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Homology Theories. Notes

1. Singular homology

1.1. The singular cubical set of a space

-  Top:  the category of topological spaces and continuous mappings (= maps).

-  I = [0, 1]:  the standard interval, with euclidean topology.

- Basic structure: two faces  (!0, !1)  and a degeneracy  ("),  linking it with the singleton  I0 = {*}

(1) !# :  {*}               I  : " (# = 0, 1),

!0(*)  =  0, !1(*)  =  1, "(t)  =  *.

- Faces and degeneracies of the standard cubes  In  (for  # = 0, 1;  i = 1,..., n)

(2) !#i   =  Ii–1×!#× In–i: In–1  In, !#i (t1,..., tn–1)  =  (t1,..., ti–1, #,..., tn–1),

"i  =  Ii–1×"×In–i: In  In–1, "i(t1,..., tn)  =  (t1,..., t̂i,..., tn).

- They satisfy the co-cubical relations

(3) !$j .!#i   =  !#i .!$j –1   (i < j), "i."j  =  "j–1."i   (i < j),

"j.!#i   =  !#i –1."j   (j < i), or    id   (j = i), or    !#i ."j–1   (j > i).

- This produces, for every topological space  X,  a cubical set  X = (( nX), (%#i ), (ei))

(4) nX = Top(In, X), the set of singular n-cubes  a: In  X  of the space  X,

%#i   =  %#n i: nX  n–1X, %#i (a)  =  a.!#i :  In–1  X,

ei  =  eni: n–1X  nX, ei(a)  =  a."i: In  X, (# = 0, 1;  i = 1,..., n).

- In general: a cubical set  K = ((Kn), (%#i ), (ei))  is a sequence of sets  Kn  (n & 0),  together with
mappings, called faces  (%#i )  and degeneracies  (ei)

(5) %#i  = %#n i: Kn  Kn–1, ei = eni: Kn–1  Kn (# = 0, 1;  i = 1,..., n).

satisfying the cubical relations

(6) %#i .%$j   =  %$j –1.%#i    (i < j), ej.ei  =  ei.ej–1   (i < j),

%#i .ej  =  ej.%#i –1   (j < i), or    id   (j = i), or    ej–1.%#i    (j > i).

Elements of  Kn  are called n-cubes; vertices and edges for  n = 0  or 1, respectively. Every n-cube
a'Kn  has 2n vertices:  %#1%

$
2%

(
3(a)  for  n = 3.

A morphism of cubical sets  f = (fn): K  L  is a sequence of mappings  fn: Kn  Ln
commuting with faces and degeneracies. Cubical sets and their morphisms form a category  Cub.

- The functor  : Top  Cub  acts as follows on the map  f: X  Y



(7) f: X  Y, ( f)n: a  f.a: In  Y.

1.2. The chain complex of a cubical set and the singular chain complex of a space

- Degenerate elements of a cubical set  K:  all elements of type  ei(a)

(1) DegnK = )i Im(ei: Kn-1  Kn), Deg0K = Ø.

- Because of the cubical relations, we have (for  i = 1,..., n)

(2) a ' DegnK    *    (%#i a ' Degn–1K   or   %–
i a = %+

i a), ei(Degn–1K)  +  DegnK.

- The cubical set  K  determines a (normalised) chain complex  C*(K),  i.e. a sequence of abelian
groups and homomorphisms (called boundaries, or differentials)

   %n+1   %n   %1

(3) ... Cn+1(K) Cn(K) Cn–1(K) ...  C1(K) C0(K)
%n.%n+1  =  0   (n > 0),

defined as follows:

(4) Cn(K)  =  (ZKn)/(ZDegnK)  =  Z,Kn (,Kn = Kn \ DegnK),

%n: Cn(K)  Cn–1(K), %n(â)  =  -i,# (–1)i+# (%#i a) (a ' Kn),

(ZS  is the free abelian group on the set  S;  â  is the class of the n-cube  a  up to degenerate cubes; but
we will write the normalised class  â  as  a,  identifying all degenerate cubes with 0.)

Hint. To prove that  %n.%n+1 = 0  one uses the cubical relations for faces:  %#i .%$j  = %$j –1.%#i    (i < j).

- In general: a chain complex  A = ((An), (%n))  of abelian groups is a sequence as above, with  %n.%n+1
= 0   (n > 0).  A morphism  .: A  B  of chain complexes is a sequence of homomorphisms  .n: An

 Bn  commuting with differentials:  %n..n = .n–1.%n  (n > 0).  They form the category  C*Ab  of
chain complexes of abelian groups.

- The functor  C*: Cub  C*Ab  acts on the morphism  f = (fn): K  L  by linear extension

(5) f#  =  C*(f): C*(K)  C*(L), f#n(a)  =  fn(a).

- Composing with the functor  : Top  Cub,  we get the singular chain complex of a space, or
complex of singular chains, written again  C*
(6) C*: Top  C*Ab, C*(X)  =  C*( X), f#n(a)  =  f.a (a: In  X).

1.3. Homology

- The homology functor of chain complexes: the group of n-cycles modulo the group of n-boundaries

(1) Hn: C*Ab  Ab (n & 0),

Hn(A)  =  Ker%n / Im%n+1, Hn(.)[z]  =  [.nz].

- Composing with the previous functors, we have the singular homology of a space

  C*  Hn
(2) Top Cub C*Ab Ab



Hn: Top  Ab Hn(X)  =  Hn(C*( X)) (n & 0),

Hn(f)  =  f*n, f*n[-i /iai]  =  [-i /i(fai)].

*REMARKS*. The category  Cub  has all limits and colimits and is cartesian closed.

- It is the presheaf category of functors  X: Iop  Set,  where  I  is the subcategory of  Set  consisting
of the elementary cubes  2n,  together with the maps  2m  2n  which delete some coordinates and
insert some 0's and 1's, without modifying the order of the remaining coordinates.

1.4. Elementary results

- Hn(X)  0i'I Hn(Xi),  where  (Xi)i'I  is the family of path-connected components of the space  X.

- Hn(Ø)  =  0   (n & 0),

- H0({*})  Z, Hn({*})  =  0   (n > 0).

