Topologia Algebrica 1. Teorie d'omologia. Note.
M. Grandis

Laurea in Matematica, Genova 2003/04, I Semestre.
II Versione: 2009/10, II Semestre.

Homology Theories. Notes

1. Singular homology

1.1. The singular cubical set of a space

- Top: the category of topological spaces and continuous mappings (= maps).
- $\mathbf{I}=[0,1]$: the standard interval, with euclidean topology.
- Basic structure: two faces $\left(\delta^{0}, \delta^{1}\right)$ and a degeneracy (ε), linking it with the singleton $\mathbf{I}^{0}=\{*\}$
(1) $\delta^{\alpha}:\{*\} \rightleftarrows \mathbf{I}: \varepsilon$
$(\alpha=0,1)$,
$\delta^{0}(*)=0, \quad \quad \delta^{1}(*)=1, \quad \varepsilon(\mathrm{t})=*$.
- Faces and degeneracies of the standard cubes $\mathbf{I}^{\mathbf{n}}$ (for $\alpha=0,1 ; \mathrm{i}=1, \ldots, \mathrm{n}$)
(2) $\delta_{\mathrm{i}}^{\alpha}=\mathbf{I}^{\mathrm{i}-1} \times \delta^{\alpha} \times \mathbf{I}^{\mathrm{n}-\mathrm{i}}: \mathbf{I}^{\mathrm{n}-1} \rightarrow \mathbf{I}^{\mathrm{n}}$,

$$
\delta_{\mathrm{i}}^{\alpha}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}-1}\right)=\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{i}-1}, \alpha, \ldots, \mathrm{t}_{\mathrm{n}-1}\right),
$$

$$
\varepsilon_{\mathrm{i}}=\mathbf{I}^{\mathrm{i}-1} \times \varepsilon \times \mathbf{I}^{\mathrm{n}-\mathrm{i}}: \mathbf{I}^{\mathrm{n}} \rightarrow \mathbf{I}^{\mathrm{n}-1},
$$

$$
\varepsilon_{i}\left(t_{1}, \ldots, t_{n}\right)=\left(t_{1}, \ldots, \hat{\mathrm{t}}_{\mathrm{i}}, \ldots, \mathrm{t}_{\mathrm{n}}\right) .
$$

- They satisfy the co-cubical relations
(3) $\delta_{\mathrm{j}}^{\beta} \cdot \delta_{\mathrm{i}}^{\alpha}=\delta_{\mathrm{i}}^{\alpha} \cdot \delta_{\mathrm{j}-1}^{\beta}(\mathrm{i}<\mathrm{j}), \quad \quad \varepsilon_{\mathrm{i}} \cdot \varepsilon_{\mathrm{j}}=\varepsilon_{\mathrm{j}-1} \cdot \varepsilon_{\mathrm{i}}(\mathrm{i}<\mathrm{j})$,
$\varepsilon_{\mathrm{j}} \cdot \delta_{\mathrm{i}}^{\alpha}=\delta_{\mathrm{i}-1}^{\alpha} \cdot \varepsilon_{\mathrm{j}}(\mathrm{j}<\mathrm{i}), \quad$ or $\mathrm{id}(\mathrm{j}=\mathrm{i}), \quad$ or $\delta_{\mathrm{i}}^{\alpha} \cdot \varepsilon_{\mathrm{j}-1}(\mathrm{j}>\mathrm{i})$.
- This produces, for every topological space X , a cubical set $\square \mathrm{X}=\left(\left(\square_{\mathrm{n}} \mathrm{X}\right),\left(\partial_{\mathrm{i}}^{\alpha}\right),\left(\mathrm{e}_{\mathrm{i}}\right)\right)$
(4) $\square_{n} X=\operatorname{Top}\left(\mathbf{I}^{\mathrm{n}}, \mathrm{X}\right), \quad$ the set of singular n-cubes a: $\mathbf{I}^{\mathrm{n}} \rightarrow \mathrm{X}$ of the space X ,

$$
\begin{array}{ll}
\partial_{\mathrm{i}}^{\alpha}=\partial_{\mathrm{ni}}^{\alpha}: \square_{\mathrm{n}} \mathrm{X} \rightarrow \square_{\mathrm{n}-1} \mathrm{X}, & \partial_{\mathrm{i}}^{\alpha}(\mathrm{a})=\mathrm{a} . \delta_{\mathrm{i}}^{\alpha}: \mathbf{I}^{\mathrm{n}-1} \rightarrow \mathrm{X}, \\
\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{\mathrm{ni}}: \square_{\mathrm{n}-1} \mathrm{X} \rightarrow \square_{\mathrm{n}} \mathrm{X}, & \mathrm{e}_{\mathrm{i}}(\mathrm{a})=\mathrm{a} . \varepsilon_{\mathrm{i}}: \mathbf{I}^{\mathrm{n}} \rightarrow \mathrm{X},
\end{array} \quad(\alpha=0,1 ; \mathrm{i}=1, \ldots, \mathrm{n}) .
$$

- In general: a cubical set $K=\left(\left(K_{n}\right),\left(\partial_{i}^{\alpha}\right),\left(e_{i}\right)\right)$ is a sequence of sets $K_{n}(n \geq 0)$, together with mappings, called faces ($\partial_{\mathrm{i}}^{\alpha}$) and degeneracies (e_{i})
(5) $\partial_{\mathrm{i}}^{\alpha}=\partial_{\mathrm{ni}}^{\alpha}: \mathrm{K}_{\mathrm{n}} \rightarrow \mathrm{K}_{\mathrm{n}-1}$,
$\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{\mathrm{ni}}: \mathrm{K}_{\mathrm{n}-1} \rightarrow \mathrm{~K}_{\mathrm{n}}$

$$
(\alpha=0,1 ; i=1, \ldots, n) .
$$

satisfying the cubical relations
(6) $\partial_{\mathrm{i}}^{\alpha} \cdot \partial_{\mathrm{j}}^{\beta}=\partial_{\mathrm{j}-1}^{\beta} \cdot \partial_{\mathrm{i}}^{\alpha}(\mathrm{i}<\mathrm{j}), \quad \quad \mathrm{e}_{\mathrm{j}} \cdot \mathrm{e}_{\mathrm{i}}=\mathrm{e}_{\mathrm{i}} \cdot \mathrm{e}_{\mathrm{j}-1} \quad(\mathrm{i}<\mathrm{j})$,
$\partial_{\mathrm{i}}^{\alpha} \cdot \mathrm{e}_{\mathrm{j}}=\mathrm{e}_{\mathrm{j}} \cdot \partial_{\mathrm{i}-1}^{\alpha}(\mathrm{j}<\mathrm{i}), \quad$ or id $(\mathrm{j}=\mathrm{i}), \quad$ or $\mathrm{e}_{\mathrm{j}-1} \cdot \partial_{\mathrm{i}}^{\alpha}(\mathrm{j}>\mathrm{i})$.
Elements of K_{n} are called n-cubes; vertices and edges for $n=0$ or 1, respectively. Every n-cube $\mathrm{a} \in \mathrm{K}_{\mathrm{n}}$ has 2^{n} vertices: $\partial_{1}^{\alpha} \partial_{2}^{\beta} \partial_{3}^{\gamma}(\mathrm{a})$ for $\mathrm{n}=3$.

A morphism of cubical sets $f=\left(f_{n}\right): K \rightarrow L$ is a sequence of mappings $f_{n}: K_{n} \rightarrow L_{n}$ commuting with faces and degeneracies. Cubical sets and their morphisms form a category $\mathbf{C u b}$.

- The functor $\square: \mathbf{T o p} \rightarrow \mathbf{C u b}$ acts as follows on the map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$

1.2. The chain complex of a cubical set and the singular chain complex of a space

- Degenerate elements of a cubical set K : all elements of type $e_{i}(a)$
(1) $\quad \operatorname{Deg}_{\mathrm{n}} \mathrm{K}=\bigcup_{\mathrm{i}} \operatorname{Im}\left(\mathrm{e}_{\mathrm{i}}: \mathrm{K}_{\mathrm{n}-1} \rightarrow \mathrm{~K}_{\mathrm{n}}\right), \quad \quad \operatorname{Deg}_{0} \mathrm{~K}=\emptyset$.
- Because of the cubical relations, we have (for $i=1, \ldots, n$)
(2) $\mathrm{a} \in \operatorname{Deg}_{\mathrm{n}} \mathrm{K} \quad \Rightarrow \quad\left(\partial_{\mathrm{i}}^{\alpha} \mathrm{a} \in \operatorname{Deg}_{\mathrm{n}-1} \mathrm{~K}\right.$ or $\left.\partial_{\mathrm{i}}^{-} \mathrm{a}=\partial_{\mathrm{i}}^{+} \mathrm{a}\right), \quad \mathrm{e}_{\mathrm{i}}\left(\operatorname{Deg}_{\mathrm{n}-1} \mathrm{~K}\right) \subset \operatorname{Deg}_{\mathrm{n}} \mathrm{K}$.
- The cubical set K determines a (normalised) chain complex $\mathrm{C}_{*}(\mathrm{~K})$, i.e. a sequence of abelian groups and homomorphisms (called boundaries, or differentials)

$$
\begin{align*}
& \ldots \longrightarrow C_{n+1}(K) \xrightarrow{\partial_{n+1}} C_{n}(K) \xrightarrow{\partial_{n}} C_{n-1}(K) \longrightarrow C_{1}(K) \longrightarrow C_{0}(K) \tag{3}\\
& \partial_{n} \cdot \partial_{n+1}=0 \quad(n>0),
\end{align*}
$$

defined as follows:
(4) $\mathrm{C}_{\mathrm{n}}(\mathrm{K})=\left(\mathbf{Z} \mathrm{K}_{\mathrm{n}}\right) /\left(\mathbf{Z D e g}_{\mathrm{n}} \mathrm{K}\right)=\mathbf{Z} \overline{\mathrm{K}}_{\mathrm{n}}$

$$
\partial_{\mathrm{n}}: \mathrm{C}_{\mathrm{n}}(\mathrm{~K}) \rightarrow \mathrm{C}_{\mathrm{n}-1}(\mathrm{~K}), \quad \partial_{\mathrm{n}}(\hat{\mathrm{a}})=\Sigma_{\mathrm{i}, \alpha}(-1)^{\mathrm{i}+\alpha}\left(\partial_{\mathrm{i}}^{\alpha} \mathrm{a}\right)^{\wedge}
$$

$$
\begin{array}{r}
\left(\bar{K}_{\mathrm{n}}=\mathrm{K}_{\mathrm{n}} \backslash \operatorname{Deg}_{\mathrm{n}} \mathrm{~K}\right), \\
\left(\mathrm{a} \in \mathrm{~K}_{\mathrm{n}}\right),
\end{array}
$$

($\mathbf{Z S}$ is the free abelian group on the set $S ; \hat{a}$ is the class of the n-cube a up to degenerate cubes; but we will write the normalised class \hat{a} as a, identifying all degenerate cubes with 0 .)

Hint. To prove that $\partial_{n} \cdot \partial_{n+1}=0$ one uses the cubical relations for faces: $\partial_{i}^{\alpha} \cdot \partial_{j}^{\beta}=\partial_{j-1}^{\beta} \cdot \partial_{i}^{\alpha} \quad(i<j) . \square$

- In general: a chain complex $\mathrm{A}=\left(\left(\mathrm{A}_{\mathrm{n}}\right),\left(\partial_{\mathrm{n}}\right)\right)$ of abelian groups is a sequence as above, with $\partial_{\mathrm{n}} \cdot \partial_{\mathrm{n}+1}$ $=0 \quad(\mathrm{n}>0)$. A morphism $\varphi: \mathrm{A} \rightarrow \mathrm{B}$ of chain complexes is a sequence of homomorphisms $\varphi_{\mathrm{n}}: \mathrm{A}_{\mathrm{n}}$ $\rightarrow B_{n}$ commuting with differentials: $\partial_{n} \cdot \varphi_{n}=\varphi_{n-1} \cdot \partial_{n}(n>0)$. They form the category $C_{*} \mathbf{A b}$ of chain complexes of abelian groups.
- The functor $\mathrm{C}_{*}: \mathbf{C u b} \rightarrow \mathrm{C}_{*} \mathbf{A b}$ acts on the morphism $\mathrm{f}=\left(\mathrm{f}_{\mathrm{n}}\right): \mathrm{K} \rightarrow \mathrm{L}$ by linear extension
(5) $\mathrm{f}_{\#}=\mathrm{C}_{*}(\mathrm{f}): \mathrm{C}_{*}(\mathrm{~K}) \rightarrow \mathrm{C}_{*}(\mathrm{~L}), \quad \mathrm{f}_{\# \mathrm{n}}(\mathrm{a})=\mathrm{f}_{\mathrm{n}}(\mathrm{a})$.
- Composing with the functor $\square: \mathbf{T o p} \rightarrow \mathbf{C u b}$, we get the singular chain complex of a space, or complex of singular chains, written again C_{*}
(6) $\mathrm{C}_{*}: \operatorname{Top} \rightarrow \mathrm{C}_{*} \mathbf{A b}, \quad \mathrm{C}_{*}(\mathrm{X})=\mathrm{C}_{*}(\square \mathrm{X}), \quad \mathrm{f}_{\# \mathrm{n}}(\mathrm{a})=\mathrm{f} . \mathrm{a} \quad\left(\mathrm{a}: \mathbf{I}^{\mathrm{n}} \rightarrow \mathrm{X}\right)$.

