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Abstract. Directed Algebraic Topology is a recent field, deeply linked with ordinary and higher
dimensional Category Theory. A 'directed space', e.g. an ordered topological space, has directed
homotopies (which are generally non reversible) and fundamental n-categories (replacing the
fundamental n-groupoids of the classical case). Finding a simple model of the latter is a non-trivial
problem, whose solution gives relevant information on the given 'space'; a problem which is of interest
for applications as well as in general Category Theory.

Here we give a presentation of the work "The shape of a category up to directed homotopy" [G3],
with a new extension on 'surjective models' and a brief introduction to a 2-dimensional analysis, via the
fundamental lax 2-category introduced in [G5]. Both extension are motivated by studying the
singularities of 3-dimensional ordered spaces, for which the previous analysis is often insufficient.

Introduction

Directed Algebraic Topology studies 'directed spaces' in some sense, where paths and homotopies
cannot generally be reversed; for instance: ordered topological spaces, 'spaces with distinguished
paths', 'inequilogical spaces', simplicial and cubical sets, etc. Its present applications deal mostly with
the analysis of concurrent processes (see [FGR, FRGH, Ga, GG, Go]), but its natural range covers non
reversible phenomena, in any domain.

The study of invariance under directed homotopy is far richer and more complex than in the classi-
cal case, where homotopy equivalence between 'spaces' produces a plain equivalence of their funda-
mental groupoids, for which one can simply take - as a minimal model - the categorical skeleton. Our
directed structures have a fundamental category  !"1(X);  this must be studied up to appropriate
notions of directed homotopy equivalence of categories, which are more general than ordinary
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categorical equivalence: the latter would often be of no use, since the fundamental category of an
ordered topological space, for instance, is always skeletal (the same situation shows that the
fundamental monoids  !#1(X, x0)  can be trivial, without  !"1(X)  being so; cf. 1.2). Such a study has
been carried on in a previous work [G3]. Other references for Directed Algebraic Topology and its
applications can be found there.

In [G3] we have introduced two (dual) directed notions, which take care, respectively, of variation 'in
the future' or 'from the past': future equivalence (a symmetric version of an adjunction, with two units)
and its dual, a past equivalence (with two counits); and studied how to combine them. Minimal models
of a category, up to these equivalences, have been introduced to better understand the 'shape' and
properties of the category we are analysing, and of the process it represents.

The paper [FRGH] has similar goals and results, based on a different categorical tool, categories of
fractions. More recently, the thesis of E. Haucourt [Ha] has combined this tool with a more effective
one: the quotient of a category with respect to the generalised congruence generated by a set of arrows
which are to become identities; or, in the present terminology, a normal quotient (with respect to the
ideal of discrete functors, see 2.1 - 2.2).

Now, the analysis of [G3] captures essential facts of many planar ordered spaces (subspaces of the
ordered plane  !R2),  but may say little about objects embedded in the ordered space  !R3,  much in
the same way as the fundamental group does not recognise the singularity of a 2-sphere. There seem to
be two ways of exploring such higher-dimensional singularities.

The 'obvious' one would be to go for a higher dimensional study, based on the fundamental 2-
category of the directed space, in its strict version  !"2(X)  - introduced and studied in [G4] - or in
some lax version, as the ones introduced in [G5, G6]; part of this second approach, perhaps more
interesting, is briefly recalled in Section 8. But one must be aware that 2-categories are complicated
structures and their models, even finite, can hardly be considered to be 'simple'.

Another way, closely linked with the study of [FRGH] and [Ha], can be based on a finer analysis
of  !"1(X)  as attempted in the present Sections 5-7, with 'semi-faithful' surjective models. It is
interesting to note that - for the hollow cube - such a finer analysis has no counterpart outside of
directed homotopy: the fundamental group of the underlying topological space is trivial (see 1.6).

Notation. A homotopy  $  between maps  f, g: X  Y  is written as  $: f  g: X  Y.  A preorder
relation is assumed to be reflexive and transitive; it is a (partial) order if it is also anti-symmetric. As
usual, a preordered set is identified with a (small) category having at most one arrow between any two
given objects. The ordered topological space  !R  is the euclidean line with the natural order. The
classical properties of adjunctions and equivalences of categories are used without reference (see
[M2]).  Cat  denotes the category of small categories; if  C  is a small category,  x % C  means that  x
is an object of  C  (also called a point of  C).

1. An analysis of directed spaces

We begin with a review of the basic ideas and results of [G3], mostly taken from [G4].

1.1. Homotopy for preordered spaces. The simplest topological setting where one can study directed
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paths and directed homotopies is likely the category  pTop  of preordered topological spaces and
preorder-preserving continuous mappings; the latter will be simply called morphisms or maps, when
it is understood we are in this category. (Richer settings will be recalled in 1.7.)

In this setting, a (directed) path in the preordered space  X  is a map  a:  ![0, 1]  X,  defined on
the standard directed interval  !I = ![0, 1]  (with euclidean topology and natural order). A (directed)
homotopy  $: f  g: X  Y,  from  f  to  g,  is a map  $: X×!I  Y  coinciding with  f  on the lower
basis of the cylinder  X×!I,  with  g  on the upper one. Of course, this (directed) cylinder is a product
in  pTop:  it is equipped with the product topology and with the product preorder, where  (x, t)  (x', t')
if  x  x'  in  X  and  t & t'  in  !I.

The fundamental category  C = !"1(X)  has, for arrows, the classes of directed paths up to the
equivalence relation generated by directed homotopy with fixed endpoints; composition is given by the
concatenation of consecutive paths.

Note that, generally, the fundamental category of a preordered space  X  is not a preorder, i.e. can
have different arrows  x  x'  between two given points (cf. 1.2); but any loop in  X  lives in a zone of
equivalent points and is reversible, so that all endomorphisms of  !"1(X)  are invertible. Moreover, if
X  is ordered, the fundamental category has no endomorphisms and no isomorphisms, except the
identities, and is skeletal; therefore, ordinary equivalence of categories cannot yield any simpler
model. Note also that, in this case, all the fundamental monoids  !#1(X, x0) = !"1(X)(x0, x0)  are
trivial. All these are crucial differences with the classical fundamental groupoid  "1(X)  of a space, for
which a model up to homotopy invariance is given by the skeleton: a family of fundamental groups
#1(X, xi),  obtained by choosing one point in each path-connected component of  X.

The fundamental category of a preordered space can be computed by a van Kampen-type theorem,
as proved in [G2], Thm. 3.6, in a much more general setting (spaces with distinguished paths). A map
of preordered spaces  f: X  Y  induces a functor  f*: !"1(X)  !"1(Y),  and a homotopy  $: f  g
induces a natural transformation  $*: f*  g*,  generally non invertible. One can consider various
notions of directed homotopy equivalence, for directed spaces [G2] and categories (1.3).

The forgetful functor  U: pTop  Top  with values in the category of topological spaces has both
a left and a right adjoint,  D  U  C,  where  DX  (resp.  CX)  is the space  X  with the discrete
order (resp. the coarse preorder). Therefore,  U  preserves limits and colimits. The standard
embedding of  Top  in  pTop  will be the coarse one, so that all (ordinary) paths in  X  are directed in
CX.  Note that the category of ordered spaces does not allow for such an embedding, and has different
colimits.

1.2. The fundamental category of a square annulus. An elementary example gives some idea of
the analysis developed below. Let us start from the standard ordered square  ![0, 1]2,  with the
euclidean topology and the product order

(x, y) & (x', y')   if:   x & x',  y & y',

and consider the (compact) ordered subspace  X  obtained by taking out the open square  ]1/3, 2/3[2

(marked with a cross), a sort of 'square annulus'
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  x'

(1)         

  x

X      L L'

Its directed paths are, by definition, the continuous order-preserving maps  ![0, 1]  X  defined
on the standard ordered interval, and move 'rightward and upward' (in the weak sense). Directed
homotopies of such paths are continuous order-preserving maps  ![0, 1]2  X.  The fundamental
category  C = !"1(X)  has, for arrows, the classes of directed paths up to the equivalence relation
generated by directed homotopy (with fixed endpoints, of course).

In our example, the fundamental category  C  has some arrow  x  x'  provided that  x & x'  and
both points are in  L  or  L'  (the closed subspaces represented above). Precisely, there are two arrows
when  x & p = (1/3, 1/3)  and  x' ' q = (2/3, 2/3)  (as in the second figure above), and one otherwise.
This evident fact can be easily proved with the 'van Kampen' theorem recalled above, using the
subspaces  L, L'  (whose fundamental category is the induced order).

Thus, the whole category  C  is easy to visualise and 'essentially represented' by the full subcate-
gory  E  on four vertices  0, p, q, 1  (the central cell does not commute)

1

(2)      
  q 0 p  q 1

 p
 E

  0
E

But  E  is far from being equivalent to  C,  as a category, since  C  is already a skeleton, in the
ordinary sense. The situation can be analysed as follows, in  E:

- the action begins at 0, from where we move to the point  p,

-  p  is an (effective) future branching point, where we have to choose between two paths,

- which join at  q,  an (effective) past branching point,

- from where we can only move to 1,  where the process ends.

(Definitions and properties of regular and branching points can be found below in 2.6-2.9).

In order to make precise how  E  can 'model' the category  C,  we proved in [G3] (and will recall
below) that  E  is both future equivalent and past equivalent to  C,  and actually it is the 'join' of a
minimal 'future model' with a minimal 'past model' of the latter.

1.3. Directed equivalences of categories. Various such notions will be developed in the next
sections; here we begin with a partial sketch.

 A  future equivalence  (f, g; $, ()  [G3, 2.1] between the categories  C, D  is a symmetric version of
an adjunction, with two units. It consists of a pair of functors and a pair of natural transformations (i.e.,
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directed homotopies in  Cat),  the units, satisfying two coherence conditions:

(1) f: C               D :g $: 1C  gf,   (: 1D  fg,

(2) f$  =  (f:  f  fgf, $g  =  g(:  g  gfg (coherence).

Note that the directed homotopies  $, (  proceed from the identities to the composites  gf, fg  ('in
the future'). Future equivalences compose (much in the same way as adjunctions), and yield an
equivalence relation of categories.

Dually, past equivalences have counits, in the opposite direction. These two basic notions can be
combined in various ways, to give various self-dual equivalence relations. First, their conjunction is
called past and future equivalence, while coarse equivalence is the equivalence relation generated by
them (see examples of both, in 2.5). More complex combinations will be considered in Section 3:
injective equivalence (3.2b) and projective equivalence (3.2c).

An adjunction  f  g  with invertible counit  ): fg  1  amounts to a future equivalence with
invertible  ( = )–1.  In this case, a 'split' future equivalence,  D  can be identified with a full reflective
subcategory of  C  (also called a future retract). But, in a general future equivalence,  f  need not
determine  g.  Theorem 2.3 shows that two categories are future equivalent if and only if they can be
embedded into a common one, as full reflective subcategories.

1.4. Minimal one-dimensional models. In our example (1.2), the category  C = !"1(X)  has a least
full reflective subcategory  F,  which is future equivalent to  C  and minimal as such; its objects are a
future branching point  p  (where we must choose between different ways out of it) and a maximal
point 1 (where one cannot further proceed); they form the future spectrum  sp+(C)  (defined in 3.5;

1 1

  q

(1)          
  q

   p  p

F
  0

P
  0

E

Also the full subcategory  F = Sp+(C)  on these objects is called a future spectrum of  C.  Dually,
we have the least full coreflective subcategory  P = Sp–(C),  on the past spectrum  sp–(C) = {0, q}.