Proposition. If  X  is path-connected, non empty:   H0(X)  Z,  with  .[- /i.xi] = - /i.

Hint. Use the augmented chain complex  ...  C1(X)  C0(X)  Z  where  %0(- /i.xi) = - /i;
prove that  %0  is surjective and  Ker(%0) = Im(%1).  Then  .  is the induced isomorphism.

1.5. Homotopy for topological spaces

- Two maps  f0, f1: X  Y  in  Top  are homotopic  (f0  f1)  if there is a map  F: I×X  Y  such
that  F(#, x) = f#(x),  for all  x'X  (# = 0, 1).  This relation is a congruence of categories.

- Two spaces  X, Y  are homotopy equivalent  (X  Y)  if there are maps  f: X               Y :g  with  gf 
idX,  fg  idY.

- A space is said to be contractible if it is homotopy equivalent to  {*}.

*REMARKS*. The quotient category  HoTop = Top/   has, by definition, the same objects and
morphisms  [f]: X  Y  consisting of homotopy classes of maps; it is called the homotopy category
of spaces. Two spaces are homotopy equivalent if and only if they are isomorphic objects in  HoTop.

1.6. Homotopy for chain complexes

- Two maps  . , 1 : A  B  in  C*Ab   are homotopic   (.   1)  if there is a sequence of
homomorphisms  2n: An  Bn+1  (n & 0)  such that  %n+12n + 2n–1%n = – .n + 1n.

- This relation is a congruence of categories, in  C*Ab.

Proposition [Homotopy Invariance of algebraic homology]. The functors  Hn: C*Ab  Ab  are
homotopy invariant:  if  .  1: A  B  then  Hn(.) = Hn(1): Hn(A)   Hn(B)  (for all  n & 0).

1.7. Homotopy Invariance of singular homology

Theorem. The functors  Hn: Top  Ab  are homotopy invariant:  if  f  g: X  Y  then  Hn(f) =
Hn(g): Hn(X)   Hn(Y)  (for all  n & 0).



Hint. Given a homotopy  F: I×X  Y  between  f, g: X  Y,  one constructs a homotopy between the
associated chain morphisms  C*(X)  C*(Y)

(1) 2n: Cn(X)  Cn+1(Y), 2n(a)  =  F.(I×a) (a: In  X),

%n+12n + 2n–1%n  =  – Cn(f) + Cn(g).

Corollary. If the spaces  X, Y  are homotopy equivalent, then  Hn(X)  Hn(Y)  (for all  n & 0).

Corollary. If the space  X  is contractible, then  Hn(X)  Hn({*})  (for all  n & 0)  and  X  is path-
connected.

2. Computing singular homology

2.1. Exact sequences of abelian groups and chain complexes   [*Homological Algebra*]

  fn+1  fn

Definition. A sequence  ... An+1        An        An–1 ...   in  Ab  is exact at  An  if  Im(fn+1) = Ker(fn).
It is exact if it is exact at every point.  Examples:

- A chain complex  A  is exact at  An  if and only if  Hn(A) = 0;

- 0  A  0    is exact in  A  3  A = 0.

- 0  A  – f     B  0    is exact in  A  3  f  is mono;  in  B  3  f  is epi;  in  A  and  B 3  f  is iso.

- 0  A  – f     B  – g     C  0     is called a short exact sequence if it is exact:

(a) exact in  A  (f  mono); (b)  exact in  B  (Im(f) = Ker(g)); (c) exact in  C  (g  epi).

- In  C*Ab  we have the same definitions. Kernels and images are defined componentwise:

Given  .: A  B  in  C*Ab:

(1) Ker(.)  =  ((Ker(.n), (%n)), Im(.)  =  ((Im(.n), (%n)),

where the differentials are the restriction of the differentials of  A.

2.2. The homology sequence of a short exact sequence of chain complexes

[*Homological Algebra*]

Theorem. Given a short exact sequence of chain complexes

(1) 0  A  – f     B  – g     C  0

there is an exact sequence of homology groups

  f*n    g*n     4n      41  f*0  g*0
(2) ...  Hn(A)         Hn(B)         Hn(C)         Hn–1(A) ...         H0(A)         H0(B)         H0(C)  0

where the connective homomorphism  4n: Hn(C)  Hn–1(A)  is defined as follows

(3) 4n[c]  =  [a],

where  c ' Zn(C),  a ' Zn–1(A)   and  5 b ' Cn  such that  gn(b) = c,  %nb = fn–1(a).



The sequence (2) is natural for morphisms of the sequence (1): a translation  (u, v, w)  of the
sequence (1), by commutative squares, induces a translation  (..., u*n, v*n, w*n,...)  of the sequence (2),
by commutative squares.

Hint. Easy proof, by 'diagram chasing'.

2.3. Subdivision.

- This is one of the main results, for singular homology.

- Let  X  be a topological space and  U = (Ui)  a 'generalised open cover' of  X:  X = ) int(Ui).

- C*(X; U):  denotes the subcomplex of  C*(X)  of U-small chains

generated by the cubes  a: In  X  whose image is contained in some  Ui.

Subdivision Theorem. In these hypotheses, the inclusion  j: C*(X; U)  C*(X)  induces
isomorphism in homology:  Hn(X; U)  Hn(X).

Hint. The idea is to subdivide cubes, replacing them by U-small chains.

(A) We construct the subdivision operator, a natural morphism of chain complexes

(1) Sd: C*(X)  C*(X), Sdn(a)  =  -v a.uv (v ' {0, 1}n),

uv: In  In, uv(t)  =  (t + v)/2,

%n.Sdn  =  Sdn–1.%n,

which subdivides any n-cube into a chain of  2n  n-cubes, indexed on the vertices  v ' {0, 1}n  of  In

(2)   u01

u00

u(0, 0)(t1, t2)  =  (t1/2, t2/2),   u(0, 1)(t1, t2)  =  (t1/2, (t2 +1)/2).

(B) This morphism  Sd  is homotopic to the identity, by a chain homotopy  . = (.n)

(3) .n: Cn(X)  Cn+1(X), .n(a)  =  (–1)n+1 -v a.6v (v ' {0, 1}n),

Sdn – id  =  %n+1.n + .n–1%n,

obtained by means of a suitable family of maps  6v: In+1  In  (cf. Massey [1980]). Note that:

(4) .n(Cn(X; U)) + Cn+1(X; U).

