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Abstract. Directed Algebraic Topology is a recent field, deeply linked with ordinary and higher
dimensional Category Theory. A 'directed space', e.g. an ordered topological space, has directed
homotopies (generally non reversible) and fundamental n-categories (replacing the fundamental n-
groupoids of the classical case). Finding a simple model of the latter is a non-trivial problem, whose
solution gives relevant information on the given 'space'; a problem which is also of interest in general
Category Theory, as it requires equivalence relations wider than categorical equivalence. Taking on a
previous work on "The shape of a category up to directed homotopy", we study now the fundamental 2-
category of a directed space. All the notions of 2-category theory used here are explicitly reviewed.

Introduction

Directed Algebraic Topology studies 'directed spaces' in some sense, where paths and homotopies

cannot generally be reversed; for instance: ordered topological spaces, 'spaces with distinguished

paths', 'inequilogical spaces', simplicial and cubical sets, etc. Its present applications deal mostly with

the analysis of concurrent processes (see [FGR, FRGH, Ga, GG, Go]), but its natural range covers non

reversible phenomena, in any domain.

The study of invariance under directed homotopy is far richer and more complex than in the classi-

cal case, where homotopy equivalence between 'spaces' produces a plain equivalence of their funda-

mental groupoids, for which one can simply take - as a minimal model - the categorical skeleton. Our

directed structures have, to begin with, a fundamental category  ↑Π1(X),  which must be studied up to

appropriate notions of directed homotopy equivalence, wider than ordinary categorical equivalence: the

latter would often be of no use, since the fundamental category of an ordered topological space, for

instance, is always skeletal (the same situation shows that the fundamental monoids  ↑π1(X, x0)  can be

trivial, without  ↑Π1(X)  being so; cf. 1.2). Such a study has been carried on in a previous work [G5],

which will be cited as Part I; the references I.2 or I.2.3 apply, respectively, to its Section 2 or

Subsection 2.3. Other references for Directed Algebraic Topology and its applications can be found

there.

(*) Work supported by MIUR Research Projects.
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In Part I, we have introduced two (dual) directed notions, which take care, respectively, of variation

'in the future' or 'from the past': future equivalence (a symmetric version of an adjunction, with two

units) and its dual, a past equivalence (with two counits); and studied how to combine them. Minimal

models of a category, up to these equivalences, have been introduced to better understand the 'shape'

and properties of the category we are analysing, and of the process it represents. Part of this study is

briefly recalled below, in Section 1. (The paper [FRGH] has similar goals and results, based on

different categorical tools, categories of fractions.)

As already noted in Part I, this analysis captures essential facts of many planar ordered spaces

(subspaces of the ordered plane  ↑R2),  but may say little about objects embedded in the ordered space

↑R3  (in the same way as  π1  cannot detect the singularity of a 2-sphere). This is why we want to

develop here a similar study of the 'shape' of 2-categories, adapted to study the fundamental 2-category

↑Π2(X)  of an ordered space.

Outline. We begin with a brief review of the basic aspects of Part I (Section 1), ending with a motiva-

tion of a higher dimensional study (1.5). Lax natural transformations of 2-functors between 2-

categories and the 'local adjunctions' they produce, introduced in the 70's by Bunge [Bu], Gray [Gr]

and Kelly [Ke], are recalled in Section 2 - and in the Appendix (Section 7) for more technical points.

Sections 3 and 4 introduce and study future 2-equivalences between 2-categories, a symmetric version

of a local adjunction. Theorem 3.4 shows that a future 2-equivalence has a canonical factorisation in

two split future 2-equivalences (an analogous 1-dimensional property was proved in Part I), so that our

2-categories can be embedded as future 2-retracts (a sort of locally full, locally reflective subcategory)

of a common one; on the other hand, a future 2-retract and a past 2-retract of the same 2-category

generate a global 2-dimensional model (4.2, 4.3). The definition of the fundamental 2-category of an

ordered space is given in Section 5, and extended to more complex directed structures in 5.7-5.8. The

previous notions are used in Section 6 to give a model of the fundamental 2-category of a 3-

dimensional ordered space, the 'hollow cube', for which  ↑Π1  was already seen to give insufficient

information (in 1.5).

1. One-dimensional analysis of directed spaces

We begin with a review of the basic ideas and results of Part I. A preorder relation is assumed to be
reflexive and transitive; it is called a (partial) order if it is also anti-symmetric; using a preorder as the
main notion has strong advantages, as recalled at the end of 1.1.

1.1. Homotopy for preordered spaces. The simplest topological setting where one can study directed

paths and directed homotopies is likely the category  pTop  of preordered topological spaces and

preorder-preserving continuous mappings; the latter will be simply called morphisms or maps, when

it is understood we are in this category. (Richer settings will be recalled in Section 5).

In this setting, a (directed) path in the preordered space  X  is a map  a:  ↑[0, 1] = X,  defined on

the standard directed interval  ↑I = ↑[0, 1]  (with euclidean topology and natural order). A (directed)

homotopy  ϕ: f = g: X = Y,  from  f  to  g,  is a map  ϕ: X×↑I = Y  coinciding with  f  on the lower

basis of the cylinder  X×↑I,  with  g  on the upper one. Of course, this (directed) cylinder is a product

in  pTop:  it is equipped with the product topology and with the product preorder, where  (x, t) < (x', t')
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if  x < x'  in  X  and  t ≤ t'  in  ↑I.

The fundamental category  C = ↑Π1(X)  has, for arrows, the classes of directed paths up to the

equivalence relation generated by directed homotopy with fixed endpoints; composition is given by the

concatenation of consecutive paths.

Note that, generally, the fundamental category of a preordered space  X  is not a preorder, i.e. can

have different arrows  x = x'  between two given points (cf. 1.2); but any loop in  X  lives in a zone of

equivalent points and is reversible, so that all endomorphisms of  ↑Π1(X)  are invertible. Moreover, if

X  is ordered, the fundamental category has no endomorphisms and no isomorphisms, except the

identities, and is skeletal; therefore, ordinary equivalence of categories cannot yield any simpler

model. Note also that, in this case, all the fundamental monoids  ↑π1(X, x0) = ↑Π1(X)(x0, x0)  are

trivial. All these are crucial differences with the classical fundamental groupoid  Π1(X)  of a space, for

which a model up to homotopy invariance is given by the skeleton: a family of fundamental groups

π1(X, xi),  obtained by choosing one point in each path-connected component of  X.

The fundamental category of a preordered space can be computed by a van Kampen-type theorem,

as proved in [G2], Thm. 3.6, in a much more general setting ('d-spaces', defined by a family of

distinguished paths).

The forgetful functor  U: pTop = Top  to the category of topological spaces has both a left and a

right adjoint,  D – U – C,  where  DX  (resp.  CX)  is the space  X  with the discrete order (resp. the

coarse preorder). Therefore,  U  preserves limits and colimits.  The standard embedding of  Top  in

pTop  will be the coarse one, so that all (ordinary) paths in  X  are directed in  CX.  Note that the

category of ordered spaces does not allow for such an embedding, and has different colimits.

1.2. The fundamental category of a square annulus. An elementary example will give some idea

of the analysis developed in Part I. Let us start from the standard ordered square  ↑[0, 1]2,  with the

euclidean topology and the product order

(x, y) ≤ (x', y')   if:   x ≤ x',  y ≤ y',

and consider the (compact) ordered subspace  A  obtained by taking out the open square  ]1/3, 2/3[2

(marked with a cross), a sort of 'square annulus'

<≥ ≥ ≥ ≥ ≥ ˙ : - - - - - : : - - - - - : : - - :< ˙ : | – – – à|
  

x' : : : : :
(1) < <≥  È  ≥ ˙ ˙ : |! : „  È  „ :

à |! : : : „ „ „ : :
< è< è ˙ ˙ : ||  x à

: - - : | : : : : „ „ „
: :

<≤ ≤ ≤ ≤ ≤ ˙ : ∑|à – ∑ – ∑ – ∑| ∑ : : ∑ ∑ : : ∑ ∑ ∑ ∑ ∑ :

A      L L'

Its directed paths are, by definition, the continuous order-preserving maps  ↑[0, 1] = A  defined

on the standard ordered interval, and move 'rightward and upward' (in the weak sense). Directed

homotopies of such paths are continuous order-preserving maps  ↑[0, 1]2 = A.  The fundamental

category  C = ↑Π1(A)  has, for arrows, the classes of directed paths up to the equivalence relation

generated by directed homotopy (with fixed endpoints, of course).

In our example, the fundamental category  C  has some arrow  x = x'  provided that  x ≤ x'  and
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both points are in  L  or  L'  (the closed subspaces represented above). Precisely, there are two arrows

when  x ≤ p = (1/3, 1/3)  and  x' ≥ q = (2/3, 2/3)  (as in the last figure above), and one otherwise. This

evident fact can be easily proved with the 'van Kampen' theorem recalled above, using the subspaces  L,

L'  (whose fundamental category is the induced order).

Thus, the whole category  C  is easy to visualise and 'essentially represented' by the full subcate-

gory  E  on four vertices  0, p, q, 1  (the central cell does not commute)

| – – – – –ù |à
1

| ù° |
(1) | :! „  È  „ :

à
! 
  q |

| ù à
: - - : |

|à –ù° –
 p

– – – |  0
E

But  E  is far from being equivalent to  C,  as a category, since  C  is already a skeleton, in the

ordinary sense. The situation can be analysed as follows, in  E:

- the action begins at 0, from where we move to the point  p,

-  p  is an (effective) future branching point, where we have to choose between two paths,

- which join at  q,  an (effective) past branching point,

- from where we can only move to 1.

(Definitions and properties of regular and branching points can be found in I.6).

In order to make precise how  E  can 'model' the category  C,  we proved in Part I (and will recall

below) that  E  is both future equivalent and past equivalent to  C,  and actually is the 'join' of a

minimal 'future model' with a minimal 'past model' of the latter.

1.3. Future equivalence of categories. A  future equivalence  (f, g; ϕ, ψ)  (I.2.1) between the

categories  C, D  is a symmetric version of an adjunction, with two units. It consists of a pair of

functors and a pair of natural transformations (i.e., directed homotopies), the units, satisfying a

coherence condition:

(1) f: C       _£)        D :g ϕ: 1C = gf,   ψ: 1D = fg,

(2) fϕ  =  ψf:  f = fgf, ϕg  =  gψ:  g= gfg (coherence).

Note that the directed homotopies  ϕ, ψ  proceed from the identities to the composites  gf, fg  ('in

the future'). Dually, past equivalences have counits, in the opposite direction.

Future equivalences compose (in the same way as adjunctions), and yield an equivalence relation of

categories. A property (making sense in a category, or for a category) is said to be future invariant if it

is preserved by future equivalences.

An adjunction  f – g  with invertible counit  ε: fg © 1  amounts to a future equivalence with

invertible  ψ = ε–1.  In this case, a 'split' future equivalence,  D  can be identified with a full reflective

subcategory of  C  (a future retract, I.2.4). But, in a general future equivalence,  f  need not determine

g.  Theorem I.2.5 shows that two categories are future equivalent if and only if they are full reflective
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subcategories of a third.

