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ABSTRACT.

We have introduced, in a previous paper, the fundamental lax 2-category of a ‘directed
space’ X. Here we show that, when X has a T1-topology, this structure can be embedded
into a larger one, with the same objects (the points of X), the same arrows (the directed
paths) and the same cells (based on directed homotopies of paths), but a larger system
of comparison cells.

The new comparison cells are absolute, in the sense that they only depend on the arrows
themselves rather than on their syntactic expression, as in the usual settings of lax or
weak structures. It follows that, in the original structure, all the diagrams of comparison
cells commute, even if not constructed in a natural way and even if the composed cells
need not stay within the old system.

Introduction

The purpose of this paper is solving a problem which appeared in a previous one [13]:
can one define, for a directed space (see below), a fundamental absolute lax 2-category,
with absolute comparisons, not depending on the syntactic expression of the arrows to be
compared? The paper [13] will be cited as Part I; the reference I.2, or I.2.3, or I.2.3.4
applies to its Section 2, or its Subsection 2.3, or item (4) in the latter, respectively.

The problem can be better explained recalling the main structures in two dimensional
category theory, as they have appeared in the literature:

(a) the structure of monoidal category, whose axioms are motivated by Mac Lane’s co-
herence theorem for comparison cells ([16], 1963) and Kelly’s reduction to two conditions
([14], 1964);

(b) the structure of (strict) 2-category (Bénabou [2], C. Ehresmann [7], 1965);

(c) its weak version, a bicategory (Bénabou [3], 1967), where the unit and associativity
laws of arrow-composition are replaced with invertible comparison cells, like f ∼= f ◦1x,
(h◦g)◦f ∼= h◦(g◦f) (and monoidal categories are included as bicategories with one object);

(d) a first lax version, Burroni’s pseudocategory ([6],1971), which has non-invertible com-
parison cells, with the following choice of directions

f → f ◦1x, f → 1y ◦f, (h◦g)◦f → h◦(g◦f). (1)
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After this paper, the study of lax two dimensional categories did not progress until,
quite recently, Leinster introduced an unbiased lax bicategory ([15] Section 3.4; 2004),
where all n-fold compositions fn ◦...◦f1 are assigned and there are comparison cells from
each iterated composition to the corresponding multiple composition, as in the following
examples

(k◦h◦g)◦f → k◦h◦g◦f, (1◦(g◦1))◦f → g◦f. (2)

Note that, here, there is no single comparison cell between (h◦g)◦f and h◦(g ◦f), but
there is one from each of them to h◦g ◦f . On a more general ground, we follow (in Part
I and here) his terminology, distinguishing biased and unbiased settings: a biased one is
founded on binary (and nullary) compositions, while an unbiased setting works with all
n-ary compositions (at least where strict laws are not assumed).

Our approach, in Part I, is based on a ‘geometric guideline’ derived from Directed
Algebraic Topology. This recent domain studies structures having privileged directions,
like ‘directed spaces’ in some sense: ordered topological spaces, d-spaces (‘spaces with
distinguished paths’, cf. 1.1), simplicial and cubical sets, etc. Such objects have directed
paths and homotopies, which cannot be reversed, generally. They can thus model non-
reversible phenomena, in various domains; the existing applications deal mostly with the
analysis of concurrent processes, in Computer Science (references for these applications
can be found in [8, 9, 10, 12]).

Given a d-space X, the fundamental category ↑Π1(X) has been defined and studied in
[10]; the (obvious) definition is recalled below (1.1). Then, in Part I, we have introduced
a fundamental biased d-lax 2-category ↑bΠ2(X), where an arrow a : x→ y is a (directed)
path and a cell [α] : a → b : x → y is a ‘homotopy class of (directed) homotopies’, with
fixed boundary (see I.2). Writing a⊗b for the concatenation of consecutive paths, our
structure has comparison cells

1x⊗a→ a→ a⊗1y, a⊗(b⊗c)→ (a⊗b)⊗c, (3)

whose direction comes from the fact that, in a directed space, a comparison homotopy
has to move from a concatenation to another which, at each instant t ∈ [0, 1], has made a
longer way than the initial one. The term ‘d-lax’ is meant to recall this fact: lax structures
come around in different forms, the present ones being essentially different from Burroni’s
and Leinster’s.

Similarly we have defined, in I.3, a fundamental unbiased d-lax 2-category ↑uΠ2(X),
where we have multiple concatenations a1⊗...⊗an and new comparison cells, like

a⊗(b⊗c)→ a⊗b⊗c→ (a⊗b)⊗c. (4)

In both cases, of course, the general notion of a d-lax 2-category, biased or unbiased,
is explicitly given. We ended with formulating the problem (I.3.8) investigated here: is it
possible to define an ‘absolute’ d-lax fundamental 2-category, with absolute comparisons
ϕ(a, b) : a → b, only depending on the actual values of the paths a, b, yet containing the
previous syntactic comparisons? Note that, as a consequence, all diagrams of comparison
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cells of ↑bΠ2(X) and ↑uΠ2(X) will commute, even if not naturally constructed and even
if their composed cells might not stay within the old system (cf. 2.4).

This question was suggested by the fact that a possible solution (now dealt with in
2.1), was clear from the beginning: given two paths a, b : x→ y in the d-space X, we say
that a ≺ b if there exist two reparametrisation functions f, g : [0, 1] → [0, 1] (increasing,
surjective and piecewise affine) such that

af = bg, f ≥ id ≥ g. (5)

Then, we have an obvious comparison cell ϕ(a, b) : a→ b constructed with two affine
interpolations ϕ0(id, f) : id → f and ϕ0(g, id) : g → id, which are directed homotopies
precisely because of the inequalities id ≤ f and g ≤ id. (Details can be found in 2.1.)

The difficulty was proving that this cell a → b is indeed absolute, i.e. that it only
depends on a, b and not on the choice of f, g.

This is proved here (Section 4), on the basis of a series of results on reparametrisation
functions (Section 3), but under a condition of separation: we assume that our d-spaces
have a T1-topology (i.e., all points are closed). It would be interesting either to drop this
restriction or to show that one cannot. In fact, assuming some separation axiom is not
new in establishing two dimensional homotopy categories: the papers [4, 5] work with
Hausdorff spaces.

Acknowledgements. This work was begun while I was a guest of Martin Hyland at
D.P.M.M.S., Cambridge, UK, discussing with him the initial setting. Then, I got into
problems with reparametrisation functions, missing the final steps (3.6-3.8) up to the
end. I express my gratitude to two colleagues at my Department, Ada Aruffo and Gi-
anfranco Bottaro, for advice and comfort while I felt stranded in an unfamiliar land,
wondering whether I would ever find the way, or just a way out.

1. Review of the (unbiased) syntactic approach

We extract here, from Part I, the main points establishing the fundamental d-lax 2-
category ↑uΠ2(X) of a d-space X, in the unbiased version (i.e., with multiple compositions
of arrows).

1.1. Spaces with distinguished paths. As in Part I, we shall work in the setting
introduced in [10].

A d-space is a topological spaceX equipped with a set dX of (continuous) maps a : I→
X, defined on the standard interval I = [0, 1]; these maps, called distinguished paths or d-
paths, must contain all constant paths and be closed under concatenation and ‘increasing
change of parametrisation’ on I: if a : I → X is in dX and h : I → I is a continuous
order-preserving function (possibly not surjective), then ah is also distinguished.