(C) The induced homomorphism  jn: Hn(X; U)  Hn(X)  is surjective.

- For every cube  a: In  X,  consider the following open cover of  In

(5) Vi  =  a–1(int(Ui)) (i ' I)

- Applying the Lebesgue Lemma on open covers of compact metric spaces, there is some  k'N  such
that any 'subcube'  K  of  In  with edge  2–k  is contained in some  ViK,  whence

(6) a(K)  +  a(ViK)  +  int(UiK)  +  UiK, Sdk(a)  '  Cn(X; U).



- Take a cycle  z ' Cn(X).  For every cube  a: In  X  which appears in  z,  we can proceed as above.
There is thus some  k'N  such that  z' = Sdk(z) ' Cn(X; U).  The composed chain homotopy  1: Sdk

 id: C*(X)  C*(X)  gives

(7) z – z'  =  %n+11n(z) + 1n–1%n(z)  =  %n+11n(z) (in  Cn(X)),

[z]  =  jn[z'], [z']  '  Hn(X; U).

(D) The induced homomorphism   jn: Hn(X; U)  Hn(X)  is injective.

- Take a cycle  z ' Cn(X; U))  which annihilates in  Hn(X):

(8) z = %c, for some chain  c ' Cn+1(X).

- As above: there is some  k'N  such that  c' = Sdk(c) ' Cn+1(X; U)).

- The composed chain homotopy  1: Sdk  id: C*(X)  C*(X)  gives

(9) c – c'  =  %1(c) + 1%(c)  =  %1(c) + 1(z)  (in  Cn+1(X)),

z  =  %c  =  %c' – %1(z) is a boundary in  Cn(X; U),

because  .  takes  Cn(X; U)  into  Cn+1(X; U),  by (4),  whence also its composite  1  does.

2.4. The exact sequence of Mayer-Vietoris

Theorem. Let  X  be a topological space,  U  and  V  subsets of  X  such that  X = int(U) ) int(V)  and
A = U7V.  There is an exact sequence of singular homology groups

  hn  kn  4n
(1) ...   Hn(A)           Hn(U)0Hn(V)           Hn(X)           Hn–1(A) ...

...    H0(A)         H0(U)0H0(V)         H0(C)  A

where (writing  i: A + U,  j: A + V,  u: U + X,  v: V + X  the inclusion mappings)

(2) hn  =  (i*n, j*n), hn[z]A  =  ([z]U, [z]V),

kn  =  [u*n, – v*n], kn([z]U, [w]V)  =  [z]X – [w]X  =  [z – w]X,

4n[z]  =  [%c] (z ' Zn(X),  z = c + c',  c ' Cn(U),  c' ' Cn(V)).

The sequence is natural for continuous mappings  f: X  X',  where  X' = int(U') ) int(V')  and
f(U) + U',  f(V) + V'.

Hint. The proof follows from two theorems:

(A) the Subdivision Theorem (2.3), applied to the 'generalised open cover'  U = (U, V)  of  X;

(B) the homology sequence of a short exact sequence of chain complexes (2.2), applied to:

h   k
(3) 0           Cn(A)           Cn(U)0Cn(V)           Cn(X; U)           0

hn  =  (i#n, j#n), kn  =  [u#n, – v#n].

2.5. The homology of the spheres; other computations

Theorem A. For  n > 0:    Hk(Sn)  Z  (k = 0, n);    Hk(Sn) = 0  (otherwise).



Hint. By induction. Apply Mayer-Vietoris to  Sn,  with open subsets  U = Sn \ {S}, V = Sn \ {N}

where:  N = (0,..., 0, 1),   S = (0,..., 0, – 1).

Theorem B. There is an isomorphism  4n: Hn(Sn)  Hn–1(Sn–1)  (n & 0)

which is natural for maps  f: Sn  Sn  such that:   f(Sn–1) + Sn–1,   f(N) = N,   f(S) = S.

Hint. Use the naturality of the M-V sequence on  f,  since:  f(U) + U,  f(V) + V).

We have two commutative squares (where  A = U7V;  g, h  are restrictions of  f;  i: Sn–1 + A)

4n i*n
Hn(Sn) Hn–1(A) Hn–1(Sn–1)

(1)   f*n    g*n    h*n

Hn(Sn) Hn–1(A) Hn–1(Sn–1)
4n i*n

- Other computations: using the Mayer-Vietoris sequence and homotopy invariance, one computes
easily the homology of: the torus, the Klein bottle, the projective plane, etc. For some computations one
should use the notion of split exact sequence (2.9).

2.6. The degree of an endomap of a sphere

Given a map  f: Sn  Sn,  the associated endomorphism of  Hn(Sn)  Z  is the multiplication by a
number  deg(f) ' Z

(1) f*n: Hn(Sn)  Hn(Sn), [z]  deg(f).[z].

Properties:

- deg(idSn)  =  1, deg(gf)  =  deg(g).deg(f),

- f  g   *   deg(f)  =  deg(g),

- deg(T)  =  (–1)n+1,   where  T: Sn  Sn  is the antipodal map  (T(x) = – x),

- if  f(x) 8 Tg(x),  9 x ' Sn,  then  f  g  and  deg(f)  =  deg(g).

2.7. Applications

(A) Theorem (The invariance of dimension). If  Rm  and  Rn  are homeomorphic, than  m = n.

Hint. Use the Alexandroff compactification and  Hm.

(B) Theorem (Retracts).  The sphere  Sn  is not a retract of  Rn+1  or  Bn+1.

Hint. Suppose, for a contradiction, that it is a retract and use  Hn.

(C) Theorem (The Brouwer fixed-point theorem). Every map  f: Bn  Bn  has at least a fixed point.

Hint. Suppose, for a contradiction, that  f  has no fixed points; construct a retraction of  Sn + Bn+1.

(D) Theorem (Vector fields on spheres). If  n > 0  is even, every tangent vector field on  Sn

annihilates at least at a point.