1.4. Minimal one-dimensional models. In our example (1.2), the category  C = ↑Π1(A)  has a least

full reflective subcategory  F,  which is future equivalent to  C  and minimal as such; its objects are a

future branching point  p  (where we must choose between different ways, out of it) and a maximal

point 1 (where one cannot further proceed); they form the future spectrum  sp+(C)  (as defined in

I.7.2)

| – – fi = - - :à
1

| – – – – – | | – – – – –ù |à
1

| : : |   q | | ù° |
(1) | : – È

– | :! |: fi |„ „  È  „ :
à | | :! „  È  „ :

à
! 
  q |

|    p à
: ∑ |∑ ∂ | :!

| – – : | | ù à
: - - : |

| – – – – – | :à - = - ∂ – – | |à –ù° –
 p

– – – |

F
  0

P
  0

E

Dually, we have the least full coreflective subcategory  P,  on the past spectrum  sp–(C) = {0, q}.

Putting together the information coming from a past and a future spectrum, the pf-spectrum  E =

Sp(C)  is the full subcategory of  C  on the set of objects  sp(C) = sp–(C) ∪ sp+(C)  (I.7.6); it is linked

to  C  by a diagram formed of four commutative squares:

 i– p+

  P _) _£   C _) _£   F   C

/
p–

:!
i+

/ | :! |(2) /
 j–

:   f
q+ / g–

 |ò : |ò g+ (gα = jαpα).

  P _) _£   E _) _£   F   E
q– j+

Adding the two functors  gα = jαpα: Χ = E  (α = ±),  E  becomes a minimal injective model of the

category  C,  in a precise sense, which we recall now (all this is not technically required for the sequel,

but will suggest how to proceed for dimension 2, in Section 4).

First, a category  E  is made an injective model of  C  (I.4.1) by assigning a pf-injection, or pf-

embedding,  E       _}∞-)        C.  This consists of a full embedding  f: E = C  (full, faithful and injective on

objects) which appears at the same time in a past equivalence  (f, g–; εE, εC)  and in a future one  (f, g+;

ηE, ηC)

(3) f : E       _}∞-)        C : g–, g+,

εE: g–f = 1E,   εC: fg– = 1C, fεE  =  εCf:  fg–f = f,      εEg–  =  g–εC:  g–fg–= g–,

ηE: 1E = g+f,   ηC: 1C = fg+, fηE  =  ηCf:  f = fg+f,     ηEg+  =  g+ηC:  g= g+fg+.

(A coherence condition between these two structures automatically holds, I.3.3. By I.3.4, it suffices

to assign the three functors  f, g–, g+  - the first being a full embedding - together with the natural

transformations  εC  and  ηC,  under the conditions  fg–εC = εCfg–,  fg+ηC  =  ηCfg+.)

Secondly, we say that  E  is a minimal injective model of  X  (I.5.2) if:

(i)  E  is an injective model of every injective model  E'  of  X,

(ii) every injective model  E'  of  E  is isomorphic to  E.
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We also say that  E  is a strongly minimal injective model if it satisfies the stronger condition (i'),

together with (ii):

(i')  E  is an injective model of every category injectively equivalent to  X,

where two categories are said to be injectively equivalent if they can be linked by a finite chain of pf-

embeddings, forward or backward (I.4.1).

Finally, Theorems I.8.4 and I.8.6 prove that, if a category has a pf-spectrum, this is a strongly

minimal injective model of the former, determined up to a unique isomorphism. (More generally, the

minimal injective model of a category, when existing, is determined up to isomorphism but the

isomorphism itself need not be determined; cf. I.5.5, I.5.6).

1.5. The hollow cube. The analysis recalled above, based on the fundamental category, gives relevant

information for planar ordered spaces (subspaces of  ↑R2),  also in much more complicated examples

(see I.9). It may be insufficient for higher dimensional singularities.

The simplest case (already considered in I.9.7) is a 3-dimensional analogue of our previous

example, the 'hollow cube'  X ⊂ ↑[0, 1]3  represented below, an ordered compact space again:

: „¨ „ „ „ „ |à ¨1

: ¨ | ¨
: ¨ : - - | | ¨ X  =  ↑[0, 1]3 \ H

(1) : : „: „¨: - „-| :
¨ „| „ „ :   1 ¨Î:!   3: – –: :¨– – :Û  ©  | : -=    2

¨ : „ „ Û : H  =  ]1/3, 2/3[3.¨ : Û :
  0
¨:à - - - - - :Û X

The fundamental category  C = ↑Π1(X)  seems to say little about this space:  C  has an initial and a

terminal object, 0 and 1, whence it is future contractible (to its object 1) and past contractible as well (to

0); its minimal injective model is the category  2 = {0 = 1}  (cf. I.5.4).

Now, as already remarked in Part I, this injective model is not faithful: the original category  C  is

not a preorder, since  C(x, y)  has two arrows when  x, y  are suitably placed 'around' the obstruction (a

phenomenon which only appears within directed homotopy theory). One might therefore try to extract

a better information from  C,  using faithful models. However, we are not able to find any simple one

(and likely, there is no finite one).

Here, we shall study the fundamental 2-category  C2 = ↑Π2(X),  trying to reproduce one dimension

up the previous study of  ↑Π1(A),  for the 'square annulus'. This will be done in Section 6, after

preparing the new tools.

2. Lax natural transformations and local adjunctions

We review now the main tools of 2-dimensional category theory which will be used in this paper,
(strict) 2-functors, their lax natural transformations, their modifications and local adjunctions as
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introduced in [Bu, Gr, Ke]. We shall mostly follow Bunge's terminology [Bu], slightly adapted (cf. 2.2).

2.1. Notation. Dealing with (strict) 2-categories, there is some advantage in beginning with the more

general notion of sesquicategory, where we only have a vertical composition of cells and a horizontal

'whisker' composition of cells with arrows [St].

We shall use the following notation. In a sesquicategory  X  we have objects  x, y,...  maps

a: x = y,...  and cells  α: a= b: x = y,... Maps have an associative composition, written  ba  (or  b.a),

with identities  1x.  Cells have a main composition  βα: a = c: x = y  (also written  β.α),  as in the left

diagram below, which is associative and has identities  1a  (the terms 'horizontal' and 'vertical' will only

be used for the pastings of the associated double cells; see below)

   a
- -=    a√   α h - -= k

(1) x - -= y x' -- -=   x √   α y - -=   y'
√   β - -=
- -=    b
   c

Cells and maps have a whisker composition  kαh: kah = kbh: x' = y'  (as in the right diagram

above) such that:

(2) 1y α 1x  =  α, k'(kαh)h'  =  (k'k) α (hh'),

k 1a h  =  1kah, k(βα)h  =  (kβh)(kαh).

This sesquicategory is a 2-category if and only if the 'reduced interchange axiom' holds:

   a    c
- -= - -=

(3) x √   α   y √   γ  z γb.cα  =  dα.γa,
- -= - -=
  b   d

in which case, one can define the second composition  γ˚α: ca = db: x = z  as the previous common

result. We shall generally work with 2-categories (mostly without using the second composition).

A (strict) 2-functor  f: X = Y  takes items of  X  to similar items of  Y,  preserving identities and

compositions. We shall only use such strict morphisms.

It will be useful to use pasting. This amounts to identifying a 2-category with its strict double

category of quintets (due to Ehresmann), with double cells as in the left diagram below (provided by a

2-cell  ϕ: va = bu)

     a  r

b
   x - -=    x' - -=    x"

   x - -=    x'    u :ò ∂é ϕ    v :ò ∂é ρ :ò   w

(4)    u :ò ∂é ϕ  :ò   v   y -  b =   y' -  s =    y"

  y - -=   y'   u' :ò ∂é ψ   v' :ò ∂é σ :ò   w'
b

   z - -=    z' - -=    z"
    c      t

and the obvious horizontal and vertical compositions (obtained from the vertical composition of 2-cells

and the whisker composition of 2-cells with arrows, as in the right diagram above)
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(5)  ϕ ⊗h ρ  =  sϕ.ρa: wra = sva = sbu, ϕ ⊗v ψ  =  ψu.v'ϕ: v'va = v'bu = cu'u.

Note that, more generally, these horizontal and vertical compositions of double cells can be defined

(and are associative) for a sesquicategory  X;  then,  X  is a 2-category (satisfies the reduced

interchange axiom) if and only if its double cells form a double category (i.e., the horizontal and

vertical pastings satisfy the middle-four interchange axiom).

2.2. Lax natural transformations. A lax natural transformation  ϕ: f = g: X = Y  (between strict

2-functors) assigns:

(i) to every object  x∈X,  a map  ϕx: fx = gx  in  Y,

(ii) to every map  a: x = x'  in  X,  a comparison cell  ϕa: ϕx'.fa = ga.ϕx  in  Y,

    fa
  fx - -=   fx'

(1) ϕx :ò ∂é ϕa :ò   ϕx'

 gx - -=   gx'
   ga

so that the following axioms hold:

(lnt.1)  if  a = 1x,  then  ϕa = 1: ϕx = ϕx,

(lnt.2)  if  c = ba: x = x' = x",  then  ϕa ⊗h ϕb = ϕc  (i.e.,  ϕc = (gb.ϕa)(ϕb.fa)),

    fa     fb     fc
  fx - -=   fx' - -=   fx"    fx - -=   fx"

(2) ϕx :ò ∂é  ϕa ϕx'  :ò ∂é  ϕb :ò   ϕx" = ϕx :ò ∂é  ϕc :ò   ϕx"

 gx - -=  gx' - -=   gx"  gx - -=   gx"
   ga    gb    gc

(lnt.3)  given a cell  α: a = b: x = x'  in  X,  then  fα ⊗v ϕb = ϕa ⊗v gα  (ϕb(ϕx'.fα) = (gα.ϕx)ϕa),

    fa
- -=     fa

  fx   √   fα   fx'   fx - -=   fx'
- -=

(3) ϕx :ò ∂é   ϕb :ò   ϕx' = ϕx :ò ∂é  ϕa :ò   ϕx'

- -=
gx - -=   gx'  gx   √  gα   gx'

   gb  - -=
   gb

A colax natural transformation (the cell-dual notion) has comparison cells  ga.ϕx = ϕx'.fa.  These

terms agree with Bunge's paper [Bu], but differ from [Gr] and [Ke]:

lax natural transformation: colax natural transformation:

[Gr]: 'quasid natural transformation',  'quasi natural transformation',

[Ke]: 'op-lax natural transformation',  'lax natural transformation'.

which take as leading notion the dual one (in [Gr], 'd' stays for down). The related notion of 'local

adjunction' (2.4) seems to show that the leading form should be chosen as in [Bu], with cells  ϕa:

ϕx'.fa = ga.ϕx  directed from  f  to  g  (see the remark at the end of 2.5).
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2.3. Modifications. A modification  M: ϕ = ψ: f = g: X = Y  (between lax natural transformations

of 2-functors) assigns to every object  x∈X  a cell  Mx: ϕx =  ψx: fx =  gx  in  Y,  so that the

following axiom holds:

(mdf)  if  a: x = x',  then:

  fa  fa
  fx _ _   fx - -=   fx'  fx - -=   fx' _ _   fx'

(1) ψx :ò ∂é  Mx  ϕx :ò ∂é  ϕa :ò   ϕx' = ψx :ò ∂é ψa ψx :ò ∂é Mx' :ò   ϕx'

 gx _ _   gx - -=   gx' gx - -=  gx' _ _   fx'
 ga ga

The calculus of lax natural transformations and modifications, under their compositions, is deferred

to the Appendix, Section 7.

2.4. Local adjunctions. A local adjunction  (f, g; η, ε; L, R)  between the 2-categories  X, Y  consists

of a pair of 2-functors, a pair of lax natural transformations and a pair of modifications (replacing the

triangular identities)

(1) f: X       _£)        Y :g,

η: 1X = gf: X = X, ε: fg = 1Y: Y = Y (unit, counit),

L: εf.fη = 1f: f = f: X = Y (left triangular comparison),

R: 1g = gε.ηg: g= g: Y = X (right triangular comparison).

