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Abstract. Directed Algebraic Topology is a recent field, deeply linked with ordinary and higher
dimensional Category Theory. A 'directed space, e.g. an ordered topological space, has directed
homotopies (generally non reversible) and fundamental n-categories (replacing the fundamental n-
groupoids of the classical case). Finding a simple model of the latter is a non-trivial problem, whose
solution gives relevant information on the given 'space’; a problem which is also of interest in general
Category Theory, as it requires equivalence relations wider than categorical equivalence. Taking on a
previous work on "The shape of a category up to directed homotopy", we study now the fundamental 2-
category of a directed space. All the notions of 2-category theory used here are explicitly reviewed.

I ntroduction

Directed Algebraic Topology studies 'directed spaces in some sense, where paths and homotopies
cannot generally be reversed; for instance: ordered topological spaces, 'spaces with distinguished
paths, 'inequilogical spaces, simplicial and cubical sets, etc. Its present applications deal mostly with
the analysis of concurrent processes (see [FGR, FRGH, Ga, GG, Go]), but its natural range covers non
reversible phenomena, in any domain.

The study of invariance under directed homotopy is far richer and more complex than in the classi-
cal case, where homotopy equivalence between 'spaces produces a plain equivalence of their funda-
mental groupoids, for which one can smply take - as aminima model - the categorical skeleton. Our
directed structures have, to begin with, afundamental category 11T11(X), which must be studied up to
appropriate notions of directed homotopy equivaence, wider than ordinary categorical equivaence: the
latter would often be of no use, since the fundamental category of an ordered topological space, for
instance, is aways skeletal (the same situation shows that the fundamental monoids 1x1(X, Xg) can be
trivial, without 1I1;(X) being so; cf. 1.2). Such a study has been carried on in a previous work [G5],
which will be cited as Part |; the references 1.2 or 1.2.3 apply, respectively, to its Section 2 or
Subsection 2.3. Other references for Directed Algebraic Topology and its applications can be found
there.

(") Work supported by MIUR Research Projects.



In Part I, we have introduced two (dua) directed notions, which take care, respectively, of variation
'in the future' or 'from the past': future equivalence (a symmetric version of an adjunction, with two
units) and its dual, a past equivalence (with two counits); and studied how to combine them. Minimal
models of a category, up to these equivalences, have been introduced to better understand the 'shape’
and properties of the category we are analysing, and of the process it represents. Part of this study is
briefly recalled below, in Section 1. (The paper [FRGH] has similar goals and results, based on
different categoricd tools, categories of fractions.)

As already noted in Part |, this analysis captures essential facts of many planar ordered spaces
(subspaces of the ordered plane 1R?), but may say little about objects embedded in the ordered space
tR3 (in the same way as n1 cannot detect the singularity of a 2-sphere). This is why we want to
develop here asimilar study of the 'shape' of 2-categories, adapted to study the fundamental 2-category
tIIx(X) of an ordered space.

Outline. We begin with a brief review of the basic aspects of Part | (Section 1), ending with a motiva-
tion of a higher dimensional study (1.5). Lax natural transformations of 2-functors between 2-
categories and the 'local adjunctions' they produce, introduced in the 70's by Bunge [Bu], Gray [Gr]
and Kelly [K¢], arerecalled in Section 2 - and in the Appendix (Section 7) for more technical points.
Sections 3 and 4 introduce and study future 2-equival ences between 2-categories, a symmetric version
of alocal adjunction. Theorem 3.4 shows that a future 2-equivalence has a canonical factorisation in
two split future 2-equivalences (an analogous 1-dimensiona property was proved in Part 1), so that our
2-categories can be embedded as future 2-retracts (asort of locally full, locally reflective subcategory)
of a common one; on the other hand, a future 2-retract and a past 2-retract of the same 2-category
generate aglobal 2-dimensional model (4.2, 4.3). The definition of the fundamental 2-category of an
ordered space is given in Section 5, and extended to more complex directed structuresin 5.7-5.8. The
previous notions are used in Section 6 to give a model of the fundamental 2-category of a 3-
dimensional ordered space, the 'hollow cube', for which 111; was already seen to give insufficient
information (in 1.5).

1. One-dimensional analysis of directed spaces

We begin with a review of the basic ideas and results of Part I. A preorder relation is assumed to be
reflexive and transitive; it is called a (partial) order if it is also anti-symmetric; using a preorder as the
main notion has strong advantages, as recalled at the end of 1.1.

1.1. Homotopy for preordered spaces. The simplest topological setting where one can study directed
paths and directed homotopiesis likely the category pTop of preordered topological spaces and
preorder-preserving continuous mappings; the latter will be simply called mor phisms or maps, when
it isunderstood we are in this category. (Richer settings will be recalled in Section 5).

In this setting, a (directed) path in the preordered space X isamap a 1[0, 1] — X, defined on
the standard directed interval 11 = 1[0, 1] (with euclidean topology and natural order). A (directed)
homotopy ¢:f — g: X — Y, from f to g, isamap ¢: Xxtl — Y coinciding with f on the lower
basis of the cylinder Xx1I, with g onthe upper one. Of course, this (directed) cylinder is a product
in pTop: itisequipped with the product topology and with the product preorder, where (x,t) < (X', t)



if x<=x"in X and t=<t' in ¢l.

The fundamental category C = 1I11(X) has, for arrows, the classes of directed paths up to the
equivaence relation generated by directed homotopy with fixed endpoints; composition is given by the
concatenation of consecutive paths.

Note that, generally, the fundamental category of a preordered space X isnot apreorder, i.e. can
have different arrows x — X' between two given points (cf. 1.2); but any loopin X livesin azone of
equivalent points and isreversible, so that all endomorphismsof 111,(X) areinvertible. Moreover, if
X isordered, the fundamental category has no endomorphisms and no isomorphisms, except the
identities, and is skeletal; therefore, ordinary equivalence of categories cannot yield any simpler
model. Note also that, in this case, all the fundamental monoids 1x1(X, Xg) = 1T11(X)(Xg, Xg) are
trivial. All these are crucial differenceswith the classical fundamental groupoid I1;(X) of aspace, for
which a model up to homotopy invariance is given by the skeleton: a family of fundamental groups
m (X, Xj), obtained by choosing one point in each path-connected component of X.

The fundamental category of a preordered space can be computed by a van Kampen-type theorem,
as proved in [G2], Thm. 3.6, in a much more general setting (‘d-spaces, defined by a family of
distinguished paths).

The forgetful functor U: pTop — Top to the category of topological spaces has both aleft and a
right adjoint, D — U — C, where DX (resp. CX) isthespace X with the discrete order (resp. the
coarse preorder). Therefore, U preserves limits and colimits. The standard embedding of Top in
pTop will be the coarse one, so that all (ordinary) pathsin X aredirected in CX. Note that the
category of ordered spaces does not allow for such an embedding, and has different colimits.

1.2. The fundamental category of a square annulus. An elementary example will give some idea
of the analysis developed in Part |. Let us start from the standard ordered square 1[0, 1]2, with the
euclidean topology and the product order

X, y)=(x,y) if: x=x,y=Yy,

and consider the (compact) ordered subspace A obtained by taking out the open square 11/3, 2/3[2
(marked with across), a sort of 'square annulus

1 x + x'i‘

A L L'

Its directed paths are, by definition, the continuous order-preserving maps 1[0, 1] — A defined
on the standard ordered interval, and move 'rightward and upward' (in the weak sense). Directed
homotopies of such paths are continuous order-preserving maps 1[0, 1]2 — A. The fundamental
category C = 1II11(A) has, for arrows, the classes of directed paths up to the equivalence relation
generated by directed homotopy (with fixed endpoints, of course).

In our example, the fundamental category C has some arrow X — X' provided that x = X' and



both pointsarein L or L' (the closed subspaces represented above). Precisely, there are two arrows
when x =p= (13, 1/3) and x'=q=(2/3, 2/3) (asinthelast figure above), and one otherwise. This
evident fact can be easily proved with the 'van Kampen' theorem recalled above, using the subspaces L,
L' (whose fundamental category isthe induced order).

Thus, the whole category C iseasy to visualise and 'essentially represented' by the full subcate-
gory E onfour vertices 0, p, g, 1 (the central cell does not commute)

(D)

X

But E isfar from being equivalent to C, asacategory, since C is already a skeleton, in the
ordinary sense. The situation can be analysed asfollows, in E:
- the action begins a 0, from where we move to the point p,
- p isan (effective) future branching point, where we have to choose between two paths,
-whichjoinat g, an (effective) past branching point,
- from where we can only moveto 1.
(Definitions and properties of regular and branching points can be found in 1.6).

In order to make precise how E can'model’ the category C, we proved in Part | (and will recall
below) that E is both future equivalent and past equivalent to C, and actualy isthe 'join’ of a
minimal ‘future model’ with aminimal ‘past model’ of the latter.

1.3. Future equivalence of categories. A future equivalence (f, g; ¢, v) (1.2.1) between the
categories C, D is asymmetric version of an adjunction, with two units. It consists of a pair of
functors and a pair of natural transformations (i.e., directed homotopies), the units, satisfying a
coherence condition:

1 :.C=D:wyg ¢: 1c — df, vy:1p — fg,
2 fo = yf: f — fdf, og = gy: g— dfg (coherence).