1.3. Homology

- The homology functor of chain complexes: the group of n-cycles modulo the group of n-boundaries
(1) $\mathrm{H}_{\mathrm{n}}: \mathrm{C}_{*} \mathbf{A b} \rightarrow \mathbf{A b}$

$$
\mathrm{H}_{\mathrm{n}}(\mathrm{~A})=\operatorname{Ker}_{\mathrm{n}} / \operatorname{Im} \partial_{\mathrm{n}+1}, \quad \mathrm{H}_{\mathrm{n}}(\varphi)[\mathrm{z}]=\left[\varphi_{\mathrm{n}} \mathrm{z}\right]
$$

- Composing with the previous functors, we have the singular homology of a space
(2) Top $\xrightarrow{\square} \mathbf{C u b} \xrightarrow{\mathrm{C}_{*}} \mathrm{C}_{*} \mathbf{A b} \xrightarrow{\mathrm{H}_{\mathrm{n}}} \mathbf{A b}$

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{n}}: \mathbf{T o p} \rightarrow \mathbf{A b} \\
& \mathrm{H}_{\mathrm{n}}(\mathrm{f})=\mathrm{f}_{* \mathrm{n}},
\end{aligned}
$$

$$
\mathrm{H}_{\mathrm{n}}(\mathrm{X})=\mathrm{H}_{\mathrm{n}}\left(\mathrm{C}_{*}(\square \mathrm{X})\right) \quad(\mathrm{n} \geq 0)
$$

REMARKS. The category Cub has all limits and colimits and is cartesian closed.

- It is the presheaf category of functors $X: \mathbb{I}^{\mathrm{op}} \rightarrow$ Set, where \mathbb{I} is the subcategory of Set consisting of the elementary cubes 2^{n}, together with the maps $2^{\mathrm{m}} \rightarrow 2^{\mathrm{n}}$ which delete some coordinates and insert some 0 's and 1 's, without modifying the order of the remaining coordinates.

1.4. Elementary results

$-H_{n}(X) \cong \oplus_{i \in I} H_{n}\left(X_{i}\right)$, where $\left(X_{i}\right)_{i \in I}$ is the family of path-connected components of the space X.
$-\mathrm{H}_{\mathrm{n}}(\emptyset)=0 \quad(\mathrm{n} \geq 0)$,
$-\mathrm{H}_{0}(\{*\}) \cong \mathbf{Z}, \quad \mathrm{H}_{\mathrm{n}}(\{*\})=0 \quad(\mathrm{n}>0)$.

Proposition. If X is path-connected, non empty: $H_{0}(X) \cong \mathbf{Z}$, with $\varphi\left[\sum \lambda_{\mathrm{i}} \cdot \mathrm{X}_{\mathrm{i}}\right]=\Sigma \lambda_{\mathrm{i}}$.
Hint. Use the augmented chain complex $\ldots \rightarrow \mathrm{C}_{1}(\mathrm{X}) \rightarrow \mathrm{C}_{0}(\mathrm{X}) \rightarrow \mathbf{Z}$ where $\partial_{0}\left(\sum \lambda_{\mathrm{i}} \cdot \mathrm{x}_{\mathrm{i}}\right)=\sum \lambda_{\mathrm{i}} ;$ prove that ∂_{0} is surjective and $\operatorname{Ker}\left(\partial_{0}\right)=\operatorname{Im}\left(\partial_{1}\right)$. Then φ is the induced isomorphism.

1.5. Homotopy for topological spaces

- Two maps $f_{0}, f_{1}: X \rightarrow Y$ in Top are homotopic $\left(f_{0} \simeq f_{1}\right)$ if there is a map $F: \mathbf{I} \times X \rightarrow Y$ such that $F(\alpha, x)=f_{\alpha}(x)$, for all $x \in X \quad(\alpha=0,1)$. This relation is a congruence of categories.
- Two spaces X, Y are homotopy equivalent $(X \simeq Y)$ if there are maps $f: X \rightleftarrows Y: g$ with $g f \simeq$ $\mathrm{idX}, \mathrm{fg} \simeq \mathrm{idY}$.
- A space is said to be contractible if it is homotopy equivalent to $\{*\}$.
REMARKS. The quotient category HoTop $=\mathbf{T o p} / \simeq$ has, by definition, the same objects and morphisms [f]: $\mathrm{X} \rightarrow \mathrm{Y}$ consisting of homotopy classes of maps; it is called the homotopy category of spaces. Two spaces are homotopy equivalent if and only if they are isomorphic objects in HoTop.

1.6. Homotopy for chain complexes

- Two maps $\varphi, \psi: \mathrm{A} \rightarrow \mathrm{B}$ in $\mathrm{C}_{*} \mathbf{A} \mathbf{b}$ are homotopic $(\varphi \simeq \psi)$ if there is a sequence of homomorphisms $\Phi_{n}: A_{n} \rightarrow B_{n+1}(n \geq 0)$ such that $\partial_{n+1} \Phi_{n}+\Phi_{n-1} \partial_{n}=-\varphi_{n}+\psi_{n}$.
- This relation is a congruence of categories, in $\mathrm{C}_{*} \mathbf{A b}$.

Proposition [Homotopy Invariance of algebraic homology]. The functors $H_{n}: C_{*} \mathbf{A b} \rightarrow \mathbf{A b}$ are homotopy invariant: if $\varphi \simeq \psi: \mathrm{A} \rightarrow \mathrm{B}$ then $\mathrm{H}_{\mathrm{n}}(\varphi)=\mathrm{H}_{\mathrm{n}}(\psi): \mathrm{H}_{\mathrm{n}}(\mathrm{A}) \rightarrow \mathrm{H}_{\mathrm{n}}(\mathrm{B})$ (for all $\mathrm{n} \geq 0$).

1.7. Homotopy Invariance of singular homology

Theorem. The functors H_{n} : Top $\rightarrow \mathbf{A b}$ are homotopy invariant: if $\mathrm{f} \simeq \mathrm{g}: \mathrm{X} \rightarrow \mathrm{Y}$ then $\mathrm{H}_{\mathrm{n}}(\mathrm{f})=$ $\mathrm{H}_{\mathrm{n}}(\mathrm{g}): \mathrm{H}_{\mathrm{n}}(\mathrm{X}) \rightarrow \mathrm{H}_{\mathrm{n}}(\mathrm{Y})$ (for all $\mathrm{n} \geq 0$).

Hint. Given a homotopy $\mathrm{F}: \mathbf{I} \times \mathrm{X} \rightarrow \mathrm{Y}$ between $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{Y}$, one constructs a homotopy between the associated chain morphisms $\mathrm{C}_{*}(\mathrm{X}) \rightarrow \mathrm{C}_{*}(\mathrm{Y})$
(1) $\Phi_{\mathrm{n}}: \mathrm{C}_{\mathrm{n}}(\mathrm{X}) \rightarrow \mathrm{C}_{\mathrm{n}+1}(\mathrm{Y})$, $\Phi_{\mathrm{n}}(\mathrm{a})=\mathrm{F} .(\mathbf{I} \times \mathrm{a})$
(a: $\mathbf{I}^{\mathrm{n}} \rightarrow \mathrm{X}$),

$$
\partial_{\mathrm{n}+1} \Phi_{\mathrm{n}}+\Phi_{\mathrm{n}-1} \partial_{\mathrm{n}}=-\mathrm{C}_{\mathrm{n}}(\mathrm{f})+\mathrm{C}_{\mathrm{n}}(\mathrm{~g}) .
$$

Corollary. If the spaces X, Y are homotopy equivalent, then $H_{n}(X) \cong H_{n}(Y)$ (for all $n \geq 0$).
Corollary. If the space X is contractible, then $H_{n}(X) \cong H_{n}(\{*\})$ (for all $n \geq 0$) and X is pathconnected.

2. Computing singular homology

2.1. Exact sequences of abelian groups and chain complexes [*Homological Algebra*]

Definition. A sequence ... $A_{n+1} \longrightarrow \mathrm{f}_{n+1} \longrightarrow \stackrel{f_{n}}{A_{n-1}} \ldots$ in $\mathbf{A b}$ is exact at A_{n} if $\operatorname{Im}\left(f_{n+1}\right)=\operatorname{Ker}\left(f_{n}\right)$. It is exact if it is exact at every point. Examples:

- A chain complex A is exact at A_{n} if and only if $H_{n}(A)=0$;
- $0 \rightarrow \mathrm{~A} \rightarrow 0$ is exact in $\mathrm{A} \Leftrightarrow \mathrm{A}=0$.
- $0 \rightarrow A-f \rightarrow B \rightarrow 0$ is exact in $A \Leftrightarrow f$ is mono; in $B \Leftrightarrow f$ is epi; in A and $B \Leftrightarrow f$ is iso.
- $0 \rightarrow \mathrm{~A}-\mathrm{f} \rightarrow \mathrm{B}-\mathrm{g} \rightarrow \mathrm{C} \rightarrow 0 \quad$ is called a short exact sequence if it is exact:
(a) exact in A (f mono);
(b) exact in $B(\operatorname{Im}(\mathrm{f})=\operatorname{Ker}(\mathrm{g}))$;
(c) exact in C (g epi).
- In $\mathbf{C}_{*} \mathbf{A b}$ we have the same definitions. Kernels and images are defined componentwise:

Given $\varphi: \mathrm{A} \rightarrow \mathrm{B}$ in $\mathrm{C}_{*} \mathbf{A b}$:
(1) $\operatorname{Ker}(\varphi)=\left(\left(\operatorname{Ker}\left(\varphi_{\mathrm{n}}\right),\left(\partial_{\mathrm{n}}\right)\right), \quad \operatorname{Im}(\varphi)=\left(\left(\operatorname{Im}\left(\varphi_{\mathrm{n}}\right),\left(\partial_{\mathrm{n}}\right)\right)\right.\right.$,
where the differentials are the restriction of the differentials of A .

2.2. The homology sequence of a short exact sequence of chain complexes

[*Homological Algebra*]
Theorem. Given a short exact sequence of chain complexes
(1) $0 \rightarrow \mathrm{~A}-\mathrm{f} \rightarrow \mathrm{B}-\mathrm{g} \rightarrow \mathrm{C} \rightarrow 0$
there is an exact sequence of homology groups
(2) $\ldots \rightarrow H_{n}(A) \xrightarrow{f_{\varepsilon_{n}}} H_{n}(B) \xrightarrow{g_{*_{n}}} H_{n}(C) \xrightarrow{\Delta_{n}} H_{n-1}(A) \ldots \xrightarrow{\Delta_{1}} H_{0}(A) \xrightarrow{f_{*_{0}}} H_{0}(B) \xrightarrow{\mathrm{g}_{*_{0}}} H_{0}(C) \rightarrow 0$
where the connective homomorphism $\Delta_{n}: H_{n}(C) \rightarrow H_{n-1}(A)$ is defined as follows
(3) $\Delta_{\mathrm{n}}[\mathrm{c}]=[\mathrm{a}]$,
where $\mathrm{c} \in \mathrm{Z}_{\mathrm{n}}(\mathrm{C})$, $\mathrm{a} \in \mathrm{Z}_{\mathrm{n}-1}(\mathrm{~A})$ and $\exists \mathrm{b} \in \mathrm{C}_{\mathrm{n}}$ such that $\mathrm{g}_{\mathrm{n}}(\mathrm{b})=\mathrm{c}, \partial_{\mathrm{n}} \mathrm{b}=\mathrm{f}_{\mathrm{n}-1}(\mathrm{a})$.

The sequence (2) is natural for morphisms of the sequence (1): a translation ($\mathrm{u}, \mathrm{v}, \mathrm{w}$) of the sequence (1), by commutative squares, induces a translation ($\ldots, \mathrm{u}_{* \mathrm{n}}, \mathrm{v}_{* \mathrm{n}}, \mathrm{w}_{* \mathrm{n}}, \ldots$) of the sequence (2), by commutative squares.

Hint. Easy proof, by 'diagram chasing'.

2.3. Subdivision.

- This is one of the main results, for singular homology.
- Let X be a topological space and $\mathcal{U}=\left(U_{i}\right)$ a 'generalised open cover' of $X: X=U \operatorname{int}\left(U_{i}\right)$.
- $\mathrm{C}_{*}(\mathrm{X} ; \mathcal{U})$: denotes the subcomplex of $\mathrm{C}_{*}(\mathrm{X})$ of \mathcal{U}-small chains generated by the cubes $a: \mathbf{I}^{\mathrm{n}} \rightarrow \mathrm{X}$ whose image is contained in some U_{i}.

Subdivision Theorem. In these hypotheses, the inclusion $\mathrm{j}: \mathrm{C}_{*}(\mathrm{X} ; \mathcal{U}) \rightarrow \mathrm{C}_{*}(\mathrm{X})$ induces isomorphism in homology: $\mathrm{H}_{\mathrm{n}}(\mathrm{X} ; \mathcal{U}) \rightarrow \mathrm{H}_{\mathrm{n}}(\mathrm{X})$.