This will be called a coherent local adjunction if it satisfies the coherence axioms:

   1 -   η  =   gf _ _   gf   fg _ _   fg _ _   fg

  η :ò ∂é  η*η    ηgf :ò ∂é Rf / / ∂é 1    fηg :ò ∂é fR /

(2)   gf - gfη = gfgf  -gεf=   gf  =   1η,   fg -fηg = fgfg  - fgε =   fg  =   1ε,

/ ∂é  gL    gεf :ò ∂é 1 / / ∂é  Lg    εfg  :ò ∂é  ε*ε :ò   ε

  gf _ _   gf _ _   gf   fg _ _   fg -    ε  =    1

with obvious modifications  η*η, ε*ε  (graded composition, 7.3). In a strictly coherent local adjunction

the triangular comparisons are identities  (L = 1,  R = 1)  and the coherence axioms reduce to  η*η = 1,

ε*ε = 1.

A coherent local adjunction is called a 'formal lax adjunction' in [Bu], 3.1 (where  f  need not be

strict). A colocal adjunction, the cell dual notion, has colax natural transformations  η: 1X = gf,  ε:

fg = 1Y  with comparisons  L: 1f = εf.fη,  R: gε.ηg = 1g;  it is called a 'weak quasi-adjunction' in

[Gr], I.7.1, and a 'quasi-adjunction' when coherence holds. The term 'local adjunction', motivated below,

appeared in [BK, BP, Ja], with similar meanings.

Local adjunctions are closed under composition ([Gr], I.7.3).

2.5. The local behaviour. The name of local adjunction is motivated by the fact that this structure is

linked with ordinary adjunctions at the 'local' level, of hom-categories.
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More precisely, a local adjunction  f – g  (2.4.1) induces, for every pair of objects  x  (in  X)  and

y  (in  Y),  a sort of 'preadjunction'  f' – g'  (without triangular identities):

(1) f':  X(x, gy)       _£)        Y(fx, y)  :g',

f'(a: x = gy)  =  εy.fa: fx = y, g'(b: fx = y)  =  gb.ηx: x = gy,

η': 1 = g'f': X(x, gy) = X(x, gy), ε': f'g' = 1: Y(fx, y) = Y(fx, y),

η'a: a = g'f'(a)  =  gεy.gfa.ηx, ε'b: f'g'(b)  =  εy.fgb.fηx = b,

where the cells  η'a  and  ε'b  are defined by the following pastings

 a   fηx   fgb
   x - -=   gy _ _  gy   fx - -=    fgfx - -=  fgy

(2) ηx :ò ∂é  ηa   ηgy :ò ∂é Ry / / ∂é Lx εfx :ò ∂é εb :ò   εy

 gfx - -= gfgy - -=  gy   fx _ _  fx - -=  gy
  gfa   gεy b

If the original local adjunction is coherent, then (1) is an adjunction (satisfies the triangular

identities). On the other hand, a coherent colocal adjunction  f – g  produces an adjunction  g' = f'

'discordant' with respect to the given  f – g.

2.6. Local terminal objects. Local adjunctions produce local limits and colimits, as studied in the

references cited above. In a very elementary way, let us consider the 2-category  X = RelAb  of

(additive) relations of abelian groups and the trivial 2-category  1  on one object  *,  linked by the

following 2-functors forming a retraction

(1) p: X       _£)        1 :i, i(*)  =  0 (pi = 1).

Adding units or counits, we can get various (co)local adjunctions (but no 2-adjunction, since  X  has

neither a terminal nor an initial object).

(a) First, we have a strictly coherent local adjunction  p – i,   with trivial counit  pi = 1  and unit  η:

1X =  ip,  sending an object  A  to the greatest relation  ηA: A =  0  (with graph  A×{0}). The

following diagram shows the comparison cells of  η,  on an arbitrary relation  a: A = B

     a
  A - -=   B pη  =  1, ηi  = 1,

(2)    ηA :ò ∂é  ηa :ò   ηB η*η  =  1,

   0 _ _    0

while the coherence properties ((lnt.1-3) in 2.2) are automatically satisfied, because a 2-category of

relations is locally ordered: its cells are determined by their domain and codomain.

We can say that this adjunction presents the null group 0 as a local terminal object of  X.

(b) Secondly, we have a coherent local adjunction  i – p   with trivial unit  1 = pi  and counit  ε:

ip = 1X,  sending an object  A  to the least relation  εA: 0 = A  (with graph  {0, 0})
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   0 _ _    0 pε  =  1, εi  = 1,

(3)    εA :ò ∂é  εa :ò   εB ε*ε  =  1.

  A - -=   B
 a

This presents the null group 0 as a local initial object, in  X.

(c) But we also have two coherent colocal adjunctions  p – i  and  i – p.

The unit of the first is the colax natural transformation  η': 1X = ip  where  η'A = (εA)#: A = 0  is

the least relation (see the left diagram below)

     a
  A - -=   B    0 _ _    0

(4)   η'A :ò  η'a fi= :ò   η'B    ε'A :ò  ε'a fi= :ò   ε'B

   0 _ _    0    A - -=   B
 a

while the counit of second is the colax natural transformation  ε': ip = 1X,  ε'A = (ηA)#.  These

adjunctions present 0 as a colocal terminal and colocal initial object.

Also the points (a) and (b) seem to show that lax natural transformations, in the present sense, play

a leading role with respect to the dual notion: in fact, the presentation of 0 as a local terminal object

comes with terminal relations  A = 0  (terminal 'objects' in the order-category  RelAb(A, 0)),  while

the presentation as a local initial object comes with initial relations  0 = A.

For relations of sets, a similar argument would show that the 2-functor  p: RelSet = 1  has two

(non-isomorphic) strictly coherent local right adjoints, corresponding to the empty set and the

singleton. But now, the transformations pertaining to the empty set (which is 2-terminal and 2-initial)

are 2-natural.

3. Future and past 2-equivalences

As in the one-dimensional case, directed homotopy equivalence of 2-categories appears in two dual
forms, detecting invariants of the future or the past.

3.1. Future 2-equivalences. We shall work with strict 2-functors, their lax natural transformations

and modifications, as recalled above (or in Section 7, for their compositions).

A future 2-equivalence  (f, g; ϕ, ψ; F, G)  between the 2-categories  X, Y  will consist of a pair of 2-

functors, a pair of lax natural transformations (2.2), the units, and a pair of modifications (2.3), the

comparisons

(1) f: X       _£)        Y :g,

ϕ: 1X = gf: X = X, ψ: 1Y = fg: Y = Y (units),

F: ψf = fϕ: f = fgf: X = Y, G: ϕg = gψ: g= gfg: Y = X (comparisons).
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We say that this future 2-equivalence is coherent if the following axioms hold:

(2) ϕ*ϕ = (gF.Gf)ϕ:  ϕgf.ϕ = gfϕ.ϕ, ψ*ψ = (fG.Fg)ψ:  ψfg.ψ = fgψ.ψ (coherence),

  ϕ  ϕ
   1 - -=   gf    1 - -=   gf _ _   gf

  ϕ :ò ∂é  ϕ*ϕ :ò   ϕgf = / ∂é  gF.Gf :ò   ϕgf

 gf - -= gfgf   gf - -= gfgf
gfϕ gfϕ

(see 7.3 for the modification  ϕ*ϕ,  a graded composite; see 7.2 for the whisker composition of the

modification  gF.Gf: ϕgf.ϕ = gfϕ.ϕ: gf = gfgf  with  ϕ: 1X = gf).

Both notions are reflexive and symmetric; the first is also transitive (3.2). Moreover (having chosen

the arrow of the comparison cells of lax natural transformations, in 2.2), the arrow of the comparison

cells  F, G  in the previous definition cannot be inverted, if we want the result of Thm. 3.4 (see the note

at the end of the proof).

A property (making sense in a 2-category, or for a 2-category) will be said to be future 2-invariant

if it is preserved by future 2-equivalences; an elementary example will be future 2-contractibility (3.5).

A future 2-equivalence between ordinary categories amounts to a future equivalence (1.3).

A coherent local adjunction  f –  g  (2.4) with invertible counit  ε: fg =  1  and invertible

comparisons  L: εf.fη = 1f  and  R: 1g = gε.ηg  amounts to a coherent future 2-equivalence with

invertible unit  ψ  and invertible comparisons, letting:

(3) ϕ  =  η, ψ  =  ε–1, F  =  (ψf.L)–1: ψf = fϕ,      G  =  (gψ.R)–1: ϕg = gψ.

 This case, a 'split' future 2-equivalence, will be treated later (3.3).

Dually, a past 2-equivalence  (f, g; ϕ, ψ; F, G)  has

(4) f: X       _£)        Y :g,

ϕ: gf = 1X: X = X, ψ: fg = 1Y: Y = Y (counits),

F: fϕ = ψf: fgf = f: X = Y, G: gψ = ϕg: gfg = g: Y = X (comparisons),

and is coherent if:

(5) (Gf.gF)ϕ  =  ϕ*ϕ:  gfϕ.ϕ = ϕgf.ϕ, (Fg.fG)ψ  =  ψ*ψ:  fgψ.ψ = ψfg.ψ (coherence).

Future 2-equivalences, being linked with (locally) reflective sub-2-categories and idempotent 2-

monads (3.3), will generally be given priority with respect to the dual case (related with coreflective

sub-2-categories and 2-comonads). The cell dual notion, a cofuture 2-equivalence, will only be

considered marginally; it has colax natural transformations  ϕ: 1X = gf,  ψ: 1Y = fg  directed the

same way but having opposite comparison cells (2.2) and triangular comparisons directed the other

way round  (F: fϕ  =  ψf,  G: gψ =  ϕg).  Finally, notice that (in contrast with 2.5) a future 2-

equivalence does not induce a future equivalence (nor even functors) at the level of hom-categories.

3.2. Composition. Future 2-equivalences can be composed (much in the same way as local

adjunctions, in [Gr], I.7.3), which shows that being future equivalent 2-categories is an equivalence

relation.
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In fact, after  (f, g; ϕ, ψ; F, G)  (as in 3.1.1), let a second future 2-equivalence be given

(1) h: Y       _£)        Z :k,

ϑ: 1Y = kh: Y = Y, ζ: 1Z = hk: Z = Z,

H: ζh = hϑ: h = hkh: Y = Z, K: ϑk = kζ: k= khk: Z = Y.

Their composite is defined as follows:

(2) hf: X       _£)        Z :gk,

gϑf.ϕ: 1X = gk.hf, hψk.ζ: 1Z = hf.gk,

L: (hψk.ζ)hf = hf(gϑf.ϕ):  hf = hf.gk.hf:  X = Z,

R: (gϑf.ϕ)gk = gk(hψk.ζ):  gk = gk.hf.gk:  Z = X,

where the modifications  L  and  R  are given by the following pastings, in the 2-categories  Lnt(X, Z)

and  Lnt(Z, X)  of 2-functors, lax natural transformations and modifications (7.1)

  hf _ _   hf _ _   hf  gk _ _  gk _ _  gk

/ / ∂é Hf :ò   ζhf / / ∂é Gk :ò   ϕgk

(3)   hf _ _   hf -  hϑf = hkhf  =  L,  gk _ _   gk -  gψk = gfgk  =  R.

/ ∂é hF   hψf :ò     ∂é h(ψ*ϑ)f :ò   hψkhf / ∂égK
gϑk :ò     ∂é g(ϑ*ψ)k :ò   gϑfgk

  hf - -=     hfgf - -=     hfgkhf  gk - -=     gkhk - -=     gkhfgk
  hfϕ   hfgϑf   gkζ  gkhψk

On the other hand, the coherent case seems not to be closed under composition.

