Its
left adjoint cylinder functor  IT  can be directly calculated as

(7) IT: SgrTop  SgrTop, IT(X, .)  =  (FIX) / R

where  IX = [0, 1]×X  is the topological cylinder and  R  is the congruence of semigroups over  F(IX)
spanned by the following relation, based on the multiplication . of  X

(8) (:, x)*(:, y)  R0  (:, x.y) (: . [0, 1];   x, y . X)

so that, for every "instant"  :,  the mapping  u:: (X, .)  IT(X, .),  u:(x) = [:, x]  is a continuous
homomorphism. The unit of the adjunction is

(9) u: (X, .)  PTIT(X, .)  =  P((FIX) / R, *), u(x): :  u:(x) = [:, x].

3.3. Topological groups. One can follow a similar procedure for topological groups. But concretely,
it is simpler to lift the path functor (together with its operations)

(1) PT: GpTop  GpTop

by letting  PT(X, .)  be the path-space  PX = X[0, 1]  with pointwise multiplication.

The monad procedure gives the same result (as noted in general in 2.2a). Consider the forgetful
functor  U: GpTop  Top,  whose left adjoint  FX  is the free group over the underlying set  |X|,
endowed with the finest group-topology making continuous the unit-embedding  #X: X  UFX  (the
join of all such topologies). Letting  T = UF: Top  Top  be the associated monad (the "free-group"
monad for spaces), we identify  TopT = GpTop.  Now, there is a unique continuous homomorphism
!X: TPX  PTX  such that  !X.#PX = P(#X): PX  PTX,  providing a natural transformation  !:
TP  PT,  which also satisfies the "multiplicative" condition  !.µP = Pµ.!T.T!.

Thus,  TopT = GpTop  is IP4-homotopical, with path functor  PT  (2.6).  Its left adjoint cylinder
functor  IT  can be directly calculated as above (3.2.7), using of course a group-congruence  R.

3.4. Equivariant homotopy. Let  G  be a topological group and  G-Top  the category of  G-spaces,
i.e. topological spaces  Y  equipped with an action  G×Y  Y,  (g, y)  g.y,  satisfying the usual,
obvious conditions.

The forgetful functor  U: G-Top  Top  has left adjoint

(1) F(X)  =  G×X (#:  1  UF,   6: FU  1)

where  G×X  is the product of topological spaces, with action  g'.(g, x) = (g'.g, x). This supplies a
monad over  Top

(2) T  =  UF: Top  Top, TX  =  G×X

#X: X  G×X, x  (1, x)

µ = U6F: T2  T, µX: G×G×X  G×X, µX(g', g, x) = (g'.g, x)
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and a G-space  Y  is the same as a T-algebra  (X, t: G×X  X).  The cocylinder  P: Top  Top  is a
T-functor through the degenerate-path embedding  e: G  PG

(3) !: TP  PT

!X  =  eG×PX: G×PX  P(G×X), (g, -)    <e(g), ->:  [0, 1]  G×X

(4) !.#P(-)  =  !(1, -)  =  <e(1), ->  =  P#(-)

!.µP (g', g, -)  =  <e(g'.g), ->  =  Pµ <e(g'), e(g), ->  =  Pµ.!T.T! (g', g, -).

P  can thus be canonically lifted to G-spaces,

(5) PT: G-Top  G-Top, PT(X, t)  =  (PX, Pt.!)

which means that  PT(X, t)  is the path-space  PX = X[0, 1]  with the pointwise action

(6) (g.-) (:)  =  g.(-(:)).

and a homotopy  %: (X, t)  PT(Y, u)  is an equivariant homotopy, in the usual sense.

To show the coherence of the P4-structure with  !,  one can now procede as for topological
semigroups, replacing 3.2.6 with

(7) fT.!Pp (g, ,)  =  fT <ep(g), ,>  =  <eq(g), ,f0>  =  !Pq.Tf (g, ,).