Together, they form the spectral pf-presentation of  C

 i–  p+ ): i–p–  1C (p–i– = 1,  p–) = 1,  )i– = 1),
(2)  P   C   F

p–  i+
*: 1C  i+p+ (p+i+ = 1,  p+* = 1,  *i+ = 1).

Putting together the information coming from a past and a future spectrum, the pf-spectrum  E =
Sp(C)  is the full subcategory of  C  on the set of objects  sp(C) = sp–(C) + sp+(C)  (3.6). It is linked
to  C  by a diagram formed of four commutative squares
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 i– p+

  P   C   F   C
p– i+

(3)
 j–

   u
q+ g–

 g+ (g, = j,p,).

  P   E   F   E
q– j+

Adding the two functors  g, = j,p,: -  E  (where  , = ±),  E  becomes a minimal injective
model of the category  C,  in a precise sense, which will be recalled in Section 3.

1.5. Projective models. An alternative description can be obtained with the associated projective
model  f: C  M,  where  M  is the full subcategory of the category  C2  containing the morphisms of
C  of type  f(x) = *x.)x: i–p–x  i+p+x  (obtained from the adjunctions  i–  p–,  p+  i+).

In the present case, we get the full subcategory of  C2  on the four maps  ,, ., /, 0

   1

 b    1   /   .
   b    .

(1)   /
  ,

0

  a  0     a   ,   0
  0

 E
 

M

Projective models are defined in 3.2c and 3.4b. Note that our functor  f: C  M  is surjective on
objects but not full (it identifies points of  X  which are not comparable in the path order).

Interestingly, this model is isomorphic to the 'category of components' of  C  constructed in
[FRGH]. We will see, in Section 3, that a pf-spectrum (when it exists) is an effective way of
constructing both an injective model and a projective model.

1.6. The hollow cube. The analysis recalled above, based on the fundamental category, gives relevant
information for planar ordered spaces (subspaces of  !R2),  also in much more complicated examples
(see Section 4). But it may be insufficient for higher dimensional singularities.

The simplest case is a 3-dimensional analogue of our previous example, the 'hollow cube'  X 1
![0, 1]3  represented below (again an ordered compact space):

X  =  ![0, 1]3 \ A
(1) 1

  0
 A  =  ]1/3, 2/3[3.

X

The fundamental category  C = !"1(X)  seems to say little about this space:  C  has an initial and a
terminal object, 0 and 1, whence it is future contractible (to its object 1) and past contractible as well (to
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0); its minimal injective model is the category  2 = {0  1}  (1.4).

Now, this injective model is not faithful, in the sense that, of the three functors  2               C,  the ones
starting at  C  are not faithful. In fact, the category  C  is not a preorder, since  C(x, y)  contains two
arrows when  x, y  are suitably placed 'around' the obstruction; a phenomenon which only appears
within directed homotopy theory: the fundamental group of the underlying topological space is trivial,
and the fundamental groupoid is codiscrete (one arrow between any two given points). We shall
therefore try to extract a better information from  C,  using a partially faithful surjective model (in
Sections 5 and 7).

Another approach, followed in [G4], is based on studying the fundamental 2-category  C2 =
!"2(X),  trying to reproduce one dimension up the previous study of  !"1(X),  for the 'square annulus'
(1.4). This can also be done with more interesting lax versions [G5, G6]; the simplest will be outlined
in Section 8.

1.7. Other directed structures. In a preordered space, every loop is reversible (as already remarked
in 1.1); therefore, this setting has no 'directed circle' or 'directed torus'.

We briefly recall more complex directed structures, which allow for non-reversible loops. All of
them have a directed interval  !I  with the structure considered above, so that all the previous
constructions can be easily extended. Furthermore, all of them have a reflection  X  Xop  extending
the preorder-reversion of  pTop.

A sufficiently general, well-behaved setting has been studied in [G2]. A d-space  X = (X, dX)  is a
topological space equipped with a set  dX  of (continuous) maps  a: I  X;  these maps, called
distinguished paths or directed paths or d-paths, must contain all constant paths and be closed under
concatenation and (weakly) increasing reparametrisation.

A d-map  f: X  Y  (or map of d-spaces) is a continuous mapping between d-spaces which
preserves the directed paths: if  a % dX,  then  fa % dY.

The category of d-spaces is written as  dTop.  It has all limits and colimits, constructed as in  Top
and equipped with the initial or final d-structure for the structural maps; for instance a path  I  "Xi
is directed if and only if all its components  I  Xi  are so. The forgetful functor  U: dTop  Top
preserves thus all limits and colimits; a topological space is generally viewed as a d-space by its
natural structure, where all (continuous) paths are directed (via the right adjoint to  U).

Reversing d-paths, by the involution  r(t) = 1 – t,  yields the reflected, or opposite, d-space  RX =
Xop,  where  a % d(Xop)  if and only if  aop = ar % dX.

The standard d-interval  !I = ![0, 1]  has directed paths given by the (weakly) increasing maps
I  I.  The standard directed circle  !S1 = !I/2I  has the obvious d-structure, where paths have to
follow a precise orientation. But note that the directed structures  !I2,  !R2  or the torus  !S1×!S1  have
nothing to do with orientation; furthermore, the Klein bottle has a natural d-structure (induced by a
'slanting' d-structure on  [0, 1]2),  which is locally isomorphic to  !R2.

An alternative setting, inequilogical spaces, introduced in other works as a directed version of Dana
Scott's equilogical spaces [Sc, BBS], could also be used - but would require a more complicated
procedure to concatenate paths and homotopies.

Recently, S. Krishnan has proposed a 'convenient category of locally preordered spaces' which, in
contrast with the previous versions of this notion, has colimits and therefore allows for the usual
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constructions of homotopy theory, like mapping cones and suspension [Kr].

2. Future equivalence of categories and future invariant properties

We develop now, from [G3], the notions of future and past equivalence introduced in the previous
sections.

2.1. Future equivalence. As already recalled above, a future equivalence  (f, g; $, ()  between the
categories  X, Y  consists of a pair of functors and a pair of natural transformations (i.e., directed
homotopies), the units, satisfying two coherence conditions:

(1) f: X               Y :g $: 1X  gf,   (: 1Y  fg,

(2) f$  =  (f:  f  fgf, $g  =  g(:  g  gfg (coherence).

Notice that  f  does not determine  g,  in general (cf. 2.5b). A property (making sense in a category,
or for a category) is said to be future invariant if it is preserved by future equivalences.

Given  (f, g; $, ()  and a second future equivalence

(3) h: Y               Z :k 3: 1Y  kh,   4: 1Z  hk,

h3  =  4h:  h  hkh, 3k  =  k4:  k  khk,

their composite is:

(4) hf: X               Z :gk g3f.$: 1X  gk.hf,      h(k.4: 1Z  hf.gk.

Its coherence is easily checked; the composition is associative, with obvious identities. Being future
equivalent categories is thus an equivalence relation.

2.2. Full reflective subcategories as future retracts. A special case of future equivalence is
important for its own sake, but will also be shown to generate the general case (in 2.3).

A split future equivalence of  F  into  X  (or of  X  onto  F)  is a future equivalence  (i, p; 1, *)  where
the unit  1  pi  is an identity

(1) i: F               X :p *: 1X  ip      (the main unit),

pi  =  1F, p*  =  1p,   *i  =  1i (p  i).

We also say that  F  is a future retract of  X.  Note that  p  is now left adjoint to  i,  which is full and
faithful.

Forgetting about direction, a future retract corresponds - in Topology - to a strong deformation
retract (with an additional coherence condition,  p* = 1).  Here, this structure means that  F  is
(isomorphic to) a full reflective subcategory of  X,  i.e. that there is a full embedding  i: F  X  with a
left adjoint  p: X  F  (then  p  is essentially determined by  i,  and - via the universal property of the
unit - can always be constructed so that the counit  pi  1F  be an identity, as we are assuming).

Equivalently, one can assign a strictly idempotent monad  (e, *)  on  X

(2) e: X  X, *: 1X  e, ee  =  e,      e*  =  1e  =  *e.
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Indeed, given  (i, p; *),  we take  e = ip;  given  (e, *),  we factor  e = ip  splitting  e  through the
subcategory  F  of  X  formed of the objects and arrows which  e  leaves fixed.

Dually, a split past equivalence, of  P  into  X  (or of  X  onto  P)  is a past equivalence  (i, p; 1, ))
where the counit  pi  1P  is an identity

(3) i: P               X :p ): ip  1X      (the counit),

pi  =  1P, p)  =  1p,   )i  =  1i (i  p).

This amounts to saying that  i(P)  is a full coreflective subcategory of  X  (with a choice of the
coreflection making the unit  1  pi  an identity);  P  is also called a past retract of  X.

2.3. Theorem (Future equivalence and reflective subcategories)  [G3, 2.5]. (a) A future equivalence
(f, g; $, ()  between  X  and  Y  (2.1) has a canonical factorisation into two split future equivalences

   i    q
(1)   X  W  Y (*: 1W  ip,   *': 1W  jq),

   p    j

so that  X  and  Y  are full reflective subcategories of  W.  (It is a mono-epi factorisation in the category
of future equivalences, through a sort of 'graph' of  (f, g; $, ()).

(b) Two categories are future equivalent if and only if they are full reflective subcategories of a third.

(c) A property is future invariant if and only if it is preserved by all embeddings of full reflective
subcategories, as well as by their reflectors.

The proof can be seen in [G3, 2.5]. We only recall how one constructs the category  W.

An object is a four-tuple  (x, y; u, v)   such that:

(2) u: x  gy  (in  X),      v: y  fx  (in  Y), gv.u  =  $x,      fu.v  =  (y,

   u   v
   x   gy    y   fx

$x    gv (y    fu

gfx fgy

A morphism is a pair  (a, b): (x, y; u, v)  (x', y'; u', v')  such that:

(3) a: x  x'  (in  X),      b: y  y'  (in  Y), gb.u  =  u'.a,      fa.v  =  v'.b,

 u  v
   x   gy    y   fx

   a    gb    b    fa

  x'  gy'   y'  fx'
u' v '

2.4. Terminal and maximal points. The existence of a map  x  x'  in the category  X  (a path)
produces the path preorder  x  x'  (x  reaches  x')  on the points of  X;  the resulting path
equivalence relation, meaning that there are maps  x               x',  is written as  x  x'.  (Of course, if the
category  X  'is' a preorder, the path preorder coincides with the original relation.)
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The following properties of an object  x % X  are future invariant (as proved in [G3, Lemma 2.7]):

(a)  x  is the terminal object of  X,

(b)  x  is a weakly terminal object of  X,  i.e. a maximum for the path preorder   (i.e., it can be reached
from every point of  X),

(c)  x  is maximal in  X,  for the path preorder (i.e., it can only reach the points  x),

(d)  x  does not reach a maximal point  z.

We say that a category  X  is future contractible if it is future equivalent to 1 (the singleton category
{*}).  It is easy to see that this happens if and only if  X  has a terminal object [G3, 2.6].

2.5. Other elementary examples. (a) Let us begin with a few examples, produced by finite or
countable ordered sets. For preordered sets (viewed as categories), a future equivalence consists of a
pair of preorder-preserving mappings  f: X               Y :g  such that  1X & gf  and  1Y & fg,  and is
necessarily faithful. We already know that future contractibility means having a maximum

(1) (past and future contractible),

(2) ...   (just future-contractible),

(3)   ...   (just past-contractible),

(4) ...    ...  (just coarse-contractible).