3.3. Future 2-retracts. A particular case will be important, and also able to express the general

situation (as proved below, in 3.4). A split future 2-equivalence of  X  onto  X0  (or of  X0  into  X)  will

be a coherent future 2-equivalence  (p, i; η, i; 1, 1)  where the unit  1X0
= pi  is an identity, as well as

both comparisons

(1) p: X       _£)        X0 :i, η: 1X = ip, pi  =  1X0
,

pη  =  1p, ηi  =  1i,

(2) 1η  =  η*η: ηip.η = ipη.η (coherence).

This equivalence  (p, i; η, i; 1, 1)  is a split epi in the category of future 2-equivalences, with section

(i, p; 1, η; 1, 1)   (use the composition diagram 3.2.3). We shall view  i  as an inclusion and  X0  as a

sub-2-category of  X;  it is easy to see that  X0  is locally full in  X  (but not necessarily full, as shown

by the examples of Section 6). Indeed, every X-cell  α: a =  b: x =  x'  between maps of  X0

necessarily belongs to the latter, since the lax natural transformation  η: 1X= ip  gives the following

equality (axiom (lnt.3) in 2.2)
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    a
- -=      a

   x   √   α    x'    x - -=    x'
- -=

(3) ηx :ò ∂é ηb :ò   ηx' = ηx :ò ∂é  ηa :ò   ηx'

- -=
ipx - -=   ipx'  ipx  √  ipα   ipx'

  ipb  - -=
   ipb

where  ηx, ηx'  are identity maps  and  ηa, ηb  are identity cells (by  ηi = 1i).

Equivalently, we have a strictly coherent local adjunction  p – i  with unit  η: 1X = ip,  where the

counit is an identity (as well as both comparisons, cf. 2.4). Thus,  p  will be called the local reflector of

the embedding  i.

Equivalently again, one can assign a strictly idempotent coherent local monad  (e, η)  on  X,  i.e. a

2-endofunctor  e  and a lax natural transformation  η  such that

(4) e: X = X, η: 1X = e,

ee  =  e, eη  =  1e  =  ηe, η*η  =  1η.

Indeed, given  (i, p; η),  we take  e = ip;  given  (e, η),  we factor  e = ip  splitting  e  through the sub-

2-category  X0  of  X  formed of the objects, arrows and cells which  e  leaves fixed.

Dually, a split past equivalence, of  X0  into  X  (or of  X  onto  X0)  is a coherent past equivalence

(p, i; ε, 1; 1, 1)  where the counit  pi = 1P  and both comparisons are identities

(5) p: X       _£)        X0 :i, ε: ip = 1X, pi  =  1X0
,

pε  =  1p, εi  =  1i, 1ε  =  ε*ε:  ε.ipε = ε.εip.

Then,  X0  will be said to be a past retract of  X,  with local coreflector  p  (locally right adjoint to

the inclusion, with trivial unit and comparisons).

3.4. Theorem [Future 2-equivalence and future 2-retracts]. (a) A future 2-equivalence  (f, g; ϕ, ψ; F, G)

between  X  and  Y  (3.1) has a canonical factorisation in two split future 2-equivalences

   i    q
(1)   X _£)  W _£)  Y η: 1W = ip, η': 1W = jq,

   p    j

where  X  and  Y  are future 2-retracts of  W  (the graph of the given future 2-equivalence).

(b) Two 2-categories are future 2-equivalent if and only if they are future 2-retracts of a third.

(c) A property is future 2-invariant if and only if it is preserved by all embeddings of future 2-retracts,

as well as by their local reflectors.

Proof. (a). First, we construct the 2-category  W,  enriching the construction of I.2.5 for 1-dimensional

categories.

(i)  An object is a six-tuple  (x, y; u, v; U, V)  such that:

(2) u: x = gy  (in  X),   v: y = fx  (in  Y), U: ϕx = gv.u  (in  X),   V: ψy = fu.v  (in  Y)
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   x   _    x    y   _    y

   u :ò ∂é U :ò   ϕx    v :ò ∂é V :ò   ψy

  gy - -=  gfx   fx - -=  fgy
   gv     fu

(ii) A morphism is a four-tuple  (a, b; A, B): (x, y; u, v; U, V) = (x', y'; u', v'; U', V')  such that:

(3) a: x = x'  (in  X),   b: y = y'  (in  Y), A: u'a = gb.u,      B: v'b = fa.v,

 a  b
   x - -=    x'    y - -=    y

   u :ò ∂é A :ò   u'    v :ò ∂é B :ò   v'

  gy - -=  gy'   fx - -=  fx'
   gb     fa

(a coherence condition can be added; but this is not necessary). A cell between parallel maps  (α, β):

(a, b; A, B) = (a', b'; A', B')  is a pair such that:

(4) α: a = a'  (in  X),   β: b = b'  (in  Y), (gβ.u)A  =  A'.u'α,      (fα.v)B  =  B'.v'β,

a   b
   a - -=    b - -=

   x - -=    x'    x √  α    x'    y - -=    y'    y √  β    y'

: : :
- -=

: : : :
- -=

:   u :ò
∂é A :ò   u'   =     u :ò é∂ A'

  a'

:ò   u'    v :ò ∂é B :ò   v'   =    v :ò ∂é B'
  b'

:ò   v'

- -= - -=
    gy √  gβ  gy'  gy - -=  gy'       fx √  fα   fx'   fx - -=  fx'

- -=  gb' - -=  fa'
 gb'  fa'

(iii) The composition of arrows is as follows (it is easy to see that it is 'categorical')

(5) (a', b'; A', B').(a, b; A, B)  =  (a'a, b'b; A ⊗h A', B ⊗h B'),

 a  a'  b  b'
    x - -=    x' - -=    x"    y - -=    y' - -=    y"

   u :ò ∂é A   u' :ò ∂é A' :ò   u"    v :ò ∂é B   v' :ò ∂é B' :ò   v"

  gy - -=  gy' - -=  gy"  fx - -=  fx' - -=  fx"
   gb    gb'     fa    fa'

(iv) The main and secondary composition of cells are defined component-wise (and satisfy the axioms

of 2-categories, with the obvious identities)

(6) (α', β').(α, β)  =  (α'α, β'β), (γ, δ)˚(α, β)  =  (γ˚α, δ˚β).

The construction of the 2-category  W  is completed. We have a split future 2-equivalence of  X

into  W

(7) i: X       _£)        W :p η: 1W = ip,

(8) i(x)  =  (x, fx; ϕx, 1fx; 1ϕx, Fx: ψfx = fϕx),

i(a: x = x')  =  (a, fa;  ϕa: ϕx'.a = gfa.ϕx,  1fa),

i(α: a = a')  =  (α, fα),
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(9) p(x, y; u, v; U, V)  =  x,

p(a, b; A, B)  =  a, p(α, β)  =  α,

(10) η(x, y; u, v; U, V)  =  (1x, v;  U: ϕx = gv.u,  1v):

(x, y; u, v; U, V)  =  i(x)  =  (x, fx; ϕx, 1fx; 1ϕx, Fx: ψfx = fϕx),

η(a, b; A, B)  =  (1a, B):  (a, v'b; U'a.gv'A, B)  =  (a, fa.v; ϕa.gfaU, 1)

 (a, b; A, B)

  (x, y; u, v; U, V) - - - -=  (x', y'; u', v'; U', V')

(11)   (1x, v; U, 1v) :ò ∂é η(a, b; A, B) :ò (1x', v'; U', 1v')

(x, fx; ϕx, 1fx; 1ϕx, Fx) - - - -= (x', fx'; ϕx', 1fx'; 1ϕx, Fx')
  (a, fa; ϕa, 1fa)

The correctness of the definitions of  i  and  η  is easily verified; for instance, the coherence of the

lax natural transformation  η  with a W-cell  (α, β)  (property (lnt.3) of 2.2) follows from the definition

of a cell, in (4). The relations  pi = 1W,  ηi = 1i,  pη = 1p  are plain. We also have  η*η = 1η
(independently of the coherence of the original future 2-equivalence)

 (1x, v; U, 1v)

  (x, y; u, v; U, V) - - - - -=  (x, fx; ϕx, 1fx; 1ϕx, Fx)

(12) (1x, v; U, 1v) :ò ∂é (11x
, 1v) :ò (1x, 1fx; 1ϕx, 11

fx
)

(x, fx; ϕx, 1fx; 1ϕx, Fx) - - - - -= (x, fx; ϕx, 1fx; 1ϕx, Fx)
  (1x, 1fx; 1ϕx, 11fx

)

Symmetrically, there is a split future 2-equivalence of  Y  into  W

(13) j: Y       _£)        W :q η': 1W = jq,

j(y)  =  (gy, y; 1gy, ψy;  Gy: ϕgy = gψy,  1ψy),

j(b: y = y')  =  (gb, b;  1gb,  ψb: ψy'.b = fgb.ψy),

j(B)  =  (gB, B),

q(x, y; u, v; U, V)  =  y,

q(a, b; A, B)  =  b, q(A, B)  =  B,

η'(x, y; u, v; U, V)  =  (u, 1y; 1u, V: ψy = fu.v):

(x, y; u, v; U, V)  =  j(y)  =  (gy, y;  1gy, ψy;  Gy: ϕgy = gψy, 1ψy),

η'(a, b; A, B)  =  (A, 1b):  (u'a, b; A, V'b.fu'B)  =  (gb.u, b; 1, ψb.fgbV).

Now, composing these two equivalences as in (1) (cf. 3.2.2-3), gives back the original future 2-

equivalence  (f, g; ϕ, ψ; F, G)

(14) (q, j; η', 1; 1, 1) (i, p; 1, η; 1, 1)  =  (qi, pj; pη'i, qηj; q(η*η')i, p(η'*η)j),

(15) qi(x)  =  f(x), qi(a)  =  f(a), qi(A)  =  f(A),

(16) pη'i: 1X = pj.qi,
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pη'i(x)  =  pη'(x, fx; ϕx, 1fx; 1ϕx, Fx)  =  p(ϕx, 1fx; 1ϕx, Fx)  =  ϕx,

pη'i(a)  =  pη'(a, fa;  ϕa,  1fa)  =  p(ϕa, 1fa)  =  ϕa,

(17) q(η*η')i: fϕ = ψf,

q(η*η')i(x)  =  q(η(η'i(x)))  =  q(η(ϕx, 1fx; 1ϕx, Fx))  =  q(1ϕx, Fx)  =  Fx.

Finally, (b) and (c) follow immediately from (a), by composing future 2-equivalences (3.2).

We also note that the proof shows the 'necessity' of the previous choices for the direction of cells

(once we fix it in lax natural transformations). Indeed, the direction of the cell  A  in (3) must agree

with the direction of  ϕa: ϕx'.a = gfa.ϕx  in (8); but then, because of (10), also the arrow of  U  is

fixed; finally, (13) determines the arrow of  Gy. ∆

3.5. Future 2-contractible 2-categories. We say that a 2-category  X  is future 2-contractible if the

2-functor  p: X = 1  with values in the singleton 2-category (one object * and its identities) is a future

2-equivalence.

This means that we have a 2-functor  i: 1 = X  (amounting to an object  x0 = i(*)  of  X),  with a

lax natural transformation  η  and a modification  F

(1) p: X       _£)        1 :i,

η: 1X = ip: X = X, F: ηi = 1i: i = i: 1 = X;

note that  F  merely amounts to a cell  F0 = F(*): ηx0 = id(x0).  (The axiom (mdf), in 2.3, is trivially

satisfied, since  1  has precisely one arrow, an identity.)