Hint. Suppose that  Sn  has a tangent vector field which never annihilates. Then, there is a map  f: Sn

 Sn  with  f(x)  orthogonal to  x,  everywhere. It follows that  f(x) 8 ± x;  by 2.6,  f  id: Sn  Sn



and  f  T: Sn  Sn  (where  T(x) = – x  is the antipodal map). Thus  deg(T) = deg(id) = 1;  but we
know that  deg(T) = (–1)n+1  (2.6), whence  n  must be odd.

(E) Remark. If  n > 0  is odd, the following map

(1) f: Sn  Sn, f(x1,..., xn+1)  =  (– x2, x1, – x4, x3,..., – xn+1, xn).

has  f(x)   x,  everywhere. Therefore, there is a tangent vector field on  Sn  which never annihilates.

(F) Theorem (Intermediate Value Theorem on the Cube). Let  f: In  In  be a continuous mapping
which sends each (n–1)-dimensional face into itself. Then  f  is surjective and sends each face (of any
dimension) onto itself.

Hint. This statement is trivial for  n = 0  (and amounts to the classical Intermediate Value Theorem for
n = 1).  If the statement holds for  n–1 & 0,  it follows that  f  covers the boundary of  In.  But  f  is
homotopic to the identity; collapsing the boundary, it follows that  f  induces a map  Sn  Sn  that is
still homotopic to the identity, whence surjective; finally the image of  f  also covers the interior of  In.

(G) Theorem (Intermediate Value Theorem on the Ball). Let  f: Bn  Bn  be a continuous mapping
which sends the boundary  Sn–1  into itself. If the restriction  f': Sn–1  Sn–1  is not homotopic to a
constant map (or, equivalently, if its homological degree is non null), then  f  is surjective.

Hint. Suppose for a contradiction that  f  is not surjective, and use the fact that  Sn–1  is a deformation
retract of the complement of any internal point in  Bn.

2.8. Exercises (Paths and homology in degree 1)

Let  a, b: I  X  be two path in the topological space  X.  Then

(a) the path  a  is a cycle   3   a  is a loop, i.e.  a(0) = a(1)  (%0
1(a) = %1

1(a));

(b) if  a, b  are homotopic with fixed endpoints, then  a – b  is a boundary  (a – b ' B1(X));

(c) if  a, b  are loops, homotopic as loops   *   [a] = [b]  in  H1(X),

(d) if  a  is a loop, homotopic as a loop to a constant loop  *   [a] = 0  in  H1(X),

(e) if the paths  a, b  are consecutive  (a(1) = b(0))   *   a + b – a*b  is a boundary,

(f) if  ~a  is the reversed path  (~a(t) = a(1–t))   *   a + ~a  is a boundary.

2.9. Split exact sequences  [*Homological Algebra*]

A short sequence  (m, q)  is said to split if the following equivalent conditions hold:

   m    q
(1) A                  B                 C

  p   n

(a)  (m, q)  is short exact and the monomorphism  m  is a section  (5 p:  pm = idA),

(b)  (m, q)  is short exact and the epimorphism  q  is a retraction  (5 n:  qn = idC),

(c) there exist two homomorphisms  p, n  such that:  pm = idA,  qn = idC,  mp + nq = idB.

- In this case,  B  is isomorphic to  A0C.

- If  C  is a free abelian group, the short exact sequence (1) necessarily splits.



3. Relative singular homology and homology theories

3.1. The Five Lemma [*Homological Algebra*]

Lemma. Given a commutative diagram of abelian groups (or R-modules), with exact rows

  A    B    C    D    E
(1)    u    v    w    u'    v'

  A'   B'   C'   D'   E'

if  u, v, u', v'  are isomorphisms, also  w  is an isomorphism.

Hint. By 'diagram chasing'.

3.2. Pairs of spaces

- Top2:  the category of pairs of topological spaces:

- a pair  (X, A)  is a space  X  with a subspace  A  (the pair is read as:  X  modulo  A),

- a map  f: (X, A)  (Y, B)  is a map  f: X  Y  such that  f(A) + B.

-  Top  is embedded in  Top2  identifying the space  X  with the pair  (X, Ø).

- A homotopy  F: f0  f1: (X, A)  (Y, B)  between maps of pairs is a map of pairs such that:

(1) F: (I×X, I×A)  (Y, B),   F(#, x)  =  f#(x),  for all  x'X (# = 0, 1);

- this is equivalent to an ordinary homotopy  F: f0  f1: X  Y  such that  F(I×A) + B.

- Terms of  Top  (objects, maps, homotopies, homology groups...) are called absolute;

- terms of  Top2  are called relative.

3.3. Relative Singular Homology (with integral coefficients)

-  C*: Top2  C*Ab (the functor of relative chains),

-  C*(X, A)  =  C*(X)/C*(A) (the complex of (relative) chains of the pair  (X, A)),

-  f#: C*(X, A)  C*(Y, B), f#(-i /i.
,ai)  =  -i /i.(fai) (f: (X, A)  (Y, B)).

- Note:  a relative chain  ,c ' Cn(X, A): is a cycle   3   %(,c) = 0  3   %c ' Cn–1(A),

is a boundary   3   c ' %(Cn+1(X)) + Cn(A).

-  Hn: Top2  Ab (relative singular homology),

-  Hn(A, X) =  Hn(C*(X, A)),

-  f*n: Hn(X, A)  Hn(Y, B), f*[,c]  =  [f#(,c)].

- Theorem. This functor is homotopy invariant.

Hint. Given a homotopy  F: f  g: (X, A)  (Y, B)  between maps of pairs (3.2), the homotopy
between the chain morphisms  f#, g#: C*(X)  C*(Y)  constructed in 1.7 for the absolute case



(1) 2n: Cn(X)  Cn+1(Y), 2n(a)  =  F.(I×a) (a: In  X),

takes  Cn(A)  into  Cn+1(B),  and induces a homotopy  :: f#  g#: C*(X, A)  C*(Y, B).

3.4. Theorem (The homology sequence of a pair)

For every pair of topological spaces  (X, A),  the following sequence is exact and natural

  u*n    v*n     4n
(1) ...  Hn(A)         Hn(X)         Hn(X, A)         Hn–1(A) ...  H0(X)  H0(X, A)  0

where  u: A + X  is the inclusion,  v: (X, Ø)  (X, A)  is defined by the identity of  X,  and the
connective homomorphism  4n  is

(2) 4n: Hn(X, A)         Hn–1(A), 4n[,c]  =  [%c] (,c ' Cn(X, A)).