TopT = GTop  is thus IP4-homotopical (2.6), with path functor  PT.  The cylinder functor  IT

(derived from 2.7 or directly calculated as left adjoint to  PT),  is given by

(8) IT: G-Top  G-Top, IT(X)  =  (FIX) / R

where  IX = [0, 1]×X  is the topological cylinder and  R  is the congruence of G-spaces over  F(IX)
spanned by the following relation, based on the G-action over  X

(9) (g; :, x)  R0  (1; :, g.x) (g.G;   :.[0, 1];   x.X).

3.5. Algebras for pointed topological spaces. The (pointed) category Top  of pointed topological
spaces is IP4-homotopical. As well known, the P-structure comes directly from the one of  Top,
adding to the original path-space  PX  the constant loop at the base-point

(1) P(X, x)  =  (PX, xP), xP  =  eX.x  =  Px.e :   PX

while the cylinder  I  is formed by collapsing the subspace  I{x}  in the non-pointed cylinder  IX

(2) I(X, x)  =  (IX/I{x}, xI) xI(*)  =  [t, x].

(Top   itself can be seen as a category of algebras over  Top,  for a monad consistent with  P,  see
Section 5; but we are not interested in this fact here.)

A monoid or a group in  Top   is the same as in  Top,  which we have already considered. But a
semigroup in  Top   is a topological semigroup  X  with an assigned idempotent element  x.
SgrTop   is the category of algebras of the "free-semigroup monad" over  Top

(3) T: Top   Top , T(X, x)  =  7n>0 (X, x)n
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where the powers and the sum belong now to the category  Top   (recall that the sum of pointed
spaces has the base-points identified).  P  (which does not preserve sums) is a (non-strong) T-functor
through the transformation

(4) !: TP  PT, !X: 7n>0 (PX)n  P (7n>0 Xn)

(-1,... -n)    <-1,... -n>: [0, 1]  Xn

which is plainly consistent with the identifications in our sums of pointed spaces. One shows now, as
above, that  SgrTop   is IP4-homotopical, with

(5) PT(X, x, .)  =  (PX, xP, pointwise multiplication of paths).

3.6. Categories and natural equivalences. We show here that the category  Cat  of small
categories and functors is regular IP4-homotopical, with homotopies given by natural isomorphisms.
(This produces a 2-category structure  Cati  with invertible cells; in other words, a groupoid-enriched
category, or also a strict h4-category, see 1.4.)

Recall that  Cat  is cartesian closed, with  [X, Y] = YX  the category of functors  X  Y  and their
natural transformations. The role of the standard interval in  Top  is now played by the undiscrete
groupoid  i  on two objects, say 0, 1 (a groupoid is undiscrete if each hom-set has one element), which
consists of "the free isomorphism". It supplies a cylinder and a cocylinder functor,  I  P,  for  Cat

(1) IX  =  i×X, PY  =  Yi

where  Yi  "is" the full subcategory of  Y2  whose objects are the isomorphisms of  Y.  Cylinders and
cocylinders respectively corepresent and represent homotopies in the above sense, since a natural iso
%: f  g: X  Y  is the same as a functor  %: IX  Y,  or a functor  %: X  PY.

As in  Top,  we generate the operations of  I  and  P  through operations on the "interval". First,  i
is a commutative, involutive dioid-object in  Cat  (1.1). Indeed,  i×i  is the undiscrete groupoid on four
objects, displayed in (2), and its operations  ("',  g', s, r)  are functors determined by their action on the
objects, as follows, for  ', i, j  =  0, 1  (while  e: i  1 =   need not be defined)

(0, 1) (1, 1)
(2)

(0, 0) (1, 0)

(3) "': 1  i, "'(0)  =  '

g': i×i  i, g–(i, j)  =  i*j, g+(i, j)  =  i+j

s: i×i  i×i, s(i, j)  =  (j, i)

r: i  i, r(i)  =  1 – i.

Further,  i  has a (regular) vertical composition  k.  Note that  i +1  i  is the undiscrete groupoid on
three objects; writing them as  "0,  1/2,  1",  the functor  k  is the inclusion

(4) k:  i    i +1  i, k(0)  =  0, k(1)  =  1.