In this situation, we also say that  X  is future 2-contractible to the object  x0.  Notice that the latter

is not determined up to isomorphism (as shown at the end of this subsection).

We say that  X  is split future 2-contractible if  p: X = 1  is a split future 2-equivalence onto  1,

i.e. a coherent future 2-equivalence with comparison  F = 1.  This amounts to a strictly coherent local

adjunction  p – i  with unit  η  (and counit  pi = 1;  cf. 2.4)

(2) i: 1       _£)        X :p, η: 1X = ip: X = X,

ηi  =  1i, η(ηx)  =  1ηx.

We have already seen, in 2.6, that  RelAb  is split future 2-contractible (to the object 0), and split

past 2-contractible (to the same object); moreover, the same is true in the cell dual sense, with respect to

colocal adjunctions. There are no other split solutions. Indeed, if  (i, η)  is one, the following cell shows

that every component  ηx: x = i(*)  must be the greatest relation  x = i(*)

     a
   x - -=  i(*)

(3)    ηx :ò ≥ :ò   ηi = 1

i(*)  _ i(*)

and then  ηi = 1  shows that  i(*) = 0.

Similarly, the 2-category  RelSet  is split future 2-contractible to precisely two objects (up to

isomorphism): the empty set and the singleton.
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3.6. Proposition. In order that the category  X  be split future 2-contractible to an object  x0,  it

suffices that the latter be equipped, for every object  x,  with an arrow  ηx: x = x0  which is terminal in

the category  X(x, x0)  and such that  ηx0 = id(x0).

Proof. Let  i: 1 = X,  i(*) = x0.  For every arrow  a: x = x'  in  X, let  ηa: ηx'.a = ηx  be the unique

cell to the terminal arrow  ηx: x = x0.  Plainly, this defines a lax natural transformation  η: 1 = ip

(2.2). Again, let  F(*): 1x0
 = ηx0  be the unique cell to the terminal arrow  ηx0: x0 = x0;  this defines

a modification  F: ηi = 1i: i = i: 1 = X.  The condition  ηi = 1i  is already assumed, and  η(ηx): ηx

= ηx  necessarily coincides with  1ηx. ∆

4. Two dimensional models

A past 2-retract and a future 2-retract of a 2-category generate a global 2-dimensional model (4.3).
We also study properties of objects, invariant up to future 2-equivalence, which will be of use to construct
minimal models of 2-categories (4.4, 4.5).

4.1. Injective 2-models. A future 2-embedding of  E  into  X  will be a future 2-equivalence  (f, g; ηE,

η)  where the comparison cells are identities,  f  is a locally full 2-embedding and additional properties

hold

(1) f: E       _£)        X :g, ηE: 1E = gf: E = E, η: 1X = fg: X = X,

ηf = fηE: f = fgf: E = X, ηEg = 1 = gη: g= gfg: X = E, η*η = 1η: η = η,

  η
   1 - -=   fg

  η :ò ∂é  η*η :ò   1

  fg - -=   fg
  1

In particular,  gfg = g,  so that  gf  and  fg  are idempotent endofunctors. Moreover,  ηE  is

determined by  η  (the main unit) and  ηE*ηE = 1ηE
  holds as well, so that our future 2-equivalence is

strictly coherent (3.1).

Dually, we have the notion of a past 2-embedding. Combining both aspects, the 2-category  E  is

made an injective 2-model of  X  by assigning a pf-2-embedding of  E  into  X,  i.e. a pair formed of a

past 2-embedding  (f, g–; εE, ε)  and a future 2-embedding  (f, g+; ηE, η)  sharing the same locally full 2-

embedding  f: E = X:

(2) f : E       _}∞-)        X : g–, g+,

εE: g–f = 1E, ε: fg– = 1X,

fεE = εf: fg–f = f, g–ε = 1 = εEg–: g–fg–= g–, ε*ε = 1ε: ε = ε,

ηE: 1E = g+f, η: 1X = fg+,

ηf = fηE: f = fg+f, g+η = 1 = ηEg+: g+= g+fg+, η*η = 1η: η = η,
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  1   η
  fg– - -=   fg–    1 - -=   fg+

  1 :ò ∂é ε*ε :ò   ε   η :ò ∂é  η*η :ò   1

 fg– - -=    1   fg+ - -=   fg+
  ε   1

4.2. Pf-presentations. We introduce now a second structure which combines past and future, and will

produce an injective 2-model.

A pf-2-presentation of the category  X  will be a diagram consisting of a past 2-retract  P  and a

future 2-retract  F  of  X  (3.3; both are locally full sub-2-categories)

 i–  p+

(1)  P _) _£   X _) _£   F
p–  i+

ε: i–p– = 1X (p–i– = 1,   p–ε = 1,   εi– = 1,   ε*ε = 1ε),

η: 1X = i+p+ (p+i+ = 1,   p+η = 1,   ηi+ = 1,   η*η = 1η).

We have thus two strictly coherent local adjunctions  i– – p–,  p+ – i+.

Recall that  P  and  F  are locally full sub-2-categories of  X  (3.3). We form now a locally full sub-

2-category  E,  which will be called the injective 2-model of  X  generated by the pf-2-presentation (1) -

and will be proved to be such a model (4.3). Its objects belong to  P0∪F0  (i.e., ObP∪ObF)  while its

arrows are generated by:

(a) the arrows of  P  and  F,

(b) the components  εx: i–p–x = x  for  x ∈ F0  and  ηx: x = i+p+x  for  x ∈ P0.

Note that all the components of  ε, η  on items of  E  live in  E.  In fact, on an object  x ∈ P0∪F0,  it

suffices to consider the condition (b), together with the properties  εx = 1x  for  x ∈ P0  and  ηx = 1x

for  x ∈ F0  (and condition (a)). Secondly, on a map  a: x = x'  in  E,  the thesis follows from the fact

that the faces of  εa  and  ηa  belong to  E,  which is locally full in  X

  i–p–a    a
i–p–x - -= i–p–x'    x - -=    x'

(2) εx :ò ∂é εa :ò   εx' ηx :ò ∂é ηa :ò   ηx'

   x - -=    x' i+p+x - -= i+p+x'
    a    i+p+a

4.3. Theorem [Pf-2-presentations and injective 2-models]. Given a pf-2-presentation of the 2-category

X  (written as in 4.2.1), let  E  be the locally full sub-2-category of  X  described above (4.2) and  f  its

embedding in  X.

(a) These data can be uniquely completed to the left diagram below,  with (four) commutative squares
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 i– p+

  P _) _£   X _) _£   F   X

/
p–

:!
i+

/ | :! |(1) /
 j–

:   f
q+ / g–

 |ò : |ò g+

  P _) _£   E _) _£   F   E
q– j+

Moreover:

(b) there is a unique lax natural transformation  εE: j–q– = 1E  such that  fεE = εf;

(c) there is a unique lax natural transformation  ηE: 1E = j+q+  such that  fηE = ηf;

(d) these transformations make the lower row into a pf-2-presentation of  E;

(e) letting  gα = jαpα: X = E   (α = ±),  we get a pf-2-embedding  (f, g–, g+; εE, ε, ηE, η): E = X

making  E  an injective 2-model of  X  (generated by the presentation).

Proof. (a) First, we (must) take  j+: F ⊂ E  (so that  fj+ = i+)  and  q+ = p+f: E = F;  and dually.  

Now, we prove (b) to (d), completing the lower row of diagram (1) to a pf-2-presentation of  E,  as

stated. On the right side, we already know that  q+j+ = p+i+ = 1F.  We have already seen, at the end of

4.2, that all the components of  ηf: f = i+p+f: E = X  belong to  E;  there is thus a unique lax natural

transformation  ηE: 1E = j+q+  such that  fηE = ηf;  plainly,  ηEj+ = 1  and  q+ηE = 1.  Similarly for  εE:

j–q– = 1E.

(e) Then, we define  gα = jαpα: X = E  and observe that:

(2) fg+  =  fj+p+  =  i+p+, g+f  =  j+p+f  =  j+q+.

Therefore, we can take the lax natural transformations

(3) η: 1X = i+p+ = fr+, ηE: 1E = j+q+ = g+f,

as the units of the pf-2-embedding  f: E       _}∞-)        X :rα;  in fact, the relations:

(4) ηf  =  fηE, g+η  =  1  =  ηEg+, η*η = 1η,

are already known, or come from  g+η = j+p+η = 1,  ηEg+ = ηEj+p+ = 1.  Similarly for the counits. ∆

4.4. Future 2-regularity. A point  x  in the 2-category  X  will be said to be V+
2-regular if it satisfies

(i),  O+
2-regular if it satisfies (ii) and future 2-regular if it satisfies both:

(i)  for any pair of 2-cells  αi: a = ai: x = x'  (i = 1, 2;  see the left diagram below), there exists a pair

of double cells  ξi  such that  α1 ⊗v ξ1 = α2 ⊗v ξ2,

(ii)  given three 2-cells  α: a = a': x = x'  and  αi: a' = a": x = x'  (i = 1, 2;  see the right diagram

below) such that  α ⊗v α1 = α ⊗v α2,  there exists a 2-cell  ξ: (u  a−a
" u')  such that  α1 ⊗v ξ = α2 ⊗v ξ,

  a
- -=

   a   √   α
- -=    x - -=   x'

   x   √   αi    x'   √   αi
- -= : - -= :

(1)    u :ò ∂é  ξi :ò   u'    
u :ò ∂é  ξ :ò   u'

à - -= à à - -= à
 −a   −a
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On the other hand, we shall say that  x  is V+
2-branching if it is not V+

2-regular; that it is O+
2-

branching if it is not O+
2-regular; that is a future branching if it falls in (at least) one of the previous

cases, i.e. if it is not future regular. Dually, we have V–
2-regular, O–

2-regular, past regular points and

the corresponding branching points.

4.5. Theorem [Future 2-equivalences and regular points]. Given a future 2-equivalence  f: X       _£)        Y
:g,  with lax natural transformations  ϕ: 1 =  gf,  ψ: 1 =  fg  and comparisons  F: ψf =  fϕ, G:

ϕg = gψ,  we have:

(a) the functors  f  and  g  preserve V+
2-regular, O+

2-regular and future regular points,

(b) the functors  f  and  g  preserve V+
2-branching, O+

2-branching and future branching points (i.e.

reflect V+
2-regular, O+

2-regular and future regular points),

Proof. The index  i  always takes values  1, 2.

(a). Suppose that  x  is V+
2-regular in  X;  we must prove that also  fx  is,  in  Y.  Given a pair of 2-cells

βi: b = bi: fx = y  in  Y,  as in the right diagram below, there exists in  X  a pair of double cells  ξi  as

in the left diagram, such that  (gβi.ϕx) ⊗v ξi = ξ  (independently of  i)

  gb    b
ϕx - -= - - -=

   x   -= gfx   √   gβi    x'  fx _ _   fx  √  βi    y
- -= -   bi=

   u :ò ∂é  ξi
 gbi :ò   u' / ∂é  Fx    ψfx :ò ∂é  ψbi :ò   ψy

(1) à - - - - -= à  fx - fϕx = fgfx  -  fgbi= fgy

 −a   fu :ò ∂é  fξi :ò   fu'

à - - - - -= à

Then, in the right diagram above, the double cells  ηi = (Fx ⊗h ψbi) ⊗v fξi  have the same vertical

composition with  βi

(2) βi ⊗v ηi  =  βi ⊗v (Fx ⊗h ψbi) ⊗v fξi  =  (Fx ⊗h (βi ⊗v ψbi)) ⊗v fξi  =  (Fx ⊗h (ψb ⊗v fgβi)) ⊗v fξi

=  (Fx ⊗h ψb) ⊗v (fgβi.fϕx) ⊗v fξi  =  (Fx ⊗h ψb) ⊗v fξ.