A d-map f : X → Y (or map of d-spaces) is a continuous mapping between d-spaces
which preserves the distinguished paths: if a ∈ dX, then fa ∈ dY .
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The category of d-spaces is written as dTop. It has all limits and colimits, constructed
as in Top (the category of topological spaces) and equipped with the initial or final d-
structure for the structural maps; for instance a path I →

∏
Xj is distinguished if and

only if all its components I→ Xj are so. The forgetful functor U : dTop→ Top preserves
thus all limits and colimits; a topological space is generally viewed as a d-space by its
natural structure, where all (continuous) paths are directed (via the right adjoint to U).

Reversing d-paths, by the involution r(t) = 1 − t, yields the reflected, or opposite,
d-space RX = Xop, where a ∈ d(Xop) if and only if aop = ar is in dX.

The standard d-interval ↑I = ↑[0, 1] has distinguished paths given by the (weakly)
increasing maps I → I. The standard directed circle ↑S1 = ↑I/∂I has the (obvious)
quotient d-structure, where distinguished paths have to follow a precise orientation. (But
note that the directed structure ↑S1×↑S1 on the torus is not related with an orientation
of this surface.)

A (directed) path of a d-space X is a map ↑I→ X, which simply means a distinguished
path in the d-structure of X itself. A (directed) homotopy ϕ : f → g : X → Y is a map
ϕ : X×↑I → Y coinciding with f (resp. g) on the lower (resp. upper) basis of the
cylinder X×↑I. In particular, a 2-homotopy ϕ : a→ b : ↑I→ X is a homotopy with fixed
endpoints, which means that the mapping ϕ : ↑I×↑I → X induces two constant paths,
ϕ(0,−) : a(0)→ b(0) and ϕ(1,−) : a(1)→ b(1).

The fundamental category ↑Π1(X) has objects in X, and for arrows, the classes
[a] : x → x′ of directed paths, up to the equivalence relation generated by 2-homotopies;
composition is given by the concatenation of consecutive paths, written as [a]⊗[b] = [a⊗b]
for [a] : x → x′, [b] : x′ → x′′. The category ↑Π1(X) can be computed by a van Kampen-
type theorem, as proved in [10], Thm. 3.6.

An alternative setting, inequilogical spaces, introduced in [11] as a directed version of
Dana Scott’s equilogical spaces [17, 1], could also be used - but would require a more
complicated procedure to concatenate paths and homotopies (cf. [11]).

1.2. Definition. An unbiased d-lax 2-category A, as defined in I.3.3, consists of the
following data (and properties).
(udl.0) A set of objects, ObA.
(udl.1) For any pair of objects x, y, a category A(x, y) of maps a : x → y and cells
α : a→ b, with main, or upper-level, composition α⊗2 β : a→ b→ c and units 1a : a→ a.
(udl.2) For any sequence of objects x0, ..., xn, a functor of lower n-ary composition

A(x0, x1)×...×A(xn−1, xn)→ A(x0, xn), (a1, ..., an) 7→ a1⊗...⊗an, (6)

which, for n = 0, amounts to assigning an identity 1x0: x0 → x0. This defines also the
tree-composition 〈a1, ..., an; τ〉 of a sequence of n consecutive maps, along a tree (cf. 1.3)
with n leaves (n > 0); for a tree with no leaves, we have a tree-composition of identities
of one object, 〈x; τ〉.
(udl.3) For every pair of trees τ, τ ′ with n leaves and reparametrisation functions r(τ) ≤
r(τ ′) (cf. 1.4), a natural transformation (syntactic comparison) of ordinary functors in n
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variables

ϕ(τ, τ ′) : 〈−; τ, 〉 → 〈−; τ ′〉 : A(x0, x1)×...×A(xn−1, xn)→ A(x0, xn),

ϕ(a1, ..., an; τ, τ
′) : 〈a1, ..., an; τ〉 → 〈a1, ..., an; τ

′〉 : a1(x0)→ an(xn),
(7)

whose general component is a cell between two tree-compositions of the same sequence of
maps.
(udl.4) (coherence) Every diagram (universally) constructed with comparison cells, via⊗-
and⊗2-compositions, commutes.

More explicitly, the last axiom means that:

r(τ) ≤ r(τ ′) ≤ r(τ ′′) ⇒ ϕ(τ ′, τ ′′)◦ϕ(τ, τ ′) = ϕ(τ, τ ′′),

r(σ1) ≤ r(τ1), ..., r(σn) ≤ r(τn) ⇒
ϕ(σ1, τ1)⊗...⊗ϕ(σn, τn) = ϕ((σ1, ..., σn), (τ1, ..., τn)).

(8)

(Note that, in the second case, r((σ1, ..., σn)) ≤ r((τ1, ..., τn)).

1.3. Trees. We are using the notion of tree defined in [15], 2.3.3, which we call a
composition tree. A tree-composition, written 〈a1, a2, ..., an; τ〉, consists of a finite tree
τ whose n leaves are labelled by a sequence of n consecutive arrows a1, ..., an, as in the
following examples

a⊗(b⊗c), a⊗b⊗c, (a⊗b)⊗c, a⊗1, (9)

τ τ ′ τ ′′ τ ′′′

a a a ab b bc c c

•

•
•

•

•
•

•?????????
�����

?????
�����

???????

�������
?????

���������

?????
�����

444444









The last tree has two shoots, namely one leaf and one bare shoot
•|

We only label leaves: there is no need of labelling bare shoots, since the corresponding
identities are determined by the adjacent arrows; unless all shoots are bare, in which
case one labelling object suffices: thus 〈x; τ〉 will denote 1x⊗(1x⊗1x), if τ is the ‘pruned
version’ of the first tree above, with all shoots bare. (In the biased case, one would only
use dichotomic trees, with twofold bifurcations; all the examples above are of this type,
except the second, which is related with ternary composition.)

1.4. Reparametrisation functions. A reparametrisation function r : ↑I → ↑I
will be a (continuous) increasing, surjective, piecewise affine endofunction of the standard
interval.

A composition tree has a reparametrisation function r(τ) defined abstractly, as recalled
below; but the construction is more easily understood noting that, in a d-space X, r(τ)



6

determines a tree-composition of paths 〈a1, ..., an; τ〉 by reparametrising the corresponding
standard n-ary concatenation a1⊗...⊗an

〈a1, ..., an; τ〉 = (a1⊗...⊗an)◦r(τ) : ↑I→ X. (10)

For instance, for the tree-composition (a⊗b)⊗1⊗c = 〈a, b, c; τ〉, the piecewise affine
function r = r(τ) : ↑I→ ↑I is

a b c

τ

1

h1 h2 h3 h4

•

•

•

• • • • •

•

•

•

������������

oooooooooOOOOOOOOO

������������

??????��
��

��

//

OO

(11)

h1 = h2 = 1/6, h3 = h4 = 1/3; r(1/6) = 1/3, r(2/6) = r(4/6) = 2/3.

The definition of r(τ), for a composition tree with n leaves and m shoots (m ≥ n),
proceeds as follows. First, the duration sequence h(τ) = (h1, ..., hm) is defined letting
h−1
i be the product of the multiplicities of the nodes which precede the i-th shoot. (In

the ‘geometric case’, hi is the length of the time-interval on which the concatenated path
goes along the i-th component.) Secondly, the cumulative sequence k(τ) = (k1, ..., km) has
ki =

∑
j≤i hj, with km =

∑
hi = 1.

Finally, the reparametrisation function is affine on each interval [ki−1, ki] (i = 1, ...,m),
and increases on the latter of 1/n or 0, when the i-th shoot is, respectively, a leaf or bare.
(An inductive definition can be found in I.3.4a.) For a pruned tree (i.e., n = 0), the
function is the identity.