Note that the directed homotopies ¢,y proceed from the identities to the composites df, fg ('in
the future'). Dualy, past equivalences have counits, in the opposite direction.

Future equivalences compose (in the same way as adjunctions), and yield an equivalence relation of
categories. A property (making sensein a category, or for a category) is said to be future invariant if it
is preserved by future equivalences.

An adjunction f — g with invertible counit ¢: fg = 1 amounts to a future equivalence with
invertible y = ¢L. Inthiscase, a'split' future equivalence, D can be identified with afull reflective
subcategory of C (afutureretract, 1.2.4). But, in ageneral future equivalence, f need not determine
g. Theorem |.2.5 shows that two categories are future equivalent if and only if they are full reflective



subcategories of athird.

1.4. Minimal one-dimensional models. In our example (1.2), the category C = 1I11(A) hasaleast
full reflective subcategory F, whichisfuture equivalentto C and minimal as such; its objects are a
future branching point p (where we must choose between different ways, out of it) and a maximal
point 1 (where one cannot further proceed); they form the future spectrum sp*(C) (as defined in
1.7.2)

)

Dually, we have the least full coreflective subcategory P, on the past spectrum sp~(C) ={0, g}.

Putting together the information coming from a past and a future spectrum, the pf-spectrum E =
Sp(C) isthe full subcategory of C on the set of objects sp(C) = sp(C) usp™(C) (1.7.6); itislinked
to C by adiagram formed of four commutative squares:

P — C — F C

@ I P oo (@

Adding the two functors g* = j*p* X — E (a=%), E becomesaminimal injective model of the
category C, inaprecise sense, which werecall now (al thisis not technically required for the sequel,
but will suggest how to proceed for dimension 2, in Section 4).

First, acategory E ismade an injective model of C (1.4.1) by assigning a pf-injection, or pf-
embedding, E = C. This consists of afull embedding f: E — C (full, faithful and injective on
objects) which appears at the same time in a past equivalence (f, g7 ¢g, ec) andin afuture one (f,g*;
ME MC)

3 f:E= C:qg,d",

=8 g—f — 1E, £C- fg— — 1C1 fsE = sCfZ fg—f — f, = Jec: g—fg——> g,
ne: 1l — g'f, ne lc — fg', fne = ncf: f — fg*f, meg™ = g™nc: g— g'fg™
(A coherence condition between these two structures automatically holds, 1.3.3. By 1.3.4, it suffices

to assign the three functors f, g-, g* - the first being a full embedding - together with the natural
transformations ec and nc, under the conditions fgec = ecfg™, fg™nc = ncfgh.)

Secondly, we say that E isaminimal injective model of X (1.5.2) if:
() E isaninjectivemodd of every injectivemodd E' of X,
(i1) every injectivemodel E' of E isisomorphicto E.



We also say that E isastrongly minimal injective model if it satisfies the stronger condition (i),
together with (ii):

(i E isaninjective mode of every category injectively equivalentto X,
where two categories are said to be injectively equivalent if they can be linked by afinite chain of pf-
embeddings, forward or backward (1.4.1).

Finally, Theorems 1.8.4 and 1.8.6 prove that, if a category has a pf-spectrum, this is a strongly
minimal injective model of the former, determined up to a unique isomorphism. (More generaly, the
minimal injective model of a category, when existing, is determined up to isomorphism but the
isomorphism itself need not be determined; cf. 1.5.5, 1.5.6).

1.5. The hollow cube. The analysisrecalled above, based on the fundamental category, gives relevant
information for planar ordered spaces (subspaces of 1R?), also in much more complicated examples
(seel.9). It may beinsufficient for higher dimensiona singularities.

The simplest case (already considered in 1.9.7) is a 3-dimensional analogue of our previous
example, the'hollow cube’ X C 1[0, 1]3 represented below, an ordered compact space again:

N 1

= 1[0, 1]3\H

l
X
I

(D |

NG,
2

T
1

113, 2/3[3.

0 X

The fundamental category C = 1I11(X) seemsto say little about this space: C hasan initia and a
terminal object, 0 and 1, whenceit is future contractible (to its object 1) and past contractible aswell (to
0); itsminimal injective model isthe category 2={0 — 1} (cf.1.5.4).

Now, as aready remarked in Part I, thisinjective model is not faithful: the original category C is
not apreorder, since C(x, y) hastwo arrowswhen X,y are suitably placed 'around' the obstruction (a
phenomenon which only appears within directed homotopy theory). One might therefore try to extract
abetter information from C, using faithful models. However, we are not able to find any simple one
(and likdly, thereis no finite one).

Here, we shall study the fundamental 2-category C, = 1I1x(X), trying to reproduce one dimension
up the previous study of 1I11(A), for the 'square annulus. This will be done in Section 6, after
preparing the new tools.

2. Lax natural transformations and local adjunctions

We review now the main tools of 2-dimensional category theory which will be used in this paper,
(strict) 2-functors, their lax natural transformations, their modifications and local adjunctions as



introduced in [Bu, Gr, Ke]. We shall mostly follow Bunge's terminology [Bu], slightly adapted (cf. 2.2).

2.1. Notation. Dealing with (strict) 2-categories, there is some advantage in beginning with the more
general notion of sesguicategory, where we only have avertical composition of cells and a horizontal
'whisker' composition of cells with arrows [St].

We shall use the following notation. In a sesquicategory X we have objects X, y,... maps
ax—yY,. andcdls a: a— b: x — y,... Maps have an associative composition, written ba (or b.a),
with identities 1. Cellshave amain composition pa: a — €. X — y (dsowritten p.a), asintheleft
diagram below, which is associative and hasidentities 15 (the terms 'horizontal' and 'vertical' will only
be used for the pastings of the associated double cells; see below)

a

NN a
Il a , h — k '
(1) X —— y X — X ta y —— y
B —
. b

C

Cells and maps have awhisker composition kah: kah — kbh: x' — y' (asinthe right diagram
above) such that:

(2 Lol = a, k'(kah)h' = (k'k) o (hh"),
k1lah = Lian, k(pa)h = (kph)(kah).
This sesquicategory isa 2-category if and only if the 'reduced interchange axiom' holds:

a Cc
(©)) X I a y 4y z yb.Cca = da.ya,
b d

in which case, one can define the second composition yea: ca — db: x — z asthe previous common
result. We shall generally work with 2-categories (mostly without using the second composition).

A (strict) 2-functor f: X — Y takesitemsof X tosimilaritemsof Y, preserving identities and
compositions. We shall only use such strict morphisms.

It will be useful to use pasting. This amounts to identifying a 2-category with its strict double
category of quintets (due to Ehresmann), with double cells asin the left diagram below (provided by a
2-cell ¢: va— bu)

X i X r X"
x e X “l‘/w Vl*/p [w
4% UlJCP lV y -b> y -s> y"
y T) y' U'léjw v'lé-jo lw‘

Z z z'

c t

and the obvious horizontal and vertical compositions (obtained from the vertical composition of 2-cells
and the whisker composition of 2-cellswith arrows, asin the right diagram above)



(5) ¢®nhp = Sp.pa Wra — sva — shu, e®yy = YyuV'e: V'va — v'bu — cu'u.

Note that, more generally, these horizontal and vertical compositions of double cells can be defined
(and are associative) for a sesquicategory X; then, X is a 2-category (satisfies the reduced
interchange axiom) if and only if its double cells form a double category (i.e., the horizontal and
vertical pastings satisfy the middle-four interchange axiom).

2.2. Lax natural transformations. A lax natural transformation ¢: f — g: X — Y (between strict
2-functors) assigns:

(i) to every object x€X, amap ¢x:fx — gx in Y,
(il toevery map a x — X' in X, acomparison cell ga ¢X'.fa — gagx in'Y,

fa
fx — fx

® x| g | ox
QX — ox
ga

so that the following axioms hold:
(Int.2) if a=1y, then ga=1: X — ¢X,

(Int.2) if c=ba x — x' — X", then pa®npb=q¢c (i.€, ¢Cc=(gh.¢d)(¢b.fa)),

fa fb fc
fx — X — fX fx —— fx"
@  wlhmel T e = | e e
gX H gXI H gXII gX H gXII
ga gb gc

(Int.3) givenacdl a:a— b:x — X' in X, then fa ®, ¢b =ga®y ga (pb(epX'.fa) = (go.gX)ed),

fa fa

fx W fx' fx — fX
(3) cpxl (Jcpb J{ X' = cpxl J(Pa l X'
—
gx —— ox gx lga  gx
gb QT

A colax natural transformation (the cell-dual notion) has comparison cells ga.gx — ¢x'.fa These
terms agree with Bunge's paper [Bu], but differ from [Gr] and [K€]:

lax natural transformation: colax natural transformation:
[Gr]: 'quasig natura transformation’, 'quasi natural transformation’,
[Ke]: 'op-lax natural transformation’, 'lax natural transformation'.

which take as leading notion the dual one (in [Gr], 'd' stays for down). The related notion of 'local
adjunction' (2.4) seems to show that the leading form should be chosen as in [Bu], with cells ga:
oX'.fa— gagx directed from f to g (seetheremark at the end of 2.5).