Second, suppose that  x  is O+
2-regular in  X,  and let us prove the same of  fx  in  Y.  Take, in the

right diagram below, three 2-cells  β: b = b': fx = y  and  βi: b' = b",  so that  β ⊗v β1 = β ⊗v β2

  gb  b
- -= - - -=

ϕx    √  gβ   √  β
   x   -= gfx - -=  gy  fx _ _   fx - - -=    y

   √  gβi   √  βi
: - -= : / : -  b" = :

   u :ò ∂é  ξ
 
gb"

:ò   u' / ∂é Fx     
ψfx :ò ∂é  ψb" :ò   ψy

(3) à - - - - -= à  fx - fϕx = fgfx  -  fgb" = fgy

 −a   fu :ò ∂é  fξ :ò   fu'

à - - - - -= à

Then, in  X,  the composite   gβ.ϕx ⊗v gβi.ϕx  (which 'starts' at  x)  does not depend on  i,  and there

exists a 2-cell  ξ  such that  (gβi.ϕx) ⊗v ξ = 
−
ξ   (independently of  i).  One shows as previously that the
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double cell  η = (Fx ⊗h ψb") ⊗v fξ,  in the right diagram above, has the same vertical composites with

β1, β2.

(b) Assume that  fx  is  V+
2-regular in  Y.  Given a pair of 2-cells  αi: a =  ai: x =  x'  in the left

diagram below, there exists in  Y  a pair of double cells  ηi  such that  fαi ⊗v ηi = η  (independently of

i,  see the right diagram)

    a fa
- -= - -=

   x   √   αi    x'   fx   √  fαi   fx'
- -= - -=

ϕx :ò ∂é  ϕai :ò   ϕx'    v :ò ∂é  ηi :ò   v'

(4) gfx - gfai= gfx'   y - -=   y'

gv :ò ∂é  gηi :ò   gv'
b

 gy - -=  gy'
   gb"'

then, in the left diagram above, the double cells  ξi = ϕai ⊗v gηi   solve our condition for the pair  αi:

(5) αi ⊗v ϕai ⊗v gηi  =  ϕa ⊗v gfαi ⊗v gηi  =  ϕa ⊗v gη.

Finally, let  fx  be  O+
2-regular in  Y  and take, in  X  (as in the left diagram below), three 2-cells  α:

a = a': x = x'  and  αi: a' = a": x = x',  so that  α ⊗v α1 = α ⊗v α2;  then there exists in  Y  a 2-cell

η  such that  fα1 ⊗v η = fα2 ⊗v η.  It follows, as previously, that in  X  the double cell   ξ = ϕa" ⊗v gη

has the same vertical composites with  α1, α2

a  fa
- -= - -=   √   α   √  fα

   x - -=   x'   fx - -=    fx'
   √   αi   √  fαi

: - -= : : - -= :
ϕx :ò ∂é  ϕa" :ò   ϕx'    v :ò ∂é  η :ò   v'

(6) gfx - gfa" = gfx'   y - -=   y'

gv :ò ∂é  gη :ò   gv'
b

 gy - -=  gy' ∆
   gb"'

5. The fundamental 2-category of a preordered space

We define here the fundamental 2-category of a preordered space, and extend the construction to
other settings. The index  α  takes values 0, 1 (written –, + in superscripts).

5.1. The structure of the directed interval. The directed interval  ↑I  is a lattice in  pTop,  with the

following structural mappings: faces  (δα),  degeneracy  (ε)  and connections  (γα,  the binary

operations of join and meet)
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  δα    γα

(1) {*}       _£∞-)        ↑I       _})        ↑I2

   ε

δ–(*)  =  0, δ+(*)  =  1, γ–(t, t')  =  max(t, t'), γ+(t, t')  =  min(t, t').

Actually, we are not interested in the complete axioms of lattices (e.g., the idempotence of the binary

operations  γ±,  or their full absorption laws), but only in a part of them, corresponding to a cubical

monoid in the sense of [G1]: a set equipped with two structures of commutative monoid, so that the

unit element of each is absorbent for the other. Formally, this means the following axioms (defining a

cubical monoid in a monoidal category, with tensor product ×)

(2) ε.δα  =  1, ε.γα  =  ε.(ε×↑I)  =  ε.(↑I×ε) (degeneracy),

γα.(γα×↑I)  =  γα.(↑I×γα), γα.(δα×↑I)  =  1  =  γα.(↑I×δα) (associativity, unit),

γβ.(δα×↑I)  =  δα.ε  =  γβ.(↑I×δα)  (absorbency;  α ≠ β).

Higher faces, degeneracies and connections are constructed from the structural maps, via the

monoidal structure, for  1 ≤ i ≤ n  and  α = ±

(3) δ i
α  =  ↑Ii–1×δα×↑In–i:  ↑In–1 = ↑In, εi  =  ↑Ii–1×ε×↑In–i:  ↑In = ↑In–1,

γ i
α  =  ↑Ii–1×γα×↑In–i:  ↑In+1 = ↑In  (1 ≤ i ≤ n;  α = ±),

and the cocubical relations (for faces, degeneracy and connections) follow from this construction and

the axioms above, in (2):

(4) δβj .δ
α
i   =  δαi +1.δβj     (j ≤ i), εi.εj  =  εj.εi+1    (j ≤ i),

εj.δαi   =  δαi –1.εj    (j < i) or    id    (j = i) or    δαi .εj–1    (j > i),

γβj .γ
α
i   =  γαi .γβj +1   (j > i), γαi .γαi   =  γαi .γαi +1,

ε j.γαi   =  γαi –1.εj   (j < i) or    εi.εi   (j = i) or    γαi .εj+1   (j > i),

γβj .δ
α
i   =  δαi –1.γβj    (j < i–1) or    δαi .γβj –1   (j > i),

γαi .δαi   =  id  =  γαi .δαi +1, γβi .δ
α
i   =  δαi .εi  =  γβi .δ

α
i +1    (α ≠ β).

5.2. The cubical set of a preordered space. Given a preordered space  X,  the previous structure of

↑I  (and its powers, forming a cocubical object in  pTop)  produces a cubical set with connections

P*(X)

(1) Pn(X)  =  pTop(↑In, X),

∂ i
α: Pn(X) = Pn–1(X), ∂ i

α(a)  =  a.δ i
α:  ↑In–1 = X,

ei: Pn–1(X) = Pn(X), ei(a)  =  a.εi:  ↑In = X,

gi
α: Pn(X) = Pn+1(X), gi

α(a)  =  a.γ i
α:  ↑In+1 = X,

satisfying the cubical relations (dual to the cocubical ones, listed above).

5.3. Moore paths and parallelepipeds. Let us form the free cubical ω-category  M*(X)  on this

cubical set  P*(X).  A general item is a Moore parallelepiped, defined on a standard ordered n-

parallelepiped (possibly degenerate)



24

(1) a: Πj=1,...n ↑[0, pj] = X (p1,..., pn ∈ N).

These maps form the component  Mn(X),  with obvious faces and degeneracies

(2) ∂ i
α: Mn(X) = Mn–1(X), ∂ i

α(a)(t1,..., tn–1)  =  a(t1,..., αpi,..., tn–1),

ei: Mn–1(X) = Mn(X), ei(a)(t1,..., tn)  =  a(t1,..., t̂i,..., tn),

respectively defined on the standard parallelepipeds defined by the natural numbers  (p1,..., p̂i,..., pn)

and  (p1,..., pi–1, 0, ..., pn–1).  The i-composition of two Moore parallelepipeds  a, b  (defined on

Π ↑[0, pj]  and  Π ↑[0, qj]),  with  ∂ i
–(a) = ∂ i

+(a),  is also obvious

( a(t1,..., ti,..., tn) (0 ≤ ti ≤ pi),
(3) (a *i b)(t1,..., tn)  = £

4 b(t1,..., ti – pi,..., tn) (pi ≤ ti ≤ pi + qi),

with identities given by the degeneracies  ei.

This cubical set has 'pre-connections', whose 'degenerate' faces are constant (instead of being actual

identities)

(4) gi
α: Mn(X) = Mn+1(X),  gi

α(a)(t1,..., tn+1)  =  a(t1,..., γα(ti, ti+1),..., tn+1),

where  gi
α(a)  is defined on  ↑[0, p1] × ... × ↑[0, pi]2 × ... × ↑[0, pn].

Truncating  M*(X)  at dimension 2, we get a cubical 2-category (i.e., an edge-symmetric double

category) with pre-connections

 ∂α

(5) M0(X)       _})-∞        M1(X)        
-}-–)-∞-∞
        M2(X),

 e

Further, replacing  M2(X)  with  N2(X) = M2(X)/√  (modulo homotopy with fixed boundary) and

leaving  Ni(X) = Mi(X)  for  i = 0, 1,  we have again a cubical 2-category with pre-connections.

5.4. Congruences. Let  C  be a cubical 2-category. A congruence  R = (R0, R1, R2)  in  C  will be a

triple of equivalence relations, one in each component  C0, C1, C2,  which are:

(i) consistent with faces and degeneracies,

(ii) consistent with each i-composition law, in the following sense: if  a, b ∈ Cn  and their faces  ∂+
i a

and  ∂–
i b  are equivalent (modulo  Rn–1),  then:

- there exist  a', b'  equivalent to  a, b  (modulo  Rn)  which are i-consecutive, i.e.  ∂+
i a' = ∂–

i b',

- if also  a", b"  are so, then the i-composites  a'*ib'  and  a"*ib"  are Rn-equivalent.

Plainly, the quotient cubical set  C/R  (with components  Cn/Rn,  the induced faces and degenera-

cies) inherits well-defined i-composition laws, which make it into a cubical ω-category: the quotient of

the cubical ω-category  C  modulo  R.

5.5. The fundamental 2-category. Now, we form a double category with connections

(1) D*(X)  =  N*(X)/R,

identifying 'pre-identities' (cubes which are constant in some direction) with identities.
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In other words, we define the congruence  R  (5.4) of  N*(X)  as follows.  R0  is the equality of

N0(X) = |X|;  R1  is the least equivalence relation of  N1(X) = M1(X)  closed under concatenation

which identifies every constant path  a: ↑[0, p] =  X  with its faces  {0} =  X;  R2  is the least

equivalence relation of  N2(X),  closed under 1- and 2-concatenation, which identifies the class of any

'rectangle'  a: ↑[0, p] × ↑[0, q],  constant in direction  i,  with  ei∂–
i a.

The conditions 5.4 (i)-(ii) are satisfied: the only point which needs some comment is the first part

of (ii), for  n = 2.  Assume that the 2-dimensional items  a, b: ↑[0, p] × ↑[0, q] =  X  have R1-

equivalent faces  ∂+
2[a] = ∂+

2a,  ∂–
2[b] = ∂–

2b;  modifying the path  c = ∂+
2a: ↑[0, p] =  X  with the

insertion of a constant portion at  p'  (0 ≤ p' ≤ p),  of length  m∈N

(
c(t) (0 ≤ t ≤ p'),

(2) c'(t)  = £ c(p') (p' ≤ t ≤ p'+m),
4

c(t – m) (p'+m ≤ t ≤ p+m),

can be accompanied with a similar modification on  a  (in the first variable), obtaining a map

(3) a': ↑[0, p+m] × ↑[0, q] = X, ∂+
2a'  =  c'.