Hint. The idea is to subdivide cubes, replacing them by \mathcal{U}-small chains.
(A) We construct the subdivision operator, a natural morphism of chain complexes
(1) $\mathrm{Sd}: \mathrm{C}_{*}(\mathrm{X}) \rightarrow \mathrm{C}_{*}(\mathrm{X})$,
$\operatorname{Sd}_{\mathrm{n}}(\mathrm{a})=\Sigma_{\mathrm{v}} \mathrm{a} \cdot \mathrm{u}_{\mathrm{v}}$ $\left(\mathrm{v} \in\{0,1\}^{\mathrm{n}}\right)$,

$$
\begin{aligned}
& \mathbf{u}_{\mathrm{v}}: \mathbf{I}^{\mathrm{n}} \rightarrow \mathbf{I}^{\mathrm{n}} \\
& \partial_{\mathrm{n}} \cdot \mathrm{Sd}_{\mathrm{n}}=\mathrm{Sd}_{\mathrm{n}-1} \cdot \partial_{\mathrm{n}},
\end{aligned}
$$

$$
\mathrm{u}_{\mathrm{v}}(\mathrm{t})=(\mathrm{t}+\mathrm{v}) / 2
$$

which subdivides any n-cube into a chain of $2^{\mathrm{n}} \mathrm{n}$-cubes, indexed on the vertices $\mathrm{v} \in\{0,1\}^{\mathrm{n}}$ of \mathbf{I}^{n}
(2)

$\mathrm{u}_{(0,0)}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=\left(\mathrm{t}_{1} / 2, \mathrm{t}_{2} / 2\right)$,

$$
\mathrm{u}_{(0,1)}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=\left(\mathrm{t}_{1} / 2,\left(\mathrm{t}_{2}+1\right) / 2\right)
$$

(B) This morphism Sd is homotopic to the identity, by a chain homotopy $\varphi=\left(\varphi_{\mathrm{n}}\right)$
(3) $\varphi_{n}: C_{n}(X) \rightarrow C_{n+1}(X)$,

$$
\varphi_{\mathrm{n}}(\mathrm{a})=(-1)^{\mathrm{n}+1} \sum_{\mathrm{v}} \mathrm{a} \cdot \eta_{\mathrm{v}}
$$

$$
\mathrm{Sd}_{\mathrm{n}}-\mathrm{id}=\partial_{\mathrm{n}+1} \varphi_{\mathrm{n}}+\varphi_{\mathrm{n}-1} \partial_{\mathrm{n}}
$$

obtained by means of a suitable family of maps $\eta_{\mathrm{v}}: \mathbf{I}^{\mathrm{n}+1} \rightarrow \mathbf{I}^{\mathrm{n}}$ (cf. Massey [1980]). Note that:
(4) $\varphi_{n}\left(C_{n}(X ; \mathcal{U})\right) \subset C_{n+1}(X ; \mathcal{U})$.
(C) The induced homomorphism $\mathrm{j}_{\mathrm{n}}: \mathrm{H}_{\mathrm{n}}(\mathrm{X} ; \mathcal{U}) \rightarrow \mathrm{H}_{\mathrm{n}}(\mathrm{X})$ is surjective.

- For every cube $\mathrm{a}: \mathbf{I}^{\mathrm{n}} \rightarrow \mathrm{X}$, consider the following open cover of $\mathbf{I}^{\mathbf{n}}$
(5) $\quad \mathrm{V}_{\mathrm{i}}=\mathrm{a}^{-1}\left(\operatorname{int}\left(\mathrm{U}_{\mathrm{i}}\right)\right)$
- Applying the Lebesgue Lemma on open covers of compact metric spaces, there is some $k \in \mathbf{N}$ such that any 'subcube' K of \mathbf{I}^{n} with edge $2^{-\mathrm{k}}$ is contained in some $\mathrm{V}_{\mathrm{i}_{\mathrm{K}}}$, whence
(6) $\mathrm{a}(\mathrm{K}) \subset \mathrm{a}\left(\mathrm{V}_{\mathrm{i}_{\mathrm{K}}}\right) \subset \operatorname{int}\left(\mathrm{U}_{\mathrm{i}_{\mathrm{K}}}\right) \subset \mathrm{U}_{\mathrm{i}_{\mathrm{K}}}, \quad \quad \mathrm{Sd}^{\mathrm{k}}(\mathrm{a}) \in \mathrm{C}_{\mathrm{n}}(\mathrm{X} ; \mathcal{U})$.
- Take a cycle $z \in C_{n}(X)$. For every cube $a: I^{n} \rightarrow X$ which appears in z, we can proceed as above. There is thus some $k \in \mathbf{N}$ such that $z^{\prime}=\operatorname{Sd}^{k}(z) \in C_{n}(X ; \mathcal{U})$. The composed chain homotopy ψ : Sd^{k} $\simeq \mathrm{id}: \mathrm{C}_{*}(\mathrm{X}) \rightarrow \mathrm{C}_{*}(\mathrm{X})$ gives
(7) $\mathrm{z}-\mathrm{z}^{\prime}=\partial_{\mathrm{n}+1} \psi_{\mathrm{n}}(\mathrm{z})+\psi_{\mathrm{n}-1} \partial_{\mathrm{n}}(\mathrm{z})=\partial_{\mathrm{n}+1} \psi_{\mathrm{n}}(\mathrm{z})$
(in $\mathrm{C}_{\mathrm{n}}(\mathrm{X})$),

$$
[\mathrm{z}]=\mathrm{j}_{\mathrm{n}}\left[\mathrm{z}^{\prime}\right], \quad\left[\mathrm{z}^{\prime}\right] \in \mathrm{H}_{\mathrm{n}}(\mathrm{X} ; \mathcal{U})
$$

(D) The induced homomorphism $\mathrm{j}_{\mathrm{n}}: \mathrm{H}_{\mathrm{n}}(\mathrm{X} ; \mathcal{U}) \rightarrow \mathrm{H}_{\mathrm{n}}(\mathrm{X})$ is injective.

- Take a cycle $z \in C_{n}(X ; \mathcal{U})$) which annihilates in $H_{n}(X)$:
(8) $\mathrm{z}=\partial \mathrm{c}$, for some chain $\mathrm{c} \in \mathrm{C}_{\mathrm{n}+1}(\mathrm{X})$.
- As above: there is some $\mathrm{k} \in \mathbf{N}$ such that $\left.\mathrm{c}^{\prime}=\mathrm{Sd}^{\mathrm{k}}(\mathrm{c}) \in \mathrm{C}_{\mathrm{n}+1}(\mathrm{X} ; \mathcal{U})\right)$.
- The composed chain homotopy $\psi: \mathrm{Sd}^{\mathrm{k}} \simeq \mathrm{id}: \mathrm{C}_{*}(\mathrm{X}) \rightarrow \mathrm{C}_{*}(\mathrm{X})$ gives
(9) $\mathrm{c}-\mathrm{c}^{\prime}=\partial \psi(\mathrm{c})+\psi \partial(\mathrm{c})=\partial \psi(\mathrm{c})+\psi(\mathrm{z})$ (in $\mathrm{C}_{\mathrm{n}+1}(\mathrm{X})$),

$$
\mathrm{z}=\partial \mathrm{c}=\partial \mathrm{c}^{\prime}-\partial \psi(\mathrm{z}) \quad \text { is a boundary in } \mathrm{C}_{\mathrm{n}}(\mathrm{X} ; \mathcal{U})
$$

because φ takes $\mathrm{C}_{\mathrm{n}}(\mathrm{X} ; \mathcal{U})$ into $\mathrm{C}_{\mathrm{n}+1}(\mathrm{X} ; \mathcal{U})$, by (4), whence also its composite ψ does.

2.4. The exact sequence of Mayer-Vietoris

Theorem. Let X be a topological space, U and V subsets of X such that $X=\operatorname{int}(U) \cup \operatorname{int}(V)$ and $\mathrm{A}=\mathrm{U} \cap \mathrm{V}$. There is an exact sequence of singular homology groups

$$
\left.\begin{array}{rl}
(1) \quad \ldots & \rightarrow \mathrm{H}_{\mathrm{n}}(\mathrm{~A}) \xrightarrow{\mathrm{h}_{\mathrm{n}}} \mathrm{H}_{\mathrm{n}}(\mathrm{U}) \oplus \mathrm{H}_{\mathrm{n}}(\mathrm{~V}) \xrightarrow{\mathrm{k}_{\mathrm{n}}} \mathrm{H}_{\mathrm{n}}(\mathrm{X}) \xrightarrow{\Delta_{\mathrm{n}}} \mathrm{H}_{\mathrm{n}-1}(\mathrm{~A}) \ldots \\
& \ldots
\end{array}\right) \mathrm{H}_{0}(\mathrm{~A}) \longrightarrow \mathrm{H}_{0}(\mathrm{U}) \oplus \mathrm{H}_{0}(\mathrm{~V}) \longrightarrow \mathrm{H}_{0}(\mathrm{C}) \rightarrow \mathrm{A} \text {... }
$$

where (writing i: $\mathrm{A} \subset \mathrm{U}, \mathrm{j}: \mathrm{A} \subset \mathrm{V}$, u: $\mathrm{U} \subset \mathrm{X}, \mathrm{v}: \mathrm{V} \subset \mathrm{X}$ the inclusion mappings)

$$
\text { (2) } \begin{aligned}
\mathrm{h}_{\mathrm{n}} & =\left(\mathrm{i}_{* \mathrm{n}}, \mathrm{j}_{* \mathrm{n}}\right), \\
\mathrm{k}_{\mathrm{n}} & =\left[\mathrm{u}_{* \mathrm{n}},-\mathrm{v}_{* \mathrm{n}}\right]
\end{aligned}
$$

$\mathrm{h}_{\mathrm{n}}[\mathrm{z}]_{\mathrm{A}}=\left([\mathrm{z}]_{\mathrm{U}},[\mathrm{z}]_{\mathrm{V}}\right)$,
$\mathrm{k}_{\mathrm{n}}\left([\mathrm{z}]_{\mathrm{U}},[\mathrm{w}]_{\mathrm{V}}\right)=[\mathrm{z}]_{\mathrm{X}}-[\mathrm{w}]_{\mathrm{X}}=[\mathrm{z}-\mathrm{w}]_{\mathrm{X}}$,
$\Delta_{n}[z]=[\partial \mathrm{c}] \quad\left(\mathrm{z} \in \mathrm{Z}_{\mathrm{n}}(\mathrm{X}), \mathrm{z}=\mathrm{c}+\mathrm{c}^{\prime}, \mathrm{c} \in \mathrm{C}_{\mathrm{n}}(\mathrm{U}), \mathrm{c}^{\prime} \in \mathrm{C}_{\mathrm{n}}(\mathrm{V})\right)$.
The sequence is natural for continuous mappings $f: X \rightarrow X^{\prime}$, where $X^{\prime}=\operatorname{int}\left(U^{\prime}\right) \cup \operatorname{int}\left(V^{\prime}\right)$ and $\mathrm{f}(\mathrm{U}) \subset \mathrm{U}^{\prime}, \mathrm{f}(\mathrm{V}) \subset \mathrm{V}^{\prime}$.

Hint. The proof follows from two theorems:
(A) the Subdivision Theorem (2.3), applied to the 'generalised open cover' $\mathcal{U}=(\mathrm{U}, \mathrm{V})$ of X ;
(B) the homology sequence of a short exact sequence of chain complexes (2.2), applied to:
(3) $0 \longrightarrow C_{n}(A) \xrightarrow{h} C_{n}(U) \oplus C_{n}(V) \xrightarrow{k} C_{n}(X ; \mathcal{U}) \longrightarrow 0$

$$
\mathrm{h}_{\mathrm{n}}=\left(\mathrm{i}_{\# \mathrm{n}}, \mathrm{j}_{\# \mathrm{n}}\right), \quad \mathrm{k}_{\mathrm{n}}=\left[\mathrm{u}_{\# \mathrm{n}},-\mathrm{v}_{\# \mathrm{n}}\right]
$$

2.5. The homology of the spheres; other computations

Theorem A. For $n>0: \quad H_{k}\left(\mathbf{S}^{n}\right) \cong \mathbf{Z}(k=0, n) ; \quad H_{k}\left(\mathbf{S}^{\mathrm{n}}\right)=0$ (otherwise).

Hint. By induction. Apply Mayer-Vietoris to \mathbf{S}^{n}, with open subsets $\mathrm{U}=\mathbf{S}^{\mathrm{n}} \backslash\{\mathrm{S}\}, \mathrm{V}=\mathbf{S}^{\mathrm{n}} \backslash\{\mathrm{N}\}$ where: $\mathrm{N}=(0, \ldots, 0,1), \quad \mathrm{S}=(0, \ldots, 0,-1)$.

Theorem B. There is an isomorphism $\Delta_{\mathrm{n}}: \mathrm{H}_{\mathrm{n}}\left(\mathbf{S}^{\mathrm{n}}\right) \rightarrow \mathrm{H}_{\mathrm{n}-1}\left(\mathbf{S}^{\mathrm{n}-1}\right)(\mathrm{n} \geq 0)$
which is natural for maps $\mathrm{f}: \mathbf{S}^{\mathrm{n}} \rightarrow \mathbf{S}^{\mathrm{n}}$ such that: $\mathrm{f}\left(\mathbf{S}^{\mathrm{n}-1}\right) \subset \mathbf{S}^{\mathrm{n}-1}, \mathrm{f}(\mathrm{N})=\mathrm{N}, \mathrm{f}(\mathrm{S})=\mathrm{S}$.
Hint. Use the naturality of the M-V sequence on f, since: $f(U) \subset U, f(V) \subset V)$.
We have two commutative squares (where $A=U \cap V ; g, h$ are restrictions of $f ; i: S^{n-1} \subset A$)

- Other computations: using the Mayer-Vietoris sequence and homotopy invariance, one computes easily the homology of: the torus, the Klein bottle, the projective plane, etc. For some computations one should use the notion of split exact sequence (2.9).