2.3. Modifications. A modification M: ¢ — y: f — g: X — Y (between lax natural transformations
of 2-functors) assigns to every object x&X acel Mx: ¢ox — yx: fx — gx in Y, so that the
following axiom holds:

(mdf) if ax — X', then:

fx — fx L fx fx —fa—> X' — fx
D wxl "jMx cpxl "/cpa l X' = wxl ('/‘Pa wxl "/Mx' l X'
gx —— ox g—a) ox' ox Ea—) gx' —— X

The calculus of lax natural transformations and modifications, under their compositions, is deferred
to the Appendix, Section 7.

2.4. Local adjunctions. A local adjunction (f, g; n, ¢; L, R) between the 2-categories X, Y consists
of apair of 2-functors, a pair of lax natural transformations and a pair of modifications (replacing the
triangular identities)

) :X=Y.q,

n 1x = gf: X = X, eefg—1v:Y =Y (unit, counit),
L:effn = 1pf = X =Y (left triangular comparison),
Rilg— gemgg—gY — X (right triangular comparison).

Thiswill be called acoherent local adjunction if it satisfies the coherence axioms:

1 -nmn> of = o fg fg fg
0| e 0| e | | <1mo] S|
2 gf -9~ gfgf -gf> of = 1, fg -fg- fofg -fee> fg = 1,
o wt]<s | | Ag o] e e
d —— o — fg = fg - e~ 1

with obvious modifications n«m, exe (graded composition, 7.3). In astrictly coherent local adjunction
the triangular comparisons areidentities (L =1, R=1) and the coherence axioms reduceto n+n =1,
exe = 1.

A coherent local adjunction is called a'formal lax adjunction’ in [Bu], 3.1 (where f need not be
strict). A colocal adjunction, the cell dual notion, has colax natural transformations n: 1y — df, e:
fg — 1y with comparisons L: 1§ — ¢f.fy, R:gemg — 1g itiscalled a'weak quasi-adjunction’ in
[Gr], 1.7.1, and a'quasi-adjunction’ when coherence holds. The term 'loca adjunction'’, motivated below,
appeared in [BK, BP, Jd], with similar meanings.

Local adjunctions are closed under composition ([Gr], 1.7.3).

2.5. Thelocal behaviour. The name of local adjunction is motivated by the fact that this structureis
linked with ordinary adjunctions at the 'local’ level, of hom-categories.
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More precisaly, alocal adjunction f — g (2.4.1) induces, for every pair of objects x (in X) and
y (in Y), asort of ‘preadjunction’ f' — g' (without triangular identities):

D X gy) = Y(fx,y) d,

f'lax — gy) = eyfafx —vy, g'(b: fx — y) = gbmx: X — gy,
"t 1 — gf': X(X, gy) = X(X, gy), eif'g — L Y(Xy) — Y(fx,y),
n'a a— gf'(a = gey.gfanx, e'b: f'g'(b) = ey.fgb.fyx — b,

wherethecells n'a and ¢'b are defined by the following pastings

frx fgb
x—>gy fx —— fgfx — fgy
@  w| e ol ry H | e e Lo
gfxg—>gfgyg>gy fx:fngy

If the original local adjunction is coherent, then (1) is an adjunction (satisfies the triangular
identities). On the other hand, a coherent colocal adjunction f — g produces an adjunction g — f'
'discordant’ with respect to thegiven f — g.

2.6. Local terminal objects. Loca adjunctions produce local limits and colimits, as studied in the
references cited above. In a very elementary way, let us consider the 2-category X = RelAb of
(additive) relations of abelian groups and the trivial 2-category 1 on one object *, linked by the
following 2-functors forming aretraction

(D p: X =11, i(*) =0 (pi = 1).

Adding units or counits, we can get various (co)loca adjunctions (but no 2-adjunction, since X has
neither aterminal nor aninitial object).

(a) First, we have a strictly coherent local adjunction p — i, with trivial counit pi =1 and unit »:
1y — ip, sending an object A to the greatest relation nA: A — 0 (with graph Ax{0}). The
following diagram shows the comparison cellsof , on an arbitrary relation a A — B

a

A —— B =1 ui=1
(2) nAlé-/na lnB o = 1,

while the coherence properties ((Int.1-3) in 2.2) are automatically satisfied, because a 2-category of
relationsislocally ordered: its cells are determined by their domain and codomain.

We can say that this adjunction presents the null group 0 asalocal terminal object of X.

(b) Secondly, we have a coherent local adjunction i — p with trivial unit 1 =pi and counit e:
ip— 1x, sending an object A totheleast relation ¢A: 0 — A (with graph {0, 0})
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0O — 0O pe =1, & =1,
(©) eA l "jsa lSB exe = 1
A — B

This presents the null group 0 asalocal initial object, in X.

(c) But we also have two coherent colocal adjunctions p — i and i — p.

The unit of the first is the colax natural transformation n': 1x — ip where n'A = (A A — 0 is
the least relation (see the left diagram below)

a

A — B 0O — O
(4) nA l n'a/‘* l n'B eA l e‘a/" l eB
0 — O A — B

while the counit of second is the colax natural transformation ¢ ip — 1x, A = (WA)*. These
adjunctions present 0 as a colocal terminal and colocal initial object.

Also the points (a) and (b) seem to show that |ax natura transformations, in the present sense, play
aleading role with respect to the dual notion: in fact, the presentation of O asalocal terminal object
comes with terminal relations A — 0 (termina 'objects' in the order-category RelAb(A, 0)), while
the presentation asalocal initia object comeswithiinitial relations 0 — A.

For relations of sets, asimilar argument would show that the 2-functor p: RelSet — 1 hastwo
(non-isomorphic) strictly coherent local right adjoints, corresponding to the empty set and the
singleton. But now, the transformations pertaining to the empty set (which is 2-terminal and 2-initial)
are 2-natural.

3. Future and past 2-equivalences

As in the one-dimensional case, directed homotopy equivalence of 2-categories appears in two dual
forms, detecting invariants of the future or the past.

3.1. Future 2-equivalences. We shall work with strict 2-functors, their lax natural transformations
and modifications, as recalled above (or in Section 7, for their compositions).

A future 2-equivalence (f, g; ¢, v; F, G) between the 2-categories X, Y will consist of apair of 2-
functors, a pair of lax natural transformations (2.2), the units, and a pair of modifications (2.3), the
comparisons

D f:X=Y.q,
¢: Ix — gf: X — X, yily = fgY =Y (units),
Foyf — fo:f — fgf: X — Y, Gog— gy:g— gfg:Y — X (comparisons).
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We say that this future 2-equivalence is coherent if the following axioms hold:

(2) wro=(9F.Ghe: gdf.o — dfe.g, yry = (fFG.FQ)y: vfgy — foy.y (coherence),
¢ gf 1 2 gf
[ _— N —
ol | e loor = | e wgf
of —— dfdf of —— dfdf
of e gfe

(see 7.3 for the modification ¢*¢, agraded composite; see 7.2 for the whisker composition of the
modification gF.Gf: ogf.¢ — dfe.@: gf — ofgf with ¢: 1x — df).

Both notions are reflexive and symmetric; thefirst is aso transitive (3.2). Moreover (having chosen
the arrow of the comparison cells of lax natural transformations, in 2.2), the arrow of the comparison
cells F, G inthe previous definition cannot be inverted, if we want the result of Thm. 3.4 (see the note
a the end of the proof).

A property (making sensein a 2-category, or for a 2-category) will be said to be future 2-invariant
if itis preserved by future 2-equivalences; an elementary example will be future 2-contractibility (3.5).
A future 2-equivaence between ordinary categories amountsto a future equivaence (1.3).

A coherent local adjunction f — g (2.4) with invertible counit ¢: fg — 1 and invertible
comparisons L: ¢f.fn — 1f and R: 15 — gemg amounts to a coherent future 2-equivalence with
invertible unit ¢ and invertible comparisons, letting:

B ¢=m v=¢t F= @)%y —fo, G = (guR™ eg — gu.

This case, a'split' future 2-equivaence, will be treated later (3.3).

Dualy, apast 2-equivalence (f, g; ¢, v; F, G) has
4 f:X=Y.q,

¢: gf — L X — X, y:fg— 1Ly:Y =Y (counits),
Fife — yf:fgf — f: X =Y, Gogy—oegogfg—0gY — X (comparisons),
and is coherent if:
(5) (Gf.gR)e = ¢*¢: dfe.e — odf.e, (FofGw = y*y: fgy.y — yfgy (coherence).

Future 2-equivalences, being linked with (locally) reflective sub-2-categories and idempotent 2-
monads (3.3), will generally be given priority with respect to the dual case (related with coreflective
sub-2-categories and 2-comonads). The cell dual notion, a cofuture 2-equivalence, will only be
considered marginally; it has colax natural transformations «: 1x — df, y: 1y — fg directed the
same way but having opposite comparison cells (2.2) and triangular comparisons directed the other
way round (F: fo — yf, G: gy — ¢g). Finaly, notice that (in contrast with 2.5) a future 2-
equivalence does not induce a future equivalence (nor even functors) at the level of hom-categories.