Hint. By 2.2, the natural short exact sequence of chain complexes

(3) 0  C*(A)         C*(X)         C*(X, A)  0

yields the exact sequence (1), including its naturality and the formula (2).

3.5. Theorem (Excision)

If  X  is a topological space,  U + A + X  and  cl(U) + int(A),  then the inclusion mapping

(1) u:  (X \ U, A \ U)  (X, A),

induces isomorphism in homology:  u*n: Hn(X \ U, A \ U)  Hn(X, A).

Hint. By hypothesis, the family  U = (X \ U, A)  forms a 'generalised open cover' of  X.

- By Subdivision (2.3), the inclusion  C*(X; U)  C*(X)  induces an iso in homology.

- Applying the Five Lemma (3.1) to the homology sequences of the following commutative diagram
with short exact rows

  0  C*(A) C*(X; U) C*(X; U)/C*(A)  0
(2)

  0  C*(A) C*(X) C*(X, A)  0

it follows that also the canonical morphism  C*(X; U)/C*(A)  C*(X, A)  induces iso in homology.

- Finally, by a Noether isomorphism

(3) C*(X; U)/C*(A)  =  (C*(X \ U) + C*(A))/C*(A)  

    C*(X \ U)/(C*(X \ U) 7 C*(A))  =  C*(X \ U)/(C*(A \ U)  =  C*(X \ U, A \ U).

3.6. Definition of Homology Theories (The axioms of Eilenberg-Steenrod)

An (abstract) homology theory consists of the following data:

(a) for each pair of topological spaces  (X, A),  a sequence  Hn(X, A)  of abelian groups,

(b) for each map  f: (X, A)  (Y, B),  a sequence  f*n: Hn(X, A)  Hn(Y, B)  of homomorphisms,

(b) for each pair  (X, A),  a sequence  4n: Hn(X, A)  Hn–1(A, Ø)  of homomorphisms,



so that the following axioms hold (writing  Hn(X)  for  Hn(X, Ø)):

- Functoriality. The data produce a sequence of functors  Hn: Top2  Ab;

- in other words:  (id(X, A))*n = idHn(X, A)  and  (gf)*n = g*n˚f*n  for  f, g  composable).

- Naturality. For  f: (X, A)  (Y, B),  the following diagram commutes

  f*n
Hn(X, A)   Hn(Y, B)

(1)    4n    4n  (f': A  B  is the restriction of  f).
Hn–1(A)   Hn–1(B)

f'*n

- Exactness. For every pair  (X, A),  the following sequence is exact  (u, v  as in 3.4)

  u*n    v*n     4n
(2) ...  Hn(A)         Hn(X)         Hn(X, A)         Hn–1(A) ...

- Homotopy Invariance. If  f, g: (X, A)  (Y, B)  are homotopic, then

(3) f*n = g*n: Hn(X, A)  Hn(Y, B) (n & 0).

- Excision. If  U + A + X  and  cl(U) + int(A), then the inclusion mapping  (X \ U, A \ U)  (X, A)

induces isomorphism in homology, in every degree.

- Dimension. Hn({*}) = 0  for all  n 8 0.

3.7. Comments

- The abelian group  H0({*})  is called: the group of coefficients of the theory.

- We have already proved (in 3.3-3.5) that Relative Singular Homology is a homology theory (in the
previous sense) with integral coefficients: its group of coefficients is  Z  (up to isomorphism).

- For every abelian group  G,  we shall construct a singular homology theory with coefficients in  G.
This requires the use of tensor products (of abelian groups).

4. Tensor products [*Homological Algebra, Multilinear Algebra*]

4.1. Modules on a commutative ring

- R  will always be a commutative ring with unit. R-modules and R-homomorphisms form the category
R-Mod.  In particular,  R  is a module on itself.

- Every abelian group has precisely one structure of Z-module; the two notions will be identified.

- If  R  is a field, modules are called vector spaces; this case will be considered at the end (4.8).

- Exact sequences have an obvious extension to R-modules.

- The free R-module on a set  I  can be constructed as a direct sum of copies of  R

(1) F(I)  =  R(I)  =  0i'I  R,



with the obvious canonical basis:  ei = (!ij)j'I   (i ' I),  often identified with  I.

- Exercise. An abelian group  A  has a structure of vector space on  Q  (rationals) if and only if it is
torsion-free and divisible (9a'A, 9n'Z:  n 8 0  *  5! x'A:  nx = a).  Then, the structure is unique.

- Exercise. A structure of  Z[X]-module on the abelian group  A  amounts to a homomorphism  A 
A.

4.2. Tensor product of modules

- If  A, B  are R-modules, a mapping  .: A×B  C  is said to be bilinear (on  R)  if:

(1) .(a + a', b)  =  .(a, b) + .(a', b), (2)   .(/.a, b)  =  /..(a, b),

(3) .(a, b + b')  =  .(a, b) + .(a, b'), (4)   .(a, /.b)  =  /..(a, b),

for all  a, a' ' A;  b, b' ' B;  / ' R  (this will be understood, below).  For  R = Z,  the properties (2)
and (4) are a consequence of (1) and (3).

- The tensor product  of  A, B  is an R-module  A ;R B  equipped with a bilinear mapping  .0

 .
  A×B   C

(5) .0
  h

 A;RB

such that, for every bilinear mapping  .: A×B  C  there is one and only one R-homomorphism  h
such that  . = h.0.

- It is easy to show that the solution is determined up to isomorphism (a unique isomorphism coherent
with the structural bilinear mappings).

- A solution exists:  A;RB = F(A×B)/H(A, B),  with  .0(a, b) = [(a, b)],  where:

-  F(A×B)  is the free R-module generated by the set  A×B  (formal linear combinations of its elements)

- H(A, B)  is the sub-module of  F(A×B)  generated by all the elements of the following types:

(1') (a + a', b) – (a, b) – (a', b), (2')   (/.a, b) – /.(a, b),

(3') (a, b + b') – (a, b) – .(a, b'), (4')   (a, /.b) – /.(a, b).