(Of all these examples, the ones is (1) are also projectively contractible, but only the first of them is
also injectively contractible; see 3.2d.)

(b) Consider again (as in (3)) the ordered set  n  of natural numbers, as a category. There are future
equivalences

(5) f: n               n :g, f(x)  =  x,      g(x)  =  max(x, x0), $(x)  =  ((x):  x  &  g(x),

where  x0 % n  is arbitrary (and coherence automatically holds, since our categories are preorders).
Thus,  f  does not determine  g.

(c) Now we consider some finite categories, generated by the directed graphs drawn below; the outer
cells, marked with a cross, do not commute and these categories are not preorders. The category
represented in (6) is future equivalent to the first in (7), past equivalent to the second, past and future
equivalent to the third and coarse-equivalent to the last

(6)
   0   1
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(7)
   0   1    0   1    0   1    0

 
  1

This shows a situation of interest in concurrency. There is a given starting point 0, which is
minimal (2.4), but not initial nor the unique minimal point (generally); and a given ending point 1,
which is maximal. Moreover:

- 0 is also a future branching point, where one has to choose among different ways of going forward;
being such is a future invariant property (cf. 2.9);

- a square-marked point is a deadlock, i.e. a maximal unsafe vertex (from where one cannot reach 1);
this is again a future invariant property (2.4);

- a circle-marked point is a minimal unreachable vertex (which cannot be reached from 0); being such
is a past invariant property (according to the dual of 2.4);

- 1 is a past branching point, preserved by past equivalences (2.9).

The 'past and future model' above (the third category in (7)) preserves all these properties, while
the coarse one only recognises that there are two paths from 0 to 1.

(d) Finally, the following category (described by generators and relations)

 h
   0  a

   k'
(8) h'

   u    v
k

uh  =  vh  =  h', ku  =  kv  =  k',
 b  1

has an initial object (0) and a terminal one (1): it is past and future contractible, but not faithfully so.
Note also that, in the future contraction, all the components of the unit  (x  1)  are epi.

2.6. Future regularity [G3, 6.1]. A morphism  a: x  x'  in  X  is said to be V+-regular if it satisfies
condition (i), O+-regular if it satisfies (ii), and future regular if it satisfies both:

(i)  given  a': x  x",  there is a commutative square  ha = ka' (V+-regularity),

(ii) given  ai: x'  x"  such that  a1a = a2a,  there is some  h  such that  ha1 = ha2 (O+-regularity),

 a
   x   x'

  a a1    h
(1)   a'    h    x   x'  x"

  x"
a2

 k

Future regular morphisms are closed under composition (2.7), but they are not invertible, in
general. The equivalence relation  +  in  ObX  generated by the existence of a future regular
morphism between two objects is called future regularity equivalence. The future regularity class of an
object  x  is written  [x]+.

In a category with finite colimits or with terminal object, all morphisms are future regular. In a
preordered set, all arrows are O+-regular, and future regularity coincides with V+-regularity.

On the other hand, we say that  a  is V+-branching if it is not V+-regular; that it is O+-branching if
it is not O+-regular; that it is a future branching morphism if it falls in (at least) one of the previous
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cases, i.e. if it is not future regular. In the category represented below, at the left, the morphism  a  is
V+-branching and O+-regular, while at the right  a  is O+-branching and V+-regular

 a   a
   x    x'    x  x'

(2)   a'
b

 a1    a2 (b = a1a = a2a).
  x" x"

Dually, we have V–-regular, O–-regular, past regular morphisms and the corresponding
branching morphisms; the past regularity equivalence  –  and its past regularity classes  [x]–.

2.7. Lemma [G3, 6.2]. (a) V+-regular, O+-regular and future regular morphisms form (wide)
subcategories, containing all the isomorphisms.

(b) If a composite  ba  is V+-regular (resp. O+-regular), then the first map  a  (resp. the second map  b)
is also.

2.8. Theorem (Future equivalence and regular morphisms) [G3, 6.3-6.4]. Given a future equivalence
f: X               Y :g,  with natural transformations  $: 1  gf,  (: 1  fg,  we have:

(a) all the components  $x  and  (y  are future regular morphisms,

(b) the functors  f  and  g  preserve V+-regular, O+-regular and future regular morphisms,

(c) the functors  f  and  g  preserve V+-branching, O+-branching and future branching morphisms (i.e.
reflect V+-regular, O+-regular and future regular morphisms),

It follows that a future equivalence  f: X               Y :g  induces a bijection

(1) (ObX)/ +                 (ObY)/ +,

between the quotients of objects up to future regularity equivalence;  f  and  g  preserve and reflect the
future regularity equivalence relations  +.

2.9. Branching points. We consider now future invariant properties of points of a category  X.  We
have already seen some of them, concerning maximal points (2.4). A point  x  is said to be V+-regular
if it satisfies (i), O+-regular if it satisfies (ii), future regular if it satisfies both:

(i) every arrow starting from  x  is V+-regular (equivalently, two arrows starting from  x  can always be
completed to a commutative square),

(ii) every arrow starting from  x  is O+-regular (equivalently, given an arrow  a: x  x'  and two arrows
ai: x'  x"  such that  a1a = a2a,  there exists an arrow  h  such that  ha1 = ha2).

We say that  x  is a V+-branching point in  X  if it is not V+-regular (i.e., if there is some arrow
starting from  x  which is V+-branching); that  x  is an O+-branching point if it is not O+-regular; that
x  is a future branching point if it falls in at least one of the previous cases, i.e. if it is not future
regular.

Note now that, in the fundamental category  C  considered in 1.2, the starting point 0 is V+-
branching, but the choice between the different paths starting from it can be deferred, while at the point
p  the choice must be made. To distinguish these situations, we say that a future branching point is
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effective when every future regular map starting from it is a split mono. (In the fundamental category of
a preordered or ordered space, this amounts to an isomorphism or an identity, respectively.)

 Dually, we have the notions of V–-, O–- and past regular (resp. branching) point in  X,  and
effective past branching points.

Theorem (Future equivalence and branching points) [G3, Thm. 6.6]. The following properties of a
point are future invariant (i.e., invariant up to future equivalence):

(a) being a V+-regular, or an O+-regular, or a future regular point,

(b) being a V+-branching, or an O+-branching, or a future branching point, or an effective one.

3. Injective and projective models associated with spectra

Injective and surjective models, defined in 3.2, will be our main tool. A pf-presentation of a category,
formed of a past and a future retract (3.3), produces an injective model (3.4a) and a projective one
(3.4b). Spectral presentations (3.5-3.6) give minimal projective models.

3.1. Pf-equivalences. We are interested in considering categories which are at the same time future
and past equivalent. But an unrelated pair formed of a past equivalence and a future equivalence
between the same categories is not an effective tool.

A pf-equivalence from  X  to  Y  [G3, 3.1] is a pair formed of a past equivalence  (f, g–; )X, )Y)  and
a future equivalence  (f, g+; *X, *Y)  sharing the same functor  f: X  Y,  and also satisfying a further
pf-coherence condition (2) linking the two pairs:

(1) f : X               Y : g–, g+,

)X: g–f  1X,   )Y: fg–  1Y, f)X  =  )Yf:  fg–f  f,      )Xg–  =  g–)Y:  g–fg–  g–,

*X: 1X  g+f,   *Y: 1Y  fg+, f*X  =  *Yf:  f  fg+f,     *Xg+  =  g+*Y:  g  g+fg+,

  g–*Y
   g–    g–fg+

(2)    *Xg–  =    )Xg+ (pf-coherence).
  g+fg–   g+

      g+)Y

A pf-equivalence yields a natural transformation, the comparison from past to future

(3) g: g–  g+: Y  X, g  =  )Xg+.g–*Y  =  g+)Y.*Xg–.

which - when convenient - is seen as a functor  g: Y  X2

(4) g: Y  X2, gy: g–y  g+y, g(b)  =  (g–b, g+b).

A pf-equivalence is often written as  f: X               Y  or  f: X               Y :g,,  leaving the rest understood.

The coherence condition (2) is automatically satisfied in two important cases, considered below:
when  f  is faithful or surjective on objects [G3, Lemma 3.3].

3.2. Injective and surjective models. (a) A pf-equivalence  f: X               Y :g,  is called a pf-injection,
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or pf-embedding, if the functor  f  is a full embedding (i.e., full, faithful and injective on objects). Pf-
embeddings compose, with the composition of pf-equivalences (2.1). Then, we say that  Y  is an
injective model of  X.

It is easy to see that a pf-embedding  f: X               Y :g,  amounts to these three functors together with
the two natural transformations at  Y,  satisfying the conditions below

(1) )Y: fg–  1Y      (the main counit), *Y: 1Y  fg+      (the main unit),

fg–)Y  =  )Yfg–, fg+*Y  =  *Yfg+.

(b) We say that  E  is a minimal injective model of  X  [G3, 5.2] if:

(i)  E  is an injective model of every injective model  E'  of  X,

(ii) every injective model  E'  of  E  is isomorphic to  E.

We also say that  E  is a strongly minimal injective model if it satisfies the stronger condition (i'),
together with (ii):

(i')  E  is an injective model of every category injectively equivalent to  X,

where two categories are said to be injectively equivalent if they can be linked by a finite chain of pf-
embeddings, forward or backward [G3, 4.1].

We will see in 3.6 that a pf-spectrum of a category produces a strongly minimal injective model of
the latter.

(c) A pf-equivalence  f: X               Y :g,  is called a pf-surjection if the functor  f  is surjective on objects,
and a pf-projection if, moreover, the associated functor  g: Y  X2  (3.1.4) is a full embedding. Then,
we say that  Y  is a surjective or projective model of  X,  respectively. Also in this case, coherence is
automatic (as already observed at the end of 3.1). We have already observed that the functor  f  need
not be full (1.5). Projective equivalence of categories is defined by a finite chain of pf-projections,
forward or backward.

(d) It is easy to see that a category  X  is injectively contractible (i.e., injectively equivalent to 1) if and
only if it is pointed (i.e., it has a zero object) [G3, 5.4]. A category  X  with non-isomorphic initial and
terminal object is injectively modelled by the ordinal  2 = {0  1},  with an obvious pf-embedding  i:
2               X :g,  (not split) which is actually the strongly minimal injective model of  X.  (In particular,
the category 2, which is the standard interval of  Cat,  is not contractible in this sense.)

On the other hand, on the projective side, the existence of the initial and terminal objects is
sufficient (and necessary) to make a category  X  projectively equivalent to 1, via the split pf-projection
p: X               1 :i,,  with  i–(*) = 0  and  i+(*) = 1.

3.3. Pf-presentations. A pf-presentation of the category  X  [G3, 4.2] is a diagram consisting of a
past retract  P  (i.e., full coreflective subcategory) and a future retract  F  (i.e., full reflective
subcategory) of  X

 i–  p+ ): i–p–  1X (p–i– = 1,  p–) = 1,  )i– = 1),
(1)  P   X   F

p–  i+
*: 1X  i+p+ (p+i+ = 1,  p+* = 1,  *i+ = 1).
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We have thus two adjunctions  i–  p–,  p+  i+,  and a composed one, from  P  to  F,  which is
no longer split, with the following counit and unit

(2) p+)i+:  p+i–.p–i+  p+i+  =  1F, p–*i–:  1P = p–i–  p–i+p+i– (p+i–  p–i+).

3.4. The associated models. (a) These data produce an associated injective model  E,  the full
subcategory of  X  on  ObP + ObF,  which has a pf-embedding  u: E               X :r,.