Continuing this way, we end with replacing  a, b  with equivalent items  
−
a, 
−
b  having  ∂+

2
−
a = ∂–

2
−
b.

Now, the fundamental cubical 2-category of  X  is defined as the quotient  N*(X)/R.  The funda-

mental 2-category is obtained in the usual way, restricting double cells to those whose faces in direc-

tion 2 (for instance) are trivial. We have thus a functor

(4) ↑Π2: pTop = 2-Cat.

5.6. Other directed structures. In a preordered space, every loop is reversible (as already remarked

in 1.1); therefore, this setting has no 'directed circle' or 'directed torus'.

We briefly recall more complex directed structures, which allow for non-reversible loops. All of

them have a directed interval  ↑I  with the structure considered above, so that all the previous

constructions can be easily extended. Also, all of them have a reflection  X ± Xop  extending the

preorder-reversion of  pTop.

First, one could extend  pTop  by some local notion of ordering. The simplest way is perhaps to

consider spaces equipped with a relation < which is reflexive and locally transitive: every point has

some neighbourhood on which the relation is transitive [G2, 1.4] (similar, stronger properties have

been frequently used in the theory of concurrency). But a relevant internal drawback appears, which

makes this setting inadequate for directed homotopy and homology: mapping cones and suspension

are lacking. Indeed, a locally preordered space cannot have a 'point-like vortex' (where all neighbour-

hoods of a point contain some non-reversible loop), whence it cannot realise the cone of the directed

circle (as proved in detail in [G2, 4.6]).

5.7. Inequilogical spaces. Another setting for Directed Algebraic Topology comes from a directed

version of Dana Scott's equilogical spaces (see [Sc, BBS, BCRS, Ro, Rs]), which was introduced in

[G4].

An inequilogical space, or preordered equilogical space  X = (X#, ≈X)  is a preordered

topological space  X#  endowed with an equivalence relation  ≈X  (or  ≈);  the preorder relation is

generally written as  <X.  The quotient  |X| = X#/≈  is viewed as a preordered topological space (with
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the induced preorder and topology), or a topological space, or a set, as convenient.

A map  f: X =  Y  'is' a mapping  f: |X| =  |Y|  which admits some continuous preorder-

preserving lifting  f': X# = Y#.  Equivalently, a map is an equivalence class  f = [f']  of maps  f':

X = Y  in  pTop  which respect the equivalence relations

(1) ∀ x, x' ∈ X:   x ≈X x'  .⇒.  f'(x) ≈Y f'(x'),

under the associated pointwise equivalence relation

(2) f' ≈ f"   if   (∀ x ∈ X:   f'(x) ≈Y f"(x)).

Note that there are no mutual conditions among topology, preorder and equivalence relation.

This category will be denoted as  pEql.  The previous setting  pTop  embeds as a full subcategory

in  pEql,  identifying a preordered space  X  with the pair  (X, =X).  The forgetful functor

(3) | – |: pEql = pTop, |X|  =  X#/≈X,

with values in preordered topological spaces (or spaces, or sets, when convenient) has already been

defined, implicitly; it sends the map  f: X = Y  to the underlying mapping  f: |X| = |Y|  (also written

|f|).  A point  x: {*} = X  is an element of the underlying space  |X|.

Reversing the preorder relation gives the reflected, or opposite, inequilogical space  Xop.  This

category has all limits and colimits, and is Cartesian closed (like the one of equilogical spaces).

Directed homotopy is defined by the standard directed interval  ↑I.  Various models for the directed

circle are considered in [G4]; the simplest is perhaps  (↑R, ≡Z),  i.e. the quotient in  pEql  of the

directed real line modulo the action of the group of integers.

5.8. Spaces with distinguished paths. An even more general setting has been studied in [G2].

A d-space  X = (X, dX)  is a topological space equipped with a set  dX  of (continuous) maps  a:

I = X;  these maps, called directed paths or d-paths, must contain all constant paths and be closed

under concatenation and (weakly) increasing reparametrisation.

A d-map  f: X = Y  (or map of d-spaces) is a continuous mapping between d-spaces which

preserves the directed paths: if  a ∈ dX,  then  fa ∈ dY.

The category of d-spaces is written as  dTop.  It has all limits and colimits, constructed as in  Top
and equipped with the initial or final d-structure for the structural maps; for instance a path  I = ΠXi

is directed if and only if all its components  I = Xi  are so. The forgetful functor  U: dTop = Top
preserves thus all limits and colimits; a topological space is generally viewed as a d-space by its

natural structure, where all (continuous) paths are directed (via the right adjoint to  U).

Reversing d-paths, by the involution  r(t) = 1 – t,  yields the reflected, or opposite, d-space  RX =

Xop,  where  a ∈ d(Xop)  if and only if  aop = ar ∈ dX.

Also here,  dTop  has all limits and colimits (constructed as in  Top  and equipped with the initial

or final d-structure for the structural maps).  The standard d-interval  ↑I = ↑[0, 1]  has directed paths

given by the (weakly) increasing maps  I = I.  The standard directed circle  ↑S1 = ↑I/∂I  has the

obvious d-structure, where path have to follow a precise orientation (but note that the directed structure

↑S1×↑S1  on the torus has nothing to do with orientation).
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5.9. Geometrical aspects of the congruence. Defining higher fundamental categories  ↑Πn(X)  with

n > 2  is even more complicated. In [G3], we considered that the problem might be solved by dividing

Moore parallelepipeds modulo delays in each variable. However, this is not consistent with

concatenations.

For instance, consider two cubes  a, b ∈ C2  with a common degenerate face  ∂+
1a = ∂–

1b = e1(x)

(represented below as a thick segment). Then, their concatenation  c = a *1 b  is R2-equivalent to the

pasting  c' = (a *2 a') *1 (b' *2 b),  also represented below, where  a'  and  b'  are constant in direction 2

à - à à - à - à
:   a : :   a :   a' : :ò -=    2

(1)    x è    x    x è    x è    x    1

:   b : :  b' :   b :
à - à à - à - à

Now,  a  ≡2  (a *2 a')  and  b  ≡2  (b' *2 b),  but  c  and  c'  are not equivalent modulo delays, in

general. Note also that such a modification of  c  into  c',  by a sort of 'generalised delay', requires a

constraint on the common face  ∂+
1a = ∂–

1b  (being degenerate). Thus, a global description of  Rn  (as

'attempted' in [G3]) should be very complicated.

6. Modelling a fundamental 2-category

We study the fundamental 2-category of the 'hollow cube'  X ⊂  ↑[0, 1]3  (1.5.1), starting from a
future 2-equivalent model. The canonical basis of the vector space  R3  is written  e1 = (1, 0, 0),  etc.

6.1. Bi-affine maps. We shall need to consider biaffine maps  α: I2 = Rn,  i.e. mappings which are

affine in both variables (on the standard square). Such a map gives a four-tuple of points, the images of

the four vertices of the standard square, which will be called the vertices of the map

(1) pij  =  α(i, j) (i, j) ∈ {0, 1}2.

The correspondence is bijective: given an arbitrary four-tuple  (pij)  of points in  Rn,  the biaffine

map is reconstructed by the following formula

(2) α(t1, t2)  =  (1 – t1)(1 – t2) p00 + t1(1 – t2) p10 + (1 – t1)t2 p01 + t1t2 p11.

Moreover, we get a map  α: ↑I2 = ↑Rn  (preserving the canonical orders) if and only if, in  Rn:

(3) p00  ≤  p10  ≤  p11, p00  ≤  p01  ≤  p11,

(if and only it the mapping  p: {0, 1}2 = Rn  is order-preserving).

6.2. Studying the singularity. Now, the singularity in the 'hollow cube' 1.5.1 is made evident by the
existence of two different cells  α, β: a = b: p0 = q0  (on the 'internal boundary'), for suitable paths
a, b,  from  p0 = (1/3, 1/3, 1/3)  to  q0 = (2/3, 2/3, 2/3).

Let us construct an example. The images of the cells  α, β,  in the picture below, cover the faces of

the cubic hole: its upper-left and its lower-right half, respectively; these parts of the boundary are
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separated by the paths  a, b  (and the vectors  ei  form the canonical basis of  R3)

  q2   q0

: „ì „ „ „ „¯ | π pi  =  p0 + ei/3,
: ì b"̄ı | πØ a"

:
p

3 : „¯ „ „ | „ „µ :
   q

1
 1 ì* :!   3 qi  =  q0 – ei/3,

(1) : ¯ : | µı   a' :
-=    2

: ¯ : µ | : a  =  a'*a",
 p

1 π– – : – –µ –q3 œ :
 b' πØ : µ œ : b  =  b'*b".

  p
0 „ „ „ „ „   p

2

More precisely, the 2-cells  α, β: a = b: p0 = q0  can be obtained from the following double cells

α',  β':  (b'  
a'
b"  a")  (using connections, cf. 5.1)

  
p

1 b"   q
0

  q
0   

p
1 b"   q

0
  q

0

| ≥ ≥ ≥ : – – – | | ≥ ≥ ≥ : – – – |
| : | | : |
| : | | : |

    

p
1 ˙ - - - :  q -2

- - ˙
   q

0
p

1 ˙ - - - :  q -3
- - ˙

   q
0

(2)  b' ˙ : ˙   a"  b' ˙ :  ̇  a" :!
˙ : ˙ ˙ : ˙ -=

p
0 | - - - :  p -3

- - |
   q

1
p

0 | - - - :  p -2
- - |

   q
1

| : | | : |
| – – – : ≤ ≤ ≤ | α ' | – – – : ≤ ≤ ≤ | β'

 p
0

  p
0

a'   q
1

 p
0

  p
0

a'   q
1

The cell  α'  is piecewise biaffine, made up of the pasting of six biaffine maps  ↑I2 = X,  each of

them determined by its four vertices in  X  (as specified in the left diagram); similarly for  β'.

Moreover, the mappings  α', β'  are constant on the dotted lines, while the thick lines correspond to the

paths  a, b.  (One could add connections to explicitly describe  α  and  β,  but this would complicate the

picture rather than making it clearer.)

Let us rename the paths  a, b  as  a1, b1  (they go through  q1  and  p1)  and the cells as  α12

(through  q2)  and  α13  (through  q3).  Permuting coordinates, we get two other similar pairs of cells

(each linking a pair of paths)

(3) αij: ai = bi: p0 = q0  (i, j = 1, 2, 3;  i ≠ j).

Actually, we shall need a slightly more general construct, where we replace  q0  with any  q'0 ≥ q0.

Thus  α31, α32: a3 = b3  go  from  p0  to  q '0
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   q'
0

ä ªë | ¨
  q

2 ä ë ª | ¨
: ì ª |! ¨ a3  =  a '3*a"3

(4) : ì ª· | ¨
:

p
3 : „ „ | „ „ :

q
1 b3  =  b'3*b"3

: :! | q
3
:

 p
1 ì– – : – æ– œ :  1 ì* :!   3

ì : °æ œ : -=    2

p
0 „ „ „ „ p

2

6.3. The future model. We define now a sub-2-category  C+  of  C2 = ↑Π2(X)  which will be proved
to be future 2-equivalent to  C2  (and corresponds to the future model  F  of the 'hollow square', in
1.4.1).

C+  has 8 objects, forming a set  V+:  the seven vertices of the cubic hole different from  q0 =

(2/3, 2/3, 2/3),  plus  q'0,  the maximum of  X

(1) p0  =  (1/3, 1/3, 1/3), pi  =  p0 + ei/3,

qi  =  q0 – ei/3, q'0  =  (1, 1, 1) (i = 1, 2, 3).