3.2. Composition. Future 2-equivalences can be composed (much in the same way as local
adjunctions, in [Gr], 1.7.3), which shows that being future equivalent 2-categoriesis an equivalence
relation.
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Infact, after (f, g; ¢, y; F, G) (asin 3.1.1), let asecond future 2-equivaence be given
() hY=2ZIK,
9 1ly — khY =Y, ¢l —hkiZ — Z,
H:th — ho:h — hkh:Y — Z, K: 9k — kt: k— khk: Z — Y.
Their composite is defined asfollows:
(2) hf: X = Z gk,
gof.g: 1x — gk.hf, hyk.t: 17 — hf.gk,
L: (hyk.t)hf — hf(gdf.¢): hf — hf.gk.hf: X — Z,
R: (gof.9)gk — gk(hyk.t): gk — gk.hf.gk: Z — X,

where the modifications L and R are given by the following pastings, in the 2-categories Lnt(X, Z)
and Lnt(Z, X) of 2-functors, lax natural transformations and modifications (7.1)

[ | e [ [

©) hf —— hf -hof> hkhf =1L, gk —— ok -ok-= gfgk = R
| At | ooy | e | ook omnc | oo
hf o hfgf ot hfgkhf ok o gkhk p— gkhfgk

On the other hand, the coherent case seems not to be closed under composition.

3.3. Future 2-retracts. A particular case will be important, and also able to express the general
situation (as proved below, in 3.4). A split future 2-equivalence of X onto Xg (or of Xg into X) will
be a coherent future 2-equivalence (p, i; n, i; 1, 1) where the unit Ix,— pi isan identity, aswell as
both comparisons

(1) p: X = Xoii, n: 1x — ip, pi = Ix,
pn = 1, ni =1
(2 1, = w*ninipm — ipnm (coherence).

Thisequivaence (p,i;n,i; 1, 1) isasplit epi in the category of future 2-equivalences, with section
(i,p; 1,m;1,1) (usethecompoasition diagram 3.2.3). We shall view i asaninclusionand Xg asa
sub-2-category of X; itiseasy toseethat Xg islocally full in X (but not necessarily full, as shown
by the examples of Section 6). Indeed, every X-cell a:a — b:x — X' between maps of Xg
necessarily belongs to the latter, since the lax natural transformation n: 1x — ip givesthefollowing
equality (axiom (Int.3) in 2.2)
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_a. a
la X' X —— X

X
@  owltw o= ow|m |

ipx —— ipx ipX Jipa ipX'
ipb W

where nX, nX' areidentity maps and na, nb areidentity cells(by ni = 1).

Equivaently, we have a strictly coherent local adjunction p — i withunit n: 1x — ip, wherethe
counit isan identity (aswell as both comparisons, cf. 2.4). Thus, p will be called the local reflector of
the embedding i.

Equivalently again, one can assign a strictly idempotent coherent local monad (e, m) on X, i.e. a
2-endofunctor e and alax natural transformation n such that

4 eX —X, nlx — g
ee = g en = 1le = ne n*n = 1.
Indeed, given (i, p; m), wetake e=ip; given (e n), wefactor e=ip splitting e through the sub-
2-category Xp of X formed of the objects, arrows and cellswhich e leavesfixed.
Dually, asplit past equivalence, of Xg into X (or of X onto Xg) isacoherent past equivalence
(p,i; &, 1; 1, 1) wherethecounit pi — 1p and both comparisons are identities
B) p: X = Xp:i, e ip — 1x, pi = 1x,,
pe = 1p, el = 1, 1. = e*el elipe — ecip.
Then, Xo will besaid to beapast retract of X, with local coreflector p (locally right adjoint to
theinclusion, with trivial unit and comparisons).

3.4. Theorem [Future 2-equivalence and future 2-retracts]. (a) A future 2-equivaence (f, g; ¢, y; F, G)
between X and Y (3.1) hasacanonical factorisation in two split future 2-equivalences

i q . .
1 X = W= Y n:lw —ip, 0" lw — g,
where X and Y arefuture 2-retractsof W (the graph of the given future 2-equivalence).
(b) Two 2-categories are future 2-equivaent if and only if they are future 2-retracts of athird.

(c) A property isfuture 2-invariant if and only if it is preserved by all embeddings of future 2-retracts,
aswell as by their local reflectors.

Proof. (a). First, we construct the 2-category W, enriching the construction of 1.2.5 for 1-dimensiona
categories.

() Anobjectisasix-tuple (x,y; u,v; U, V) suchthat:
(2) ux—gy (in X), viy = fx (inY), U:gx — gv.u (in X), Viyy — fuv (in Y)
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X = X y — Yy

ul"jU lCPX Vl‘e-/v lwy

gy —— dfx fx —— fgy
v fu

(ii) A morphismisafour-tuple (a b; A, B): (x,y; u,v; U, V) — (X, y; U, Vv; U, V") suchthat:
B ax—x (inX), by =y (inY), A:uva— gbu, B:vb— fav,

a b
X — X y — Yy
ule/A lu‘ Vl"JB lv‘
oy — gy fx — fX
gb fa

(a coherence condition can be added; but thisis not necessary). A cell between parallel maps (o, p):
(ab;A,B) — (&, b; A, B") isapair such that:

(4 awa—4d (inX), psb—Db (inY), (gB.WA = A'Ua, (fa.v)B = BV,

a _a_) b _b_>
X — X X Ja X' y —— Y Yy g y
UJJA lu‘z ulJA.a' lu‘ VJJB lv' — vlJB.bl lv'
y tob oY oy —— gy x fa X i —— fx
7 gb' _ fa
gb' fa

(iii) The composition of arrowsisasfollows (it is easy to see that it is 'categorical’)
(5) (a,b;A,B).(ab;A B) = (ada bb; Ac,A',BeyB),

a a b b'
X % Xl % Xll

y y y"
o] Ia u] A | e v| e v

gy —— gy — oy" f fx' fx"
gb gb' fa fa

(iv) The main and secondary composition of cells are defined component-wise (and satisfy the axioms
of 2-categories, with the obvious identities)

(6) (o, B)(c, B) = (o', B), (1, 8)°(c, ) = (yct, 0°).

The construction of the 2-category W is completed. We have a split future 2-equivalence of X
into W

(7 EX=W:p n: lw — ip,
(8) i(x) = (X, TX; ¢X, lix; Lox, FX: ypfx — fox),
i@x —x) = (afa ga ox.a— dgfagx, 1),

i(c:a— &) = (o, fa),
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) pxy;uv,U V) =X,
P@ab A B) = a P B) = a,
(10) n(x,y;u,v;U,V) = (4, v; U:igx — gv.u, 1,):
(Y UV U V) = () = (XX X, Lo Lgw FX:yfx — fgx),
n(@b; A, B) = (1, B): (a Vvb; UagvA,B) — (a fav; gagfal, 1)

(a b; A, B)
(X1 ya u; V1 U, V) — — (X', y" u" V', U" V')
(1) v ) | o@bap) | @eviuiay)
(X, X oX, Lix; Lox, FX)  — — (X, X5 X, L Lox, FX)
(a, fa; @, 1fa)

The correctness of the definitionsof i and v iseasly verified; for instance, the coherence of the
lax natural transformation n withaW-cdl («, ) (property (Int.3) of 2.2) follows from the definition
of acell, in (4). The relations pi = 1w, ni =1, pn =1, are plain. We also have n*n = 1,
(independently of the coherence of the original future 2-equivalence)

(1, v; U, 1)
(12) (v U ) | / (11, 1v) | @ 166 L 11,)
%, X5 @X, g Lgxs FX) (X, £X; @X, Lix; dgx, FX)

(Le, Irxs Loxo 11g,)

Symmetrically, thereisasplit future 2-equivalenceof Y into W
13) Y=W(q( n": 1w — jq,
i) = 9y, Y; 1oy, wy; Gy:ogy — Quy, Lyy),
jlory = y) = (gb, b; lgn, whiyy.b — fgb.yy),
j(B) = (¢B,B),
ax y;u v, U, V) =y,
q(ab;A,B) = b, (A, B) = B,
Xy, u v, U, V) = (U 1y; 1, Viyy — fuv):
%y u ViU V) = y) = (@Y. Y; Loy wy; Gy:iegy — guy, lyy),
n'(a b; A, B) = (A, L): (Ua b; A, V'bfuB) — (gb.u, b; 1, yb.fghV).

Now, composing these two equivalences asin (1) (cf. 3.2.2-3), gives back the original future 2-
equivalence (f, g; ¢, w; F, G)

(14 @5 L1130 p a1 1) = (i pis pai, onj; den)i, pn*m)j),
(15 ai(x) = f(x), qai(@ = f(a), qi(A) = f(A),
(16) pni:1x — pi.di,
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Pni(x) = pn'(X, X5 9%, L dgx FX) = ploX, i Lox, FX) = ¢X,
i@ = pn'(afa ga 1) = plea lid) = ¢a,
(A7) qlnxn)i: fo — yf,
Adn*n)i(x) = am™i(x))) = dM(eX, lix; Loxs FX)) = A(lgx, FX) = Fx.

Finaly, (b) and (c) follow immediately from (@), by composing future 2-equivalences (3.2).