More precisely (as proved in [G3, 4.3]), these data can be uniquely completed to a diagram with
four commutative squares

 i– p+

  P   X   F   X
p– i+

(1)
 j–

   u
q+  r–

 r+

  P   E   F   E
q– j+

The lower row is a pf-presentation of  E,  with the unique natural transformations  )E: j–q–  1E
and  *E: 1E  j+q+  such that

(2) u)E  =  )u, u*E  =  *u.

Moreover, letting  r, = j,p,: X  E   (, = ±),  we get a pf-embedding  u: E              X :r,,  with the
natural transformations  )E, ), *E, *;  E  becomes thus the injective model generated by the given pf-
presentation of  X.

(b) But the given pf-presentation of  X  also produces an associated projective model  f: X               M :g,

[G3, Thm. 4.6].  M  is the full subcategory of the category of morphisms  X2,  on the objects

(3) f(x)  =  *x.)x: i–p–x  i+p+x,

while the functors  g–  and  g+  are the restrictions of domain and codomain, respectively.

3.5. Spectra [G3, 7.2]. Recall that we have defined, in the set of objects  ObX,  the equivalence relation
x + x'  of future regularity, with equivalence classes  [x]+  (2.6).

A future spectrum  sp+(X)  of the category  X  is a subset of objects such that:

(sp+.1)  sp+(X)  contains precisely one object, written  sp+(x),  in every future regularity class  [x]+,

(sp+.2) for every  x % X  there is precisely one morphism  *x: x  sp+(x)  in  X,

(sp+.3) every morphism  a: x  sp+(x')  factors as  a = h.*x,  for a unique  h: sp+(x)  sp+(x').

The second condition can be equivalently written as:

(sp+.2') for every  x % X,  sp+(x)  is the terminal object of the full subcategory on  [x]+.

As proved in [G3, 7.4], a functor  i: F  X  embeds  F  as a future retract of  X  if and only if:

(a) the category  F  has precisely one object in each future regularity class; the functor  i  is a future
retract (i.e., it has a left adjoint  p: X  F  with  pi = 1F  as counit); moreover the unit-component
x  ip(x)  is the unique X-morphism with these endpoints.

Also the full subcategory  Sp+(X)  of  X  on this set of objects is called the future spectrum. The
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future spectrum (when it exists) is the least future retract of the given category [G3, 7.3]. This full
subcategory, as well as its embedding in  X,  is determined up to a canonical isomorphism (and is thus
more strictly determined than the ordinary skeleton; cf. [G3, 7.5]).

Dually we have the past spectrum  sp–(X)  and its full subcategory  Sp–(X).

It is easy to see that a category has future spectrum 1 if and only if it is future equivalent to 1, if and
only if it has a terminal object.

3.6. Spectral presentations. The spectral pf-presentation of  X  [G3, 7.6] is a diagram where

 i–  p+ ): i–p–  1X (p–i– = 1,  p–) = 1,  )i– = 1),
(1)  P   X   F

p– i+
*: 1X  i+p+ (p+i+ = 1,  p+* = 1,  *i+ = 1).

(i)  P  is the past spectrum and  F  the future spectrum of  X,

(ii) given  x % ObP  and  x' % ObF,  if  x  x'  in  X  then  x = x'  (linked choice).

Such a presentation exists if and only if  X  has a past spectrum and a future one, since the linked-
choice condition can always be realised, replacing each object of  P  with its isomorphic copy in  F,  if
any. The set of objects produced by this linked choice is called the pf-spectrum of  X,  or spectral
model

(2) sp(X)  =  ObP + ObF  =  sp–(X) + sp+(X).

The full subcategory  Sp(X)  on these objects is also called the pf-spectrum of  X.  As a crucial fact,
Sp(X)  is a strongly minimal injective model of  X  [G3, Thm. 8.4], determined up to isomorphism (in
fact, a unique coherent isomorphism, in a sense made precise in [G3, Thm. 8.6]).

The projective model  X  M  associated to the spectral pf-presentation (as in 3.4) is called the
spectral projective model of  X.

4. Examples

The following analysis of some planar ordered spaces is taken from [G3], Section 9.

4.1. Modelling an ordered space. In the sequel, as in 1.4, we consider ordered topological spaces  X
with minimum (0) and maximum (1) and study the pf-spectrum of the fundamental category  C =
!"1(X).  (A similar analysis for a preordered space can be found in [G3, 9.5].)

C  inherits a privileged 'starting point' 0 (a minimal point, but possibly not the unique one, cf. 4.5)
and a privileged 'ending point' 1 (which is maximal in  C).  Furthermore, recall that  C  is skeletal (since
X  is ordered), so that the future spectrum - if it exists - is the least full (i.e. replete) reflective
subcategory of  C,  strictly determined as a subset of  C.  Objects of  C  (i.e., points of  X)  are denoted
by letters  x, a, b, c...;  arrows of  C  (i.e., classes of paths of  X  'up to directed homotopy', as recalled
in 1.2), by Greek letters  ,, ., 5...
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4.2. A second example. Consider, in the category  pTop,  the (compact) ordered space  X:  a
subspace of the standard ordered square  ![0, 1]2  obtained by taking out two open squares (marked
with a cross), as in the left figure below

  a
1

  a'
c     1

(1)   b
   c'    0

b'

   X
0

 E  M   Z

The fundamental category  C = !"1(X)  is easy to determine. We prove below that its pf-spectrum
is the full subcategory  E,  on eight vertices (where the two cells marked with a cross do not commute,
while the central one does), while the spectral projective model is  M  and the category  Z  is just a
coarse model (of all three). Again, as in 1.5, the projective model is isomorphic to the 'category of
components' of  C  constructed in [FRGH].

First, we show that the category  C = !"1(X)  has a past spectrum

a
1

c  
 

   a'  
(2)

   b     c'

b'

0
P   F

In fact, there are four past regularity classes of objects, each having an initial object:

(3) [c]–  =  {x | x ' c} (marked with a shade),

[a]–  =  {x | x ' a} \ [c]–, [b]–  =  {x | x ' b} \ [c]– (both marked with dots),

[0]–  =  X \ ([c]– + [a]– + [b]–) (unmarked),

where  a, b, c  are effective V–-branching points and 0 is the global minimum, weakly initial in  C.

These four points form the past spectrum  sp–(C) = {0, a, b, c},  as is easily verified with the
characterisation 3.5a: take the full subcategory  P 1 C  on these objects (represented in the same
picture), its embedding  i–: P 1 C  and the projection  p–  sending each point  x % C  to the minimum
of its past regularity class. Now  i–  p–,  with a counit-component  )(x): i–p–(x)  x  which is
uniquely determined in  !"1(X),  since - within each of the four zones described above - there is at
most one homotopy class of paths between two given points.

Symmetrically, we have the future spectrum: the full subcategory  F 1 C  in the right figure above,
on the following four objects (each of them a maximum in its future regularity class):

-  1 (the global maximum, weakly terminal);  a', b', c'  (V+-branching points).

The projection  p+  (left adjoint to  i+: F 1 C)  sends each point  x % C  to the maximum of its
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future regularity class (i.e. the lowest distinguished vertex  p+(x) ' x);  the unit-component  *(x): x 
i+p+(x)  is, again, uniquely determined in  !"1(X).

Globally, we have constructed a spectral pf-presentation of  C  (3.6); this generates the skeletal
injective model  E,  as the full subcategory of  C  on  sp(C) = {0, a, b, c, a', b', c', 1}.  The full
subcategory  Z 1 E  on the objects  0, 1  is isomorphic to the past spectrum of  F,  as well as to the
future spectrum of  P,  hence coarse equivalent (1.3) to  C  and  E.

Comments. The pf-spectrum  E  provides a category with the same past and future behaviour as  C.
This can be read as follows:

(a) the action begins at the 'starting point' 0, the minimum, from where we can only move to  c';

(b)  c'  is an (effective) V+-branching point, where we choose: either the upper/middle way or the
lower/middle one;

(c) the first choice leads to  a',  a further V+-branching point where we choose between the upper or the
middle way; similarly, the second choice leads to the V+-branching point  b',  where we choose between
the lower or the middle way (the same as before);

(d) the first bifurcation considered in (c) is 'joined' at  a,  the second at  b  (V–-branching points);

(e) the resulting 'paths' come together at  c  (the last V–-branching point);

(f) from where we can only move to the 'ending point' 1, the maximum.

The 'coarse model'  Z  only says that in  C  there are three homotopically distinct ways of going
from 0 to 1, and looses relevant information on the branching structure of  C.  The projective model is
studied below.

4.3. The projective model. For the same category  C = !"1(X), the spectral projective model  M,
represented in the right figure below, is the full subcategory of  C2  on the 9 arrows displayed in the
left figure (only three of them are labelled)

/"   /"    6'     .

 
(1) /'   /  /"   /   5'    /     6

 
/'   ,    5    /'

 M

The projection  f(x) = (p–x, p+x;  *x.)x)  (3.4),  from  X = ObC  to  ObM 1 MorC,  has thus nine
equivalence classes, analytically defined in (2) and 'sketched' in the middle figure above (the thick lines
are meant to suggest that a certain boundary segment belongs to a certain region, as made precise
below); in each of these regions, the morphism  f(x)  is constant, and equal to  ,, .,...

(2) f–1(,)  =  [0, 1/5]2, f–1(.)  =  [4/5, 1]2 (closed in  X),

f–1(5)  =  ]1/5, 3/5] × [0, 1/5], f–1(5')  =  [0, 1/5] × ]1/5, 3/5],

f–1(6)  =  [4/5, 1] × [2/5, 4/5[, f–1(6')  =  [2/5, 4/5[ × [4/5, 1],

f–1(/)  =  X 7 ]1/5, 4/5[2 (open in  X),
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f–1(/')  =  X 7 (]3/5, 1] × [0, 2/5[), f–1(/")  =  X 7 ([0, 2/5[ × ]3/5, 1]) (open in  X).

The interpretation of the projective model  M  is practically the same as above, in 4.2, with some
differences:

(i) in  M  there is no distinction between the starting point and the first future branching point, as well
as between the ending point and the last past branching point;

(ii) the different paths produced by the obstructions are 'distinguished' in  M  by three new intermedi-
ate objects:  /, /', /".

Note also that - here and in many cases - one can also embed  M  in  C,  by choosing a suitable
point of a suitable path in each homotopy class  ,, .,...;  but there is no canonical way of doing so. This
point will be studied in the next section.

In order to compare the injective model  E  and the projective model  M,  the examples below will
make clear that distinguishing  0  from  c'  (or  c  from  1)  carries some information (like distinguish-
ing the initial from the terminal object, in the injective model 2 of a non-pointed category having both,
cf. 3.2d). According to applications, one may decide whether this information is useful or redundant.

4.4. Variations. (a) Consider the previous ordered space  X  (4.2) together with the spaces  X'  and
X",  obtained by taking out, from the ordered square  ![0, 1]2,  two open squares placed in different
positions, 'at' the boundary

(1)
  

      X  X'   X"

  1   1  a   1

  a   a   a'

  a'
c  

  a'
c  

(2)   b
  

   c'
  b   b

b'
0

 E
0

  E' 
b' 0

   E"
  b'

The pf-spectra  E, E'  and  E"  distinguish these situations: in the second case the starting point 0 is
an effective future branching point, and we must make a choice from the very beginning (either the
upper/middle way or the middle/lower one); in the last case, this remains true and moreover the ending
point is an effective past branching point. The projective models of these three spectra coincide: we
always get the category  M  of 4.3.