Reparametrisation functions have a rich structure, after being a monoid for compo-
sition and a lattice for the pointwise order r ≤ r′ (the notation r′ will never refer to a
derivative). First, they have an n-ary concatenation, consistent with the preorder

(r1⊗...⊗rn)(t) = (i− 1)/n+ ri(nt− i+ 1)/n, for (i− 1)/n ≤ t ≤ i/n. (12)

Furthermore, if r ≤ r′, there is an interpolating directed 2-homotopy, by affine inter-
polation along the (directed!) segment from r(τ)(s) to r(τ ′)(s) (in ↑I)

ϕ0(r, r
′) : r → r′ : ↑I→ ↑I, ϕ0(r, r

′)(s, t) = (1− t).r(s) + t.r′(s). (13)

As a crucial point, its class [ϕ0(r, r
′)] up to 3-homotopy (with fixed boundary) is

uniquely determined within all 2-cells r → r′. In fact, if α, β : r → r′ are 2-homotopies,
also (α ∨ β)(s, t) = max(α(s, t), β(s, t)) is so, and - plainly - there are 3-homotopies
α→ α ∨ β ← β.
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(Reparametrisation functions, with the pointwise order and the tensor product de-
scribed above, form an ordered d-lax monoidal category, which is a very special case of
an absolute one: cf. I.3.7. Composition trees form a preordered one, cf. I.3.4. Note
also that, in Part I, the ‘piecewise affine’ condition was only suggested as a possibility, in
the general definition of reparametrisation function; but, of course, all the functions r(τ)
produced by trees are so, by construction.)

1.5. Definition. Starting from a d-space X, the fundamental unbiased d-lax 2-
category ↑uΠ2(X), defined in I.3.1, has the following objects, arrows, cells, compositions
and comparisons (common with the biased case, up to point (d), cf. I.2.2).
(a) An object is a point of X.
(b) An arrow a : x → y is a (directed) path a : ↑I → X with a(0) = x, a(1) = y; the
unit-arrow 1x : x→ x is the constant path at x.
(c) A cell [α] : a→ a′ : x→ y is a homotopy class of homotopies of paths; more precisely,
α is a (directed) 2-homotopy a → a′ (with fixed endpoints), which means that the map
α : ↑I2 → X has the boundary represented below (the double lines represent constant
paths)

x a // y •
s //

t��α

x
a′

// y

(14)

and its homotopy class [α] is up to the equivalence relation generated by 3-homotopies
α′ → α′′ (with fixed boundary); the unit-cell 1a : a → a is the class of the trivial 2-
homotopy ca(s, t) = a(s).
(d) The main composition, or upper-level composition, of [α] with [α′] : a′ → a′′ : x → y
is defined by the pasting α ⊗2 α

′ of any two representatives, with respect to the second
variable

[α]⊗2 [α′] : a→ a′′ : x→ y, [α]⊗2 [α′] = [α⊗2 α
′];

(α⊗2 α
′)(s, t) =

{
α(s, 2t), 0 ≤ t ≤ 1/2,

α′(s, 2t− 1), 1/2 ≤ t ≤ 1.

(15)

(e) The n-ary lower composition of (consecutive) maps and cells

a = a1⊗a2⊗...⊗an, α = α1⊗α2⊗...⊗αn, (16)

is realised in the obvious way:

a(t) = ai(nt− i+ 1), for (i− 1)/n ≤ t ≤ i/n,

α(t, t′) = αi(nt− i+ 1, t′), for (i− 1)/n ≤ t ≤ i/n.
(17)

(f) The comparison cell

[ϕ(a1, ..., an; τ, τ
′)] : 〈a1, ..., an; τ〉 → 〈a1, ..., an; τ

′〉, r(τ) ≤ r(τ ′), (18)
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where a1, ..., an are consecutive paths and τ, τ ′ have n leaves, is given by the homotopy

ϕ(a1, ..., an; τ, τ
′) = (a1⊗...⊗an)◦ϕ0(τ, τ

′) : ↑I×↑I→ X,

ϕ0(τ, τ
′) : ↑I×↑I→ ↑I, ϕ0(τ, τ

′)(s, t) = (1− t).r(τ)(s) + t.r(τ ′)(s),
(19)

r(0)
r(τ) // r(1) •

s //

t
��

ϕ0(τ, τ
′)

r′(0)
r(τ ′)

// r′(1)

which derives from the interpolating 2-homotopy ϕ0(τ, τ
′) = ϕ0(r(τ), r(τ

′)) : r(τ)→ r(τ ′)
(cf. (13)).

2. The absolute approach

We define absolute d-lax 2-categories (2.3), and construct the fundamental such struc-
ture ↑LΠ2(X) for a d-space X having a T1-topology. We start from this construct, as a
motivation for the abstract notion.

2.1. Absolute comparisons. Let X be always a d-space with T1-topology. We pro-
ceed to construct the fundamental absolute (unbiased) d-lax 2-category ↑LΠ2(X), with
the same objects, arrows and cells as ↑uΠ2(X), in Section 1, but extending the syntactic
comparisons ϕ(a1, ..., an; τ, τ

′) of 1.5 with absolute comparisons ϕ(a, b) : a → b, only de-
pending on the actual values of the paths a, b (rather than on their being produced by
tree-concatenations which are ‘directly comparable’).

The construction is based on the set of reparametrisation functions ↑I→ ↑I (1.4), i.e.
(continuous) increasing, surjective, piecewise affine endofunctions of the standard interval.
The main results stated here will be proved in Section 4 (on the basis of various lemmas
on these functions, stated and proved in Section 3).

Take two paths a, b : x→ x′ in X and say that a ≺ b if there exist two reparametrisa-
tion functions f, g : ↑I→ ↑I such that

af = bg, f ≥ id ≥ g. (20)

(Thus, instead of requiring, as in (18), that a, b be comparable reparametrisations of
some given normal form, we ask that a, b have a common reparametrisation af = bg, with
suitable inequalities.)

Then, there is a comparison, constructed with interpolating 2-homotopies (cf. (13))

ϕ(a, b) : a→ b (f ≥ id ≥ g),

ϕ(a, b) = [aϕ0(id, f)]⊗2 [bϕ0(g, id)] : a→ af = bg → b,

ϕ0(id, f) : id→ f : ↑I→ ↑I, ϕ0(g, id) : g → id : ↑I→ ↑I.
(21)
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This does not depend on the choice of f, g - as we shall prove in Thm. 4.1 - and will
be called the absolute comparison from a to b.

The relation a ≺ b is obviously reflexive, and ϕ(a, a) = 1a. We shall prove in Thm.
4.2 that it is also transitive, and:

ϕ(a, b)⊗2 ϕ(b, c) = ϕ(a, c) (for a ≺ b ≺ c). (22)

Our preorder and comparisons are also consistent with n-ary concatenation: given a
finite sequence of pairs of comparable paths ai ≺ bi : xi−1 → xi(i = 1, ..., n), the tensor
product of reparametrisation functions (defined in (12)) shows that:

a1⊗...⊗an ≺ b1⊗...⊗bn,
ϕ(a1, b1)⊗...⊗ϕ(an, bn) = ϕ(a1⊗...⊗an, b1⊗...⊗bn).

(23)

2.2. Reviewing syntactic comparisons. Now, coming back to the unbiased d-lax
2-category ↑uΠ2(X), every syntactic comparison between multiple concatenations of paths
is also an absolute one. (Comments on this fact can be found in 2.4.)