We also note that the proof shows the 'necessity’ of the previous choices for the direction of cells
(once we fix it in lax natural transformations). Indeed, the direction of the cell A in (3) must agree
with the direction of ga ¢Xx'.a — gfa.px in (8); but then, because of (10), also the arrow of U is
fixed; finaly, (13) determinesthe arrow of Gy. o

3.5. Future 2-contractible 2-categories. We say that a 2-category X isfuture 2-contractible if the
2-functor p: X — 1 with valuesin the singleton 2-category (one object * and itsidentities) is afuture
2-equivaence.

This means that we have a 2-functor i: 1 — X (amounting to an object xg=i(*) of X), witha
lax natural transformation v and a modification F
(D p: X =11,

n Iy — ip: X —= X, Fni— 1 —i:1— X;

notethat F merely amountsto acell Fo=F(*): nXo — id(Xg). (The axiom (mdf), in 2.3, istrividly
satisfied, since 1 has precisely one arrow, an identity.)

In this situation, we also say that X isfuture 2-contractible to the object xo. Notice that the latter
is not determined up to isomorphism (as shown at the end of this subsection).

We say that X issplit future 2-contractibleif p: X — 1 isasplit future 2-equivalence onto 1,
i.e. acoherent future 2-equiva ence with comparison F=1. Thisamountsto a strictly coherent local
adjunction p — i withunit n (and counit pi = 1; cf.2.4)

2 ;1= X:p, n: Ix — ip: X — X,
ni =1 nnx) = Lyx.

We have already seen, in 2.6, that RelAb is split future 2-contractible (to the object 0), and split
past 2-contractible (to the same object); moreover, the sameistrue in the cell dual sense, with respect to

colocal adjunctions. There are no other split solutions. Indeed, if (i, n) isone, thefollowing cell shows
that every component nx: X — i(*) must be the greatest relation x — i(*)

x — i)

@ | = [mi=2
i(x) = i(*)

and then ni =1 showsthat i(x) = 0.

Similarly, the 2-category RelSet is split future 2-contractible to precisely two objects (up to
isomorphism): the empty set and the singleton.
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3.6. Proposition. In order that the category X be split future 2-contractible to an object Xg, it
suffices that the latter be equipped, for every object x, with anarrow nx: X — Xg whichistermina in
the category X(X, Xg) and such that nxg = id(Xg).

Proof. Let i: 1 — X, i(*) =Xo. Foreveryarrow a x — X' in X, let na nx'.a — nx bethe unique
cell to theterminal arrow nx: x — Xg. Plainly, this defines alax natural transformation n: 1 — ip
(2.2). Again, let F(x): 1, — nXo bethe unique cell to thetermina arrow nXo: Xg — Xo; this defines
amodification F:ni — 1;:i — i: 1 — X. Thecondition ni = 1; isaready assumed, and n(nX): nX
— nX necessarily coincideswith 1, . m

4. Two dimensional models

A past 2-retract and a future 2-retract of a 2-category generate a global 2-dimensional model (4.3).
We also study properties of objects, invariant up to future 2-equivalence, which will be of use to construct
minimal models of 2-categories (4.4, 4.5).

4.1. Injective 2-maodels. A future 2-embedding of E into X will be afuture 2-equivalence (f,g; ng,
n) where the comparison cells areidentities, f isalocally full 2-embedding and additional properties
hold

(1) f:E= X g, ne: 1g — gf: E — E, n Ix — fg: X — X,
nf=fef —fgh E— X, meg=1l=gnig—dfg X —E  w=L1yn—n,

1 —n—> fg
TR
fg —— fg

In particular, gfg =g, sothat gf and fg are idempotent endofunctors. Moreover, ng is
determined by n (the main unit) and ne*ne = 1, holds aswell, so that our future 2-equivalenceis
strictly coherent (3.1).

Dually, we have the notion of a past 2-embedding. Combining both aspects, the 2-category E is
made an injective 2-model of X by assigning a pf-2-embedding of E into X, i.e. apair formed of a
past 2-embedding (f, g; g, £) and afuture 2-embedding (f, g*; ng, m) sharing the samelocally full 2-
embedding f: E — X:

2 f:E=X:g,d",

€E- g‘f — 1f, €. fg‘ — 1y,
feg = ¢f: fgf — f, ge=1=¢qggfg— g, exe =1l e — g,
ne: 1lg — g*f, n: x — fg+’

nf =g f — fg'f, g'm=1=neg" g"— g'fg’, = Lyin =,
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1 n
fg—— fo- Lo ¢
1 e e 0] e |2
fgg —— 1 fg — — fg’

4.2. Pf-presentations. We introduce now a second structure which combines past and future, and will
produce an injective 2-model.

A pf-2-presentation of the category X will be a diagram consisting of a past 2-retract P and a
future 2-retract F of X (3.3; both are locally full sub-2-categories)

) P — X F

e i p — 1x (P~ =1, pe=1, ci"=1, exe=1),
n:1x — i'p* (pfit=1, pfm=1, ni*=1, n*n=ln).

We have thus two strictly coherent local adjunctions i— — p~, p* — i*.

Recdl that P and F arelocaly full sub-2-categoriesof X (3.3). We form now alocally full sub-
2-category E, which will be called the injective 2-modd of X generated by the pf-2-presentation (1) -
and will be proved to be such amodel (4.3). Its objects belong to PoUFg (i.e., ObPUODLF) whileits
arrows are generated by:

(a) thearrowsof P and F,

(b) the components ex: i-px — x for x € Fyg and nx: x — i*p*x for x € P,.

Note that all the componentsof ¢, onitemsof E livein E. Infact, on anobject x € PyuFy, it
suffices to consider the condition (b), together with the properties ex = 1, for x € Py and nx = 1
for x € Fy (and condition (a)). Secondly, onamap a x — X' in E, thethesisfollowsfrom the fact
that thefaces of ea and na belongto E, whichislocaly full in X

. ipa a
IpPX — I pX X — X
(2) ex l ca l ex' nxl (—Jna l nx'
X — X ip'x —— i*p*x’
a itpta

4.3. Theor em [Pf-2-presentations and injective 2-modelg]. Given a pf-2-presentation of the 2-category
X (writtenasin4.2.1), let E bethelocally full sub-2-category of X described above (4.2) and f its
embeddingin X.

(a) These data can be uniquely completed to the left diagram below, with (four) commutative squares
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P~ " 1
o o] o ille
P — E — F E
q i
Moreover:

(b) thereisaunique lax natural transformation eg: j7q~ — 1g suchthat feg = «f;

(c) thereisaunique lax natural transformation ne: 1 — j*q" suchthat fng =nf;

(d) these transformations make the lower row into a pf-2-presentation of E;

(e) letting g* =j%p* X — E (a =), we get apf-2-embedding (f, g, g*; ¢, &, ne, m): E— X
making E aninjective 2-model of X (generated by the presentation).

Proof. () First, we (must) take j*: FCE (sothat fj*=i*) and q" =p*f: E — F; and dudly.

Now, we prove (b) to (d), completing the lower row of diagram (1) to a pf-2-presentation of E, as
stated. On the right side, we already know that g*j* = p*i* = 1. We have already seen, at the end of
4.2, that al the components of nf: f — i*p*f: E — X belongto E; thereisthusaunique lax natural
transformation ne: 1g — j*q" suchthat fng =nf; plainly, ng*=1 and g'ng=1. Similarly for eg:
T — 1
(e) Then, we define g* = j“p*: X — E and observe that:

(2 fg" = fj'p" = i"p", gt = j'p'f = j"q".

Therefore, we can take the lax natura transformations
(B) m:lx — i'p"=fr, ne: I — j*q" = g'f,
asthe units of the pf-2-embedding f: E == X :r%; infact, the relations:

(4 nf = fng, gm=1=neg", wm=1,

are aready known, or come from g =j"p™ =1, neg" =ng*p* = 1. Similarly for thecounits. O

4.4. Future 2-regularity. A point x inthe 2-category X will be said to be V3-regular if it satisfies
(i), Oj-regular if it satisfies (i) and future 2-regular if it satisfies both:

(i) forany pair of 2-cells oj: a — g: X — X' (i =1, 2; seetheleft diagram below), there exists a pair
of double cells & suchthat a; ®, &1 = as®y Ep,

(i) giventhree2-cells a:a— a:x — X' and o;: @ — a:x — X' (i =1, 2; seetheright diagram
below) such that o ®y a1 = a ®y ap, thereexistsa2-cell &: (u g u) suchthat a; ®y & =ap ®yE,

a

E—
a Ll a
_ X —
X ) X' 1 Qj
_— _—
(@) ol Jg | “L/a t
. _ . . —_ .

a a
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On the other hand, we shall say that x is V3-branching if it is not Vi-regular; that it is O}-
branching if it is not O3-regular; that is afuture branching if it falsin (at least) one of the previous
cases, i.e. if itisnot future regular. Dually, we have V-regular, O-regular, past regular points and
the corresponding branching points.

4.5. Theorem [Future 2-equivalences and regular points]. Given afuture 2-equivalence f: X = Y
:g, with lax natural transformations ¢: 1 — df, y: 1 — fg and comparisons F: yf — fo, G:
og — gy, wehave:

(a) thefunctors f and g preserve V3-regular, O3-regular and future regular points,

(b) the functors f and g preserve V3-branching, O3-branching and future branching points (i.e.
reflect V3-regular, Oj-regular and future regular points),

Proof. Theindex i awaystakesvaues 1, 2.