This structure, transferred to the cylinder and path functors, makes  Cat  into a regular IP4-
category. Since  Cat  is complete and cocomplete, it is also IP4-homotopical.
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The lens collapse  w  is determined as in 1.5; it collapses "vertically"  i×i  on its main diagonal

(5) w: i×i  i×i, w(i, j)  =  (i, i).

All this plainly restricts to the category  Gpd  of groupoids. Note that  Cat  has also a "larger"
homotopy structure, with homotopies consisting of arbitrary natural transformations. The groupoid  i
should then be replaced with the ordinal category  2 = {0 < 1}, and the groupoid  i×i  with the order
category  2×2.  The operations considered above can be extended, except of course for the reversion,
which can only be partially surrogated by a generalised reversion  r: 2 2op.  On groupoids, both
structures coincide.

3.7. Strict monoidal categories. The category  MonCat  of (small) strict monoidal categories and
strict monoidal functors can be studied along the same lines as topological monoids, in 3.2: the P4-
homotopical structure of  Cat  is consistent with the monad, and lifts to an IP4-homotopical structure
for  MonCat.

First, the latter is monadic over  Cat,  through the forgetful functor  U  and its left adjoint  F

(1) F :  Cat MonCat :  U, #:  1  UF, 6: FU  1

FX  =  (7n90 Xn, ;) (x1,... xp) ; (xp+1,... xn)  =  (x1,... xn)

#: X 8 UFX, 6: FUA  A, 6(x1,... xn)  =  x1; ... ;xn

where  FX,  the free strict-monoidal category over  X,  is the sum of the power categories  Xn.

Also here, the cocylinder  P: Cat  Cat,  PX = Xi 8 X2  considered above (3.6.1) preserves
powers (as a right adjoint) and also sums; it is a strong T-functor (same calculations as in 3.2), by
identifying an n-tuple of isomorphisms in  X  with an isomorphism of  Xn

(2) !: TP  PT, !X: 7n>0 (PX)n    P (7n>0 Xn)

(-1,... -n)    <-1,... -n>: i  Xn .

Similarly one deals with  MonGpd,  the 2-category of (small) strict-monoidal groupoids.

Of course, in order to get monoidal categories in the usual relaxed sense one should consider h-
algebras in  Cat,  satisfying the axioms of T-algebra up to specified, coherent homotopies (natural
isomorphisms).

4. Applications to chain complexes

We recall the IP4-homotopical structure of chain complexes. Of course, homotopies are the usual
ones and the basic structure is classical; but the connections are less known, while the lens collapse and
its lifting property were introduced in [9]. This structure is shown to be partially consistent with the
"free-semigroup monad", producing a homotopy structure for associative d-algebras which lacks
reversion and sum of homotopies. In a graded module,  4x = (–1)deg x.x.

4.1. Chain complexes. Let us begin considering the category  C D  of (unbounded) chain complexes
A = ((An), ("n))  over an additive category  D.  A  D-map between finite biproducts  f: <Aj  <Bi  of
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components  fij  will be written "on variables", as  f(x1, ... xn)  =  (7 f1j xj, ...  7 fmj xj);  this allows one
to calculate as in a category of modules, and can be formally justified by setting  xj = prj: <Aj  Aj.

To fix notation, a homotopy in  C D  is written as in (1), and satisfies (2)

(1) %: f  g: A  B, %  =  (f,  %•,  g)

(2) – f + g  =  ".%• + %•." (– fn + gn  =  "n+1 %n + %n–1 "n)

where  %• = (%n): |A| 1 |B|  is a map of graded objects, of degree 1, the centre of %.

Homotopies are represented (or defined) by a path endofunctor  P

(3) (PA)n  =  An<An+1<An, "(a, x, b)  =  ("a, – a – "x + b, "b)

equipped with faces, degeneracy, vertical reversion and vertical composition

(4) "': P  1, "–(a, x, b)  =  a, "+(a, x, b)  =  b

(5) e: 1  P, e(a)  =  (a, 0, a)

(6) r: PA  PA, r(a, x, b)  =  (b, – x, a)

(7) k: PA ×
A

 PA   PA, k(a, x, c, y, d)  =  (a, x+y, d)

which produce the usual, regular sum of homotopies.