In fact, a syntactic comparison ϕ can be expressed as follows (cf. (18)), writing
c = a1⊗...⊗an

ϕ = ϕ(a1, ..., an; τ, τ
′) = [cϕ0(f, g)] : cf → cg (f = r(τ) ≤ r(τ ′) = g). (24)

Since f ≤ g, the Balance Lemma (3.3) will prove that there exist reparametrisation
functions h, k such that fh = gk and h ≥ id ≥ k. But then

cfh = cgk (cf ≺ cg), (25)

and ϕ coincides with the absolute comparison ϕ(cf, cg), as defined above, in (21)

ϕ = [cϕ0(f, g)] = [c(ϕ0(f, fh)⊗2 ϕ0(gk, g))]
= [cfϕ0(id, h)]⊗2 [cgϕ0(k, id)] = ϕ(cf, cg).

(26)

In particular, the relations 1⊗a ≺ a ≺ a⊗1 and a⊗(b⊗c) ≺ (a⊗b)⊗c can be expressed
by the following reparametrisation functions g, f, h, k

1⊗a = ag, g(s) = max(0, 2s− 1) (g ≤ id),
af = a⊗1, f(s) = min(2s, 1) (f ≥ id),

(27)

(a⊗(b⊗c))h = a⊗b⊗c = ((a⊗b)⊗c)k (h ≥ id ≥ k), (28)

h(s) =

{
3s/2, 0 ≤ s ≤ 1/3,

(3s+ 1)/4, 1/3 ≤ s ≤ 1,

k(s) =

{
3s/4, 0 ≤ s ≤ 2/3,

(3s− 1)/2, 2/3 ≤ s ≤ 1.



10

2.3. Definition. An absolute (unbiased) d-lax 2-category A will consist of the
following data (and properties).
(dL.0) A set of objects, ObA.
(dL.1) For any two objects x, y, a category A(x, y) of maps a : x→ y and cells α : a→ b,
with main, or upper-level, composition α⊗2 β : a→ b→ c and units 1a : a→ a.
(dL.2) For any sequence of objects x0, ..., xn, a functor of lower n-ary composition

A(x0, x1)×...×A(xn−1, xn)→ A(x0, xn), (a1, ..., an) 7→ a1⊗...⊗an,

which, for n = 0, reduces to a lower identity 1x0 .
(dL.3) A preorder a ≺ b on every set of maps A1(x, y), together with assigned absolute
comparison cells ϕ(a, b) such that:

ϕ(a, b) : a→ b (for a ≺ b), (29)

ϕ(a, a) = 1a, ϕ(a, b)⊗2 ϕ(b, c) = ϕ(a, c) (for a ≺ b ≺ c), (30)

(ϕ is a functor A1(x, y)→ A(x, y), defined on the preorder category).
(dL.4) The preorder and its comparisons are consistent with n-ary composition: given a
finite sequence ai ≺ bi : xi−1 → xi (i = 1, ..., n) of consecutive pairs of comparable arrows

a1⊗...⊗an ≺ b1⊗...⊗bn,
ϕ(a1, b1)⊗...⊗ϕ(an, bn) = ϕ(a1⊗...⊗an, b1⊗...⊗bn).

(31)

(dL.5) Given a pair of trees τ, τ ′ with n leaves and reparametrisation functions r(τ) ≤
r(τ ′), every sequence (a1, ..., an) of n consecutive arrows produces the following relation
between its concatenations of types τ, τ ′

〈a1, ..., an; τ〉 ≺ 〈a1, ..., an; τ
′〉; (32)

moreover, the associated absolute comparisons (for variable (a1, ..., an)) produce a natural
transformation (syntactic comparison) of ordinary functors in n variables

ϕ(τ, τ ′) : 〈−; τ, 〉 → 〈−; τ ′〉 : A(x0, x1)×...×A(xn−1, xn)→ A(x0, xn),

ϕ(τ, τ ′)(a1, ..., an) = ϕ(〈a1, ..., an; τ〉, 〈a1, ..., an; τ
′〉).

(33)

An absolute d-lax 2-category A contains an associated unbiased d-lax 2-category uA,
just by restricting comparisons to the syntactic ones. (And the latter contains an associ-
ated biased d-lax 2-category b(uA), by I.3.4c.)

2.4. Theorem. [Main Theorem] The structure ↑LΠ2(X) constructed in 2.1 for a
d-space X with T1-topology is indeed an absolute d-lax 2-category. Its associated unbiased
structure coincides with ↑uΠ2(X), giving

↑bΠ2(X) ⊂ ↑uΠ2(X) ⊂ ↑LΠ2(X). (34)
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For the second inclusion, the only difference concerns comparison cells.
Comments. This proves that also the syntactic comparisons are determined by the

arrows they link, and that all diagrams of comparison cells in ↑bΠ2(X) and ↑uΠ2(X)
commute, even when not naturally constructed (but exploiting some specific coincidence).
However, while the absolute comparisons of ↑LΠ2(X) are closed under composition (cf.
(30)), the syntactic ones are only known to be closed under ‘syntactic composition’, in a
naturally constructed diagram (cf. (8)).

Proof. See 2.1, 2.2 and the next two sections, where we will prove the arguments we
have deferred. Note that, since we have proved the inclusion (34) in (26), the naturality
requirement in (dL.5) only concerns the unbiased structure ↑uΠ2(X), and has been proved
in Part I (I.3.5).

2.5. Functoriality. A map f : X → Y of d-spaces with T1-topology induces a strict
2-functor between absolute d-lax 2-categories

f∗ : ↑LΠ2(X)→ ↑LΠ2(Y ),

f∗(x) = f(x), f∗(a : x→ x′) = (f ◦a : fx→ fx′), f∗[α] = [fα].
(35)

This takes objects, arrows and cells of ↑LΠ2(X) to similar items of ↑LΠ2(Y ), preserving
the whole structure: domains, codomains, units, compositions, preorder and comparisons.
Thus, if a ≺ b in X, we have

f∗(a) ≺ f∗(b) in Y, f∗(ϕ
X(a, b)) = ϕY (f∗(a), f∗(b)). (36)

Furthermore, a (directed) homotopy α : f → g : X → Y , represented by a map α : X×
↑I→ Y , induces a lax natural transformation of 2-functors

α∗ : f∗ → g∗ : ↑LΠ2(X)→ ↑LΠ2(Y ),

α∗(x) = α(x,−) : f(x)→ g(x), α∗(a : x→ x′) = [α̂∗(a)],
(37)

where α̂∗(a) is the 2-cell defined as in I.2.7.3. (The general definition of lax natural
transformations can be seen in I.2.8.)

2.6. Paths up to reparametrisation. The 1-dimensional structure of ↑LΠ2(X) is
a graph with multiple composition and a consistent preorder, ≺.

We shall prove, in Thm. 4.3, that the congruence (of graphs with multiple composition)
generated by this preorder is characterised as:

a ∼ b : there exist two reparametrisation functions f, g such that af = bg. (38)

The quotient of this 1-dimensional structure with respect to the congruence yields a
category, say ↑C(X), because of the relations 1⊗a ≺ a ≺ a⊗1 and a⊗(b⊗c) ≺ (a⊗b)⊗c
already proved (2.2).

In this category, an arrow â : x→ x′ is a class of paths up to reparametrisation. Plainly,
the fundamental category ↑Π1(X) (1.1), where an arrow [a] : x→ x′ is a class of paths up
to 2-homotopy (with fixed endpoints) is a quotient of ↑C(X).