(a). Supposethat x isV3-regularin X; we must provethat aso fx is, in Y. Givenapair of 2-cells
Bi: b — bj:fx — y in Y, asintheright diagram below, there existsin X apair of doublecdlls g as
in the left diagram, such that (gpi.oX) ®y & =& (independently of i)

gb b

QX —_—

X — gfx Tg[? X fx —— X 1B b y
RN L.

N | /e wfxuwa | w

fx -fox-> fgfx - fobi> fgy

: ol e |

)

Then, in the right diagram above, the double cells v = (Fx ®, yb;) ®, f&; have the same vertical
composition with p;
(2) Bi®vmi = i ® (FX@hyhy) ®y fgi = (FX®h (Bi ®y vby)) ®y fgj = (FX ®h (Wb ®y fgpi)) ®y fg;
= (Fx ®nyb) ®y (fgpi.fox) ®y fgi = (Fx @ wb) ®y fE.

Second, supposethat x isOj-regular in X, and let us prove thesameof fx in Y. Take, inthe
right diagram below, three 2-cells p: b — b fx — y and pj:b' — b", sothat g ®, p1 =0 ®y B2

_® _ b
(22 E[L _ B
>‘< ofx EIL g‘y f‘x — f‘x _Tb ’ T
b .
u l (—jg 9 l u H JFX wfxl JWb" l py
©) . . fx -fox> fgfx - fob' > fgy

il

ful (_/fg lfu‘

Then, in X, the composite gp.ox ®y gpi.ox (Which 'starts a x) doesnot depend on i, and there
existsa2-cell & suchthat (gpi.gx) ® & =& (independently of i). One shows as previously that the
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double cell n = (Fx @nyb") ®y fg, intheright diagram above, has the same vertical composites with
1, B2-

(b) Assume that fx is V3-regular in Y. Given apair of 2-cells oz a — g:x — X' intheleft
diagram below, there existsin Y apair of double cells v suchthat faj ®y ni =n (independently of
i, seetheright diagram)

2 fa,
X 9 X fx tfai X
‘PXquJai l‘PX' Vl(—/ni l"'
4 gfx -dfa > gfx' y T) y
gvl J@mi l ov
oy —
gb

then, in the left diagram above, the double cells & = g5 ®, gn; solve our condition for the pair o;:

(5) «i®yga ® i = ga®y Ofai @y Onj = ga®y On.

Finally, let fx be Oj-regularin Y andtake, in X (asintheleft diagram below), three 2-cells o
a—a: X — X and gi:d — a':x — X, sothat a ®, 01 =a ®, ap; thenthereexistsin Y a2-cell
n suchthat fa; ®,m =fap ®y . Itfollows, as previoudly, that in X thedouble cdl & =g¢a' ®, On
has the same vertical compositeswith ag, o

a fa
Ta Tfa
X —— X fx —— fX
Rl Il
o] S | v
(6) gfx -dfd > gfx’ y —— y
gvl Jgn lgv'
aQy —=> oy =
gb™

5. The fundamental 2-category of a preordered space

We define here the fundamental 2-category of a preordered space, and extend the construction to
other settings. Theindex o takesvaluesO, 1 (written —, + in superscripts).

5.1. The structure of the directed interval. The directed interval 11 isalatticein pTop, withthe
following structural mappings: faces (8%), degeneracy (¢) and connections (y*, the binary
operations of join and meet)
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60( ,YO(
O { = 1 = 1
57(*) = 0, 87 (x) = 1, Yt t) = max(t, t), Yt t) = min(t, t).

Actualy, we are not interested in the complete axioms of lattices (e.g., the idempotence of the binary
operations y*, or their full absorption laws), but only in a part of them, corresponding to a cubical
monoid in the sense of [G1]: a set equipped with two structures of commutative monoid, so that the
unit element of each is absorbent for the ather. Formally, this means the following axioms (defining a
cubical monoid in amonoidal category, with tensor product x)

(2) e = 1, ey = eextl) = e.(tlxe) (degeneracy),
YO = vy (1 xy®), YE(0%11) = 1 = y*.(11x8%) (associativity, unit),
WPB(8%11) = 8% = yB.(11x56%) (absorbency; o = p).

Higher faces, degeneracies and connections are constructed from the structural maps, via the
monoidal structure, for 1<i<n and a =%

(3) 8% = I Lg%l 1ML — N, gi = tHiIxexp M " — g1
y?‘ = T|i_lxyaxT|n_iZ 1\|n+1_> AN (1sisn; ocZi),

and the cocubical relations (for faces, degeneracy and connections) follow from this construction and
the axioms above, in (2):

(@) obof = 87,00 (<), eigf = e.eisr (=),
gj.0f = & j.ej (j<i) or id (j=1i) or ote1 (j>1),
s = ¢l (>0, YR = vt
e = i (<) or ez (j=1i) or e (>1),
y?.é?‘ = 6?_1.\/[]-5 (i <i-1) or 6?‘.\(?_1 (4 >1),
y¢.8% = id = y%8%,,, B¢ = 0%ei = yBo%, (o =p).

5.2. The cubical set of a preordered space. Given a preordered space X, the previous structure of
t1 (and its powers, forming a cocubical object in pTop) produces a cubical set with connections
P.(X)

(1) Pu(X) = pTop(11", X),

9% Pn(X) — Ppa(X), oM@ = a8t 11"t — X,
e: Pr1(X) — Pn(X), e(@ = aeg: 11" — X,
g Pn(X) — Pnsa(X), 9@ = ayf: 1™ — X,

satisfying the cubical relations (dual to the cocubical ones, listed above).

5.3. Moore paths and parallelepipeds. Let us form the free cubical o-category M, (X) on this
cubical set P,(X). A genera item is a Moore parallelepiped, defined on a standard ordered n-
parallelepiped (possibly degenerate)
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(1) allj=; nt[0,p] — X Py, PR EN).

These maps form the component M(X), with obvious faces and degeneracies

(2) 9% Mp(X) = Mpa(X), 0F(@(te,s tha) = Atays APiyensy tra),
a Mn—l(x) - Mn(x)’ a(a)(tl’l tn) = a(tll"-vfiv"wtn)!
respectively defined on the standard parallel epipeds defined by the natural numbers (py,..., |5, Pn)

and (p1,-.-, Pi—1, O, ..., Pn1). The i-composition of two Moore parallelepipeds a, b (defined on
IT1[0,p] and IT1[0,qj]), with 6;(a) = 67(a), isaso obvious

aty,... tyeens t) (O =<t < p),
) (a*ib)(ty,.... tn) = {
b(ty,..., ti_pi,... t)  (Pi=ti=p +q),
with identities given by the degeneracies g.
This cubical set has 'pre-connections, whose 'degenerate’ faces are constant (instead of being actual
identities)
(4) g Mp(X) = Mpsa(X), 0@ (1, ther) = Ata,een, Y*(is tivd),enns thr),
where g?(a) isdefined on 1[0, pq] x ... x 1[0, pi]2 x ... x 1[0, pnl.

Truncating M, (X) at dimension 2, we get a cubical 2-category (i.e., an edge-symmetric double
category) with pre-connections

aa
(5) Mo(X) = Mi(X) = Mz(X),

—
—3
e

Further, replacing M,(X) with N2(X) = M2(X)/= (modulo homotopy with fixed boundary) and
leaving N;(X) = M;(X) for i =0, 1, wehave again acubica 2-category with pre-connections.

5.4. Congruences. Let C be acubica 2-category. A congruence R = (Rg, Ry, Ry) in C will bea
triple of equivaence relations, one in each component Cp, Cq, Cp, which are:

(i) consistent with faces and degeneracies,

(i) consistent with each i-composition law, in the following sense: if a b € C,, and their faces d7a
and d7b areequivaent (modulo Ry), then:

-thereexist &, b' equivalentto a, b (modulo Ry) which arei-consecutive, i.e. dfa = ;D)
-ifalso a', b" are so, then thei-composites axjb' and a'+ib" are Ry-equivalent.

Plainly, the quatient cubical set C/R (with components C/R,, the induced faces and degenera-
cies) inherits well-defined i-composition laws, which make it into a cubical o-category: the quotient of
the cubical o-category C modulo R.