2.6. The degree of an endomap of a sphere

Given a map f: $\mathbf{S}^{\mathrm{n}} \rightarrow \mathbf{S}^{\mathrm{n}}$, the associated endomorphism of $\mathrm{H}_{\mathrm{n}}\left(\mathbf{S}^{\mathrm{n}}\right) \cong \mathbf{Z}$ is the multiplication by a number $\operatorname{deg}(\mathrm{f}) \in \mathbf{Z}$
(1) $\mathrm{f}_{* \mathrm{n}}: \mathrm{H}_{\mathrm{n}}\left(\mathbf{S}^{\mathrm{n}}\right) \rightarrow \mathrm{H}_{\mathrm{n}}\left(\mathbf{S}^{\mathrm{n}}\right)$,

$$
[\mathrm{z}] \mapsto \operatorname{deg}(\mathrm{f}) \cdot[\mathrm{z}] .
$$

Properties:
$-\operatorname{deg}\left(i d \mathbf{S}^{\mathrm{n}}\right)=1$,

$$
\operatorname{deg}(\mathrm{gf})=\operatorname{deg}(\mathrm{g}) \cdot \operatorname{deg}(\mathrm{f})
$$

$-\mathrm{f} \simeq \mathrm{g} \Rightarrow \operatorname{deg}(\mathrm{f})=\operatorname{deg}(\mathrm{g})$,
$-\operatorname{deg}(\mathrm{T})=(-1)^{\mathrm{n}+1}$, where $\mathrm{T}: \mathbf{S}^{\mathrm{n}} \rightarrow \mathbf{S}^{\mathrm{n}}$ is the antipodal map $(\mathrm{T}(\mathrm{x})=-\mathrm{x})$,

- if $\mathrm{f}(\mathrm{x}) \neq \mathrm{Tg}(\mathrm{x}), \forall \mathrm{x} \in \mathrm{S}^{\mathrm{n}}$, then $\mathrm{f} \simeq \mathrm{g}$ and $\operatorname{deg}(\mathrm{f})=\operatorname{deg}(\mathrm{g})$.

2.7. Applications

(A) Theorem (The invariance of dimension). If \mathbf{R}^{m} and \mathbf{R}^{n} are homeomorphic, than $\mathrm{m}=\mathrm{n}$.

Hint. Use the Alexandroff compactification and H_{m}.
(B) Theorem (Retracts). The sphere \mathbf{S}^{n} is not a retract of $\mathbf{R}^{\mathrm{n}+1}$ or $\mathbf{B}^{\mathrm{n}+1}$.

Hint. Suppose, for a contradiction, that it is a retract and use H_{n}.
(C) Theorem (The Brouwer fixed-point theorem). Every map f: $\mathbf{B}^{\mathrm{n}} \rightarrow \mathbf{B}^{\mathrm{n}}$ has at least a fixed point.

Hint. Suppose, for a contradiction, that f has no fixed points; construct a retraction of $\mathbf{S}^{\mathrm{n}} \subset \mathbf{B}^{\mathrm{n}+1}$. \square
(D) Theorem (Vector fields on spheres). If $n>0$ is even, every tangent vector field on \mathbf{S}^{n} annihilates at least at a point.
Hint. Suppose that \mathbf{S}^{n} has a tangent vector field which never annihilates. Then, there is a map $f: \mathbf{S}^{\mathrm{n}}$ $\rightarrow \mathbf{S}^{\mathrm{n}}$ with $\mathrm{f}(\mathrm{x})$ orthogonal to x , everywhere. It follows that $\mathrm{f}(\mathrm{x}) \neq \pm \mathrm{x}$; by $2.6, \mathrm{f} \simeq \mathrm{id}: \mathbf{S}^{\mathrm{n}} \rightarrow \mathbf{S}^{\mathrm{n}}$
and $\mathrm{f} \simeq \mathrm{T}: \mathbf{S}^{\mathrm{n}} \rightarrow \mathbf{S}^{\mathrm{n}}$ (where $\mathrm{T}(\mathrm{x})=-\mathrm{x}$ is the antipodal map). Thus $\operatorname{deg}(\mathrm{T})=\operatorname{deg}(\mathrm{id})=1$; but we know that $\operatorname{deg}(\mathrm{T})=(-1)^{\mathrm{n}+1}$ (2.6), whence n must be odd.
(E) Remark. If $\mathrm{n}>0$ is odd, the following map
(1) f: $\mathbf{S}^{\mathrm{n}} \rightarrow \mathbf{S}^{\mathrm{n}}$,

$$
\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}+1}\right)=\left(-\mathrm{x}_{2}, \mathrm{x}_{1},-\mathrm{x}_{4}, \mathrm{x}_{3}, \ldots,-\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}\right)
$$

has $\mathrm{f}(\mathrm{x}) \perp \mathrm{x}$, everywhere. Therefore, there is a tangent vector field on \mathbf{S}^{n} which never annihilates.
(F) Theorem (Intermediate Value Theorem on the Cube). Let $f: \mathbf{I}^{\mathrm{n}} \rightarrow \mathbf{I}^{\mathrm{n}}$ be a continuous mapping which sends each ($\mathrm{n}-1$)-dimensional face into itself. Then f is surjective and sends each face (of any dimension) onto itself.

Hint. This statement is trivial for $\mathrm{n}=0$ (and amounts to the classical Intermediate Value Theorem for $n=1$). If the statement holds for $n-1 \geq 0$, it follows that f covers the boundary of \mathbf{I}^{n}. But f is homotopic to the identity; collapsing the boundary, it follows that f induces a map $\mathbf{S}^{\mathrm{n}} \rightarrow \mathbf{S}^{\mathrm{n}}$ that is still homotopic to the identity, whence surjective; finally the image of f also covers the interior of \mathbf{I}^{n}.
(G) Theorem (Intermediate Value Theorem on the Ball). Let $\mathrm{f}: \mathbf{B}^{\mathrm{n}} \rightarrow \mathbf{B}^{\mathrm{n}}$ be a continuous mapping which sends the boundary $\mathbf{S}^{\mathrm{n}-1}$ into itself. If the restriction $\mathrm{f}^{\prime}: \mathbf{S}^{\mathrm{n}-1} \rightarrow \mathbf{S}^{\mathrm{n}-1}$ is not homotopic to a constant map (or, equivalently, if its homological degree is non null), then f is surjective.
Hint. Suppose for a contradiction that f is not surjective, and use the fact that $\mathbf{S}^{\mathrm{n}-1}$ is a deformation retract of the complement of any internal point in \mathbf{B}^{n}.
2.8. Exercises (Paths and homology in degree 1)

Let $\mathrm{a}, \mathrm{b}: \mathbf{I} \rightarrow \mathrm{X}$ be two path in the topological space X . Then
(a) the path a is a cycle $\Leftrightarrow \mathrm{a}$ is a loop, i.e. $\mathrm{a}(0)=\mathrm{a}(1)\left(\partial_{1}^{0}(\mathrm{a})=\partial_{1}^{1}(\mathrm{a})\right)$;
(b) if a, b are homotopic with fixed endpoints, then $\mathrm{a}-\mathrm{b}$ is a boundary $\left(\mathrm{a}-\mathrm{b} \in \mathrm{B}_{1}(\mathrm{X})\right.$);
(c) if a, b are loops, homotopic as loops $\Rightarrow[\mathrm{a}]=[\mathrm{b}]$ in $\mathrm{H}_{1}(\mathrm{X})$,
(d) if a is a loop, homotopic as a loop to a constant loop $\Rightarrow[\mathrm{a}]=0$ in $\mathrm{H}_{1}(\mathrm{X})$,
(e) if the paths a, b are consecutive $(a(1)=b(0)) \Rightarrow a+b-a * b$ is a boundary,
(f) if \tilde{a} is the reversed path $(\tilde{a}(t)=a(1-t)) \Rightarrow a+\tilde{a}$ is a boundary.

2.9. Split exact sequences [*Homological Algebra*]

A short sequence (m, q) is said to split if the following equivalent conditions hold:

$$
\begin{equation*}
\mathrm{A} \underset{\mathrm{p}}{\stackrel{\mathrm{~m}}{\rightleftarrows}} \quad \mathrm{~B} \underset{\mathrm{n}}{\stackrel{\mathrm{q}}{\rightleftarrows}} \mathrm{C} \tag{1}
\end{equation*}
$$

(a) (m, q) is short exact and the monomorphism m is a section $(\exists \mathrm{p}: \mathrm{pm}=\mathrm{idA})$,
(b) (m, q) is short exact and the epimorphism q is a retraction ($\exists \mathrm{n}: \mathrm{qn}=\mathrm{idC}$),
(c) there exist two homomorphisms p, n such that: $\mathrm{pm}=\mathrm{idA}, \mathrm{qn}=\mathrm{idC}, \mathrm{mp}+\mathrm{nq}=\mathrm{idB}$.

- In this case, B is isomorphic to $\mathrm{A} \oplus \mathrm{C}$.
- If C is a free abelian group, the short exact sequence (1) necessarily splits.

3. Relative singular homology and homology theories

3.1. The Five Lemma [*Homological Algebra*]

Lemma. Given a commutative diagram of abelian groups (or R-modules), with exact rows

if $\mathrm{u}, \mathrm{v}, \mathrm{u}^{\prime}, \mathrm{v}^{\prime}$ are isomorphisms, also w is an isomorphism.
Hint. By 'diagram chasing'.

3.2. Pairs of spaces

- Top 2 : the category of pairs of topological spaces:
- a pair (X, A) is a space X with a subspace A (the pair is read as: X modulo A),
- a map $f:(X, A) \rightarrow(Y, B)$ is a map $f: X \rightarrow Y$ such that $f(A) \subset B$.
- Top is embedded in $\mathbf{T o p}_{2}$ identifying the space X with the pair (X, \varnothing).
- A homotopy $\mathrm{F}: \mathrm{f}_{0} \simeq \mathrm{f}_{1}:(\mathrm{X}, \mathrm{A}) \rightarrow(\mathrm{Y}, \mathrm{B})$ between maps of pairs is a map of pairs such that:
(1) $\mathrm{F}:(\mathbf{I} \times X, \mathbf{I} \times \mathrm{A}) \rightarrow(\mathrm{Y}, \mathrm{B}), \quad \mathrm{F}(\alpha, \mathrm{x})=\mathrm{f}_{\alpha}(\mathrm{x})$, for all $\mathrm{x} \in \mathrm{X} \quad(\alpha=0,1)$;
- this is equivalent to an ordinary homotopy $F: f_{0} \simeq f_{1}: X \rightarrow Y$ such that $F(I \times A) \subset B$.
- Terms of Top (objects, maps, homotopies, homology groups...) are called absolute;
- terms of $\mathbf{T o p}_{2}$ are called relative.
3.3. Relative Singular Homology (with integral coefficients)
- $\mathrm{C}_{*}: \mathbf{T o p}_{2} \rightarrow \mathrm{C}_{*} \mathbf{A b} \quad$ (the functor of relative chains),
- $\mathrm{C}_{*}(\mathrm{X}, \mathrm{A})=\mathrm{C}_{*}(\mathrm{X}) / \mathrm{C}_{*}(\mathrm{~A}) \quad$ (the complex of (relative) chains of the pair (X, A)),
$-\mathrm{f}_{\#:} \mathrm{C}_{*}(\mathrm{X}, \mathrm{A}) \rightarrow \mathrm{C}_{*}(\mathrm{Y}, \mathrm{B})$,
$\left.\mathrm{f}_{\ddagger}\left(\Sigma_{\mathrm{i}} \lambda_{\mathrm{i}} \cdot \overline{\mathrm{a}}_{\mathrm{i}}\right)=\Sigma_{\mathrm{i}} \lambda_{\mathrm{i}} \cdot \overline{(\mathrm{fa}} \mathrm{a}_{\mathrm{i}}\right) \quad(\mathrm{f}:(\mathrm{X}, \mathrm{A}) \rightarrow(\mathrm{Y}, \mathrm{B}))$.
- Note: a relative chain $\bar{c} \in C_{n}(X, A)$:
$-\mathrm{H}_{\mathrm{n}}: \mathbf{T o p}_{2} \rightarrow \mathbf{A b} \quad$ (relative singular homology),
- $\mathrm{H}_{\mathrm{n}}(\mathrm{A}, \mathrm{X})=\mathrm{H}_{\mathrm{n}}\left(\mathrm{C}_{*}(\mathrm{X}, \mathrm{A})\right)$,
$-\mathrm{f}_{* \mathrm{n}}: \mathrm{H}_{\mathrm{n}}(\mathrm{X}, \mathrm{A}) \rightarrow \mathrm{H}_{\mathrm{n}}(\mathrm{Y}, \mathrm{B}), \quad \mathrm{f}_{*}[\overline{\mathrm{c}}]=\left[\mathrm{f}_{\#}(\overline{\mathrm{c}})\right]$.
- Theorem. This functor is homotopy invariant.