It would be interesting to prove that the 2-cells of ↑LΠ2(X) induce a (strict) 2-category
structure on ↑C(X).
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3. The machinery of reparametrisation functions

The properties of reparametrisation functions investigated here will be used to prove
the main results, in the next section. These functions are written f, f ′, g, g′... (with no
reference to derivatives). The notation [u, v] denotes the closed interval between the real
numbers u, v (also when v ≤ u).

3.1. A piecewise analysis. A reparametrisation function f : ↑I → ↑I (order-
preserving, surjective and piecewise affine) can be defined by assigning a partition (ti) of
the standard interval, together with the corresponding values ui = f(ti)

0 = t0 < t1 < ... < tn−1 < tn = 1, 0 = u0 ≤ u1 ≤ ... ≤ un−1 ≤ un = 1, (39)

requiring that f be affine on each interval of the partition (ti).

The function f is invertible (i.e., strictly increasing) if and only if the sequence (ui)
is also a partition (i.e., strictly increasing); then, its inverse is again a reparametrisation
function (the roles of the sequences above being interchanged).

If, for a given f , the partition (ti) cannot be reduced, then it is determined by f
and its points ti will be called the characteristic points of f . Non-minimal partitions are
also useful, e.g. when one considers a finite family of functions. (A different ‘piecewise
analysis’, working with a part of the characteristic points, will be used in the proof of
3.4.)

Finally, it will be useful to observe that any two reparametrisation functions f, g : ↑I→
↑I satisfy a finite-overtaking property: one can always find a partition (ti) such that, on
each interval [ti−1, ti], both f and g are affine and, in the interior: either f < g, or f = g,
or f > g.

3.2. Lemma. Given a finite family f1, ..., fm of invertible reparametrisation functions,
there exists an invertible reparametrisation function h such that fih ≤ id, for all i. One
can always choose h ≤ id. (The property also holds for invertible endomaps of ↑I, with
the same proof.)

Proof. The function f = f1 ∨ ... ∨ fm is again a strictly increasing reparametrisation
function, as well as its inverse, h = f−1. For all indices i, we have h ≤ f−1

i and fih ≤ id.
Adding the identity to the family f1, ..., fm, we also get the last point.

3.3. Lemma. [Balance Lemma, I] Let f, g : ↑I→ ↑I be reparametrisation functions. If
f ≤ g, there exist reparametrisation functions h, k such that fh = gk and h ≥ id ≥ k.

(Comments. This lemma is crucial for our main results. The name comes from the
following ‘interpretation’: think of f, g as objects on the two dishes of weighing scales;
think of h, k, as weights we are adding to make the balance, one on each dish. The next
lemma will go on in this line.)
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Proof. If f is strictly increasing, it suffices to take h = f−1g ≥ id, so that fh = g = g.id.
In the general case, the construction will be based on the reverse relation f ] of f (which,

in Analysis, would be called a ‘maximal monotone operator’). Note that ff ] = id, because
f is surjective, and therefore

fϕ = g = g.id. ϕ = f ]g. (40)

We will prove that one can replace ϕ, the function g (in its middle occurrence) and id
with reparametrisation functions h, u, k so that fh = u = gk and all requirements above
are met.

We say that c ∈ I is a regular or singular point for the relation f ] according to the
fact that f ](c) = f−1{c} (the maximal interval on which f(t) = c) be a point or a non-
degenerate interval. Note that, since f is piecewise affine, f ] has a finite number of singular
points, corresponding to the maximal (non trivial) intervals on which f is constant.

Now, ϕ = f ]g is an endorelation of I such that
(i) ϕ is singular on finitely many intervals [ci, di] (possibly degenerate) and constant on
each of them: ϕ(x) = [si, ti] (non degenerate) for all x ∈ [ci, di],
(ii) on the complement C of the union of these intervals, ϕ = f−1g is regular and ≥ id .

First, we can assume that all these intervals [ci, di] are degenerate, i.e. singular points
of ϕ. Indeed, if ϕ(x) = [s, t] on [c, d], with c < d and s < t, we can modify ϕ on [c, d],
taking the affine function whose graph is the diagonal of the rectangle, from (c, s) to (d, t)
(so that the property fϕ = g stays true)

c d

s

t

ϕ
������

llllllllllllllllllllll

eeeee

(41)

Now the whole graph of ϕ is (weakly) above the diagonal, because of (ii) (formerly,
part of the ‘singular rectangles’ could be below the diagonal). We shall write ϕ ≥ id, for
short.

Second, let us consider a point c which is singular for ϕ : ϕ(c) = f ]g(c) = [s, t], with
c ≤ s < t (because ϕ ≥ id). We will modify locally this relation, to remove the singularity.
Since c < 1, we will operate on a right neighbourhood cε = [c, c+ ε] (see the figure (44)).

For ε > 0, sufficiently small, ϕ is regular on ]c, c+ ε] (because there is a finite number
of singular points) and moreover f is affine and strictly increasing on [t, ϕ(c+ε)] (because
g(c) is a singular point of f ]); we shall say that ε is sufficiently small for ϕ at c. Define
the relation ϕ′ = ϕcεε′ as follows

ϕ′(x) = ϕ(x), for x /∈ cε, (42)
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ϕ′ is an affine function on [c, c+ ε′] and [c+ ε′, c+ ε], with:

ϕ′(c) = s, ϕ′(c+ ε′) = t, ϕ′(c+ ε) = ϕ(c+ ε),
(43)

where ε′ < ε is sufficiently small so that the graph of ϕ′ still stays above the diagonal:
ε′ ≤ t − s. (Taking ε′ = min(ε/2, t − s) satisfies these conditions, but depends on s, t,
which we do not want).

In the example below, we represent the graph of ϕ (dashed) and ϕ′ (dotted), with
the common parts as solid lines; similarly for the identity (dashed) and its modification
k′ = kcεε′ (defined below; dotted)

c c+ ε′ c+ ε

c
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t

ϕ(c+ e)

ϕ
ϕ′

k′
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(44)

The relevant point is that the composite u′ = fϕ′ only depends on g, c, ε, ε′ (not on
f):

fϕ′(x) = fϕ(x) = g(x), for x /∈ cε, (45)

fϕ′ is affine on [c, c+ ε′] and [c+ ε′, c+ ε], with:

fϕ′(c) = fϕ′(c+ ε′) = g(c), fϕ′(c+ ε) = g(c+ ε),
(46)

and can also be obtained as u′ = gk′, by the reparametrisation function k′ = kcεε′ ≤ id,
represented above and defined as follows (this also shows that u′ is again a reparametri-
sation function)

k′(x) = x, for x /∈ cε, (47)

k′ is affine on [c, c+ ε′] and [c+ ε′, c+ ε], with:

k′(c) = k′(c+ ε′) = c, k′(c+ ε) = c+ ε.
(48)

Now, let {c1, ..., cn} be the set of all singular points of ϕ. Choose ε > ε′ > 0 sufficiently
small for ϕ, at all ci, and such that all the intervals [ci − ε, ci + ε] are disjoint. Then, the
modifications of ϕ and id at the various ci, as described above, do not interfere; operating
all of them, we get two reparametrisation functions h, k (only depending on f, g, ε, ε′)
such that h ≥ id ≥ k and fh = gk = u (only depending on c1, ..., cn, ε, ε

′).
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3.4. Lemma. [Balance Lemma, II] Let f, g : ↑I → ↑I be reparametrisation functions.
Then, there exist reparametrisation functions h, k such that fh = gk. If f, g ≤ id, we can
choose h, k ≤ id.

More generally, for a finite family f1, ..., fm of reparametrisation functions, there exist
a second family h1, ..., hm such that f1h1 = ... = fmhm. If all fi are ≤ id, we can choose
hi ≤ id.