They are also corepresented by a cylinder  I  P

(8) (IA)n  =  An<An–1<An, "(a, x, b)  =  ("a – x, – "x, "b + x).

P  and  I  respectively preserve the existing limits and colimits; both preserve finite biproducts.
Note that kernels and cokernels need not exist in  C D,  since  D  is only assumed to be additive.

4.2. The second-order structure. C D  is a regular IP4-category, studied more in detail in [9], 6.5-8.
The second-order path functor  P2  and its operations are  (write  3 = (a, x, b;  u, z, v;  c, y, d)  and  z' =
– x + u + "z – v + y)

(1) (P2A)n  =  (An<An+1<An) < (An+1<An+2<An+1) < (An<An+1<An)

(2) "(3)  =  ("a,  – a – "x + b,  "b;   – a – "u + c,  z',  – b – "v + d;   "c,  – c – "y + d,  "d)

(3) "–P(3)  =  (a, x, b), "+P(3)  =  (c, y, d)

P"–(3)  =  (a, u, c), P"+(3)  =  (b, v, d)

(4) g–(a, x, b)  =  (a, x, b;  x, 0, 0;  b, 0, b), g+(a, x, b)  =  (a, 0, a;  0, 0, x;  a, x, b)

(5) s (3)   =   (a, u, c;  x, – z, y;  b, v, d).

The homotopy pullback of  f: A  C  and  g: B  C  is

(6) (P(f, g))n  =  An<Cn+1<Bn, "(a, x, b)  =  ("a, – fa – "x + gb, "b).

4.3. Lens collapse. Consider four homotopies  %, &, 0, 1: X PA,  connecting four maps  a, b, c, d:
X A,  as below. By 4.2.1-2, a double homotopy  /: X  P2A  with boundary
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 &
c d %  =  (a, x, b):  a  b, 0  =  (a, u, c):  a  c

(1)   0     /     1

a b &  =  (c, y, d):  c  d, 1  =  (b, v, d):  b  d
%

amounts to a map  z = /•: |X| 2 |A|  of graded objects, of degree 2, the centre of /, satisfying

(2) "z – z"  =  x + v – y – u:  |X| 1 |A|

where  x + v – y – u = (% + 1 – & – 0)•  is the centre of the anti-clockwise endohomotopy of  a: X 
A  determined by the boundary, the endohomotopy associated to  /.

The lens collapse  w  for the path functor is determined by the previous structure (1.5.3), as

(3) w: P2A  P2A, w (a, x, b;  u, z, v;  c, y, d)  =  (a, x+v, d;  0, z, 0;  a, u+y, d).

The lens conversion turns thus a double homotopy  /: X P2A  with boundary  %, &, 0, 1  into
the cell-homotopy  w/: %+1  0+&,  preserving the centre (note that  /  and  w/  have the same
associated endohomotopy  % + 1 – & – 0),  which directly shows it is bijective.

4.4. Chain algebras. Let us restrict now our attention to the category  Dm = C (R-Mod)  of d-
modules, i.e. unbounded chain complexes of R-modules, for a fixed commutative unitary ring  R.
Now, the path and cylinder functor (as well as their operations) can be obtained as  PA = Hom(i, A)
and  IA = i;A,  via the closed monoidal structure of  Dm  and the "standard interval"  i,  a complex
concentrated in degrees 0 and 1

(1) i  =  ( ... 0  R  R<R  0 ... ), "1(x)  =  (– x, x).

Consider also the category  Da  of associative d-algebras, over  R;  this will mean a d-module  A
equipped with an associative product consistent with the differential  ("(x.y) = "x.y + 4x."y).  This
category is equivalent to the category  DA  of augmented unitary associative d-algebras, which is more
commonly used but often presents more complicated constructions.

Da  is monadic over  Dm,  and again we identify  DmT = Da

(2) F :  Dm Da :  U, #:  1  UF, 6: FU  1

FX  =  (7n>0 X;n, ;) (x1; ... ;xp) ; (xp+1; ... ;xn)  =  x1; ... ;xn

#: X 8 UFX, 6: FUA  A, 6(x1; ... ;xn)  =  x1. ... .xn

(3) T  =  UF: Dm  Dm, TX  =  7n>0 X;n

µ  =  U6F: T2  T

µ((x11;...;x1p1) ;...; (xn1; ... ;xnpn))  =  x11;...;xnpn.