Hint. Given a homotopy $\mathrm{F}: \mathrm{f} \simeq \mathrm{g}:(\mathrm{X}, \mathrm{A}) \rightarrow(\mathrm{Y}, \mathrm{B})$ between maps of pairs (3.2), the homotopy between the chain morphisms $f_{\#}, g_{\#:} \mathrm{C}_{*}(\mathrm{X}) \rightarrow \mathrm{C}_{*}(\mathrm{Y})$ constructed in 1.7 for the absolute case
(1) $\Phi_{n}: C_{n}(X) \rightarrow C_{n+1}(Y)$,
$\Phi_{\mathrm{n}}(\mathrm{a})=\mathrm{F} .(\mathbf{I} \times \mathrm{a})$
(a: $\mathbf{I}^{\mathrm{n}} \rightarrow \mathrm{X}$),
takes $C_{n}(A)$ into $C_{n+1}(B)$, and induces a homotopy $\Psi: f_{\#} \simeq g_{\#}: C_{*}(X, A) \rightarrow C_{*}(Y, B)$.
3.4. Theorem (The homology sequence of a pair)

For every pair of topological spaces (X, A), the following sequence is exact and natural
(1) $\ldots \rightarrow \mathrm{H}_{\mathrm{n}}(\mathrm{A}) \xrightarrow{\mathrm{u}_{* \mathrm{n}}} \mathrm{H}_{\mathrm{n}}(\mathrm{X}) \xrightarrow{\mathrm{v}_{* \mathrm{n}}} \mathrm{H}_{\mathrm{n}}(\mathrm{X}, \mathrm{A}) \xrightarrow{\Delta_{\mathrm{n}}} \mathrm{H}_{\mathrm{n}-1}(\mathrm{~A}) \ldots \rightarrow \mathrm{H}_{0}(\mathrm{X}) \rightarrow \mathrm{H}_{0}(\mathrm{X}, \mathrm{A}) \rightarrow 0$
where $\mathrm{u}: \mathrm{A} \subset \mathrm{X}$ is the inclusion, $\mathrm{v}:(\mathrm{X}, \varnothing) \rightarrow(\mathrm{X}, \mathrm{A})$ is defined by the identity of X , and the connective homomorphism Δ_{n} is
(2) $\Delta_{n}: H_{n}(X, A) \longrightarrow H_{n-1}(A)$,

$$
\Delta_{n}[\overline{\mathrm{c}}]=[\partial \mathrm{c}]
$$

$$
\left(\overline{\mathrm{c}} \in \mathrm{C}_{\mathrm{n}}(\mathrm{X}, \mathrm{~A})\right)
$$

Hint. By 2.2, the natural short exact sequence of chain complexes
(3) $0 \rightarrow \mathrm{C}_{*}(\mathrm{~A}) \longrightarrow \mathrm{C}_{*}(\mathrm{X}) \longrightarrow \mathrm{C}_{*}(\mathrm{X}, \mathrm{A}) \rightarrow 0$
yields the exact sequence (1), including its naturality and the formula (2).

3.5. Theorem (Excision)

If X is a topological space, $U \subset A \subset X$ and $\operatorname{cl}(U) \subset \operatorname{int}(A)$, then the inclusion mapping
(1) u: $(X \backslash U, A \backslash U) \rightarrow(X, A)$,
induces isomorphism in homology: $u_{* n}: H_{n}(X \backslash U, A \backslash U) \cong H_{n}(X, A)$.
Hint. By hypothesis, the family $\mathcal{U}=(\mathrm{X} \backslash \mathrm{U}, \mathrm{A})$ forms a 'generalised open cover' of X .

- By Subdivision (2.3), the inclusion $\mathrm{C}_{*}(\mathrm{X} ; \mathcal{U}) \rightarrow \mathrm{C}_{*}(\mathrm{X})$ induces an iso in homology.
- Applying the Five Lemma (3.1) to the homology sequences of the following commutative diagram with short exact rows
(2)

it follows that also the canonical morphism $C_{*}(X ; \mathcal{U}) / C_{*}(A) \rightarrow C_{*}(X, A)$ induces iso in homology.
- Finally, by a Noether isomorphism
(3) $\mathrm{C}_{*}(\mathrm{X} ; \mathcal{U}) / \mathrm{C}_{*}(\mathrm{~A})=\left(\mathrm{C}_{*}(\mathrm{X} \backslash \mathrm{U})+\mathrm{C}_{*}(\mathrm{~A})\right) / \mathrm{C}_{*}(\mathrm{~A}) \cong$

$$
\cong \mathrm{C}_{*}(\mathrm{X} \backslash \mathrm{U}) /\left(\mathrm{C}_{*}(\mathrm{X} \backslash \mathrm{U}) \cap \mathrm{C}_{*}(\mathrm{~A})\right)=\mathrm{C}_{*}(\mathrm{X} \backslash \mathrm{U}) /\left(\mathrm{C}_{*}(\mathrm{~A} \backslash \mathrm{U})=\mathrm{C}_{*}(\mathrm{X} \backslash \mathrm{U}, \mathrm{~A} \backslash \mathrm{U})\right.
$$

3.6. Definition of Homology Theories (The axioms of Eilenberg-Steenrod)

An (abstract) homology theory consists of the following data:
(a) for each pair of topological spaces (X, A), a sequence $H_{n}(X, A)$ of abelian groups,
(b) for each map $\mathrm{f}:(\mathrm{X}, \mathrm{A}) \rightarrow(\mathrm{Y}, \mathrm{B})$, a sequence $\mathrm{f}_{* \mathrm{n}}: \mathrm{H}_{\mathrm{n}}(\mathrm{X}, \mathrm{A}) \rightarrow \mathrm{H}_{\mathrm{n}}(\mathrm{Y}, \mathrm{B})$ of homomorphisms,
(b) for each pair (X, A), a sequence $\Delta_{n}: H_{n}(X, A) \rightarrow H_{n-1}(A, \emptyset)$ of homomorphisms,
so that the following axioms hold (writing $\mathrm{H}_{\mathrm{n}}(\mathrm{X})$ for $\mathrm{H}_{\mathrm{n}}(\mathrm{X}, \varnothing)$):

- Functoriality. The data produce a sequence of functors $\mathrm{H}_{\mathrm{n}}: \mathbf{T o p}_{2} \rightarrow \mathbf{A b}$;
- in other words: $(\mathrm{id}(\mathrm{X}, \mathrm{A}))_{* \mathrm{n}}=\mathrm{idH}_{\mathrm{n}}(\mathrm{X}, \mathrm{A})$ and $(\mathrm{gf})_{* \mathrm{n}}=\mathrm{g}_{* \mathrm{n}} \circ \mathrm{f}_{* \mathrm{n}}$ for f, g composable $)$.
- Naturality. For $\mathrm{f}:(\mathrm{X}, \mathrm{A}) \rightarrow(\mathrm{Y}, \mathrm{B})$, the following diagram commutes
(1)
 $\left(f^{\prime}: A \rightarrow B\right.$ is the restriction of $\left.f\right)$.
- Exactness. For every pair (X, A), the following sequence is exact (u, v as in 3.4)
(2) $\ldots \rightarrow H_{n}(A) \xrightarrow{u_{* n}} H_{n}(X) \xrightarrow{v_{* n}} H_{n}(X, A) \xrightarrow{\Delta_{n}} H_{n-1}(A) \ldots$
- Homotopy Invariance. If $\mathrm{f}, \mathrm{g}:(\mathrm{X}, \mathrm{A}) \rightarrow(\mathrm{Y}, \mathrm{B})$ are homotopic, then
(3) $\mathrm{f}_{* \mathrm{n}}=\mathrm{g}_{* \mathrm{n}}: \mathrm{H}_{\mathrm{n}}(\mathrm{X}, \mathrm{A}) \rightarrow \mathrm{H}_{\mathrm{n}}(\mathrm{Y}, \mathrm{B}) \quad(\mathrm{n} \geq 0)$.
- Excision. If $\mathrm{U} \subset \mathrm{A} \subset \mathrm{X}$ and $\mathrm{cl}(\mathrm{U}) \subset \operatorname{int}(\mathrm{A})$, then the inclusion mapping $(\mathrm{X} \backslash \mathrm{U}, \mathrm{A} \backslash \mathrm{U}) \rightarrow(\mathrm{X}, \mathrm{A})$ induces isomorphism in homology, in every degree.
- Dimension. $\mathrm{H}_{\mathrm{n}}(\{*\})=0$ for all $\mathrm{n} \neq 0$.

3.7. Comments

- The abelian group $\mathrm{H}_{0}(\{*\})$ is called: the group of coefficients of the theory.
- We have already proved (in 3.3-3.5) that Relative Singular Homology is a homology theory (in the previous sense) with integral coefficients: its group of coefficients is \mathbf{Z} (up to isomorphism).
- For every abelian group G, we shall construct a singular homology theory with coefficients in G . This requires the use of tensor products (of abelian groups).

4. Tensor products [*Homological Algebra, Multilinear Algebra*]

4.1. Modules on a commutative ring

- R will always be a commutative ring with unit. R-modules and R -homomorphisms form the category

R-Mod. In particular, R is a module on itself.

- Every abelian group has precisely one structure of \mathbf{Z}-module; the two notions will be identified.
- If R is a field, modules are called vector spaces; this case will be considered at the end (4.8).
- Exact sequences have an obvious extension to R-modules.
- The free R-module on a set I can be constructed as a direct sum of copies of R
(1) $\mathrm{F}(\mathrm{I})=\mathrm{R}^{(\mathrm{I})}=\oplus_{\mathrm{i} \in \mathrm{I}} \mathrm{R}$,
with the obvious canonical basis: $\mathrm{e}_{\mathrm{i}}=\left(\delta_{\mathrm{ij}}\right)_{\mathrm{j} \in \mathrm{I}} \quad(\mathrm{i} \in \mathrm{I})$, often identified with I .
- Exercise. An abelian group A has a structure of vector space on \mathbf{Q} (rationals) if and only if it is torsion-free and divisible $(\forall \mathrm{a} \in \mathrm{A}, \forall \mathrm{n} \in \mathbf{Z}: \mathrm{n} \neq 0 \Rightarrow \exists!\mathrm{x} \in \mathrm{A}: \mathrm{nx}=\mathrm{a})$. Then, the structure is unique.
- Exercise. A structure of $\mathbf{Z}[\mathrm{X}]$-module on the abelian group A amounts to a homomorphism $\mathrm{A} \rightarrow$ A.

4.2. Tensor product of modules

- If A, B are R-modules, a mapping $\varphi: \mathrm{A} \times \mathrm{B} \rightarrow \mathrm{C}$ is said to be bilinear (on R) if:
(1) $\varphi\left(\mathrm{a}+\mathrm{a}^{\prime}, \mathrm{b}\right)=\varphi(\mathrm{a}, \mathrm{b})+\varphi\left(\mathrm{a}^{\prime}, \mathrm{b}\right)$,
(2) $\varphi(\lambda \cdot a, b)=\lambda \cdot \varphi(a, b)$,
(3) $\varphi\left(\mathrm{a}, \mathrm{b}+\mathrm{b}^{\prime}\right)=\varphi(\mathrm{a}, \mathrm{b})+\varphi\left(\mathrm{a}, \mathrm{b}^{\prime}\right)$,
(4) $\varphi(\mathrm{a}, \lambda . \mathrm{b})=\lambda \cdot \varphi(\mathrm{a}, \mathrm{b})$,
for all $a, a^{\prime} \in A ; b, b^{\prime} \in B ; \lambda \in R$ (this will be understood, below). For $R=\mathbf{Z}$, the properties (2) and (4) are a consequence of (1) and (3).
- The tensor product of A, B is an R-module $A \otimes_{R} B$ equipped with a bilinear mapping φ_{0}

such that, for every bilinear mapping $\varphi: \mathrm{A} \times \mathrm{B} \rightarrow \mathrm{C}$ there is one and only one R -homomorphism h such that $\varphi=\mathrm{h} \varphi_{0}$.
- It is easy to show that the solution is determined up to isomorphism (a unique isomorphism coherent with the structural bilinear mappings).
- A solution exists: $A \otimes_{R} B=F(A \times B) / H(A, B)$, with $\varphi_{0}(a, b)=[(a, b)]$, where:
- $\mathrm{F}(\mathrm{A} \times \mathrm{B})$ is the free R -module generated by the set $\mathrm{A} \times \mathrm{B}$ (formal linear combinations of its elements)
$-\mathrm{H}(\mathrm{A}, \mathrm{B})$ is the sub-module of $\mathrm{F}(\mathrm{A} \times \mathrm{B})$ generated by all the elements of the following types:
(1') $\left(a+a^{\prime}, b\right)-(a, b)-\left(a^{\prime}, b\right)$,
(2') $(\lambda . a, b)-\lambda .(a, b)$,
(3') $\left(\mathrm{a}, \mathrm{b}+\mathrm{b}^{\prime}\right)-(\mathrm{a}, \mathrm{b})-\varphi\left(\mathrm{a}, \mathrm{b}^{\prime}\right)$,
(4) $(a, \lambda . b)-\lambda .(a, b)$.
- We write $a \otimes b=\varphi_{0}(a, b)=[(a, b)] \in A \otimes_{R} B \quad($ for $a \in A, b \in B)$.
- Then $\left(a+a^{\prime}\right) \otimes b=a \otimes b+a^{\prime} \otimes b,(\lambda \cdot a) \otimes b=\lambda .(a \otimes b)$, etc.
- Every element of $\mathrm{A} \otimes_{\mathrm{R}} \mathrm{B}$ can be written as a (finite) sum $\Sigma_{\mathrm{i}} \mathrm{a}_{\mathrm{i}} \otimes \mathrm{b}_{\mathrm{i}}$, NOT uniquely.