5.5. Thefundamental 2-category. Now, we form a double category with connections
(1) D.(X) = N.(X)/R,

identifying 'pre-identities (cubes which are constant in some direction) with identities.
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In other words, we define the congruence R (5.4) of N,(X) asfollows. Ry isthe equality of
No(X) = [X|; R1 istheleast equivalence relation of N1(X) = M1(X) closed under concatenation
which identifies every constant path a 1[0, p] — X withitsfaces {0} — X; Ry istheleast
equivalencerelation of N(X), closed under 1- and 2-concatenation, which identifies the class of any
rectangle’ a 1[0, p] x 1[0, q], constant in direction i, with gd;a

The conditions 5.4 (i)-(ii) are satisfied: the only point which needs some comment is the first part
of (ii), for n=2. Assume that the 2-dimensional items a, b: 1[0, p] x 1[0, q] — X have R;-
equivalent faces a3[al = d3a, d5[b] = a5b; modifying the path ¢ = d%a 1[0, p] — X with the
insertion of aconstant portionat p' (O<p'<p), of length meN

c(t) (0O=t<p),
(2 c(t) = { c(p) (p'=tsp+m),
ct—m) (p'+m=t=<p+m),

can be accompanied with asimilar modification on a (in thefirst variable), obtaining amap

(3) a: 1[0, ptm] x 1[0, q] — X, a3a = c.
Continuing thisway, we end with replacing a, b with equivaentitems a,b having é5a = ab.
Now, the fundamental cubical 2-category of X isdefined asthe quotient N, (X)/R. The funda

mental 2-category is obtained in the usual way, restricting double cells to those whose facesin direc-
tion 2 (for instance) aretrivia. We have thus afunctor

(4) 111, pTop — 2-Cat.

5.6. Other directed structures. In apreordered space, every loop is reversible (as aready remarked
in 1.1); therefore, this setting has no 'directed circle' or 'directed torus.

We briefly recall more complex directed structures, which allow for non-reversible loops. All of
them have a directed interval 1l with the structure considered above, so that all the previous
constructions can be easily extended. Also, all of them have areflection X — X extending the
preorder-reversion of pTop.

First, one could extend pTop by somelocal notion of ordering. The simplest way is perhaps to
consider spaces equipped with arelation < which is reflexive and locally transitive: every point has
some neighbourhood on which the relation is transitive [G2, 1.4] (similar, stronger properties have
been frequently used in the theory of concurrency). But arelevant internal drawback appears, which
makes this setting inadequate for directed homotopy and homology: mapping cones and suspension
arelacking. Indeed, alocally preordered space cannot have a 'point-like vortex' (where all neighbour-
hoods of a point contain some non-reversible loop), whence it cannot realise the cone of the directed
circle (asproved in detail in [G2, 4.6]).

5.7. Inequilogical spaces. Another setting for Directed Algebraic Topology comes from a directed
version of Dana Scott's equilogical spaces (see [Sc, BBS, BCRS, Ro, Rg]), which was introduced in
[G4].

An inequilogical space, or preordered equilogical space X = (X*, ~x) isapreordered
topological space X* endowed with an equivalence relation ~x (or ~); the preorder relation is
generally written as <x. Thequotient |[X|=X*#/~ isviewed as a preordered topological space (with
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the induced preorder and topology), or atopological space, or a set, as convenient.

A map f: X — Y 'isamapping f: |X|] — [Y| which admits some continuous preorder-
preserving lifting f: X#* — Y# Equivalently, amap is an equivalence class f = [f'] of maps f"
X —Y in pTop which respect the equivalence relations

(D) VX, XEX: X~xX = f(X)~yf(X),
under the associated pointwise equivaence relation
2 f~f if (YxeX: f(x) ~y " (x)).
Note that there are no mutual conditions among topology, preorder and equivalence relation.

This category will be denoted as pEqgl. The previous setting pTop embeds as afull subcategory
in pEgl, identifying apreordered space X withthepair (X, =x). Theforgetful functor

(3 |-l pEql — pTop, IX| = X#~x,

with values in preordered topological spaces (or spaces, or sets, when convenient) has already been
defined, implicitly; it sendsthemap f: X — Y to the underlying mapping f: |X| — |Y| (also written
[f). A point x: {*} — X isan element of the underlying space |X]|.

Reversing the preorder relation gives the reflected, or opposite, inequilogical space X°P. This
category has all limits and colimits, and is Cartesian closed (like the one of equilogical spaces).
Directed homotopy is defined by the standard directed interval t1. Various models for the directed
circle are considered in [G4]; the simplest is perhaps (1R, =z), i.e. the quotient in pEql of the
directed real line modulo the action of the group of integers.

5.8. Spaces with distinguished paths. An even more general setting has been studied in [G2].

A d-space X = (X, dX) isatopological space equipped with aset dX of (continuous) maps a
| — X; these maps, called directed paths or d-paths, must contain all constant paths and be closed
under concatenation and (weakly) increasing reparametrisation.

A d-map f: X — Y (or map of d-spaces) is a continuous mapping between d-spaces which
preservesthe directed paths: if a€ dX, then facdy.

The category of d-spacesiswritten as dTop. It hasall limits and colimits, constructed asin Top
and equipped with theinitial or final d-structure for the structural maps; for instance apath | — IIX;
isdirected if and only if al its components | — X; are so. The forgetful functor U: dTop — Top
preserves thus al limits and colimits; a topological space is generally viewed as a d-space by its
natural structure, where al (continuous) paths are directed (viatheright adjoint to U).

Reversing d-paths, by theinvolution r(t) = 1 —t, yieldsthe reflected, or opposite, d-space RX =
X%, where a€ d(X°) if and only if &% =ar € dX.

Also here, dTop hasall limitsand colimits (constructed asin Top and equipped with the initial
or final d-structure for the structural maps). The standard d-interval ¢1 = 1[0, 1] has directed paths
given by the (weakly) increasing maps | — |. The standard directed circle 1St = 11/91 hasthe
obvious d-structure, where path have to follow a precise orientation (but note that the directed structure
1Sx1St on the torus has nothing to do with orientation).
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5.9. Geometrical aspects of the congruence. Defining higher fundamental categories 1I1,(X) with
n>2 iseven more complicated. In [G3], we considered that the problem might be solved by dividing
Moore parallelepipeds modulo delays in each variable. However, this is not consistent with
concatenations.

For instance, consider two cubes a, b € C, with a common degenerate face d7a = d;b = e1(x)
(represented below as a thick segment). Then, their concatenation ¢ =a=*1 b is Ry-equivalent to the
pasting c' = (a*, d) *; (b'*» b), aso represented below, where a and b' are constant in direction 2

Q

1 . 2
a | I
1

| |
D X — X
| |

(on

Now, a =, (a*,d) and b =5 (b'*, b), but ¢ and c' are not equivalent modulo delays, in
general. Note also that such a modification of ¢ into ¢', by asort of 'generalised delay', requires a
constraint on the common face d7a = d;b (being degenerate). Thus, a global description of R, (as
‘attempted’ in [G3]) should be very complicated.

6. Modelling a fundamental 2-category

We study the fundamental 2-category of the 'hollow cube’ X C 1[0, 1]3 (1.5.1), starting from a
future 2-equivalent model. The canonical basis of the vector space R3 iswritten e; = (1, 0, 0), etc.

6.1. Bi-affine maps. We shall need to consider biaffine maps «: 12 — R", i.e. mappings which are
affine in both variables (on the standard square). Such a map gives afour-tuple of points, the images of
the four vertices of the standard square, which will be called the vertices of the map

D pj = ofi.]) (i,) {0, 1>

The correspondence is bijective: given an arbitrary four-tuple (pj) of pointsin R", the biaffine
map is reconstructed by the following formula

(2) a(ty, tp) = (L-t)(1—1t2) poo + t1(1 —1t2) p1o + (1 —ty)ta po1 + tito p1s.

Moreover, we get amap o: 112 — tR" (preserving the canonical orders) if and only if, in R™

(3) Poo = P10 = Pa1, Poo = Po1 = Pi1,
(if and only it the mapping p: {0, 1}2 — R" is order-preserving).

6.2. Studying the singularity. Now, the singularity in the 'hollow cube' 1.5.1 is made evident by the
existence of two different cells «, B: a — b: pg — qo (on the'internal boundary'), for suitable paths
a b, from pp=(1/3,1/3,1/3) to qp= (23, 2/3, 2/3).

Let us construct an example. The images of the cdlls «, g, in the picture below, cover the faces of
the cubic hole: its upper-left and its lower-right half, respectively; these parts of the boundary are
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separated by the paths a, b (and the vectors g form the canonical basisof R3)

02 %
e P = po+e&l3,
b2 a'
p L q 3
i | ' 1 \ ) g = do—&/3,
) s° J/a
Pt : a = dxd',
P\ T/ q_S\\
b \\ b = b*b
Po P,

More precisaly, the 2-cells o, p: @ — b: pg — Qg can be obtained from the following double cells
a, B (b S. a') (using connections, cf. 5.1)

P1 b % % Py b % %
I___ ______ I I . ]
I I I I
I I I I
I I I I
l l l l
P % Py %
a, 93
2 b ' b' a
P q P q
o L o L
I I I I
I I I I
o L o o . B
Po p @ a9 Po p @ G

Thecell o' is piecewise biaffine, made up of the pasting of six biaffine maps 112 — X, each of
them determined by its four vertices in X (as specified in the left diagram); similarly for p'.
Moreover, the mappings o', ' are constant on the dotted lines, while the thick lines correspond to the
paths a, b. (One could add connections to explicitly describe o and g, but thiswould complicate the
picture rather than making it clearer.)

Let us rename the paths a, b as &, b; (they go through g; and p;) andthecellsas ajo
(through ) and a1z (through ggz). Permuting coordinates, we get two other similar pairs of cells
(each linking a pair of paths)

() aijra — biipo — do (,j=1,23 i=])).