(This statement completes the previous one and can be given the same ‘interpreta-
tion’.)

Proof. We shall write ‘function’ for reparametrisation function. The proof is based on
the finite set C(f) of constant values of a function f , i.e. the numbers c such that f−1{c}
is a non-trivial interval. And on the fact that, precomposing with any function h, we have
C(fh) ⊃ C(f). The constant values of f coincide with the singular points of f ], used in
the previous proof.

(One can also give here a proof similar to the previous one, but the present pattern
seems clearer. Moreover, this proof also works replacing, in the definition of reparametri-
sation function, the condition ‘piecewise affine’ with the more general property of ‘having
a finite set of constant values’. It can likely be adapted for an infinite subset, necessarily
countable.)

Let C(f) consist of the values c1 < ... < cn in ↑I (n ≥ 0). Thus, f is constant on their
pre-images, which are non-trivial intervals

[t2i−1, t2i] = f−1{ci}, i = 1, ..., n, (49)

while it is strictly increasing (and piecewise affine) on the remaining intervals [t2i, t2i+1]
(i = 0, ..., n) of the partition

0 ≤ t1 < t2 < ... < t2n−1 < t2n ≤ 1 (t0 = 0, t2n+1 = 1). (50)

This will be called the C-partition of the function f (and need not contain all the
characteristic points of f , cf. 3.1). It has 2n + 1 (non-trivial) intervals when c1 > 0 and
cn < 1, as in the figure below, but it has 2n or 2n − 1 intervals when only one of these
conditions occurs, or none (and one interval if there are no constant values: n = 0).

0 t1 t2 t3 t4 t5 t6 1

0 c1 c2 c3 1

f
OO

(51)

(a) First, we prove that two ‘functions’ f, g can be linked with an invertible function k, so
that f = gk, if and only if C(f) = C(g). The necessity of this condition being obvious,
let us assume it holds. We want k to turn the C-partition of f (written as above, in (50))
into the corresponding partition of g; this defines k on the points t1, ..., t2n. Then, k is
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affine on the intervals [t2i−1, t2i] on which f is constant (and turns them into the intervals
on which g is constant), while it is defined as g−1f on the intervals on which f is strictly
increasing (and turns them into the intervals on which g is strictly increasing).

(b) Now, let us come back to the general problem. Suppose that c′ is not a constant value
for f , so that there is a unique point t′ where f(t′) = c′. Then, it is easy to construct a
function h′ such that C(fh′) = C(f) ∪ {c′}: any ‘function’ having precisely one constant
value, at t′, will do. This will introduce two new points in the C-partition of fh′ (and -
perhaps - move the remaining ones, which has no relevance in our argument)

0 t1 t2 t3 t4 t5 t6 1

0 c1 c2 c3 1

f

h′
t′

c′

OO

OO

(52)

Proceeding this way we get, in a finite number of steps, a composite fh with C(fh) =
C(f) ∪ C(g). Proceeding symmetrically on g, we get a composite gk with C(gk) =
C(f)∪C(g). Applying (a), we can further precompose with a suitable (invertible) function
k′, so that fh = g(kk′).

(c) Suppose now that f, g ≤ id. Then, all the constant values of such functions are
necessarily < 1, which implies that, in point (b), we can choose two functions h, k ≤ id
with C(fh) = C(f) ∪ C(g) = C(gk), as shown in the following elementary step (adding
the constant value t′ < 1, on the closed interval from t′ to some t′′, with t′ < t′′ < 1)

0 t1 t2 t3 t4 t5 t6 1t′

h′

0 t′ t′′ 1

OO
(53)

Now, (a) tells us that there exist an invertible function k′ such that fh = g(kk′),
while Lemma 3.2 gives the existence of a function k′′ ≤ id such that k′k′′ ≤ id. Finally,
the equality f(hk′′) = g(kk′k′′) satisfies our conditions, all the functions h, k′′, k and k′k′′

being ≤ id.

(d) For a finite family f1, ..., fm, we begin with choosing k1, ..., km so that all C(fiki)
coincide with C = C(f1) ∪ ... ∪ C(fm). Then we choose m invertible functions k′i so that
all fikik

′
i coincide with some fixed function u having C(u) = C (for instance, f1k1). The

last point is proved as above.
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3.5. Lemma. Let f, g : I → I be increasing continuous functions with f(1) = g(1).
Let a : I → X be a continuous mapping with values in a T1-topological space. If af = ag
then, for every t ∈ I, the mapping a is constant on the closed interval between f(t) and
g(t). (Dropping the hypothesis on X, this need not be true.)

As a consequence, the equivalence classes of the coequaliser of f, g for T1-spaces are
closed intervals.

Proof. (This lemma is not used in the present paper, but is included as a preparation
for the following two results.) Let us begin with the first statement, for some t ∈ I; if
f(t) = g(t) there is nothing to prove, and we can suppose that f(t) < g(t). Let

T = min{τ ≥ t | f(τ) = g(τ)}, (54)

(which exists because f(1) = g(1)), so that f < g in the interval [t, T [. We want to prove
that, for every u ∈ [f(t), g(t)], a(u) = af(T ). The argument proceeds constructing an
increasing sequence (tn), as in the figure below

t t0 t1 t2 T

f(t)

u

g(t)

f(T ) = g(T )

g

f

•

•

•

• •

• •
• •

ooooooooooooooooooooooo
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ooooo

llllllllllllllllllllll

(55)

First, since f(t) ≤ u ≤ g(t) ≤ g(T ) = f(T ), there exists a point t0 such that

f(t0) = u, t ≤ t0 ≤ T,

f(t0) ≤ g(t0) ≤ g(T ) = f(T ).
(56)

Second, there exists a point t1 such that

f(t1) = g(t0), t0 ≤ t1 ≤ T. (57)

Proceeding this way, we get an increasing sequence (tn) with f(tn+1) = g(tn) (which
may be eventually constant at T , as in the figure above), so that:

a(u) = af(t0) = ag(t0) = af(t1) = ... = af(tn) = ag(tn) = af(tn+1) ... (58)

This sequence converges to t′ ∈ [t, T ]; but f(t′) = g(t′), by continuity (and uniqueness
of the limit, in I), whence t′ = T . Now, the continuous mapping a coincides on all f(tn),
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whence the constant sequence a(u) = af(tn) converges to af(T ) in X; thus, af(T ) belongs
to the closure of a(u) in X, and coincides with this point.

Dropping the T1-hypothesis on X, it is easy to give a counterexample for X = {0, 1}
with the Sierpinski topology: {1} is open, {0} is not. Take f(t) = t, g(t) = (t+ 1)/2 and
a : I→ {0, 1} the function which annihilates - precisely - on the closed subset {gn(0)|n ≥
0} ∪ {1}.

We end with the last statement. Let a : I → I/∼ be the T1-coequaliser of f, g. The
equivalence relation u ∼ u′ (associated to the mapping a) is implied by the existence of
points t0, ..., tn ∈ I such that:

u = f(t0), g(t0) = f(t1), ..., g(tn−1) = f(tn), g(tn) = u′, (59)

and we have proved that every interval [f(t), g(t)] (recall that this notation does not
require f(t) ≤ g(t)) is contained in an equivalence class. Since, for t = t0, ..., tn, these
intervals meet pairwise, the interval [u, u′] is also contained in an equivalence class. Finally,
keeping u fixed, the equivalence class of u coincides with the union of the intervals [u, u′]
for u′ ∼ u, which is necessarily an interval; and a closed one, since the points of I/∼ are
closed.