4.3. Tensor product of homomorphisms

- The tensor product is a functor in two variables (covariant in both): given two R-homomorphisms f : $\mathrm{A} \rightarrow \mathrm{A}^{\prime}, \mathrm{g}: \mathrm{B} \rightarrow \mathrm{B}^{\prime}$ there is a homomorphism

$$
\text { (1) } \mathrm{f} \otimes \mathrm{~g}: \mathrm{A} \otimes_{\mathrm{R}} \mathrm{~B} \rightarrow \mathrm{~A}^{\prime} \otimes_{\mathrm{R}} \mathrm{~B}^{\prime}, \quad(\mathrm{f} \otimes \mathrm{~g})(\mathrm{a} \otimes \mathrm{~b})=\mathrm{f}(\mathrm{a}) \otimes \mathrm{g}(\mathrm{~b})
$$

and this construction preserves identities and composition:
(2) $\quad \mathrm{idA} \otimes \operatorname{idB}=\operatorname{id}\left(\mathrm{A} \otimes_{\mathrm{R}} \mathrm{B}\right)$,

$$
\left(f^{\prime} \circ f\right) \otimes\left(g^{\prime} \circ g\right)=\left(f^{\prime} \otimes g^{\prime}\right) \circ(f \otimes g)
$$

This functor is bilinear (additive and homogeneous in each variable):
(3) $\left(\mathrm{f}+\mathrm{f}^{\prime}\right) \otimes \mathrm{g}=\mathrm{f} \otimes \mathrm{g}+\mathrm{f}^{\prime} \otimes \mathrm{g}, \quad(\lambda . \mathrm{f}) \otimes \mathrm{g}=\lambda .(\mathrm{f} \otimes \mathrm{g})$,

$$
\mathrm{f} \otimes\left(\mathrm{~g}+\mathrm{g}^{\prime}\right)=\mathrm{f} \otimes \mathrm{~g}+\mathrm{f} \otimes \mathrm{~g}^{\prime}, \quad \mathrm{f} \otimes(\lambda . \mathrm{g})=\lambda .(\mathrm{f} \otimes \mathrm{~g})
$$

4.4. Exercises (for abelian groups: $\mathrm{R}=\mathbf{Z}$)

- If m, n are coprime, then $\mathbf{Z}_{\mathrm{m}} \otimes_{\mathbf{Z}} \mathbf{Z}_{\mathrm{n}}=0$;
- more generally, if $\mathrm{mA}=0$ and every element of B can be divided by m , then $\mathrm{A} \otimes_{\mathbf{Z}} \mathrm{B}=0$.
- $\mathbf{Z}_{\mathrm{m}} \otimes_{\mathbf{Z}} \mathbf{Q}=0$;
- more generally, if T is a torsion abelian group and D is divisible, then $\mathrm{T} \otimes_{\mathbf{Z}} \mathrm{D}=0$.
- Prove that $\mathbf{A} \otimes_{\mathbf{Z}} \mathbf{Q}$ is a vector space on \mathbf{Q}. The rank of an abelian group A is defined as
(1) $\operatorname{rk}(\mathrm{A})=\operatorname{dim}_{\mathbf{Q}}\left(\mathrm{A} \otimes_{\mathbf{Z}} \mathbf{Q}\right)$.
- In particular, a finitely generated abelian group A is isomorphic to a direct sum $t A \oplus \mathbf{Z}^{n}$ (where $t A$ is the torsion part of A), and $\operatorname{rk}(A)=n$ (use 4.5D).

4.5. Basic properties

R is a fixed commutative unital ring. We write $A \otimes B$ for $A \otimes_{R} B$.
(A) The tensor product is commutative. More precisely, there is a canonical isomorphism:
(1) $\mathrm{A} \otimes \mathrm{B} \rightarrow \mathrm{B} \otimes \mathrm{A}, \quad \mathrm{a} \otimes \mathrm{b} \mapsto \mathrm{b} \otimes \mathrm{a}$.
(B) The tensor product has a unit, the R-module R. Canonical isomorphism:
(2) $\mathrm{A} \otimes \mathrm{R} \rightarrow \mathrm{A}$,

$$
\mathrm{a} \otimes \lambda \mapsto \lambda . \mathrm{a}, \quad \mathrm{a} \mapsto \mathrm{a} \otimes 1_{\mathrm{R}}
$$

(C) The tensor product is associative. Canonical isomorphism:
(3) $(\mathrm{A} \otimes \mathrm{B}) \otimes \mathrm{C} \rightarrow \mathrm{A} \otimes(\mathrm{B} \otimes \mathrm{C}), \quad(\mathrm{a} \otimes \mathrm{b}) \otimes \mathrm{c} \mapsto \mathrm{a} \otimes(\mathrm{b} \otimes \mathrm{c})$.
(D) The tensor product is distributive on direct sums. Canonical isomorphism:
(4) $\left(\oplus_{i \in I} A_{i}\right) \otimes B \rightarrow \oplus_{i \in I}\left(A_{i} \otimes B\right)$,

$$
\left(\mathrm{a}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{I}} \otimes \mathrm{~b} \mapsto\left(\mathrm{a}_{\mathrm{i}} \otimes \mathrm{~b}\right)_{\mathrm{i} \in \mathrm{I}} .
$$

(E) Corollary. There are canonical isomorphisms:
(5) $\quad \mathrm{R}^{(\mathrm{I})} \otimes \mathrm{B} \cong \mathrm{B}^{(\mathrm{I})}=\oplus_{\mathrm{i} \in \mathrm{I}} \mathrm{B}$,

$$
\mathrm{R}^{(\mathrm{I})} \otimes \mathrm{R}^{(\mathrm{J})} \cong \mathrm{R}^{(\mathrm{I} \times \mathrm{J})}
$$

$$
\begin{aligned}
& \mathrm{R}^{\mathrm{m}} \otimes \mathrm{~B} \cong \mathrm{~B}^{\mathrm{m}} \\
& \mathrm{R}^{\mathrm{m}} \otimes \mathrm{R}^{\mathrm{n}} \cong \mathrm{R}^{\mathrm{m} \cdot \mathrm{n}}
\end{aligned}
$$

(F) If A, B are R-free with bases $\left(a_{i}\right)_{i \in I},\left(b_{j}\right)_{j \in J}$, then $A \otimes B$ is free with basis $\left(a_{i} \otimes b_{j}\right)_{(i, j)} \in I \times J$.
4.6. Exact functors (between categories of modules)
(A) A functor F: R-Mod \rightarrow S-Mod is said to be left exact: if, given an exact sequence of type (1), also the resulting sequence (2) is exact
(1) $0 \rightarrow \mathrm{~A} \rightarrow \mathrm{~B} \rightarrow \mathrm{C}$
(2) $0 \rightarrow \mathrm{FA} \rightarrow \mathrm{FB} \rightarrow \mathrm{FC}$.

- Exercise. This is equivalent to saying that F preserves kernels (up to isomorphism).
(B) The functor F is right exact: if the same happens with the sequences:
(1') $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow 0$
(2') $\mathrm{FA} \rightarrow \mathrm{FB} \rightarrow \mathrm{FC} \rightarrow 0$.
- This is equivalent to saying that F preserves cokernels (up to isomorphism).
(C) The functor F is said to be exact: if it satisfies the following equivalent properties:
(a) F preserves exact sequences,
(b) F preserves short exact sequences,
(c) F preserves kernels and cokernels,
(d) F is left and right exact,
(e) F is left exact and preserves epimorphisms,
(e) F is right exact and preserves monom.
(D) The functor F is said to be additive: if $\mathrm{F}(\mathrm{f}+\mathrm{g})=\mathrm{F}(\mathrm{f})+\mathrm{F}(\mathrm{g})$, for all parallel homomorphisms
f, g (same domain and same codomain).
- Every additive functor preserves split exact sequences (by 2.9c).

4.7. Exactness properties of the tensor product

(A) For every module X , the functor $-\otimes_{\mathrm{R}} \mathrm{X}$: R-Mod \rightarrow R-Mod is right-exact: given an exact sequence of type (1), also the resulting sequence (2) is exact
(1) $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow 0$,
(2) $\mathrm{A} \otimes \mathrm{X} \rightarrow \mathrm{B} \otimes \mathrm{X} \rightarrow \mathrm{C} \otimes \mathrm{X} \rightarrow 0$.

- Exercise. For $\mathrm{R}=\mathbf{Z}$
(3) $\mathbf{Z}_{\mathrm{m}} \otimes_{\mathbf{Z}} \mathbf{Z}_{\mathrm{n}} \cong \mathbf{Z}_{\mathrm{d}}$, where $\mathrm{d}=$ g.c.d. (m, n).
- Hint: Apply (A) to the exact sequence $\mathbf{Z} \rightarrow \mathbf{Z} \rightarrow \mathbf{Z}_{\mathrm{m}} \rightarrow 0$ produced by $\mathrm{k} \mapsto$ m.k.
- Exercise. For $\mathbf{R}=\mathbf{Z}$: show that $-\otimes_{\mathbf{Z}} \mathbf{Z}_{\mathrm{n}}$ does not preserve monomorphisms.
(B) The R-module X is said to be flat if the functor $-\otimes_{\mathrm{R}} \mathrm{X}: \mathrm{R}-\mathrm{Mod} \rightarrow \mathrm{R}-\mathrm{Mod}$ is exact:, i.e. preserves all exact sequences. By 4.6 , this is equivalent to saying that $-\otimes_{R} X$ preserves monomorphisms.
- Every free module is flat. (One can prove that an abelian group is flat if and only if it is torsion-free.)
(C) For every module X , the functor $-\otimes_{\mathrm{R}} \mathrm{X}$: R-Mod \rightarrow R-Mod preserves all split exact sequences (because their initial monomorphism has a left inverse; or - also - because $-\otimes \mathrm{X}$ is additive).
(D) For $\mathrm{R}=\mathbf{Z}$ and every abelian group X , the functor $-\otimes \mathrm{X}: \mathbf{A b} \rightarrow \mathbf{A b}$ preserves all exact sequences of free abelian groups (because they can be subdivide into short exact sequences of free abelian groups, which split.)

4.8. Tensor products of vector spaces

Let us assume that the base ring is a (commutative) field K. K-modules are called vector spaces and have specific properties, essentially deriving from the fact that all vector spaces are free.

- In K-Mod, every monomorphism (resp. epimorphism) has a left (resp. right) inverse. All short exact sequences in K-Mod split. Every additive functor F: K-Mod \rightarrow S-Mod is exact (4.6D).
- Therefore, all vector spaces are flat: the functor $-\otimes_{\mathrm{K}} \mathrm{X}$ is always exact.
- There is a canonical homomorphism (the functor Hom will be studied in Ch. 6)
(1) i: $\mathrm{A} \otimes_{\mathrm{K}} \mathrm{B} \rightarrow \operatorname{Hom}_{\mathrm{K}}\left(\mathrm{A}^{*}, \mathrm{~B}\right)$,

$$
\mathrm{i}(\mathrm{a} \otimes \mathrm{~b})(\alpha)=\alpha(\mathrm{a}) \cdot \mathrm{b} \quad(\text { for } \alpha: \mathrm{A} \rightarrow \mathrm{~K}),
$$

where $A^{*}=\operatorname{Hom}_{K}(A, K)$ is the dual of A.

- Exercise: prove that, if A is finitely generated, then i is an isomorphism.
- Tensor product of vector spaces can be defined using bases (see 4.4 F). But then, to define $\mathrm{f} \otimes \mathrm{g}$: $\mathrm{A} \otimes \mathrm{B} \rightarrow \mathrm{A}^{\prime} \otimes \mathrm{B}^{\prime}$, one has to choose bases in A, B and prove that $\mathrm{f} \otimes \mathrm{g}$ is well defined.
- Tensor product of finitely generated vector spaces can be defined as $A \otimes_{K} B=\operatorname{Hom}_{K}\left(A^{*}, B\right)$. This can also be used for vector bundles.

5. Relative singular homology with coefficients in a group

G is an abelian group. Tensor products are on \mathbf{Z}.

5.1. Main definitions

- The functor $-\otimes \mathrm{G}: \mathbf{A b} \rightarrow \mathbf{A b}$ has an obvious extension to chain complexes
(1) $-\otimes \mathrm{G}: \mathrm{C}_{*} \mathbf{A b} \rightarrow \mathrm{C}_{*} \mathbf{A b}$,

$$
\begin{array}{lr}
\mathrm{A} \otimes \mathrm{G}=\left(\ldots \rightarrow \mathrm{A}_{\mathrm{n}} \otimes \mathrm{G} \rightarrow \mathrm{~A}_{\mathrm{n}-1} \otimes \mathrm{G} \rightarrow \ldots\right), & \partial_{\mathrm{n}}^{\prime}=\partial_{\mathrm{n}} \otimes \mathrm{G}, \\
(\mathrm{f} \otimes \mathrm{G})_{\mathrm{n}}=\mathrm{f}_{\mathrm{n}} \otimes \mathrm{G}: \mathrm{A}_{\mathrm{n}} \otimes \mathrm{G} \rightarrow \mathrm{~B}_{\mathrm{n}} \otimes \mathrm{G} & \left(\text { for } \mathrm{f}: A \rightarrow B \text { in } C_{*} A b\right) .
\end{array}
$$

- The singular chain complex of a space, with coefficients in G
(2) $\mathrm{C}_{*}(-; \mathrm{G}): \mathbf{T o p} \rightarrow \mathrm{C}_{*} \mathbf{A b}$,
$\mathrm{C}_{*}(\mathrm{X} ; \mathrm{G})=\mathrm{C}_{*}(\mathrm{X}) \otimes \mathrm{G}$,
$\mathrm{C}_{\mathrm{n}}(\mathrm{X} ; \mathrm{G})=\mathrm{C}_{\mathrm{n}}(\mathrm{X}) \otimes \mathrm{G} \cong \oplus_{\mathrm{a}} \mathrm{G}$ $\left(a \in \square_{n} X \backslash \operatorname{Deg}_{n} X\right)$,
$\mathrm{f}_{\# \mathrm{n}}\left(\Sigma_{\mathrm{i}} \lambda_{\mathrm{i}} \cdot \mathrm{a}_{\mathrm{i}}\right)=\Sigma_{\mathrm{i}} \lambda_{\mathrm{i}} .\left(\mathrm{fa}_{\mathrm{i}}\right) \quad\left(\lambda_{\mathrm{i}} \in \mathrm{G}, \mathrm{a}_{\mathrm{i}}: \mathbf{I}^{\mathrm{n}} \rightarrow \mathrm{X}\right)$,
where $\lambda_{\mathrm{i}} \cdot \mathrm{a}_{\mathrm{i}}=\left(\lambda_{\mathrm{a}}\right) \in \oplus_{\mathrm{a}} \mathrm{G}$, with: $\lambda_{\mathrm{a}}=\lambda_{\mathrm{i}}$ for $\mathrm{a}=\mathrm{a}_{\mathrm{i}}, \quad \lambda_{\mathrm{a}}=0_{\mathrm{G}}$ for $\mathrm{a} \neq \mathrm{a}_{\mathrm{i}}$.
- Similarly, we have the singular chain complex of pair of spaces, with coefficients in G
$\mathrm{C}_{*}(-; \mathrm{G}): \mathbf{T o p}_{2} \rightarrow \mathrm{C}_{*} \mathbf{A b}$,
$\mathrm{C}_{*}(\mathrm{X}, \mathrm{A} ; \mathrm{G})=\mathrm{C}_{*}(\mathrm{X}, \mathrm{A}) \otimes \mathrm{G}$.
- Singular Homology of a pair of spaces, with coefficients in G
(4) $\mathrm{H}_{\mathrm{n}}(-; \mathrm{G}): \mathbf{T o p}_{2} \rightarrow \mathbf{A b}$

$$
\mathrm{H}_{\mathrm{n}}(\mathrm{f})=\mathrm{f}_{* \mathrm{n}}
$$

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{n}}(\mathrm{X}, \mathrm{~A} ; \mathrm{G})=\mathrm{H}_{\mathrm{n}}\left(\mathrm{C}_{*}(\mathrm{X}, \mathrm{~A} ; \mathrm{G})\right), \\
& \mathrm{f}_{* \mathrm{n}}\left[\sum_{\mathrm{i}} \lambda_{\mathrm{i}} \mathrm{a}_{\mathrm{i}}\right]=\left[\sum_{\mathrm{i}} \lambda_{\mathrm{i}}\left(\mathrm{fa}_{\mathrm{i}}\right)\right] \quad\left(\lambda_{\mathrm{i}} \in \mathrm{G}\right)
\end{aligned}
$$

- For $G=\mathbf{Z}$, we find the previous chain complexes (and homology): $C_{*}(X, A ; \mathbf{Z}) \cong C_{*}(X, A)$.
5.2. Theorem (Subdivision for homology with coefficients in G)

In the hypotheses of 2.3 , the canonical morphism $C_{*}(X ; \mathcal{U}) \otimes G \rightarrow C_{*}(X ; G)$ induces isomorphism in homology, in every degree.