Actualy, we shall need adlightly more general construct, where we replace gp with any qg = qo.
Thus a3, azp: @ — bz go from pp to qg
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%
a, |
T & = aé*a'é
(4) p : q
: | ' bs = by*bj
0 I R 3
1 7N
, N 1
A N \L 2
Po P,

6.3. The future model. We define now a sub-2-category C* of C, = 1IT15(X) which will be proved
to be future 2-equivalent to C, (and corresponds to the future model F of the 'hollow squar€e, in
1.4.1).

C* has 8 objects, forming aset V*: the seven vertices of the cubic hole different from qg =
(2/3,2/3,2/3), plus qp, the maximum of X

(D po = (1/3,1/3,1/3), Pi = po+el3,
g = go—e/3, g = (1,1, 1) (i=1,273).
After identities, it has the following twelve affine paths (determined by their vertices)
@ &:po— ai &:d — do,
bi: po — pi, bi: pi — ao (=123,
and their six composites, piecewise affine (more precisaly, their equivalence classes modulo delays, cf.
5.5)

(3) a = a=*a po— o bi = bj* bj:po — g

Findly, C* islocdly full in C,, which meansthat it has twelve non-trivial cells, precisely the six
ajj analytically defined in 6.2 and six other cells vj; determined by their boundary

(4) aij:a — biipo — 0,
vij- & — bjipo — o (i,j=1,23; i=])).

6.4. Theretraction. Let us consider a partition of the space X into 8 zones: the points which are
below precisely onevertex in V*

(1) Po = ipo, Pi = Ipi\{Po,
Q1 = a1\ (P2 U Ip3), Q2 =.., Qs = ..,
Q = X\ (101U 102 U 1 Ga).
Now, the 2-functor p: C, — C* isdefined asfollows. It sends each point x € X to
2 p(x) = min{veV* | x=V},

Let a x' — x". Thenthereisaunique path p(a): p(x’) — p(x") in C*, excepting the case when
p(X) =po and p(x") =qy; inthiscase p(a) isdefined to be:
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Q) a
bi

axa, if a whenleaving P, enters Q;,

bi* b7, if a whenleaving Py, enters P.

Let a:a— b:x' — Xx". Then, thereisauniquecell p(o): p(& — p(b) in C*, unless p(a) = g
and p(b) =b; (withthesameindex i); in thiscase, there are two such cells, and we define p(e) as

(4) aij: g — by, if o meets Q (j =i).

6.5. Thefuture equivalence. Theinclusion f: C* — C, forms, with p, afuture 2-retract
@Q :.Ct=Cyp pf = 1c+, . 1C2 — fp,

We define the lax natural transformation n. For x € X, let nx: x — p(x) be the affine path with
these endpoints (contained in the down-set |p(x)); for a x' — x", let na nx".a — panx' bethe2-
cell associated to the biaffine double cell fqa (asintheleft diagram below)

a nx

X — X' X — pPX
) | ha | w| o |1
px' —— px° pX —— PX

pa 1

Plainly, pn = 1, and nf = 1 finally, the coherence condition 3.3.2 (n*n =1,) issatisfied,
since nmx (seetheright diagram above) is the lower connection on the path nx.

6.6. The past model. Symmetrically, we have a past 2-retract C- of C,, whose set of objects V—
consists of the seven vertices of the cubic hole different from po = (1/3, 1/3, 1/3), together with the
minimum pg

(1) po = (0,00, pi = po+el3
g = go—6/3, 0o = (2/3,2/3, 2/3) i=1273).

6.7. A global 2-model. Finally, the pf-2-presentation of C, by the future 2-retract C* and the past
2-retract C generates an injective 2-model E (4.3), on ten objects

(1) V =V uV" = {pq, pi, o do} (i=0,..,4).

7. Appendix: the calculus of lax natural transformations and modifications

We end with reviewing the various compositions of the notions recalled in Section 2. Again, we
always consider (strict) 2-functors between 2-categories.

7.1. Composing transformations. (a) Given two lax natural transformations ¢: f — g, v: g — h,
the (main) composition ye: f — h has components produced by the vertical composition of double
celsin Y, andistherefore gtrictly associative, with strict identities

(D) (we)x = yX.gX, (ve)a = ga®y ya,
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fa
fx — fX

o | <lga |
ox —— o
PX l "/lpa l Px'
hx —— hx'

ha

Itiseasy to seethat ¢: f — g isinvertible (for this composition) if and only if all its components
oX: fX — gx and ¢a ¢x'.fa — gagx areinvertiblein Y. Then, one definestheinverse y: g — f
letting X = (¢X)™1 and ya = yx'.(pa) Lyx.

(b) The whisker composition kgh: kfh — kgh (for h: X' — X, ki Y — Y') has the obvious
components, produced by evaluation

(2 (kgh)x = kehx, (kph)a = kgha (ax — x'in X",
kfha
kfhx —— kfhx'
kehx | < koha | kohx

kghx W kghx

We have thus a sesquicategory Lnt of 2-categories, 2-functors and lax natural transformations,
which is not a 2-category: the reduced interchange axiom (2.1) does not hold (see dso 7.3).

7.2. Composing modifications. (a) First, we have an obvious whisker compoasition of modifications
and 2-functors(for M: ¢ — ¢p:f — g X —= VY, h: X' = X and k:Y — Y

(1) kMh: kgh — kyh: kfh — kgh: X' — Y".

But, given the 2-categories X, Y, the important construct is the 2-category Lnt(X, Y) of 2-
functors X — Y, their lax natural transformations and modifications. Indeed, modifications have a
main composition

2 Mg —=vy:f=gX—=Y, Ny = &f—=0g X =Y,
NM: ¢ — &, (NM)X = NX.MX: pXx — yX — EX,

whichis dtrictly associative, with obviousidentities 1. (For thislaw, the modification M isinvertible
if and only if all its component cells Mx: gx — wx areinvertiblein Y, and then M—Y(x) = (Mx)™1)

(b) Moreover, we have an obvious whisker composition of modifications and lax natural transfor-
mations, where . f' — f and u:g — @'

(3 uMA pgh — pypi ' — gt X =Y,

(UMA)X = uX.MXAX: uX.oX.AX — uXpX.aX: f'X — g'x,
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X
AX e —— ux
fx —— fx IMx ox ——> gX
_—
PX

The reduced interchange axiom holds, as soon asit holdsin Y

) P
(@) f M g IR h Ry.oM = oM.Rg,
" o

sinceits verification on ageneral component depends on the same property in the latter 2-category:

2 pX

(5) X TMx X TR hx.
—_ —_
PX ox

7.3. Higher compositions. Coming back to Lnt, we already observed that this sesquicategory is not
a 2-category. But one can define a graded composition of lax natural transformations p*p, asa
modification. In fact, every object x istakentoanarrow ox: fx — gx of Y, andthentoacel p(¢pX)
of Z

regpX
f r rfx —— rgx
_— _—
(1) X 19 Y ip z prl PeX lpgx
e e
g s sfx ——— sgx
SpX
p*@: pg.rp — Sp.pf, (p*@)X = p(pX): pgX.roX — SpX.pfx: rfx — sgx.

To verify the axiom (mdf), takeamap a x — X' in X. Then:

rfa rfa
rfix — rfx —— rfx’' rfx —— rfx’ ——= rfx’
pfx l rpx l rea l rex’' pfx l pfa l pfx' l rex’'
2 sfx poX rgx. —— rgx' = sfx —— X' poxX rgx'
SpX l pgxl pga l pox' SpX l spa l Spx’ l pox'
SgX —— sgX — = SOX' SgX — > Sgx—— SgX'
sga sga

In fact, applying (Int.2) to the lax natural transformation p, the left and the right pasting give,
respectively
(3) reaey p(gagx), p(eX'.fa) ®y spa,
and these result coincide, by (Int.3), on p and thecell ga ¢Xx'.fa — gagX.

Then, in the following situation (with y: g — h and o: s — t), wehave
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Ve U
4 X — Y — Z
Ly 10
—hﬁ —tﬁ
np
rh
pfl ej P*@ pgl (—J l ph
®) -Sp> sy -sv> sh = (wo)*(op).
o l Jo*cp 00| oy | on
tg th
top ty

7.4. Higher compositions, I1. One can also define a higher whisker composition of lax natural
transformations and modifications.

(a) First, 9-M will be the following modification (whose general cell, shown in (2), iswell defined
because of (Int.3), appliedto & onthecel Mx)

f h
(1) X oMy Y 10z 9oM: 0.y — kg.0f,
T Tk
hox hox
hfx —— hgx hfx —— hgx
o | ogx | oox I ="tmx |
2 kfx —— Kkgx = hfx —— hgx
I iax || o] oy | vox
kfx —— kgx kfx —— kgx
kypx kyx

(b) Second, in the situation below, M-9 isdefined as follows (whose general cell, shownin (4), iswell
defined because of (mdf), appliedto M onthearrow 9z: hz — kz)

h f
©)) Z 9 X oMy Y Me9: gk.fo — gd.yh,
—_— E—
k g
fOz foz
fhz —— fhz —— fkz fhz —— fkz fkz
(4) whzl JMhz cphzl (—J lcpkz = whzl "Jﬂz ‘szl "/Mkz lcpkz
ghz —=— ghz —— gkz ghz —— gkz fkz

g9z g9z
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