- We write  a;b = .0(a, b) = [(a, b)] ' A;RB  (for  a'A,  b'B).

- Then  (a+a');b = a;b + a';b,  (/.a);b = /.(a;b),  etc.

- Every element of  A;RB  can be written as a (finite) sum  -i ai;bi,  NOT uniquely.

4.3. Tensor product of homomorphisms

- The tensor product is a functor in two variables (covariant in both): given two R-homomorphisms  f:
A  A',  g: B  B'  there is a homomorphism

(1) f;g: A;RB  A';RB', (f;g)(a;b)  =  f(a) ; g(b),

and this construction preserves identities and composition:

(2) idA ; idB  =  id(A;RB), (f'˚f) ; (g'˚g)  =  (f';g')˚(f;g).



This functor is bilinear (additive and homogeneous in each variable):

(3) (f+f');g  =  f;g + f';g, (/.f);g  =  /.(f;g),

f;(g+g')  =  f;g + f;g', f;(/.g)  =  /.(f;g).

4.4. Exercises (for abelian groups:  R = Z)

- If  m, n  are coprime, then  Zm ;Z Zn = 0;

- more generally, if  mA = 0  and every element of  B  can be divided by  m,  then  A ;Z B = 0.

-  Zm ;Z Q = 0;

- more generally, if  T  is a torsion abelian group and  D  is divisible, then  T ;Z D = 0.

- Prove that  A ;Z Q  is a vector space on  Q.  The rank of an abelian group  A  is defined as

(1) rk(A)  =  dimQ (A ;Z Q).

- In particular, a finitely generated abelian group  A  is isomorphic to a direct sum  tA 0  Zn  (where  tA
is the torsion part of  A), and  rk(A) = n  (use 4.5D).

4.5. Basic properties

R  is a fixed commutative unital ring. We  write  A;B  for  A;RB.

(A) The tensor product is commutative. More precisely, there is a canonical isomorphism:

(1) A;B  B;A, a;b    b;a.

(B) The tensor product has a unit, the R-module  R.  Canonical isomorphism:

(2) A;R  A, a;/    /.a,      a    a;1R.

(C) The tensor product is associative. Canonical isomorphism:

(3) (A;B);C  A;(B;C), (a;b);c    a;(b;c).

(D) The tensor product is distributive on direct sums. Canonical isomorphism:

(4) (0i'I  Ai) ; B  0i'I  (Ai;B), (ai)i'I ; b    (ai ; b)i'I.

(E) Corollary. There are canonical isomorphisms:

(5) R(I) ; B    B(I)  =  0i'I  B, Rm ; B    Bm,

R(I) ; R(J)    R(I×J), Rm ; Rn    Rm.n.

(F) If  A, B  are R-free with bases  (ai)i'I , (bj)j'J ,  then  A;B  is free with basis  (ai ; bj)(i,j) ' I×J.

4.6. Exact functors (between categories of modules)

(A) A functor  F: R-Mod  S-Mod  is said to be left exact: if, given an exact sequence of type (1),
also the resulting sequence (2) is exact

(1) 0  A  B  C (2)   0  FA  FB  FC.

- Exercise. This is equivalent to saying that  F  preserves kernels (up to isomorphism).

(B) The functor  F  is right exact: if the same happens with the sequences:



(1') A  B  C  0 (2')   FA  FB  FC  0.

- This is equivalent to saying that  F  preserves cokernels (up to isomorphism).

(C) The functor  F  is said to be exact: if it satisfies the following equivalent properties:

(a)  F  preserves exact sequences, (b)  F  preserves short exact sequences,

(c)  F  preserves kernels and cokernels, (d)  F  is left and right exact,

(e)  F  is left exact and preserves epimorphisms, (e)  F  is right exact and preserves monom.

(D) The functor  F  is said to be additive: if  F(f + g) = F(f) + F(g),  for all parallel homomorphisms
f, g  (same domain and same codomain).

- Every additive functor preserves split exact sequences (by 2.9c).

4.7. Exactness properties of the tensor product

(A) For every module  X,  the functor  – ;RX: R-Mod  R-Mod  is right-exact: given an exact
sequence of type (1), also the resulting sequence (2) is exact

(1) A  B  C  0, (2)   A;X  B;X  C;X  0.

- Exercise. For  R = Z

(3) Zm ;Z Zn    Zd,   where  d = g.c.d.(m, n).

- Hint: Apply (A) to the exact sequence  Z  Z  Zm  0  produced by  k  m.k.

- Exercise. For  R = Z:  show that   – ;Z Zn  does not preserve monomorphisms.

(B) The R-module  X  is said to be flat if the functor  – ;RX: R-Mod  R-Mod  is exact:, i.e.
preserves all exact sequences. By 4.6, this is equivalent to saying that  – ;RX  preserves
monomorphisms.

- Every free module is flat. (One can prove that an abelian group is flat if and only if it is torsion-free.)

(C) For every module  X,  the functor  – ;RX: R-Mod  R-Mod  preserves all split exact sequences
(because their initial monomorphism has a left inverse; or - also - because  – ; X  is additive).

(D) For  R = Z  and every abelian group  X,  the functor  – ; X: Ab  Ab  preserves all exact
sequences of free abelian groups (because they can be subdivide into short exact sequences of free
abelian groups, which split.)

4.8. Tensor products of vector spaces

Let us assume that the base ring is a (commutative) field  K.  K-modules are called vector spaces
and have specific properties, essentially deriving from the fact that all vector spaces are free.

- In  K-Mod,  every monomorphism (resp. epimorphism) has a left (resp. right) inverse. All short
exact sequences in  K-Mod  split. Every additive functor  F: K-Mod  S-Mod  is exact (4.6D).

- Therefore, all vector spaces are flat: the functor  – ;K X  is always exact.

- There is a canonical homomorphism (the functor  Hom  will be studied in Ch. 6)

(1) i: A ;K B  HomK(A*, B), i(a;b)(#)  =  #(a).b (for  #: A  K),



where  A* = HomK(A, K)  is the dual of  A.

- Exercise: prove that, if  A  is finitely generated, then  i  is an isomorphism.