(b) The following examples show similar situations, with a different injective (and projective) model.
We start again from a (compact) ordered space  Xi 1 ![0, 1]2,  obtained by taking out two open
squares
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1  1
  b   b

(3) b'   
   a    a

 a'  0

    X1

0
 P1

0
 E1 Z1

 b
1

b
  b'

   1

(4)    a   a    0
 a'

    X2

0
 P2

0
 E2   Z2

In both cases, the past spectrum of the fundamental category  Ci = !"1(Xi)  is the full subcategory
Pi  on three objects:  0  (the minimum),  a, b  (V–-branching points), as shown above. The future
spectrum is symmetric. The pf-spectrum, generated by the previous presentation, is the full subcate-
gory  Ei  on the pf-spectrum  sp(Ci) = {0, a, b, a', b', 1}.  Coarse models of  Ci  are given by the
categories  Zi  generated by the graphs above; in particular,  Z1  has four arrows from 0 to 1.

In the second case,  E2  is better represented "abstractly", to avoid the partial superposition of paths
in the former embedding; the central cell commutes

  b   1

 

(5)   b'   a

 
E2

  0   a'

4.5. The Swiss flag. The following situation is often analysed as a basic one, in concurrency: the
'Swiss flag'  X 1 ![0, 1]2.  See [FGR, FRGH, GG, Go] for a description of 'the conflict of resources'
which it depicts, and [FRGH, p. 84] for an analysis of the fundamental category which leads to a
'category of components' similar to the projective model we get here

 c   b
1

a'   c'  1
(1)

   d  b'

   a  0

 d'

    X
0

  E Z

Proceeding as above, the fundamental category  C = !"1(X)  has an injective model  E  and a
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coarse model  Z.  Now, the past spectrum is the full subcategory  P 1 C   represented below

 c   b
1

a'   c'
(2)

   d   b'

a  d'

0
  P   F

The past spectrum  sp–(C) = {0, a', a, b, c, c'}  contains two minimal points  0, a'  (note that the
starting point 0  is not a minimum for ) and three V–-branching points  (b, c, c').  Similarly, the future
spectrum is the full subcategory  F 1 C  in the right figure above, on the future spectrum  sp+(C) = {a,
d, d', b', 1}.  The pf-spectrum of  C  is the full subcategory category  E  on  sp(C) = sp–(C) + sp+(C).

The spectral projective model  M  is shown below, under the same conventions as in 4.3.1

  /'    6'     .
/'

   8     6(3) /' /"   5'    µ

/"
  ,    5   /"

Note that it can again be embedded in  C.

5. Surjective models and retracts

We begin now a new study of the fundamental category, via surjective models, determined by retracts.
For the hollow cube, we get in this way an analysis similar to the one of [FRGH] and [Ha].

5.1. Retractile models. Given a category  X,  a retract  i: M               X :p  gives an idempotent
endofunctor  e = ip: X  X;  conversely, given the latter, one reconstructs  M  as the subcategory of
objects and morphisms which  e  leaves fixed. The retracts of  X  form an ordered set, with the usual
order relation of idempotents:  e' & e  if  e' = ee' = e'e;  this amounts to saying that the second retract  i':
M'               X :p'  factors through the first, by a (unique) retraction

 j  i
(1)  M'   M  X ij  =  i', qp  =  p'.

q  p

A retractile model of  X  will be a pf-equivalence  p: X               M :g,  (3.1)

(2) ): g–p  1,   )M: pg–  1M, (p) = )Mp,      )g– = g–)M),

*: 1  g+p,   *M: 1M  pg+, (p* = *Mp,      *g+ = g+*M),
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together with a section  i: M  X  of  p,  consistent with the pf-equivalence in the following sense
(writing  e = ip: X  X)

(3) e)e  =  e), e*e  =  e*.

Equivalently, we can assign the functors  p: X  M  and  i, g–, g+: M  X  and the two natural
transformations at  X,  under the axioms

(4) ): g–p  1X (the main counit), (g–p))  =  )(g–p),

*: 1X  g+p (the main unit), (g+p)*  =  *(g+p),

pi  =  1, e)e  =  e), e*e  =  e*.

Then, we define

(5) )M  =  p)i: pg–  1M, *M  =  p*i: 1M  pg+,

and we get  )Mp = p)ip = p),  g–)M = g–p)i = )g–pi = )g–,  etc. The coherence condition 3.1.2 is
automatically satisfied, because  p  is surjective on objects.

Again, such a model will often be written as  p: X  M  leaving the remaining structure
understood. We say that a retractile model is semi-faithful if the functor  p  is faithful. Notice that  p
need not be full, and our pf-surjection need not be a pf-projection, as it will appear from the examples
below.

We do not know whether a spectral projective model is always a retractile one. But all the ones
considered in Section 4 are.

5.2. Pf-presentation and retractile models. Let us start from a pf-presentation (3.3) of the category
X  (not necessarily produced by spectra)

 i–  p+ ): i–p–  1X (p–i– = 1,  p–) = 1,  )i– = 1),
(1)  P   X   F

p–  i+
*: 1X  i+p+ (p+i+ = 1,  p+* = 1,  *i+ = 1).

We say that a retract  i: M               X :p  is consistent with this pf-presentation if the endofunctor  e =
ip: X  X  satisfies:

(2) e)e  =  e), e*e  =  e*.

The next theorem shows that  M  is then a retractile model of  X,  admitting the same past and
future retracts  P  and  F.  This fact will be of interest when the projection  p  is faithful (or -
equivalently - the endofunctor  e  is), while the injective and projective models associated to the given
presentation (3.4) are not faithful.

5.3. Theorem (Presentations and retracts). Let us be given a pf-presentation of the category  X  and a
consistent retract  i: M               X :p  (as above, 5.2).

(a) There is an induced pf-presentation of  M,  so that the four squares of the following left diagram
commute
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 i–  p+

  P   X   F   X
p–  i+

(1)
 j–

   p
 q+ g–

 g+

  P   M   F  M
q– j+

(b) There is an associated retractile model  p: X               M :g,,  with  i: M  X  and

(2) g,  =  i,q,  =  i,p,i,

(3) g,p  =  i,p,, g,pg,  =  g, (, = ±).

Proof. (a) Let us define the new retractions

(4) j,  =  pi,, q,  =  p,i (, = ±),

and note that  q,p = p,ip = p,  (by hypothesis, 5.2.2) and  q,j, = q,pi, = p,i, = 1.  Now,  P
becomes a past retract of  M  and  F  a future retract, with the following counit and unit:

(5) )'  =  p)i:  j–q–  1X *'  =  p)i:  1X  j+q+ (j,q, = pi,p,i),

which are easily seen to be coherent (applying the coherence of the original past and future retract,
together with the hypothesis, e)e = e)  and  e*e = e*).  For instance, for  P  we have:

(6) q–)'  =  q–p)i  =  (p–))i  = 1, )'  =  p)ipi–  =  p()i–)  = 1.

(b) Let us define the functors  g,  as in (2), which implies (3). The functor  p  is obviously surjective
on objects. The pair  (p, g–)  becomes a past equivalence with the original  )  and the previous  )'

(7) ): g–p  1X )':  pg–  1M,

since  g–p = i–q–p = i–p–  and  pg– = pi–q– = j–q–.  Again, coherence is easily verified:

(8) p)  =  p)ip  =  )'p,

)g–  =  ()i–)q–  =  1, g–)'  =  i–q–p)i  =  i–(p–))i  =  1.

Symmetrically, one shows that  (p, g+, *, *')  is a future equivalence between  X  and  M,  noting that
*: 1X  i+p+ =  g+p  and  *': 1X  j+q+ = pg+.  The conditions 5.1.3 are satisfied, by hypothesis.

Finally, the associated functor  g: M  X2  (3.1.4)

(9) g(x)  =  )g+(x).g–*'(x)  =  g+)'(x).*g–(x): g–(x)  g+(x),

can even be constant (on objects and morphisms), in cases of interest: see the hollow cube 1.6, where
the past spectrum  P  reduces to the initial object  ,  the future spectrum  F  reduces to the terminal
object  ,  so that  g(x)  is always the unique morphism    .

5.4. Reviewing the square annulus. Let us reconsider the fundamental category  C = !"1(X)  of the
square annulus  X  (1.2), and its spectral projective model  p: C               M :g,  (3.4, 3.6)

(1) p: C               M :g,, p(x)  =  *x.)x: i–p–x  i+p+x,
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 /   /    .

(2)

 0   ,
 
 0

  X    M

The space  X  is decomposed into four classes

(3) p–1(,)  =  [0, 1/3]2, p–1(.)  =  [2/3, 1]2 (closed in  X),

p–1(/)  =  X 7 ([0, 2/3[ × ]1/3, 1]), p–1(0)  =  X 7 (]1/3, 1] × [0, 2/3[) (open in  X).

This projective model can be obtained as above, in 5.3, starting from the spectral presentation and a
retract  i: M               C :p,  where  i  is any section of  p,  i.e. any choice of points in the four classes with

(4) i(,)  &  i(/)  &  i(.), i(,)  &  i(0)  &  i(.),

  /    .

(5)

  ,
 
 0

 X    M     M'

The procedure 5.3 can also be applied to a larger retract  i': M'               C :p'  (see the right figure
above), taking for instance the middle points of all the eight 'subsquares' of  X  of edge 1/3, 'around the
obstruction' (with some arbitrary choice in defining the eight equivalence classes of  p').  Plainly, there
is no advantage in enlarging the model.

5.5. A retractile model of the hollow cube. However, similar enlargements can be of interest when
the spectral projective model is unsatisfactory - e.g. not faithful, as it happens with the hollow cube  X
(1.6).

The fundamental category  C = !"1(X)   has a reasonably simple semi-faithful retractile model, the
full subcategory  M  on the 26 middle points of the 'subcubes' of edge 1/3 placed 'around the
obstruction' (as suggested by the analysis of [FRGH], see figure 7).  M  is generated by the following
graph under the condition that all squares commute except the 3 ones around the obstruction  9
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(1)
 9

 

It would be interesting to prove that this retractile model is minimal (among such).

Note also that this pf-surjection is not be a pf-projection: the associated functor  g: M  C2

(3.1.4) is not even injective on objects.

6. Normal quotients of categories

Generalised quotients of categories, examined here, will also be useful to construct surjective models.

6.1. Generalised congruences of categories. First, let us recall that a very general notion of
generalised congruence in a category (also involving objects) can be found in a paper by Bednarczyk,
Borzyszkowski and Pawlowski [BBP].

 A quotient of categories will be viewed with respect to this notion, even if - as in [Ha] - we only
need a particular case, determined by the maps which we want to become identities. More precisely,
given a category  X  and a set  A  of its arrows,  X/A  denotes the quotient of  X  modulo the
generalised congruence generated by declaring every arrow in  A  to be equivalent to the identity of its
domain. (As shown in [BBP], the generalised congruences of a category form a complete lattice, hence
we can always take the intersection of all the generalised congruences containing a certain relation.)

The quotient  p: X  X/A  is determined by the obvious universal property:

(i) for every functor  f: X  Y  which takes all the morphisms of  A  to identities, there is a unique
functor  f': X/A  Y  such that  f = f'p.

These quotients of the category  X  also form a complete lattice, with the same arbitrary meets as the
general quotients of  X  (in the previous sense): the meet of a family  pi: X  X/Ai  is the quotient of
X  modulo the set-theoretical union of the sets  Ai.

6.2. Kernels and normal quotients. This particular case can be made clearer when viewed at the
light of general considerations on kernels and cokernels with respect to an assigned ideal of 'null'
arrows, studied in [G1] - independently of the existence of a zero object. (See also Ehresmann [Eh],
including the Comments in the same volume, p. 845-847; and Lavendhomme [La].)