Hint. We deduce this from the Subdivision Theorem with integral coefficients (2.3).

- The short exact sequence (1) splits in every degree (its components are free abelian group)

$$
\begin{equation*}
\mathrm{C}_{*}(\mathrm{X} ; \mathcal{U}) \stackrel{\mathrm{j}}{\longrightarrow} \mathrm{C}_{*}(\mathrm{X}) \stackrel{\mathrm{p}}{\longrightarrow} \mathrm{D}_{*} \tag{1}
\end{equation*}
$$

(2) $\quad C_{*}(X ; \mathcal{U}) \otimes G \stackrel{j \otimes G}{\longrightarrow} C_{*}(X ; G) \xrightarrow{p \otimes G} D_{*} \otimes G$
whence, applying $-\otimes \mathrm{G}$, also the sequence (2) is short exact.

- By the exactness of the homology sequence of (1), where all $j_{* n}$ are iso: $H_{n}\left(D_{*}\right)=0$, for all n.
- Thus D_{*} is an exact sequence of free abelian groups, and also $\mathrm{D}_{*} \otimes \mathrm{G}$ is an exact sequence. - By the exactness of the homology sequence of (2), where $H_{n}\left(D_{*} \otimes G\right)=0:$ all $(\mathrm{j} \otimes \mathrm{G})_{* \mathrm{n}}$ are iso.

5.3. Theorem (Relative Singular Homology with coefficients in G and E-S axioms)

Relative Singular Homology with coefficients in G is a homology theory with coefficients in G (in the sense of Eilenberg-Steenrod).

Hint. Functoriality: see 5.1.

- Exactness and Naturality. The (natural) short exact sequence $C_{*}(A) \longmapsto C_{*}(X) \longrightarrow C_{*}(X, A)$ has free components. Therefore also $C_{*}(A ; G) \longmapsto C_{*}(X ; G) \longrightarrow C_{*}(X, A ; G)$ is short exact, and its homology sequence is exact (and natural)
(1) $\ldots \rightarrow \mathrm{H}_{\mathrm{n}}(\mathrm{A} ; \mathrm{G}) \xrightarrow{\mathrm{u}_{*_{\mathrm{n}}}} \mathrm{H}_{\mathrm{n}}(\mathrm{X} ; \mathrm{G}) \xrightarrow{\mathrm{v}_{* \mathrm{n}}} \mathrm{H}_{\mathrm{n}}(\mathrm{X}, \mathrm{A} ; \mathrm{G}) \xrightarrow{\Delta_{\mathrm{n}}} \mathrm{H}_{\mathrm{n}-1}(\mathrm{~A} ; \mathrm{G}) \ldots \rightarrow \mathrm{H}_{0}(\mathrm{X}, \mathrm{A} ; \mathrm{G}) \rightarrow 0$
- Homotopy invariance. Let $\mathrm{F}: \mathrm{f} \simeq \mathrm{g}:(\mathrm{X}, \mathrm{Y}) \rightarrow(\mathrm{Y}, \mathrm{B})$ be a homotopy of maps of pairs. We have constructed a homotopy $\Psi=\left(\Psi_{\mathrm{n}}\right): \mathrm{f}_{\#} \simeq \mathrm{~g}_{\#}: \mathrm{C}_{*}(\mathrm{X}, \mathrm{A}) \rightarrow \mathrm{C}_{*}(\mathrm{Y}, \mathrm{B})$ (3.3). Applying the additive functor $-\otimes G$ one has a homotopy $\left(\Psi_{n} \otimes G\right): f_{\#} \simeq g_{\#}: C_{*}(X, A ; G) \rightarrow C_{*}(Y, B ; G)$.
- Excision. Same proof as in 3.5, using the Subdivision Theorem with coefficients in G (5.2).
- Dimension and coefficients. Compute directly $\mathrm{H}_{\mathrm{n}}(\{*\} ; \mathrm{G})$.
5.4. Theorem (Mayer-Vietoris for singular homology with coefficients in G)

In the same hypotheses of 2.4 there is an exact sequence, natural in the same sense
(1) $\ldots \rightarrow H_{n}(A ; G) \xrightarrow{h_{n}} H_{n}(U ; G) \oplus H_{n}(V ; G) \xrightarrow{k_{n}} H_{n}(X ; G) \xrightarrow{\Delta_{n}} H_{n-1}(A ; G) \ldots$

Hint. Same proof as in 2.4, using the Subdivision Theorem with coefficients in G (5.2).

5.5. Exercises

- Compute the homology of \mathbf{S}^{n} and \mathbf{P}^{2}, with coefficients in \mathbf{Q} and in \mathbf{Z}_{m}.
- Study the projection $\mathbf{P}^{2} \rightarrow \mathbf{S}^{2}$, viewing both as quotients of \mathbf{I}^{2}. Hint: use $\mathrm{H}_{2}\left(-; \mathbf{Z}_{2}\right)$.

6. The functor Hom [*Homological Algebra, Multilinear Algebra*]

R is always a commutative ring with unit.

6.1. The functor Hom

- If A, B are R-modules, $\operatorname{Hom}_{\mathrm{R}}(\mathrm{A}, \mathrm{B})$ denotes the set of R -homomorphisms $\mathrm{A} \rightarrow \mathrm{B}$, with the pointwise structure of R -module
(1) $\left(\mathrm{h}+\mathrm{h}^{\prime}\right)(\mathrm{a})=\mathrm{h}(\mathrm{a})+\mathrm{h}^{\prime}(\mathrm{a}), \quad(\lambda \cdot \mathrm{h})(\mathrm{a})=\lambda \cdot \mathrm{h}(\mathrm{a}) \quad(\mathrm{a} \in \mathrm{A}, \lambda \in \mathrm{R})$.
- $\operatorname{Hom}_{\mathrm{R}}$ is a functor in two variables, contravariant in the first and covariant in the second
(2) $\operatorname{Hom}_{\mathrm{R}}:$ R-Mod ${ }^{\mathrm{op}} \times$ R-Mod \rightarrow R-Mod,

$$
\operatorname{Hom}_{R}(\mathrm{f}, \mathrm{~g}): \operatorname{Hom}_{R}(\mathrm{~A}, \mathrm{~B}) \rightarrow \operatorname{Hom}_{\mathrm{R}}\left(\mathrm{~A}^{\prime}, \mathrm{B}^{\prime}\right), \quad \mathrm{h} \mapsto \operatorname{ghf} \quad\left(\mathrm{f}: \mathrm{A}^{\prime} \rightarrow \mathrm{A}, \mathrm{~g}: \mathrm{B} \rightarrow \mathrm{~B}^{\prime}\right)
$$

(3) $\operatorname{Hom}_{R}(i d A, i d B)=\operatorname{id}\left(\operatorname{Hom}_{R}(A, B)\right)$, $\quad \operatorname{Hom}_{R}\left(f f^{\prime}, g^{\prime} g\right)=\operatorname{Hom}_{R}\left(f^{\prime}, g^{\prime}\right) \cdot \operatorname{Hom}_{R}(f, g)$.

This functor is bilinear (additive and homogeneous in each variable):
(4) $\operatorname{Hom}_{R}\left(f+f^{\prime}, g\right)=\operatorname{Hom}_{R}(f, g)+\operatorname{Hom}_{R}\left(f^{\prime}, g\right)$,

$$
\operatorname{Hom}_{R}\left(\mathrm{f}, \mathrm{~g}+\mathrm{g}^{\prime}\right)=\operatorname{Hom}_{\mathrm{R}}(\mathrm{f}, \mathrm{~g})+\operatorname{Hom}_{\mathrm{R}}\left(\mathrm{f}, \mathrm{~g}^{\prime}\right)
$$

$$
\begin{aligned}
& \operatorname{Hom}_{R}(\lambda f, g)=\lambda \cdot \operatorname{Hom}_{R}(f, g), \\
& \operatorname{Hom}_{R}(f, \lambda g)=\lambda \cdot \operatorname{Hom}_{R}(f, g)
\end{aligned}
$$

6.2. Exercises (for abelian groups: $\mathrm{R}=\mathbf{Z}, \mathrm{Hom}_{\mathbf{Z}}=\mathrm{Hom}$)

- $\operatorname{Hom}_{\mathbf{Z}}\left(\mathbf{Z}_{m}, B\right)={ }_{m} B$ (the subgroup of elements $b \in B$ such that $m b=0$).
$-\operatorname{Hom}_{\mathbf{Z}}\left(\mathbf{Z}_{\mathrm{m}}, \mathbf{Z}\right)=0, \quad \operatorname{Hom}_{\mathbf{Z}}\left(\mathbf{Z}_{\mathrm{m}}, \mathbf{Q}\right)=0, \quad \operatorname{Hom}_{\mathbf{Z}}\left(\mathbf{Z}_{\mathrm{m}}, \mathbf{Z}_{\mathrm{n}}\right) \cong \mathbf{Z}_{\mathrm{d}} \quad(\mathrm{d}=$ g.c.d. $(\mathrm{m}, \mathrm{n}))$.
- If m, n are coprime, then $\operatorname{Hom}_{\mathbf{Z}}\left(\mathbf{Z}_{\mathrm{m}}, \mathbf{Z}_{\mathrm{n}}\right)=0$.
- More generally, if $\mathrm{mA}=0$ and in $\mathrm{B} \mathrm{mb}=0$ implies $\mathrm{b}=0$, then $\operatorname{Hom}_{\mathbf{Z}}(\mathrm{A}, \mathrm{B})=0$.
- If T is a torsion abelian group and B is torsion-free, then $\operatorname{Hom}_{Z}(A, B)=0$.

6.3. Basic properties of the functors Hom

R is a commutative unital ring. The properties of $\mathrm{Hom}_{\mathrm{R}}$ in each variable must be distinguished.
(A) The module $A^{*}=\operatorname{Hom}_{R}(A, R)$ is called the dual of A. There is a canonical isomorphism:
(1) $\operatorname{Hom}_{R}(R, B) \rightarrow B$,

$$
\mathrm{h} \mapsto \mathrm{~h}\left(1_{\mathrm{R}}\right), \quad \mathrm{b} \mapsto(\lambda \mapsto \lambda . \mathrm{b})
$$

(B) There are canonical isomorphisms:
(2) $\quad \Pi_{i \in I} \operatorname{Hom}_{R}\left(A, B_{i}\right) \rightarrow \operatorname{Hom}_{R}\left(A, \Pi_{j \in J} B_{j}\right), \quad\left(h_{j}\right)_{j \in J} \mapsto h, \quad h(a)=\left(h_{j}(a)\right)_{j \in J}$,
(3) $\quad \Pi_{i \in I} \operatorname{Hom}_{R}\left(\mathrm{~A}_{\mathrm{i}}, B\right) \rightarrow \operatorname{Hom}_{R}\left(\oplus_{\mathrm{i} \in \mathrm{I}} \mathrm{A}_{\mathrm{i}}, \mathrm{B}\right), \quad\left(\mathrm{h}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{I}} \mapsto \mathrm{h}, \quad \mathrm{h}\left(\left(\mathrm{a}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{I}}\right)=\sum_{\mathrm{i} \in \mathrm{I}} \mathrm{h}_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{i}}\right)$,
(C) Corollary. There are canonical isomorphisms:
(4) $\operatorname{Hom}_{R}\left(A, R^{J}\right) \cong A^{J}=\Pi_{j \in J} A, \quad \quad \operatorname{Hom}_{R}\left(R^{(I)}, B\right) \cong B^{I}=\Pi_{i \in I} B$, $\operatorname{Hom}_{R}\left(A, R^{n}\right) \cong A^{n}, \quad \operatorname{Hom}_{R}\left(R^{m}, B\right) \cong B^{m}, \quad \operatorname{Hom}_{R}\left(R^{m}, R^{n}\right) \cong R^{m . n}$.
(D) Exponential law. There is a canonical isomorphism:
(5) $\operatorname{Hom}_{R}(A \otimes B, C) \rightarrow \operatorname{Hom}_{R}\left(A, \operatorname{Hom}_{R}(B, C)\right)$,

$$
\mathrm{h} \mapsto \mathrm{~h}^{\prime}, \quad \mathrm{h}^{\prime}(\mathrm{a}): \mathrm{b} \mapsto \mathrm{~h}(\mathrm{a} \otimes \mathrm{~b})
$$

6.4. Exactness properties of the functors Hom

(A) The (covariant) functor $\operatorname{Hom}_{R}(X,-)$ is left-exact: it transforms an exact sequence (1) into an exact sequence (2) (equivalently: it preserves kernels)
(1) $0 \rightarrow \mathrm{~A} \rightarrow \mathrm{~B} \rightarrow \mathrm{C}$
(2) $0 \rightarrow \operatorname{Hom}_{R}(X, A) \rightarrow \operatorname{Hom}_{R}(X, B) \rightarrow \operatorname{Hom}_{R}(X, C)$.
(B) The (contravariant) functor $\operatorname{Hom}_{R}(-, Y)$ transforms an exact sequence (3) into an exact sequence
(4) (equivalently: it transforms cokernels into kernels)
(3) $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow 0$
(4) $0 \rightarrow \operatorname{Hom}_{R}(\mathrm{C}, \mathrm{Y}) \rightarrow \operatorname{Hom}_{\mathrm{R}}(\mathrm{B}, \mathrm{Y}) \rightarrow \operatorname{Hom}_{\mathrm{R}}(\mathrm{A}, \mathrm{Y})$.