3.6. Lemma. Let f, g, f ′, g′ : I→ I be increasing continuous functions and a, b : I→ X
continuous mappings with values in a T1-topological space, such that

af = bg, af ′ = bg′, in [T0, T ],

f(t) < f ′(t), g′(t) < g(t), for T0 < t < T,

a(u) = x0, for u ∈ [f(T ), f ′(T )], b(u) = x0, for u ∈ [g′(T ), g(T )].

(60)

Then the mapping a is constant at x0 on the interval [f(T0), f
′(T )] while b is constant

at x0 on the interval [g′(T0), g(T )].

Proof. Let us take u ∈ [f(T0), f
′(T )] and prove that a(u) = x0. First, we assume that

the inequalities f(t) < f ′(t) and g′(t) < g(t) also hold at T0.
The argument is an extension of the one used in 3.5: we construct a (finite or infinite)

sequence working, alternatively, on the pair f, f ′ or g, g′, as in the following figure
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Looking at the left figure, we have f(T0) ≤ u ≤ f ′(T ). If u ≥ f(T ), then a(u) = x0

and we are done; otherwise u < f(T ) and there exists a point t0 such that

f(t0) = u, T0 ≤ t0 ≤ T (a(u) = af(t0) = bg(t0)). (62)

Now, looking at the right figure, g′(t0) ≤ g(t0) ≤ g(T ). If g(t0) ≥ g′(T ), then a(u) =
bg(t0) = x0; otherwise, g(t0) < g′(T ) and there exists a point t1 such that

g′(t1) = g(t0), T0 ≤ t0 ≤ t1 ≤ T (a(u) = bg(t0) = bg′(t1) = af ′(t1)). (63)

Coming back to the left diagram, since f(t1) ≤ f ′(t1) ≤ f ′(T ), either f ′(t1) ≥ f(T )
(and we are finished) or there exists a point t2 such that

f(t2) = f ′(t1), T0 ≤ t0 < t1 ≤ t2 ≤ T (a(u) = af ′(t1) = af(t2) = bg(t2)). (64)

Proceeding this way, either we get a(u) = x0 in a finite number of steps (as in the
figure above) or we construct an increasing sequence (tn) with

g′(t2n+1) = g(t2n), f(t2n+2) = f ′(t2n+1) (n ≥ 0),

a(u) = af(t0) = bg(t0) = bg′(t1) = af ′(t1) = af(t2) = ...
(65)

The sequence (tn) converges to some t′ ∈ [T0, T ]; but f(t′) = f ′(t′), by continuity
(and uniqueness of limit in I), whence our hypotheses (including the initial assumption
f(T0) < f ′(T0)) imply that t′ = T (and the interval [f(T ), f ′(T )] is degenerate). Now, the
continuous mapping a coincides on all f(t2n), whence the constant sequence a(u) = af(t2n)
converges to af(T ) in X; since a(u) is closed in X, a(u) = af(T ) = x0.

Finally, let us drop the initial assumption at T0. Applying the previous argument to
all intervals [T1, T ], with T0 < T1 < T , we have that a(u) = x0, for u ∈ ]f(T0), f

′(T )]
(which is not empty, because f(T0) ≤ f(T1) < f ′(T1) ≤ f ′(T )). Thus, the point af(T0)
belongs to the closure of x0, which is reduced to this point.

3.7. Lemma. Let f, g, f ′, g′ : I→ I be increasing continuous functions and a, b : I→ X
continuous mappings with values in a T1-topological space, such that

af = bg, af ′ = bg′, in [T0, T ],

f(t) < f ′(t), g′(t) < g(t), for T0 < t < T,

a(u) = x0, for u ∈ [f(T ), f ′(T )], b(u) = x0, for u ∈ [g(T ), g′(T )],

(f(T0) = f ′(T0)) or (g(T0) = g′(T0)).

(66)

Then the mapping a is constant at x0 on the interval [f(T0), f
′(T0)] while b is constant

at x0 on the interval [g(T0), g
′(T0)]. (The statement is similar to the previous one, but the

inequality between g, g′ is reversed.).
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Proof. We choose the case g(T0) = g′(T0). Taking u ∈ [f(T0), f
′(T0)], we shall prove

that a(u) = x0.
First, we assume that f(T0) < f ′(T0). Working again, alternatively, on the pair f, f ′

or g, g′, as in the figure below, we construct now a (finite or infinite) sequence (tn) such
that both subsequences (t2n) and (t2n+1) are increasing
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Looking at the left figure, we have f(T0) ≤ u ≤ f ′(T0) ≤ f ′(T ). If u ≥ f(T ), then
a(u) = x0 and we are done; otherwise u < f(T ) and there exists a point t0 such that

f(t0) = u, T0 ≤ t0 ≤ T (a(u) = af(t0) = bg(t0)). (68)

Now, looking at the right figure, g′(T0) = g(T0) ≤ g(t0) ≤ g′(t0), and there exists a
point t1 such that

g′(t1) = g(t0), T0 ≤ t1 ≤ t0 ≤ T (a(u) = bg(t0) = bg′(t1) = af ′(t1)). (69)

Coming back to the left diagram, we have f(t0) = u ≤ f ′(T0) ≤ f ′(t1) ≤ f ′(T ). If
f ′(t1) ≥ f(T ), we are finished: a(u) = af ′(t1) = x0; otherwise f ′(t1) < f(T ) and there
exists a point t2 such that

f(t2) = f ′(t1), T0 ≤ t0 ≤ t2 ≤ T (a(u) = af ′(t1) = af(t2) = bg(t2)). (70)

At the right, we have now g′(t1) = g(t0) ≤ g(t2) ≤ g(T ) ≤ g′(T ), and there exists a
point t3 such that

g′(t3) = g(t2), t1 ≤ t3 ≤ T (a(u) = bg(t2) = bg′(t3) = af ′(t3)). (71)

Proceeding this way, either we get a(u) = x0 in a finite number of steps or we construct
a sequence (tn) where (t2n) and (t2n+1) are increasing, and:

g′(t2n+1) = g(t2n), f(t2n+2) = f ′(t2n+1) (n ≥ 0),

a(u) = af(t0) = bg(t0) = bg′(t1) = af ′(t1) = af(t2) = ...
(72)
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The sequence (t2n) converges to some t′ ∈ [T0, T ]; and f(t′) = f ′(t′), by continuity
(and uniqueness of limit in I), whence our hypotheses imply that t′ = T (and the interval
[f(T ), f ′(T )] is degenerate). Now, the continuous mapping a coincides on all f(t2n),
whence the constant sequence a(u) = af(t2n) converges to af(T ) in X; since a(u) is
closed in X, a(u) = af(T ) = x0. Dropping the initial assumption at T0, we proceed as in
the last point of the proof of 3.6.

3.8. Lemma. Let f, g, f ′, g′ : I → I be reparametrisation functions and a, b : I → X
continuous mappings with values in a T1-topological space, such that

af = bg, af ′ = bg′. (73)

Then
a(f ∧ f ′) = b(g ∧ g′), a(f ∨ f ′) = b(g ∨ g′). (74)

Proof. This is the second crucial point of this section. We start with noting that the
thesis certainly holds at every point t ∈ I where the condition P (t) is true

P (t) : (f(t) ≤ f ′(t) and g(t) ≤ g′(t)) or (f(t) ≥ f ′(t) and g(t) ≥ g′(t)).

Furthermore, it also holds at every point t making Q(t) true

Q(t) : (a is constant on [f(t), f ′(t)]) and (b is constant on [g(t), g′(t)]).