- Tensor product of vector spaces can be defined using bases (see 4.4F). But then, to define  f;g:
A;B  A';B',  one has to choose bases in  A,  B  and prove that  f;g  is well defined.

- Tensor product of finitely generated vector spaces can be defined as  A ;K B = HomK(A*, B).  This
can also be used for vector bundles.

5. Relative singular homology with coefficients in a group
G  is an abelian group. Tensor products are on  Z.

5.1. Main definitions

- The functor  -;G: Ab  Ab  has an obvious extension to chain complexes

(1) -;G: C*Ab  C*Ab,

A;G  =   (...  An;G  An–1;G  ...), % 'n  =  %n;G,

(f;G)n  =  fn;G: An;G  Bn;G (for  f: A  B  in C*Ab).

- The singular chain complex of a space, with coefficients in  G

(2) C*(–; G): Top  C*Ab, C*(X; G)  =  C*(X);G,

Cn(X; G)  =  Cn(X);G    0a G (a ' nX \ DegnX),

f#n(-i /i.ai)  =  -i /i.(fai) (/i ' G,  ai: In  X),

where  /i.ai = (/a) ' 0a G,  with:  /a = /i  for  a = ai,   /a = 0G  for  a 8 ai.

- Similarly, we have the singular chain complex of pair of spaces, with coefficients in  G

(3) C*(–; G): Top2  C*Ab, C*(X, A; G)  =  C*(X, A);G.

- Singular Homology of a pair of spaces, with coefficients in  G

(4) Hn(–; G): Top2  Ab Hn(X, A; G)  =  Hn(C*(X, A; G)),

Hn(f)  =  f*n, f*n[-i /iai]  =  [-i /i(fai)] (/i ' G).

- For  G = Z,  we find the previous chain complexes (and homology):  C*(X, A; Z)  C*(X, A).

5.2. Theorem (Subdivision for homology with coefficients in  G)

In the hypotheses of 2.3, the canonical morphism  C*(X; U);G  C*(X; G)  induces
isomorphism in homology, in every degree.

Hint. We deduce this from the Subdivision Theorem with integral coefficients (2.3).

- The short exact sequence (1) splits in every degree (its components are free abelian group)

j   p  j;G p;G
(1) C*(X; U)           C*(X)           D* (2) C*(X; U);G           C*(X; G)           D*;G

whence, applying  -;G,  also the sequence (2) is short exact.

- By the exactness of the homology sequence of (1), where all  j*n  are iso:  Hn(D*) = 0,  for all  n.



- Thus  D*  is an exact sequence of free abelian groups, and also  D*;G  is an exact sequence.

- By the exactness of the homology sequence of (2), where  Hn(D*;G) = 0:  all  (j;G)*n  are iso.

5.3. Theorem (Relative Singular Homology with coefficients in  G  and E-S axioms)

Relative Singular Homology with coefficients in  G  is a homology theory with coefficients in  G
(in the sense of Eilenberg-Steenrod).

Hint. Functoriality: see 5.1.

- Exactness and Naturality. The (natural) short exact sequence  C*(A)         C*(X)         C*(X, A)  has
free components. Therefore also  C*(A; G)         C*(X; G)         C*(X, A; G)  is short exact, and its
homology sequence is exact (and natural)

  u*n   v*n    4n
(1) ...  Hn(A; G)         Hn(X; G)         Hn(X, A; G)         Hn–1(A; G) ...  H0(X, A; G)  0

- Homotopy invariance. Let  F: f  g: (X, Y)  (Y, B)  be a homotopy of maps of pairs. We have
constructed a homotopy  : = (:n): f#  g#: C*(X, A)  C*(Y, B)  (3.3). Applying the additive
functor  -;G  one has a homotopy  (:n;G): f#  g#: C*(X, A; G)  C*(Y, B; G).

- Excision. Same proof as in 3.5, using the Subdivision Theorem with coefficients in  G  (5.2).

- Dimension and coefficients. Compute directly  Hn({*}; G).

5.4. Theorem (Mayer-Vietoris for singular homology with coefficients in  G)

In the same hypotheses of 2.4 there is an exact sequence, natural in the same sense

  hn kn    4n
(1) ...   Hn(A; G)           Hn(U; G)0Hn(V; G)           Hn(X; G)           Hn–1(A; G) ...

Hint. Same proof as in 2.4, using the Subdivision Theorem with coefficients in  G  (5.2).

5.5. Exercises

- Compute the homology of  Sn  and  P2,  with coefficients in  Q  and in  Zm.

- Study the projection  P2  S2,  viewing both as quotients of  I2.  Hint: use  H2(–; Z2).

6. The functor  Hom  [*Homological Algebra, Multilinear Algebra*]
R  is always a commutative ring with unit.

6.1. The functor  Hom

- If  A, B are R-modules,  HomR(A, B)  denotes the set of R-homomorphisms  A  B,  with the
pointwise structure of R-module

(1) (h + h')(a)  =  h(a) + h'(a), (/.h)(a)  =  /.h(a) (a'A,  /'R).

-  HomR  is a functor in two variables, contravariant in the first and covariant in the second

(2) HomR: R-Modop × R-Mod  R-Mod,

HomR(f, g): HomR(A, B)  HomR(A', B'), h  ghf (f: A'  A,  g: B  B'),



(3) HomR(idA, idB)  =  id(HomR(A, B)), HomR(ff', g'g)  =  HomR(f', g')˚HomR(f, g).

This functor is bilinear (additive and homogeneous in each variable):

(4) HomR(f+f', g)  =  HomR(f, g) + HomR(f', g), HomR(/f, g)  =  /.HomR(f, g),

HomR(f, g+g')  =  HomR(f, g) + HomR(f, g'), HomR(f, /g)  =  /.HomR(f, g).

6.2. Exercises (for abelian groups:  R = Z,  HomZ = Hom)

-  HomZ(Zm, B) = mB  (the subgroup of elements  b'B  such that  mb = 0).

-  HomZ(Zm, Z) = 0, HomZ(Zm, Q) = 0, HomZ(Zm, Zn)  Zd (d = g.c.d.(m, n)).

- If  m, n  are coprime, then  HomZ(Zm, Zn) = 0.