Take, in  Cat,  the ideal of discrete functors, i.e. those functors which send every map to an identity;
or, equivalently, consider as null objects in  Cat  the discrete categories and say that a functor is null if
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it factors through such a category (we have thus a closed ideal, according to [G1]).

This ideal produces - by the usual universal properties formulated with respect to null functors - a
notion of kernels and cokernels in  Cat.  Precisely, given a functor  f: X  Y,  its kernel is the wide
subcategory of all morphisms of  X  which  f  sends to identities of  Y,  while its cokernel is the
quotient  Y  Y/B,  produced by the set  B  of arrows reached by  f.

A normal subcategory  X0 1 X,  by definition, is a kernel of some functor starting at  X,  or,
equivalently, the kernel of the cokernel of its embedding. It is necessarily a wide subcategory, but of
course there are wide subcategories which are not normal. (For instance, in the ordinal  3,  the wide
subcategory consisting of the arrows  0  1  and  0  2  (with all identities) is not normal: also  1

 2  is forced to become an identity in the quotient.)

Dually, a normal quotient  p: X  X'  is the cokernel of some functor with values in  X  (or,
equivalently, the cokernel of its kernel). A normal quotient (or, more generally, any quotient modulo a
generalised congruence) is always surjective on objects, as it follows easily using its factorisation
through its full image,  p = jq: X  X" 1 X'.  (The functors  p  and  q  have clearly the same kernel,
whence also  q  factors through  p,  as  q = hp;  moreover,  jh = 1,  by the universal property of  p;  it
follows that  jhj = j  and, cancelling the embedding,  hj = 1.)

Now, the normal quotients of  X  are precisely those we are interested in. First, we already know
that a normal quotient is always of the type  X  X/A.  Conversely, given a set  A  of arrows of  X,
the quotient  X  X/A  is the cokernel of some functor with values in  X;  for instance, one can take
the free category  A'  on the graph  A  and the resulting functor  A'  X.

The normal subcategories of a category  X  and its normal quotients form thus two complete
lattices, anti-isomorphic via kernels and cokernels

(Similarly, the ideal in  Cat  of those functors which send all maps to isomorphisms would give, as
normal quotients, the categories of fractions.)

6.3. Lemma (The 2-dimensional universal property). The normal quotient  p: X  X/A  satisfies
(after (i) in 6.2), a 2-dimensional universal property:

(ii) for every natural transformation  $: f  g: X  Y  where  f  and  g  take all the morphisms of  A
to identities of  Y,  there is a unique natural transformation  $': f'  g': X/A  Y  such that  $ = $'p.

(More generally, quotient of categories in the sense recalled in 6.1 also satisfy a 2-dimensional
universal property; the proof is similar.)

Proof. As in 3.1, a natural transformation  $: f  g: X  Y  can be viewed as a functor  $: X  Y2

which, composed with  Dom, Cod: Y2  Y  gives  f  and  g,  respectively. This functor sends the
object  x % X  to the arrow  $(x): f(x)  g(x)  and the map  a: x  x'  to its naturality square

 $x
f(x) g(x)

(1)  fa    ga

  f(x') g(x')
 $x'

Therefore, if  a % A,  f(a)  and  g(a)  are identities and  $(a) = id$(x).  Then, by the original
universal property, the functor  $  factors uniquely through  p,  by a functor  $': X/A  Y2;  this is the
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natural transformation that we want.

6.4. Theorem. A normal quotient  p: X  X'  is given.

(a)  For  x, x' % X,  p(x) = p(x')  if and only if there exists a finite zig-zag  (a1,..., an): x  x'  of
morphisms  ai  in  Ker(p),  as below (the dotted arrow recalls that this sequence is not a map of  X)

x1  x2n–1
(1) a1   a2   a2n–1  a2n

  x  =  x0  x2  ... x2n–2 x2n  =  x'

Since  p  is surjective on objects (6.2),  ObX'  can be identified with the quotient of  ObX  modulo
the equivalence relation of connection in  Ker(p).  (Recall that two objects in a category are said to be
connected if they are linked by a zig-zag of morphisms.)

(b)  A morphism  z: p(x)  p(x')  in the quotient  X'  comes from a finite zig-zag as above where the
backward arrows  a2i  are in  Ker(p),  and  z = p(a2n–1). ... p(a3).p(a1).  Thus, every arrow of  X'  is a
composition of arrows in the graph-image of  p.

Proof.  (a) Let  R  be the generalised congruence of  X  generated by  Ker(p),  and  R0  the equivalence
relation which it induces on the objects; plainly, the equivalence relation  R'0  described above (by the
existence of a diagram (1)) is contained in  R0.  To show that it coincides with the latter, let  R'  be the
relation given by  R'0  on the objects and as 'chaotic' on morphisms as possible:

(2) a R'1 b    if    (Dom(a) R'0 Dom(b)  and  Cod(a) R'0 Cod(b)).

R'  is a generalised congruence of  X,  whose quotient is the preorder category on  Ob(X)/R'0
having one morphism from  [x]  to  [x']  whenever there is a chain of maps of  X,  composable up to
R'0,  from  x  to  x'.

Therefore, the intersection  R7R'  is again a congruence of categories. But  X/(R7R')  plainly
satisfies the universal property of  R,  whence  R = R7R',  which means that  R0 1 R'0.

Finally, by the general theory of [BBP], a morphism  z: p(x)  p(x')  of the quotient category is
the equivalence class of a finite sequence  (b0,..., bp)  of maps in  X  which are 'composable up to the
previous equivalence relation on objects'; inserting a zig-zag as above between all pairs  Cod(bi–1),
Dom(bi)  and identities where convenient, we can always form a global zig-zag (1), from  x  to  x',
where all 'backward' arrows are in  A;  and then  p(a2n–1). ... p(a3).p(a1) = z.

6.5. Pf-equivalence of objects. We have recalled the future regularity equivalence relation  x + x'
between two objects  x, x'  in a category  X  (2.6), meaning that there is a finite zig-zag  x  x'  (as in
6.4.1), made of future regular maps. Its dual is written  x – x',  and we will write  x ± x'  to mean
that both these relations hold.

But we are more interested in a stronger equivalence relation: we say that the objects  x, x'  are pf-
equivalent if there is a finite zig-zag  x  x'  whose maps are both past and future regular.

For instance, in the fundamental category of the square annulus, there are two equivalence classes
for  –  (see the left picture below) and two classes for  +  (see the central picture)
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(1)             

which produce 3 classes for  ±  (their intersections) and 4 classes of pf-equivalence, since the two L-
shaped zones in the right picture above are not connected. We shall see that, if the category  X  has a
past and a future spectrum, its pf-equivalence classes coincide with the connected components of ±-
equivalence classes (6.8c), as in the example above.

6.6. Proposition. If  p: X  M  is a quotient model, then  p(x) = p(x')  implies that  x, x'  are pf-
equivalent.

Proof. By 6.4, if  p(x) = p(x')  there is a finite zig-zag  x  x'  of morphisms  ai  which  p  takes to
identities. But  p,  as a past and future equivalence, reflects past and future regular morphisms (Thm.
2.8), whence all  ai  are past and future regular.

6.7. Lemma (Quotients and retracts). (a) Given a retract  i: M               X :p  (with  pi = 1M),  the
following conditions are sufficient to ensure that  p  is a normal quotient:

(i) for every  x % X  there exists a zig-zag  (a1,..., an): ip(x)  x,  in  Ker(p),

(ii) for every map  u: x  y  in  X  there exists a zig-zag  ((a1, b1)..., (an, bn)): ip(u)  u  in the
category  X2,  whose arrows  ai, bi  belong to  Ker(p)

 a1   a2 a3 a2n
  x0   x1   x2   x3 ...   x

(1) ip(u)    u1    u2    u3    u

  y0   y1   y2   y3 ...   y
   b1  b2    b3 b2 n

(Point (i) is an obvious consequence of (ii); nevertheless, it makes things clearer.)

(b) In a future retract  i: F               X :p,  the functor  p  is always a normal quotient.

Proof. (a) Let  f: X  Y  be any functor with  Ker(p) 1 Ker(f).  Plainly,  p(x) = p(x')  implies  f(x) =
f(x')  and  p(u) = p(u')  implies  f(u) = f(u'),  for all objects  x, x'  and all maps  u, u'  in  X.  Since  p(ip)
= p,  it follows that  f = f(ip) = (fi)p.  Therefore,  f  factors through  p,  obviously in a unique way.

(b) Follows easily from (a), since for every  x % X,  the unit  *x: ip(x)  x  belongs to  Ker(p)
(because of the coherence condition  p* = 1).  For (ii), just apply the naturality of  *.

6.8. Lemma (Quotients and spectra). (a) If the category  X  has a future spectrum, the retraction  p+: X
 Sp+(X)  is a normal quotient. Its kernel is characterised by the following equivalent conditions, on a

map  a: x  x'

(i) p+(a)  is an identity,

(ii) a  is future regular,
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(iii) x + x'.

(b) Dually, the projection  p–: X  Sp–(X)  on the past spectrum (if it exists) is a normal quotient of
X,  whose kernel is the set of past regular morphisms.

(c) If the category  X  has a past and a future spectrum, then its pf-equivalence classes coincide with the
connected components of ±-equivalence classes (connected by zig-zags of maps).

Proof. (a) After 6.7b, we have only to prove the characterisation of  Ker(p+).  In fact, if  p+(a)  is an
identity, then  a  is future regular (since  p+  reflects such morphisms), which implies (iii). Finally, if  x

+ x',  then  *x'.a = *x: x  i+p+(x)  (because  i+p+(x)  is terminal in the full subcategory on  [x]+);
but  p+(*x)  and  p+(*x')  are identities, and so is  p+(a).

(c) Follows from (a) and its dual, which prove that a map  a: x  x'  is past and future regular if and
only if  x ± x'.

7. Surjective models and normal quotients

After retractions, normal quotients of categories also yield a way of constructing surjective models.

7.1. Quotient models. A pf-equivalence  p: X               M :g,  (3.1)  will be said to be a quotient model
of  X  if  p  is a normal quotient. It is thus a surjective model  (p  is surjective on objects, by 6.2).
Again, a quotient model is said to be semi-faithful if the functor  p  is faithful.

Also here, a quotient model will often be represented as  p: X  M,  leaving the remaining
structure understood:

(1) ): g–p  1,   )M: pg–  1M, (p) = )Mp,      )g– = g–)M),

*: 1  g+p,   *M: 1M  pg+, (p* = *Mp,      *g+ = g+*M).

A minimal quotient model is defined (up to isomorphism of categories) by the following properties
(similar to the ones in 3.2):

(i)  M  is a quotient model of every quotient model  M'  of  X,

(ii) every quotient model  M'  of  M  is isomorphic to  M.

7.2. Pf-presentation and quotient models. Let us start from a pf-presentation (3.3) of the category
X  (not necessarily produced by spectra)

 i–  p+ ): i–p–  1X (p–i– = 1,  p–) = 1,  )i– = 1),
(1)  P   X   F

p–  i+
*: 1X  i+p+ (p+i+ = 1,  p+* = 1,  *i+ = 1).

We say that a normal quotient  p: M  X  is consistent with this pf-presentation if there are
functors  q–: M  P  and  q+: M  F  satisfying the following conditions (which determine them)

(2) q–p  =  p–, q+p  =  p+,

or, equivalently, if the kernel of  p  (i.e. the set of morphisms which  p  takes to identities) is contained
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in the set of past and future regular maps.