- Exercise. For $R=\mathbf{Z}$, deduce $\operatorname{Hom}_{\mathbf{Z}}\left(\mathbf{Z}_{\mathrm{m}}, \mathbf{Z}_{\mathrm{n}}\right) \cong \mathbf{Z}_{\mathrm{d}}$ from (B).
- Exercise. For $R=\mathbf{Z}$, show that $\operatorname{Hom}_{\mathbf{Z}}\left(-, \mathbf{Z}_{\mathrm{n}}\right)$ is not exact.
(C) For every module X, the functors $\operatorname{Hom}_{R}(X,-)$ and $\operatorname{Hom}_{R}(-, X)$ preserve all split exact sequences (because these functors are additive).
(D) For $\mathrm{R}=\mathbf{Z}$ and every abelian group X , the functors $\operatorname{Hom}_{\mathbf{Z}}(\mathrm{X},-)$ and $\operatorname{Hom}_{\mathbf{Z}}(-, \mathrm{X})$ preserves all exact sequences of free abelian groups.

7. Relative singular cohomology with coefficients in a group

G is an abelian group. We use the contravariant functor $\operatorname{Hom}(-, G)=\operatorname{Hom}_{\mathbf{Z}}(-, G)$.

7.1. Cochain complexes

- A cochain complex $A=\left(\left(\mathrm{A}^{\mathrm{n}}\right),\left(\mathrm{d}^{\mathrm{n}}\right)\right)$ of abelian groups is a sequence
(1) $0 \longrightarrow A^{0} \xrightarrow{d^{0}} A^{1} \xrightarrow{d^{1}} \ldots \longrightarrow A^{n} \xrightarrow{d^{n}} A^{n+1} \longrightarrow \ldots$
with $\mathrm{d}^{\mathrm{n}+1} \cdot \mathrm{~d}^{\mathrm{n}}=0$. A morphism $\varphi: \mathrm{A} \rightarrow \mathrm{B}$ of cochain complexes is a sequence of homomorphisms $\varphi^{\mathrm{n}}: \mathrm{A}^{\mathrm{n}} \rightarrow \mathrm{B}^{\mathrm{n}}$ commuting with differentials: $\mathrm{d}^{\mathrm{n}} \cdot \varphi^{\mathrm{n}}=\varphi^{\mathrm{n}+1} \cdot \mathrm{~d}^{\mathrm{n}}$. They form the category $\mathbf{C}^{*} \mathbf{A b}$ of cochain complexes of abelian groups.
- The n-cohomology functor of chain complexes:
(2) $\mathrm{H}^{\mathrm{n}}: \mathrm{C}^{*} \mathbf{A b} \rightarrow \mathbf{A b}$

$$
\mathrm{H}^{\mathrm{n}}(\mathrm{~A})=\operatorname{Ker}\left(\mathrm{d}^{\mathrm{n}}\right) / \operatorname{Im}\left(\mathrm{d}^{\mathrm{n}-1}\right)
$$

$$
\begin{array}{rr}
(\mathrm{n} \geq 0) \\
\mathrm{H}^{\mathrm{n}}(\varphi)[\zeta]=\left[\varphi^{\mathrm{n}}(\zeta)\right] & \left(\mathrm{d}^{\mathrm{n}}(\zeta)=0\right)
\end{array}
$$

7.2. Main definitions

- The contravariant functor $\operatorname{Hom}(-, G): \mathbf{A b}{ }^{\mathrm{op}} \rightarrow \mathbf{A b}$ transforms chain complexes into cochain complexes
(1) $\operatorname{Hom}(-, G):\left(C_{*} \mathbf{A b}\right)^{\mathrm{op}} \rightarrow \mathrm{C}^{*} \mathbf{A b}$,
$\operatorname{Hom}(\mathrm{A}, \mathrm{G})=\left(\ldots \rightarrow \operatorname{Hom}\left(\mathrm{A}_{\mathrm{n}}, \mathrm{G}\right) \rightarrow \operatorname{Hom}\left(\mathrm{A}_{\mathrm{n}+1}, G\right) \rightarrow \ldots\right), \quad \mathrm{d}^{\mathrm{n}}=\operatorname{Hom}\left(\partial_{\mathrm{n}+1}, G\right)$
$\operatorname{Hom}(f, G)^{\mathrm{n}}=\operatorname{Hom}\left(\mathrm{f}_{\mathrm{n}}, G\right): \operatorname{Hom}\left(\mathrm{B}_{\mathrm{n}}, G\right) \rightarrow \operatorname{Hom}\left(\mathrm{A}_{\mathrm{n}}, G\right)$
(for $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ in $\mathrm{C}_{*} \mathbf{A b}$).
- The singular cochain complex of a space, with coefficients in G
(2) $\mathrm{C}^{*}(-; \mathrm{G}):$ Top ${ }^{\mathrm{op}} \rightarrow \mathrm{C}^{*} \mathbf{A b}, \quad \mathrm{C}^{*}(\mathrm{X} ; \mathrm{G})=\operatorname{Hom}\left(\mathrm{C}_{*}(\mathrm{X}), \mathrm{G}\right)$,
$\mathrm{C}^{\mathrm{n}}(\mathrm{X} ; \mathrm{G})=\operatorname{Hom}\left(\mathrm{C}_{\mathrm{n}}(\mathrm{X}), \mathrm{G}\right) \cong\left\{\lambda: \square_{\mathrm{n}} \mathrm{X} \rightarrow \mathrm{G} \mid \lambda(\mathrm{a})=0\right.$ when $\left.\mathrm{a} \in \operatorname{Deg}_{\mathrm{n}} X\right\}$,
$(d \lambda)(a)=\lambda(\partial a)$,
$\mathrm{f}^{\# \mathrm{n}}(\mu)=\left(\mu \circ(\square \mathrm{f})_{\mathrm{n}}\right), \quad \quad \mathrm{f}^{\# \mathrm{n}}(\mu)(\mathrm{a})=\mu(\mathrm{fa}) \quad($ for $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y})$.
- Note: $C^{n}(X ; G) \cong \Pi_{a} G\left(a \in \square{ }_{n} X \backslash \operatorname{Deg}_{\mathrm{n}} X\right)$.
- The singular cochain complex of pair of spaces, with coefficients in G
(3)
$\mathrm{C}^{*}(-; \mathrm{G}):\left(\mathbf{T o p}_{2}\right)^{\mathrm{op}} \rightarrow \mathrm{C}^{*} \mathbf{A b}, \quad \mathrm{C}^{*}(\mathrm{X}, \mathrm{A} ; \mathrm{G})=\operatorname{Hom}\left(\mathrm{C}_{*}(\mathrm{X}, \mathrm{A}), \mathrm{G}\right)$,
$\mathrm{C}^{\mathrm{n}}(\mathrm{X}, \mathrm{A} ; \mathrm{G})=\operatorname{Hom}\left(\mathrm{C}_{\mathrm{n}}(\mathrm{X}, \mathrm{A}), \mathrm{G}\right) \cong\left\{\lambda: \square_{\mathrm{n}} \mathrm{X} \rightarrow \mathrm{G} \mid \lambda(\mathrm{a})=0\right.$ for $\left.\mathrm{a} \in\left(\square_{\mathrm{n}} \mathrm{A}\right) \cup\left(\operatorname{Deg}_{\mathrm{n}} \mathrm{X}\right)\right\}$,

$$
(d \lambda)(a)=\lambda(\partial a) .
$$

- Singular Cohomology of a pair of spaces, with coefficients in G
(4) $\mathrm{H}^{\mathrm{n}}\left(-\right.$; G): $\left(\mathbf{T o p}_{2}\right)^{\mathrm{op}} \rightarrow \mathbf{A b}$
$H^{\mathrm{n}}(\mathrm{f})=\mathrm{f}^{* \mathrm{n}}: \mathrm{H}^{\mathrm{n}}(\mathrm{Y}, \mathrm{B} ; \mathrm{G}) \rightarrow \mathrm{H}^{\mathrm{n}}(\mathrm{X}, \mathrm{A} ; \mathrm{G})$,

$$
\begin{aligned}
& \mathrm{H}^{\mathrm{n}}(\mathrm{X}, \mathrm{~A} ; \mathrm{G})=\mathrm{H}^{\mathrm{n}}\left(\mathrm{C}^{*}(\mathrm{X}, \mathrm{~A} ; \mathrm{G})\right), \\
& \mathrm{f}^{* \mathrm{n}}[\mu]=\left[\mathrm{f}^{\# \mathrm{n}}(\mu)\right] \quad\left(\mu \in \mathrm{C}^{\mathrm{n}}(\mathrm{Y}, \mathrm{~B} ; \mathrm{G})\right)
\end{aligned}
$$

- For $\mathrm{G}=\mathbf{Z}$, one writes: $\mathrm{C}^{*}(\mathrm{X}, \mathrm{A})=\mathrm{C}^{*}(\mathrm{X}, \mathrm{A} ; \mathbf{Z})$.
7.3. Theorem (Subdivision for cohomology with coefficients in G)

In the hypotheses of 2.3 , the canonical morphism $\mathrm{C}^{*}(\mathrm{X} ; \mathrm{G}) \rightarrow \operatorname{Hom}\left(\mathrm{C}_{*}(\mathrm{X} ; \mathcal{U}), \mathrm{G}\right)$ induces isomorphism in cohomology, in every degree.

Hint. The proof is similar to the one for homology with coefficients in G (5.2)
7.4. Theorem (Relative Singular Cohomology with coefficients in G and E-S axioms)

Relative Singular Cohomology with coefficients in G is a cohomology theory with coefficients in G (in the sense of Eilenberg-Steenrod).
Hint. The axioms for cohomology are dual to the ones for homology. The proof is similar to 5.3.
7.5. Theorem (Mayer-Vietoris for singular cohomology with coefficients in G)

In the same hypotheses of 2.4 there is an exact sequence, contravariantly natural
(1) $\ldots \leftarrow \mathrm{H}^{\mathrm{n}}(\mathrm{A} ; \mathrm{G}) \stackrel{\mathrm{h}^{\mathrm{n}}}{\leftarrow} \mathrm{H}^{\mathrm{n}}(\mathrm{U} ; \mathrm{G}) \oplus \mathrm{H}^{\mathrm{n}}(\mathrm{V} ; \mathrm{G}) \stackrel{\mathrm{k}^{\mathrm{n}}}{\leftarrow} \mathrm{H}^{\mathrm{n}}(\mathrm{X} ; \mathrm{G}) \stackrel{\Delta^{\mathrm{n}-1}}{\leftarrow} \mathrm{H}^{\mathrm{n}-1}(\mathrm{~A} ; \mathrm{G}) \ldots$

Hint. As in 2.4.

TEXTS

- Algebraic Topology
J. Vick, Homology Theory, Academic Press 1973.
W. Massey, Singular Homology Theory, Springer 1980.
W. Massey, Algebraic Topology, an Introduction, Harcourt 1967.
W. Massey, A basic course in algebraic topology, Springer 1991
S. Eilenberg - N. Steenrod, Foundations of Algebraic Topology, Princeton Univ. Press 1952.
A. Dold, Lectures on algebraic topology, Springer 1972.
E. Spanier, Algebraic topology, McGraw-Hill 1966.
R. Brown, Topology, Ellis Horwood 1988.
S.T. Hu, Homotopy theory, Academic Press 1959.
A. Hatcher, Algebraic Topology, 2002. www.math.cornell.edu/~hatcher/
- Homological Algebra
H. Cartan - S. Eilenberg, Homological algebra, Princeton Univ. Press 1956.
S. Mac Lane, Homology, Springer 1963.
C.A. Weibel, An introduction to homological algebra, Cambridge Univ. Press 1994.
- Category Theory
S. Mac Lane, Categories for the working mathematician, Springer 1971.
J. Adámek - H. Herrlich - G. Strecker, Abstract and concrete categories, Wiley Interscience Publ., 1990.
F. Borceux, Handbook of categorical algebra. 1-2-3, Cambridge University Press, Cambridge, 1994.