The P0-structure of  Dm  is consistent with the monad, through the natural transformation

(4) !: TP  PT, !X: 7n>0 (PX);n  P(7n>0 X;n)

(x1, z1, y1) ;...; (xn, zn, yn)  

(x1;...;xn,  7i (
4x1;...;4xi–1;zi;yi+1;...;yn),  y1;...;yn)

so that  PT(X, t) = (PX, Pt.!)  is the path-module  PX  with the usual multiplication
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(5) (x1, z1, y1).(x2, z2, y2)  =  (x1.x2,  4x1.z2 + z1.y2,  y1.y2).

Da = DmT  is thus IP0-homotopical, with path functor  P = PT.  The symmetric cubical comonad
(P, "', e, g', s)  over  Dm  is consistent with the monad and lifts to algebras. This structure, studied in
[8], is already sufficient to develop the basic notions of homotopical algebra. On the other hand, the
reversion, composition and lens collapse are just consistent with the monad up to homotopy; which is
"why"  Da  lacks reversion and sum of homotopies (as well known) and lens collapse. Again, this
makes evident the interest of studying a homotopy relaxation of algebras (see [21, 10]).

The cylinder functor  I  left adjoint to  P  can be calculated as a quotient of the free chain algebra
FI|A|  over the cylinder of the underlying chain complex, imposing some relations which come from
the multiplicative structure of  A  [8].

5. Slice categories and fibrewise homotopy

Slice categories  A\A  (resp. A/B)  can be viewed as categories of algebras (resp. coalgebras) over  A,
finding again the lifting results for the path (resp. cylinder) functor exposed in [9].

For the homotopy theory of (strict or relaxed) slice categories of spaces see Baues [1], James [13],
Hardie and Kamps [11, 12] and their references; homotopy in  Top/B  is called fibrewise homotopy.

5.1. Objects under A as algebras. The classical topological example of a slice category is  Top  =
Top\ ,  the category of pointed spaces or "spaces under the point"   = {*}:  an object  (X, t)  is a
map  t:   X  in  Top;  pointed maps are defined coherently.

In the same way, if  A  is a category and  A  an object, the slice category  A\A  of objects under A
has objects  (X, t),  with  t: A  X  in  A;  a morphism  f: (X, t)  (X', t')  is given by an  A-map  f: X

 X'  such that  f.t = t'.

If  A  has finite sums, the (obvious) forgetful functor  U: A\A  A  is monadic over  A.  Indeed,
U  has a left adjoint  F:  A  A\A,  with unit  #:  1  UF,  counit  6: FU  1

(1) FX  =  (X+A, j: A 8 X+A) #X: X 8 X+A

6(X, t): (X+A, j)  (X, t), 6(x)  =  x, 6(a)  =  t(a)

supplying a monad over  A

(2) T  =  UF: A  A, TX  =  X+A

#X: X 8 X+A, µ  =  U6F: T2  T

(µX: X+A+A  X+A, µ.in1  =  in1, µ.in2  =  µ.in3  =  in2.)

It is easy to see that a T-algebra  (X, :: X+A  X)  has just to satisfy  :.# = idX  (the multiplica-
tion axiom being trivially satisfied) and reduces to an arbitrary object under  A,  (X, t: A  X),  with  t
= :.j.  We identify thus  AT = A\A.

5.2. The homotopy structure of Top\A. First, the cocylinder  P: Top  Top  preserves sums. It is
a T-functor, with  !X  the obvious embedding defined by the degenerate-path embedding  e: A  PA
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(1) !: TP  PT, !X: PX+A  8  P(X+A)  =  PX + PA

!.#P  =  P#: PX 8 P(X+A)

!.µP  =  Pµ.!T.T!:  PX + A + A  PX + PA.