The next theorem shows that  M  is then a quotient model of  X,  admitting the same past and future
retracts  P  and  F.  This fact will be of interest when the projection  p  is faithful, while the injective
and projective models associated to the given presentation (3.4) are not faithful.

7.3. Theorem (Presentations and quotients). Let us be given a pf-presentation of the category  X  and
a consistent normal quotient  p: M  X  (as above, 7.2).

(a) There is a (uniquely determined) induced pf-presentation of  M,  so that the four squares of the
following left diagram commute

 i–  p+

  P   X   F   X
p–  i+

(1)
 j–

   p
 q+ g–

 g+

  P  M   F  M
q– j+

(b) There is an associated quotient model  p: X               M :g,,  with

(2) g,  =  i,q,

(3) g,p  =  i,p,, pg,  =  j,q,, g,pg,  =  g, (, = ±),

so that, in particular,  p  is a past and future equivalence. (This model need not be projective).

Proof. (a) The new retractions are (and must be) defined taking  j, = pi,  and the functors  q,  such
that  q,p = p,  (7.2.2).

Now (according to 6.3(ii)), the natural transformations  p): (j–q–)p  1Xp  and  p*: 1Xp 
(j+q+)p  induce two natural transformations, characterised as below

(4) )':  j–q–  1M, )'p  =  p),

*':  1M  j+q+, *'p  =  p*.

Thus,  P  becomes a past retract of  M  (and  F  a future retract):

(5) )'j–  =  )'pi–  =  p)i–  =  1, (q–)')p  =  q–p)  =  p–)  =  1p–  =  (1q–).p.

(b) Let us define the functors  g,  as in (2), which implies (3). The functor  p  is surjective on objects.
The pair  (p, g–)  becomes a past equivalence with the original  )  and the previous  )'

(6) ): g–p  1X )':  pg–  1M,

As to coherence, we already know that  p) = )'p;  moreover:

(7) )g–  =  ()i–)q–  =  1, g–)'  =  i–(q–)')  =  1.

Symmetrically, one shows that  (p, g+, *, *')  is a future equivalence between  X  and  M,  noting that
*: 1X  i+p+ =  g+p  and  *': 1X  j+q+ = pg+.

For the last remark, it suffices to note that the associated functor  g: M  X2  (3.1.4)

(8) g(x)  =  )g+(x).g–*'(x)  =  g+)'(x).*g–(x): g–(x)  g+(x),

can even be constant (on objects and morphisms). For instance, take the fundamental category of the



31

hollow cube 1.6: the past spectrum  P  reduces to the initial object  ,  the future spectrum  F  reduces
to the terminal object  ,  and one can take as  p  the functor  X  1.  (Of course, the interesting
quotient model is not this one; see 7.5.)

7.4. Theorem (Spectral presentations and quotients). Assume now that 7.3.1 is the spectral
presentation of  X.

(a) If  p: X  M  is a normal quotient, consistent with the spectral pf-presentation of  X,  and
surjective on maps, then the induced pf-presentation of  M  (7.3a) is also a spectral presentation. (We
already know, by 7.3b, that  p  is a quotient model of  X,  in a canonical way.)

(b) Let  p: X  M  be a normal quotient whose kernel is precisely the set of morphisms which are
both past and future regular in  X.  Then,  p  is a quotient model of  X,  consistent with the spectral
presentation of  X.  Moreover, if  p  is surjective on maps, it is the minimal quotient model of  X.

(c) The projective model  f: X  M 1 X2  associated to the spectral presentation has for kernel the set
of past and future regular morphisms of  X.  If  f  is a normal quotient of  X  surjective on maps, then it
is the minimal quotient model of  X.

Proof. (a) Note that  p  is a past and future equivalence (7.3). We use the characterisation of future
spectra of 3.5a, to show that, since  i+: F               X :p+  is a future spectrum, also  j+: F               M :q+  is.
(The dual fact holds for  P.)

First, the category  F  has precisely one object in each future regularity class of  M  (since  j+ = pi+

and  p,  as a future equivalence, gives a bijective correspondence between future regularity classes of  X
and  M).  Second, we already know that  j+: F               M :q+  is a future retract (7.3). Third, for y % M,
we have to prove that the unit-component  *'y: y  j+q+(y)  is the unique M-morphism with these
endpoints. By hypothesis, if  b: y  j+q+(y)  is an M-morphism, there is some  a: x  x'  such that
p(a) = b;  note that the objects  x, x'  are  +-equivalent, because  p  reflects this relation. Now, consider
the composite

(1) a'  =  *x'.a:  x  i+p+(x'),  i+p+(x')  =  i+p+(x),

where   p(*x') = *'p(x') = *'j+q+(y)  is an identity and  p(a') = p(a).  This  a'  must be the only X-
morphism from  x  to  i+p+(x),  i.e.  a' = *x  (because  F  is a future retract of  X).  Finally

(2) b  =  p(a)  =  p(a')  =  p*x  =  *'p(x)  =  *'y.

(b) The consistency of  p  is obvious, by definition (7.2), and we only have to prove that  p  is a
minimal quotient model (assuming it is surjective on maps).

First, if a quotient model  p': X  M'  sends the morphism  a  to an identity,  a  must be past and
future regular in  X  (since this property is reflected by all functors which are both past and future
equivalences, Thm. 2.8), which means that  a  is sent to an identity in  M;  it follows that  p'  factors
through  p.  Second, given a quotient model  q: M  M'  which sends the morphism  b  to an identity,
then  b  must be past and future regular in  M;  but  b = p(a)  for some  a  in  X,  which must be past
and future regular, whence  b  is an identity; thus, the kernel of  q  is discrete and  q  is an isomor-
phism.

(c) The functor  f  sends an object  x % X  to the arrow  f(x) = *x.)x: i–p–(x)  i+p+(x),  and the
arrow  a  to the pair  (i–p–(a), i+p+(a)).  The latter is an identity if and only if  a  is past and future
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regular in  X  (by 6.8). The last assertion follows from (b).

7.5. Examples. In all the examples of Section 4, the hypothesis of 7.4c is satisfied: the projective
model  f: C  M  associated to the spectral presentation of the fundamental category  C  is a normal
quotient, and is thus the minimal quotient model of  C.

This also holds for the fundamental category  C  of the hollow cube: the minimal quotient model of
C  is the category 1, as already remarked; but here the functor  C  1  is not faithful. On the other
hand, the semi-faithful retractile model  p: C  M  of 5.5 (with 26 objects) is a normal quotient by
6.7a, and a semi-faithful quotient model, by 7.3b. It would be interesting to prove that this model is
minimal within the semi-faithful quotient models.

8. The fundamental biased d-lax 2-category of a directed space

Higher singularities can also be studied with higher fundamental categories, introduced in [G4, G5,
G6]. On the other hand, directed homotopy gives a geometric intuition for this subject, yielding - in the
lax case - a precise criterion for the direction of comparison cells. We end with recalling one of such
definitions, from [G5].

8.1. The guideline of directed homotopy. We shall work in the setting  dTop  of d-spaces, reviewed
above (1.7).

In a d-space, a (directed) homotopy between two iterated concatenations of (the same) paths can
only move towards a 'route' which, at each moment, has made a longer way than the initial one, as in the
following cases (the homotopy will be made explicit below, in 8.2.5-7)

(1) a9(b9c)  (a9b)9c, 1x9a  a  a91x'.

For instance, in the first case, at the instant  t = 1/2  the second path has already reached the point
x" = b(1),  while the first is still in  x' = a(1);  and the latter can certainly be moved to  x"  along  b.

(It is interesting to note that Mac Lane's proof of his coherence theorem for monoidal categories
follows, in the associativity part, a directed approach which agrees with the direction of the
associativity homotopy, above: a directed path, in the sense of [M1, Thm. 3.1], links iterated tensors
with decreasing rank, and an iterated tensor has rank zero if and only if 'all parentheses start in front'.)

In [G5, Section 3], we also developed a richer unbiased approach, with n-ary concatenations and
new comparisons, like the following ones

(2) a9(b9c)    a9b9c    (a9b)9c.

In both approaches, a relevant role is played by reparametrisation functions, i.e. maps  r: !I  !I
which preserve the endpoints; or, equivalently, order-preserving surjective endomappings of the
standard interval, necessarily continuous. They have an n-ary concatenation

(3) (r1 9 ... 9 rn)(t)  =  (i – 1)/n + ri(nt – i +1)/n, when  (i – 1)/n & t & i/n.

The pointwise order  r & r'  produces an interpolating directed 2-homotopy, by affine interpolation

(4) $0(r, r'): r  r': !I  !I, $0(r, r')(s, t)  =  (1 – t).r(s) + t.r'(s).
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  (Note: the notation  r'  has nothing to do with derivatives.) As a crucial point, its class  [$0(r, r')]
up to 3-homotopy (with fixed boundary) is uniquely determined by  r, r'.  In fact, if  ,, .: r  r'  are 2-
homotopies, also  (,:.)(s, t)  =  max(,(s, t), .(s, t))  is so, and - plainly - there are 3-homotopies  , 
,:.  ..

8.2. The construction. Let  X  be a d-space. The fundamental biased d-lax 2-category  !b"2(X)  has
the following objects, arrows, cells, elementary compositions (nullary and binary) and comparisons.

(a) An object is a point of  X.

(b) An arrow  a: x  y  is a (directed) path  a: !I  X  with  a(0) = x,  a(1) = y;  the unit-arrow  1x:
x  x  is the constant path at  x.

(c) A cell  [,]: a  a': x  y  is a homotopy class of homotopies of paths; more precisely,  ,  is a
(directed) 2-homotopy  a  a'  (with fixed endpoints), which means that the map  ,: !I2  X  has the
boundary represented below (the thick lines represent constant paths)

 a
   x   y   s

(1)  ,   t
   x   y

 a'

and its homotopy class  [,]  is up to the equivalence relation generated by 3-homotopies  ,'  ,"
(with fixed boundary); the unit-cell  1a: a  a  is the class of the trivial 2-homotopy  ca(s, t) = a(s).

(d) The main composition, or upper-level composition, of  [,]  with  [,']: a'  a": x  y  is defined
by the pasting  , 92 ,'  of any two representatives, with respect to the second variable

(2) [,] 92 [,']: a  a": x  y, [,] 92 [,']  =  [, 92 ,'];

(, 92 ,')(s, t)  =  ,(s, 2t)   if   0 & t & 1/2, (, 92 ,')(s, t)  =  ,'(s, 2t – 1)   if   1/2 & t & 1.

(e) The (lower-level) composition of  a: x  y  with  b: y  z  is the standard concatenation  a9b:
x  z  of the paths

(3) (a9b)(t)  =  a(2t)   if   0 & t & 1/2, (a9b)(t)  =  b(2t – 1)   if   1/2 & t & 1.

(f) The lower-level composition of  [,]: a  a': x  y  with  [.]: b  b': y  z  is defined by the
pasting  ,9.  of any two representatives, with respect to the first variable

(4) [,]9[.]: a9b  a'9b': x  z, [,]9[.]  =  [,9.];

(,9.)(s, t)  =  ,(2s, t)   if   0 & s & 1/2, (,9.)(s, t)  =  .(2s – 1, t)   if   1/2 & s & 1.

We use abbreviations as:  x9a = 1x9a = 19a,  a9[,] = 1a9[,] = 19[,],  x9[,] = 11x9[,]  (when
the domain-arrow of  ,  is degenerate) and so on.