In fact, one can (easily) give examples where the property P holds everywhere (but not
Q), and (trivially) others where a = b is constant and Q holds everywhere (for arbitrary
f, g, f ′, g′). The general situation is a ‘mixture’ of these cases, as in the figure below. We
shall prove, in fact, that the disjunction P ∨ Q is always true in I. It will be useful to
note that the negation of P (t) can be written as:

P ′(t) : (f(t) < f ′(t) and g(t) > g′(t)) or (f(t) > f ′(t) and g(t) < g′(t)).

By the finite-overtaking property (3.1), there exists a partition 0 = t0 < t1 < ... < tn = 1
of I such that, on the interior of each of its intervals, we always have P (t) or always P ′(t)
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Assume that this partition is minimal, so that at all points ti we have

f(ti) = f ′(ti) or g(ti) = g′(ti), (76)

and possibly both. (One can note that P ′-intervals can be contiguous, while P -intervals
cannot, because of minimality and of being defined by weak inequalities; but these facts
have no relevance below.)

We prove now that, on each of these intervals:
(i) either P is always true or Q is always true,
(ii) Q always holds at the endpoints.

Proceeding leftwards, consider the interval [ti−1, ti] and assume we have already proved
the thesis for all intervals at its right. In particular, we have Q(ti) (which holds trivially
at the beginning, for i = n). Now, if P holds on [ti−1, ti], (as in the interval [t3, t4] of
the figure above), then (i) holds trivially there; applying Lemma 3.7, the properties Q(ti)
and (76) give Q(ti−1). Otherwise, P ′ holds in ]ti−1, ti[ (as in ]t2, t3[, above) and, applying
Lemma 3.6, the property Q(ti) implies Q on the whole interval [ti−1, ti].

4. Proof of the main results

We prove three theorems which contain the results we have used to construct ↑LΠ2(X)
(2.1) and to determine the congruence of paths up to reparametrisation (2.5).

4.1. Theorem. Let X be a d-space with T1-topology, and a, b : ↑I→ X two paths with
the same endpoints. If a ≺ b (cf. (20)), the definition of ϕ(a, b) : a→ b in (21) does not
depend on the choice of f, g.

Proof. Let af = bg, af ′ = bg′, with f ≥ id ≥ g and f ′ ≥ id ≥ g′. Applying Lemma 3.8
we can assume f ≤ f ′, g ≤ g′ (since we can replace f, g with f∧f ′ and g∧g′, respectively).

Now, we apply the Balance Lemma (3.3) to f ≤ f ′: there exist reparametrisation
functions h, k such that h ≥ id ≥ k and fh = f ′k. This allows us to form the following
diagram, with a new path c

af = bg
ψ1

%%JJJJJJJJJ
λ

��
a

ϕ1
99rrrrrrrrr

ϕ3 //

ϕ2 %%LLLLLLLLL c ψ3
//

λ′
��

b

af ′ = bg′
ψ2

99ttttttttt

(77)

id ≤ f ≤ f ′, g ≤ g′ ≤ id, h ≥ id ≥ k, c = afh = bgh = af ′k = bg′k.

At the left, we have three arrows ϕi of type [aϕ0(id,−)]. At the right, we have three
arrows ψi of type [bϕ0(−, id)]. In the middle, the arrows λ, λ′ are simultaneously of both
types

λ = [aϕ0(f, fh)] = [afϕ0(id, h)] = [bgϕ0(id, h)] = [bϕ0(g, gh)],

λ′ = [aϕ0(f
′k, f ′)] = [bϕ0(g

′k, g′)].
(78)
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Therefore, the four triangles above commute and the outer diamond as well. For
instance:

ϕ1 ⊗2 λ = a[ϕ0(id, f)]⊗2 a[ϕ0(f, fh)]) = a[ϕ0(id, fh)] = ϕ3. (79)

4.2. Theorem. Let X be a d-space with T1-topology. The relation a ≺ b (defined in
(20)) is transitive, and:

ϕ(a, b)⊗2 ϕ(b, c) = ϕ(a, c) (for a ≺ b ≺ c). (80)

Proof. Assume that

af = bg, f ≥ id ≥ g; bf ′ = cg′, f ′ ≥ id ≥ g′; (81)

and apply the Balance Lemma (3.3) to the functions ‘working’ on the middle path b, that
is g ≤ id ≤ f ′. There exist reparametrisation functions h, k with gh = f ′k and h ≥ id ≥ k.
Therefore a ≺ c

a(fh) = bgh = bf ′k = c(g′k), fh ≥ id ≥ g′k, (82)

and we have a diagram whose upper row is ϕ(a, b)⊗2ϕ(b, c), while the lower one is ϕ(a, c)

a
ϕ1 //

ϕ2 &&LLLLLLLLLL af = bg
χ1 //

λ
��

b
χ2 // bf ′ = cg′

ψ1 // c

afh = bgh bf ′k = cg′k

λ′

OO

ψ2

88qqqqqqqqqq
(83)

This diagram is shown to commute, much as in 4.1. In fact:
- the arrows ϕi are of type [aϕ0(id,−)],
- the arrows χi are of type [bϕ0(−,−)],
- the arrows ψi are of type [cϕ0(−, id)],
- the arrow λ is of type [aϕ0(−,−)] and of type [bϕ0(−,−)]:

λ = [aϕ0(f, fh)] = [afϕ0(id, h)] = [bgϕ0(id, h)] = [bϕ0(g, gh)], (84)

and symmetrically λ′ is of type [bϕ0(−,−)] and [cϕ0(−,−)]. It is now immediate to see
that (83) commutes.

4.3. Theorem. In ↑LΠ2(X), the congruence a ∼ b (of graphs with multiple composi-
tion) generated by the preorder ≺ is characterised as:
(a) a ∼ b: there exist two reparametrisation functions f, g such that af = bg.

It also coincides with the equivalence relation generated by the following two equivalence
relations:
(b) a ∼1 b: there exist two reparametrisation functions f, g ≤ id such that af = bg,
(c) a ∼2 b: there exist two reparametrisation functions f, g ≥ id such that af = bg.
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Proof. Again, ‘function’ will mean reparametrisation function.
First, the relation (a) is transitive: if af = bg and bf ′ = cg′, apply the II Balance

Lemma (3.4) to the functions g, f ′: there exist two functions h, k such that gh = f ′k,
whence a(fh) = bgh = bf ′k = c(g′k). It is also consistent with multiple composition,
because of the tensor product of our functions (cf. (12)). The same properties hold for
the relations (b) and (c), with the same proof (based on 3.4, again).

Second, let us prove that (a) implies the transitive relation generated by (b) and (c),
the converse being obvious. If af = bg, the inequality f ∧ id ≤ f implies (by the Balance
Lemma, 3.3) the existence of functions h, k such that h ≥ id ≥ k and (f ∧ id)h = fk, so
that

a ∼1 a(f ∧ id) ∼2 a(f ∧ id)h = afk ∼1 af ; (85)

similarly, we can link b with bg = af .
Finally, it is obvious that a ∼ b is implied by a ≺ b, as the latter condition says that

af = bg with f ≥ id ≥ g. Conversely, to show that our equivalence relation is generated
by the preorder, it suffices to consider the relations (b) and (c); let af = bg; if f, g ≤ id,
then af ≺ a and bg ≺ b; on the other hand, if f, g ≥ id, then a ≺ af and b ≺ bg.
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Università di Genova
Via Dodecaneso 35
16146-Genova, Italy
Email: grandis@dima.unige.it