After identities, it has the following twelve affine paths (determined by their vertices)

(2) a'i: p0 = qi, a"i : qi = q '0,

b'i: p0 = pi, b"i : pi = q '0 (i = 1, 2, 3),

and their six composites, piecewise affine (more precisely, their equivalence classes modulo delays, cf.

5.5)

(3) ai  =  a'i * a"i :  p0 = q '0, bi  =  b'i * b"i : p0 = q '0.

Finally,  C+  is locally full in  C2,  which means that it has twelve non-trivial cells, precisely the six

αij  analytically defined in 6.2 and six other cells  γij  determined by their boundary

(4) αij: ai = bi: p0 = q '0,

γij: ai = bj: p0 = q '0 (i, j = 1, 2, 3;  i ≠ j).

6.4. The retraction. Let us consider a partition of the space  X  into 8 zones: the points which are

below precisely one vertex in  V+

(1) P0  =  ↓p0, Pi  =  ↓pi \ ↓p0,

Q1  =  ↓q1 \ (↓p2 ∪ ↓p3), Q2  = ..., Q3  =  ...,

Q  =  X \ (↓q1 ∪ ↓q2 ∪ ↓q3).

Now, the 2-functor  p: C2 = C+  is defined as follows. It sends each point  x ∈ X  to

(2) p(x)  =  min {v ∈ V+  |  x ≤ v},

Let  a: x' = x".  Then there is a unique path  p(a): p(x') = p(x")  in  C+,  excepting the case when

p(x') = p0  and  p(x") = q'0;  in this case  p(a)  is defined to be:
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(3) ai  =  a'i*a"i , if  a,  when leaving  P0,  enters  Qi,

bi  =  b'i*b"i , if  a,  when leaving  P0,  enters  Pi.

Let  α: a = b: x' = x".  Then,  there is a unique cell  p(α): p(a) = p(b)  in  C+,  unless  p(a) = ai

and  p(b) = bi  (with the same index  i);  in this case, there are two such cells, and we define  p(α)  as

(4) αij: ai = bi, if  α  meets  Qj   (j ≠ i).

6.5. The future equivalence. The inclusion  f: C+ = C2  forms, with  p,  a future 2-retract

(1) f: C+
      _£)        C2 :p pf  =  1C+, η: 1C2

 = fp,

We define the lax natural transformation  η.  For  x ∈ X,  let  ηx: x = p(x)  be the affine path with

these endpoints (contained in the down-set  ↓p(x));  for  a: x' = x",  let  ηa: ηx".a = pa.ηx'  be the 2-

cell associated to the biaffine double cell  η̂a  (as in the left diagram below)

 a    ηx
   x' - -=   x"    x - -=  px

(2)    ηx' :ò    η̂a :ò   ηx"     ηx :ò  η̂ηx :ò   1

 px' - -=  px"  px - -=  px
   pa     1

Plainly,  pη  =  1p  and  ηf  =  1f;  finally, the coherence condition 3.3.2  (η*η = 1η)  is satisfied,

since   η̂ηx  (see the right diagram above) is the lower connection on the path  ηx.

6.6. The past model. Symmetrically, we have a past 2-retract  C–  of  C2,  whose set of objects  V–

consists of the seven vertices of the cubic hole different from  p0 = (1/3, 1/3, 1/3),  together with the

minimum  p'0

(1) p'0  =  (0, 0, 0), pi  =  p0 + ei/3,

qi  =  q0 – ei/3, q0  =  (2/3, 2/3, 2/3) (i = 1, 2, 3).

6.7. A global 2-model. Finally, the pf-2-presentation of  C2  by the future 2-retract  C+  and the past

2-retract  C–  generates an injective 2-model  E  (4.3),  on ten objects

(1) V  =  V– ∪ V+  =  {p'0, pi, qi, q'0} (i = 0,..., 4).

7. Appendix: the calculus of lax natural transformations and modifications

We end with reviewing the various compositions of the notions recalled in Section 2. Again, we
always consider (strict) 2-functors between 2-categories.

7.1. Composing transformations. (a) Given two lax natural transformations  ϕ: f = g,  ψ: g = h,

the (main) composition  ψϕ: f = h  has components produced by the vertical composition of double

cells in  Y,  and is therefore strictly associative, with strict identities

(1) (ψϕ)x  =  ψx.ϕx, (ψϕ)a  =  ϕa ⊗v ψa,
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    fa
  fx - -=   fx'

ϕx :ò ∂é ϕa :ò   ϕx'

 gx - -=   gx'

ψx :ò ∂é ψa :ò   ψx'

 hx - -=   hx'
   ha

It is easy to see that  ϕ: f = g  is invertible (for this composition) if and only if all its components

ϕx: fx = gx  and  ϕa: ϕx'.fa = ga.ϕx  are invertible in  Y.  Then, one defines the inverse  ψ: g = f

letting  ψx = (ϕx)–1  and  ψa = ψx'.(ϕa)–1.ψx.

(b) The whisker composition  kϕh: kfh =  kgh  (for  h: X' =  X,  k: Y =  Y')  has the obvious

components, produced by evaluation

(2) (kϕh)x  =  kϕhx, (kϕh)a  =  kϕha (a: x = x'  in  X'),

kfha
kfhx - -=  kfhx'

 kϕhx :ò ∂é kϕha :ò   kϕhx'

kghx - -= kghx'
   kghb

We have thus a sesquicategory  Lnt  of 2-categories, 2-functors and lax natural transformations,

which is not a 2-category: the reduced interchange axiom (2.1) does not hold (see also 7.3).

7.2. Composing modifications. (a) First, we have an obvious whisker composition of modifications

and 2-functors (for  M: ϕ = ψ: f = g: X = Y,  h: X' = X  and  k: Y = Y')

(1) kMh: kϕh = kψh: kfh = kgh: X' = Y'.

But, given the 2-categories  X, Y,  the important construct is the 2-category  Lnt(X, Y)  of 2-

functors  X = Y,  their lax natural transformations and modifications. Indeed, modifications have a

main composition

(2) M: ϕ = ψ: f = g: X = Y, N: ψ = ξ: f = g: X = Y,

NM: ϕ = ξ, (NM)x  =  Nx.Mx: ϕx = ψx = ξx,

which is strictly associative, with obvious identities  1ϕ.  (For this law, the modification  M  is invertible

if and only if all its component cells  Mx: ϕx = ψx  are invertible in  Y,  and then  M–1(x) = (Mx)–1.)

(b) Moreover, we have an obvious whisker composition of modifications and lax natural transfor-

mations, where  λ: f' = f  and  µ: g = g'

(3) µMλ:  µϕλ = µψλ: f' = g': X = Y,

(µMλ)x  =  µx.Mx.λx:  µx.ϕx.λx = µx.ψx.λx: f'x = g'x,



32

 ϕx
    λx - -=    µx

f'x - -=   fx    √  Mx     gx - -=   g'x
- -=

    ψx

The reduced interchange axiom holds, as soon as it holds in  Y

  ϕ    ρ
- -= - -=

(4) f    √  M    g √  R   h Rψ.ρM  =  σM.Rϕ,
- -= - -=
  ψ   σ

since its verification on a general component depends on the same property in the latter 2-category:

 ϕx  ρx
- -= - -=

(5)   fx    √   Mx     gx    √   Rx     hx.
- -= - -=

    ψx     σx

7.3. Higher compositions. Coming back to  Lnt,  we already observed that this sesquicategory is not

a 2-category. But one can define a graded composition of lax natural transformations  ρ*ϕ,  as a

modification. In fact, every object  x  is taken to an arrow  ϕx: fx = gx  of  Y,  and then to a cell  ρ(ϕx)

of  Z

 rϕx

-
  f
-= -

  r
-=

rfx - -=  rgx

(1) X    √   ϕ     Y    √   ρ Z    ρfx :ò ∂é ρϕx :ò   ρgx

-
  g
-= -

  s
-=

sfx - -= sgx
    sϕx

ρ*ϕ: ρg.rϕ = sϕ.ρf, (ρ*ϕ)x  =  ρ(ϕx):  ρgx.rϕx  =  sϕx.ρfx:  rfx = sgx.

To verify the axiom (mdf), take a map  a: x = x'  in  X.  Then:

 rfa  rfa
rfx _ _ rfx - -= rfx'  rfx - -= rfx' _ _ rfx'

  ρfx :ò   rϕx :ò ∂é rϕa :ò   rϕx'   ρfx :ò ∂é ρfa :ò   ρfx' :ò   rϕx'

(2) sfx  ρ-éϕ-x
rgx - -= rgx' = sfx - -= sfx' ρ-éϕ-x' rgx'

 sϕx :ò   ρgx :ò ∂é ρga :ò   ρgx'  sϕx :ò ∂é sϕa :ò   sϕx' :ò   ρgx'

sgx _ _ sgx - -= sgx' sgx - -= sgx' _ _ sgx'
 sga  sga

In fact, applying (lnt.2) to the lax natural transformation  ρ,  the left and the right pasting give,

respectively

(3) rϕa ⊗v ρ(ga.ϕx), ρ(ϕx'.fa) ⊗v sϕa,

and these result coincide, by (lnt.3), on  ρ  and the cell  ϕa: ϕx'.fa = ga.ϕx.

Then, in the following situation (with  ψ: g = h  and  σ: s = t),  we have
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   f r
- -= - -=√   ϕ     √   ρ

(4) X - -=    Y - -= Z
√   ψ √   σ
- -= - -=
  h    t

  rϕ   rψ
  rf - -=   rg - -=   rh

     ρf :ò ∂é ρ*ϕ    ρg :ò ∂é ρ*ψ :ò   ρh

(5)   sf -  sϕ =   sg -  sψ =   sh  = (ψϕ)*(σρ).

     σf :ò ∂é σ*ϕ    σg :ò ∂é σ*ψ :ò   σh

  tf - -=   tg - -=   th
     tϕ      tψ

7.4. Higher compositions, II. One can also define a higher whisker composition of lax natural

transformations and modifications.

(a) First,  ϑ˚M  will be the following modification (whose general cell, shown in (2), is well defined

because of (lnt.3), applied to  ϑ  on the cell  Mx)

  f    h
- - -= - -=

(1) X  ϕ :ò   M  :ò  ψ  Y √  ϑ   Z ϑ˚M: ϑg.hψ = kϕ.ϑf,
- - -= - -=

 g   k

hϕx hϕx
hfx - -=  hgx hfx - -=  hgx

  ϑfx :ò ∂é ϑϕx :ò   ϑgx / ∂é hMx /
(2) kfx - -= kgx = hfx - -=  hgx

/ ∂é kMx /   ϑfx :ò ∂é ϑψx :ò   ϑgx

kfx - -= kgx kfx - -= kgx
   kψx     kψx

(b) Second, in the situation below,  M˚ϑ  is defined as follows (whose general cell, shown in (4), is well

defined because of (mdf), applied to  M  on the arrow  ϑz: hz = kz)

   h   f
- -= - - -=

(3) Z √  ϑ   X  ϕ :ò   M  :ò  ψ  Y M˚ϑ: ϕk.fϑ = gϑ.ψh,
- -= - - -=
   k  g

 fϑz  fϑz
 fhz _ _  fhz - -=  fkz fhz - -= fkz _ _  fkz

(4)   ψhz :ò ∂é  Mhz    ϕhz :ò ∂é ϕϑz :ò   ϕkz =   ψhz :ò ∂é ψϑz    ψkz :ò ∂é Mkz :ò   ϕkz

ghz _ _ ghz - -= gkz ghz - -=    gkz _ _  fkz
gϑz gϑz
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