(g) For an arrow  a: x  y,  the left-unit and the right-unit comparisons are given by the following 2-
homotopies (determined by 2-homotopies  ;0, <0,  affine in the second variable)
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 1x   a
   x  x   y [;a]: x9a  a, ;a  =  a˚;0: !I×!I  X,

(5)  ;a  ;0(s, t)  =  (1 – t).r(s) + t.s,
   x   y r(s)  =  max(0, 2s – 1),

 a

   a
   x   y [<a]: a  a9y, <a  =  a˚<0: !I×!I  X,

(6)  <a <0(s, t)  =  (1 – t).s + t.r'(s),
   x  y   y r'(s)  =  min(2s, 1).

  a   1y

(h) For three consecutive arrows  a: x  y,  b: y  z,  c: z  w,  the associativity comparison is
expressed as follows (here, the ternary concatenation  a9b9c  is only used as a shortcut in describing
the 2-homotopy):

(7) [=]  =  [=(a, b, c)]:  a9(b9c)  (a9b)9c, =  =  (a9b9c)˚=0: !I×!I  X,

a b   c
   x   y   z  w =0: !I×!I  !I,

   = =0(s, t)  =  (1 – t).r(s) + t.r'(s),
   x y z  w

  a   b   c

  2s/3, if  0 & s & 1/2,   4s/3, if  0 & s & 1/2,
r(s)  =   r'(s)  =

  (4s – 1)/3, if  1/2 & s & 1,  (2s + 1)/3, if  1/2 & s & 1.

8.3. Definition. Abstracting the previous situation, a biased d-lax 2-category  A  consists of the
following data and properties. (Greek letters denote now 2-cells.)

(bdl.0) A set of objects,  ObA.

(bdl.1) For any two objects  x, y,  a category  A(x, y)  of maps  a: x  y  and  cells  ,: a  b,  with
main, or upper-level, composition  , 92 .: a  b  c  and units  1a: a  a.

(bdl.2) For any object  x  a lower identity  1x;  for any triple of objects  x, y, z  a functor of lower
composition

(1) - 9 -:  A(x, y) × A(y, z)  A(x, z).

Explicitly, the functorial properties give:

(2) 1a9b  =  1a91b (nullary interchange),

(3) (,9.) 92 (,'9.')  =  (, 92 ,') 9 (. 92 .') (binary or middle-four interchange),
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a    b
   x   y   z

     , .

   x -  a'   y -  b'   z
     ,' .'

   x   y   z
  a"   b"

(bdl.3) For any map  a  and for any triple  (a, b, c)  of consecutive maps, three cells

(4) ;a: x9a  a, <a: a  a9y (left and right-unit comparison),

=(a, b, c):  a9(b9c)  (a9b)9c (associativity comparison),

forming three natural transformations between the obvious (ordinary) functors  A(x, y)  A(x, y)  (in
the first two cases) and  A(x, y) × A(y, z) × A(z, w)  A(x, w)  (in the last).

Explicitly, the naturality properties give

(5) (x9,) 92 (;a')  =  (;a) 92 , (naturality of  ;),

(6) (<a) 92 (,9y)  =  , 92 (<a') (naturality of  <),

(7) (,9(.95)) 92 =(a',b',c')  =  =(a,b,c) 92 ((,9.)95) (naturality of  =),

1x    a   1x    a
   x    x    y    x    x    y

  1 ,        ;a

   x - 1x    x - a'    y =    x   a    y
       ;a'       ,

   x    y    x    y
  a'   a'

  a   a
   x    y    x    y

       <a       ,

   x -  a    y - 1y    y =    x   a'    y
     , 1        <a'

   x    y    y    x    y    y
   a'   1y    a'   1y

a b c a b c
   x   y     z    w    x    y      z    w

   ,  .  5   =

   x    y      z    w   =    x      y      z  w
    =  ,  .   5

   x     y     z  w    x     y     z  w
a' b'   c' a' b'   c'

(bdl.4) (coherence) Every diagram (universally) constructed with comparison cells, via  9- and 92-
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compositions, commutes.

This last axiom can be made more precise using techniques developed in [G5]. One defines the
functor of iterated composition along a dichotomic tree  0

(8) < –; 0>:  A(x0, x1) × ... × A(xn–1, xn)    A(x0, xn), (a1,..., an)    <a1,..., an; 0>,

and requires that, for any two such trees, there be at most one natural transformation  < -; 0>  < -;   0'>
constructed with  ;, <, ,.  (Moreover, the 'unbiased' approach in [G5] allows for a simpler formulation.)

8.4. Theorem [G5, 2.4] For a d-space  X,  the structure  !b"2(X)  constructed above (8.2) is indeed a
biased d-lax 2-category, as defined above (8.3).

8.5. Higher comparisons. One can enrich the fundamental biased d-lax 2-category  !b"2(X)  of a d-
space by adding two new higher associativity comparisons  ='(a, b, c, d)  and  ="(a, b, c, d),  depending
on four consecutive arrows, so to break Mac Lane's pentagon into 3 triangles

  =
  (a9b) 9 (c9d)

  =

(1) a9(b9(c9d))    =' ="  ((a9b)9c)9d
a9= a9((b9c)9d)  (a9(b9c))9d =9d

  =

We obtain  =', ="  as generalised comparison cells, in the sense of 8.4.1 (which proves the
commutativity of the diagram above). In fact, with respect to the quaternary composite  a9b9c9d:

-  (a9b) 9 (c9d)  coincides with it (and its reparametrisation function is the identity),

-  a9((b9c)9d)  and  (a9(b9c))9d  have reparametrisation functions  r', r"  such that  r' & id & r"

  s/2 if  0 & s & 1/2,   s if  0 & s & 1/4, 
(2) r'(s)   =   2s – 3/4 if  1/2 & s & 3/4, r"(s)    =   2s – 1/4   if  1/4 & s & 1/2,

  s if  3/4 & s & 1,   (s+1)/2  if  1/2 & s & 1,

  1

(3)   r"

  r'

    1

Following 8.4.2,  ='  and  ="  are constructed as follows

(4) ='(a, b, c, d)  =  $(a9b9c9d; r', r)  =  [(a9b9c9d)˚= '0]: !I×!I  X,

="(a, b, c, d)  =  $(a9b9c9d; r, r")  =  [(a9b9c9d)˚="0]: !I×!I  X,

= '0(s, t)  =  (1 – t).r'(s) + t.s, = '0(s, t)  =  (1 – t).s + t.r"(s).

One can now define an extended biased d-lax 2-category, including these higher associativity
comparisons in the structure and in the axioms (bdl.3-4). Theorem 8.4 still holds in this extended
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sense, as we have already observed that the new comparisons lie within the generalised ones, dealt with
in the proof.

8.6. Basic coherence properties. Taking into account the higher comparisons  ='(a, b, c, d),
="(a, b, c, d)  (8.4),  we can formulate seven 'basic' coherence properties, for extended biased d-lax 2-
categories. It would be interesting to prove that they are sufficient to ensure that 'all diagrams of
comparison cells commute', so that the theory could be formulated as a first-order one.

(a)   Given an object  x,  the cells  ;(1x): 1x91x  1x  and  <(1x): 1x  1x91x  are inverse.

(b)-(d) Given two consecutive arrows  a, b,  we have:

(1) <a 9 ;b  =  =(a, 1y, b):  a 9 (1y 9 b)  (a 9 1y) 9 b,

;(a 9 b)  =  (;a 9 b) ˚ =(1x, a, b), <(a 9 b)  =  =(a, b, 1z) ˚ (a 9 <b),

   =    =
1x 9 (a 9 b) (1x 9 a) 9 b  a 9 (b 9 1z) (a 9 b) 9 1z

;(a9b)    ;a9b    a9<b
<(a9b)

a9b    a9b

(e)-(g) Given four consecutive arrows  a, b, c, d,  there are three commutative triangles

  =
  (a9b) 9 (c9d)

  =

(2) a9(b9(c9d))    =' ="  ((a9b)9c)9d
a9= a9((b9c)9d)  (a9(b9c))9d =9d

   =

These properties 'somehow' correspond to Mac Lane's five original coherence axioms for monoidal
categories [M1]. Here, the comparisons are not invertible and the direction comes from Directed
Algebraic Topology; moreover, the original pentagon has been split into three triangles, which might be
of help for attacking the coherence problem. Kelly's well-known reduction result [Ke], showing that -
in the classical case - the properties (a), (c), (d) follow from the others should not subsist here, since
that proof strongly depends on cancellation of invertible cells (more than Mac Lane's, apparently).

Finally, let us note that, for  A = !b"2(X),  the condition (a) holds in a strict form

(3) 1x91x  =  1x, ;1x  =  11x  =  <1x.

8.7. Functoriality. A directed map  f: X  Y  induces a strict 2-functor

(1) f*: !b"2(X)  !b"2(Y),

f*(x)  =  f(x), f*(a: x  x')  =  (f˚a: fx  fx'), f*[,]  =  [f˚,].

This takes objects, arrows and cells of  !b"2(X)  to similar items of  !b"2(Y),  preserving the
whole structure: domains, codomains, units, compositions and comparisons (in the original or in the
extended sense of 8.5):  f*(;Xa) = ;Yf*(a),  etc.

A directed homotopy  ,: f  g: X  Y,  represented by a directed map  ,: X×!I  Y,  induces a
lax natural transformation of 2-functors (a notion recalled below, in 8.8)
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(2) ,*: f*  g*: !b"2(X)  !b"2(Y), ,*(x)  =  ,(x, –): f(x)  g(x),

,*(a: x  x')  =  [A"*(a)]:  f*(a)9,(x')  ,(x)9g*(a):  f(x)  g(x').

Here  A"*(a)  is the 2-cell associated to the double homotopy  ,˚(a×!I): !I×!I  Y,  in the usual
way, that is pasting it with the double cells  g–(,x)  and  g+(,x')  defined below ('lower and upper
connections', a standard tool of cubical homotopical algebra), and then interchanging coordinates

f(x) f(x)
 g–(,x)   ,x g–(,x)  =  (,x)(max(s, t)),

f(x) -  ,x g(x)

(3)  fa ,(a×!I)   ga

 f(x') -  ,x' g(x')
 ,x'  g+(,x') g+(,x')  =  (,x')(min(s, t)).

 f(x') g(x')

8.8. Lax natural transformations. Finally, let us recall the definition of a lax natural transformation
$: f  g: X  Y,  between strict 2-functors and lax 2-categories (cf. [Bu]). It assigns

(i) to every object  x % X,  a map  $x: fx  gx  in  Y,

(ii) to every map  a: x  x'  in  X,  a comparison cell  $a: fa9$x'  $x9ga  in  Y,

    fa
  fx   fx'

(1) $x $a    $x'

 gx   gx'
   ga

so that the following axioms hold:

(lnt.1)  given  x % X,  $(1x) = ;($x) 92 <($x): 1fx9$x  $x91gx,

(lnt.2)  if  c = a9b: x  x'  x",  then  (fa9$b) 92 ($a9gb) = $c,

    fa     fb     fc
  fx   fx'   fx"    fx   fx"

(2) $x   $a $x'    $b    $x" = $x   $c    $x"

 gx  gx'   gx"  gx   gx"
   ga    gb    gc

(lnt.3)  given a cell  ,: a  b: x  x'  in  X,  then  (f,9$x') 92 $b = $a 92 ($x9g,),

    fa     fa
  fx      f,   fx'   fx   fx'

(3) $x    $b    $x' = $x  $a    $x'

gx   gx'  gx     g,   gx'
   gb     gb
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