The canonical lifting to T-algebras,  PT: TopT  TopT

(2) PT(X, :)  =  (PX, P:.!), P:.!  =  (PX+A  8  P(X+A)  PX)

acts equivalently on a space under  A,  in the obvious way

(3) PT(X, t: A  X)  =  (PX, Pt.e).

To prove that the operations of the P4-structure of  Top  are T-transformations, we proceed as for
topological semigroups (3.2). Taking into account our choice of  Q = P  for  Top  (1.2), all the
operations  ("�', e, g', r, s, k', z, w)  are defined by suitable continuous function between powers of the
unit interval, through contravariant composition

(4) f0: [0, 1]q  [0, 1]p

fX: PpX  PqX (,: [0, 1]p  X)    (,f0: [0, 1]q  X)

and all such transformations are consistent with  !,  i.e.

(5) fT.!Pp  =  !Pq.Tf: T.Pp  Pq.T.

In fact, after noting that the transformation making  Pq  a T-functor is the embedding

(6) !Pq  =  Pq–1!. ... .P!Pq–2.!Pq–1:  T.Pq  Pq.T

!PqX: PqX + A  8  PqX + PqA

the property (5) above is an easy consequence. Moreover, the lifting of  k'  to T-algebras makes  PT(X,
t)  into the composition-pullback of  (X, t).

By 2.6, we have thus proved that  TopT = Top\A  is IP4-homotopical, with path functor  PT.  The
cylinder functor  IT  (derived from 2.7 or directly calculated) is

(7) IT: Top\A  Top\A, IT(X, t: A  X)  =  (IX/R, t')

where  IX = [0, 1]×X  is the usual cylinder and  R  is the congruence spanned by the following relation
(making  t'(a) = [:, t(a)]  well defined)

(8) (:, t(a))  R0  (:', t(a)) (:, :' . [0, 1];   a . A).

5.3. Objects over B as coalgebras and fibrewise homotopy. Dually, if  A  has finite products and
B  is any object, the forgetful functor  U: A/B  A  is comonadic over  A.  The comonad  (T, 6, ))  is
given by the right adjoint  R

(1) RX  =  (X×B, pr2: X×B  B), #:  1  RU, 6: UR  1

(2) T  =  UR: A  A, TX  =  X×B

6: T  1, 6X  =  pr1: X×B  X

)  =  R#U: T  T2 )X  =  X×diag: X×B  X×B×B.
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Its coalgebras  (X, :: X  X×B)  (satisfying  pr1.: = idX)  can be identified with objects  (X, t: X
 B)  over  B,  with  t = pr2.:.  Thus,  AT = A/B  (AT  denotes now the category of T-coalgebras).

Take  A = Top  and  B  any (non empty) space.  A morphism  f: (X, t: X  B)  (Y, u: Y  B)
is also called a fibre map over  B,  since it takes t-fibres into u-fibres. The cylinder functor  I = [0, 1]×

- : Top  Top  is a strong T-functor, with  !X: I(X×B)  (IX)×B  the canonical homeomorphism.
One can now lift the cylinder functor of  A

(3) IT(X, :: X  X×B)  =  (IX,  !X.I:: IX  I(X)×B)

( IT(X, t: X  B)  =  (IX,  pr2.It: IX  B) )

with the whole structure making   TopT = Top/B  an IP4-homotopical category (2.6).

This structure is the usual one, concerning fibrewise homotopies. Indeed, given two fibre maps  f,
g: (X, t)  (Y, u),  a map  %: IT(X, t)  (Y, u)  whose faces are  f  and  g  amounts to an ordinary
homotopy  %: f  g: X  Y  such that, for all  x.X,  the path  %(:, x)  (:.[0, 1])  is contained in a u-
fibre of  Y  (necessarily, the one over  t(x) = uf(x) = ug(x)).

Again, the cocylinder functor  PT,  right adjoint to  IT  can be derived from 2.7, or - more simply -
from the above description of homotopies

(4) TopT (IT(X, t), (Y, u))  =  TopT ((X, t), PT(Y, u))

(5) PT: Top/B  Top/B

PT(Y, u: Y  B)  =  (P'Y, u'), P'(Y)  =  {! . PY  |  t°!  is constant}.
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