- More generally, if  mA = 0  and in  B  mb = 0  implies  b = 0,  then  HomZ(A, B) = 0.

- If  T  is a torsion abelian group and  B  is torsion-free, then  HomZ(A, B) = 0.

6.3. Basic properties of the functors  Hom

R  is a commutative unital ring. The properties of  HomR  in each variable must be distinguished.

(A) The module  A* = HomR(A, R)  is called the dual  of  A.  There is a canonical isomorphism:

(1) HomR(R, B)  B, h   h(1R),      b    (/  /.b).

(B) There are canonical isomorphisms:

(2) <i'I  HomR(A, Bi)  HomR(A, <j'J  Bj), (hj)j'J    h,     h(a)  =  (hj(a))j'J,

(3) <i'I  HomR(Ai, B)  HomR(0i'I  Ai, B), (hi)i'I    h,     h((ai)i'I)  =  -i'I  hi(ai),

(C) Corollary. There are canonical isomorphisms:

(4) HomR(A, RJ)    AJ  =  <j'J  A, HomR(R(I), B)    BI  =  <i'I  B,

HomR(A, Rn)    An, HomR(Rm, B)    Bm, HomR(Rm, Rn)    Rm.n.

(D) Exponential law. There is a canonical isomorphism:

(5) HomR(A;B, C)  HomR(A, HomR(B, C)), h   h',     h'(a): b  h(a;b).

6.4. Exactness properties of the functors  Hom

(A) The (covariant) functor  HomR(X, –)  is left-exact: it transforms an exact sequence (1) into an exact
sequence (2) (equivalently: it preserves kernels)

(1) 0  A  B  C

(2)   0  HomR(X, A)  HomR(X, B)  HomR(X, C).

(B) The (contravariant) functor  HomR(–, Y)  transforms an exact sequence (3) into an exact sequence
(4)  (equivalently: it transforms cokernels into kernels)

(3) A  B  C  0

(4)   0  HomR(C, Y)  HomR(B, Y)  HomR(A, Y).

- Exercise. For  R = Z,  deduce  HomZ(Zm, Zn)   Zd  from (B).



- Exercise. For  R = Z,  show that   HomZ(–, Zn)  is not exact.

(C) For every module  X,  the functors  HomR(X, –)  and  HomR(–, X)  preserve all split exact
sequences (because these functors are additive).

(D) For  R = Z  and every abelian group  X,  the functors  HomZ(X, –)  and  HomZ(–, X)  preserves all
exact sequences of free abelian groups.

7. Relative singular cohomology with coefficients in a group
G  is an abelian group. We use the contravariant functor  Hom(–, G) = HomZ(–, G).

7.1. Cochain complexes

- A cochain complex  A = ((An), (dn))  of abelian groups is a sequence

  d0   d1   dn

(1) 0 A0 A1 ...   An An+1 ...

with  dn+1.dn = 0.  A morphism  .: A  B  of cochain complexes is a sequence of homomorphisms
.n: An  Bn  commuting with differentials:  dn..n = .n+1.dn.  They form the category  C*Ab  of
cochain complexes of abelian groups.

- The n-cohomology functor of chain complexes:

(2) Hn: C*Ab  Ab (n & 0),

Hn(A)  =  Ker(dn )/ Im(dn–1), Hn(.)[=]  =  [.n(=)] (dn (=) = 0).

7.2. Main definitions

- The contravariant functor  Hom(–, G): Abop  Ab  transforms chain complexes into cochain
complexes

(1) Hom(–, G): (C*Ab)op  C*Ab,

Hom(A, G)  =   (...  Hom(An, G)  Hom(An+1, G)  ...), dn  =  Hom(%n+1, G)

Hom(f, G)n  =  Hom(fn, G): Hom(Bn, G)  Hom(An, G) (for  f: A  B  in  C*Ab).

- The singular cochain complex of a space, with coefficients in  G

(2) C*(–; G): Topop  C*Ab, C*(X; G)  =  Hom(C*(X), G),

Cn(X; G)  =  Hom(Cn(X), G)    {/: nX  G |  /(a) = 0  when  a ' DegnX},

(d/)(a)  =  /(%a),

f#n(µ)  =  (µ˚( f)n), f#n(µ)(a)  =  µ(fa) (for  f: X  Y).

- Note:  Cn(X; G)    <a G  (a ' nX \ DegnX).

- The singular cochain complex of pair of spaces, with coefficients in  G

(3) C*(–; G): (Top2)op  C*Ab, C*(X, A; G)  =  Hom(C*(X, A), G),

Cn(X, A; G)  =  Hom(Cn(X, A), G)    {/: nX  G |  /(a) = 0  for  a ' ( nA))(DegnX)},



(d/)(a)  =  /(%a).

- Singular Cohomology of a pair of spaces, with coefficients in  G

(4) Hn(–; G): (Top2)op  Ab Hn(X, A; G)  =  Hn(C*(X, A; G)),

Hn(f)  =  f*n: Hn(Y, B; G)  Hn(X, A; G), f*n[µ]  =  [f#n(µ)] (µ ' Cn(Y, B; G)).

- For  G = Z,  one writes:  C*(X, A) = C*(X, A; Z).

7.3. Theorem (Subdivision for cohomology with coefficients in  G)

In the hypotheses of 2.3, the canonical morphism  C*(X; G)  Hom(C*(X; U), G)  induces
isomorphism in cohomology, in every degree.

Hint. The proof is similar to the one for homology with coefficients in  G  (5.2)

7.4. Theorem (Relative Singular Cohomology with coefficients in  G  and E-S axioms)

Relative Singular Cohomology with coefficients in  G  is a cohomology theory with coefficients in
G  (in the sense of Eilenberg-Steenrod).

Hint. The axioms for cohomology are dual to the ones for homology. The proof is similar to 5.3.

7.5. Theorem (Mayer-Vietoris for singular cohomology with coefficients in  G)

In the same hypotheses of 2.4 there is an exact sequence, contravariantly natural

  hn kn    4n–1

(1) ...   Hn(A; G)           Hn(U; G)0Hn(V; G)           Hn(X; G)           Hn–1(A; G) ...

Hint. As in 2.4.
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