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0. Introduction

Category Theory yields a general frame for studying mathematical structures and their universal
constructions. Important mathematical tools can often be described as adjoint functors of obvious
procedures. Historically, this theory was born within Algebraic Topology and Homological Algebra,
around 1945.

These notes contain definition and statements, with few motivations and no proof (except some
hints). Proofs can be found in the references at the end.

We shall formulate category theory within a particular Set Theory, called NBG (von Neumann -
Bernays - Gödel), where one has sets and classes, and the class of all sets makes sense. This approach
is followed in [Mt] and - essentially - also in [AHS]; a brief exposition of NBG can be found in the
Appendix of [Ke].

Another setting widely used in category theory is ordinary set theory together with a Grothendieck
universe. This approach is followed in [Ma, Bo].

CHAPTER 1. Categories

1.1. Definition. A category  C  consists of the following data:

(a) a class  ObC,  whose elements are called objects of  C,

(b) for every pair  X, Y  of objects, a set  C(X, Y)  whose elements are called morphisms (or maps, or
arrows) of  C  from  X  to  Y  and denoted as  f: X  Y,

(c) for every triple  X, Y, Z  of objects of  C,  a mapping

C(X, Y) × C(Y, Z)  C(X, Z), (f, g)    gf,

called composition; notice that this partial composition law acts on pairs of consecutive morphisms,  f:
X  Y  and  g: Y  Z.

These data must satisfy the following axioms.

(1) Associativity. Given three consecutive arrows,  f: X  Y,  g: Y  Z  and  h: Z  W,  one has:
h(gf) = (hg)f.

(2) Identities. Given an object  X,  there exists an endomap  e: X  X  which acts as an identity
whenever composition makes sense; in other words if  f: Y  X  and  g: X  Z,  one has:  ef = f  and
ge = g.  One shows, in the usual way, that  e  is determined by  X;  it is called the identity of  X  and
written as  1X  or  id(X).

Remark. We will generally assume that the following condition is also satisfied:

(3) Separation. For  X, X', Y, Y'  objects of  C

if  C(X, Y) ! C(X', Y')  "   Ø  then  X = X'  and  Y = Y'.
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Therefore, a map  f: X  Y  has a well-determined domain  Dom(f) = X  and codomain  Cod(f) =
Y.  Concretely, when constructing a category, one can forget about this condition, since one can always
satisfy it by redefining a morphism  f̂: X  Y  as a triple  (X, Y; f)  where  f  is a morphism from  X
to  Y  in the original sense (possibly not satisfying the Separation axiom).

1.2. Categories of structured sets. We are mainly interested in categories of 'structured sets', where
the morphisms are mappings which preserve the structure (in some specified sense) and the
composition law is the ordinary composition of mappings. We shall use the following notation.

Set:  the category of sets and mappings between sets;

Top:  the category of topological spaces and continuous mappings;

Hsd:  the category of Hausdorff topological spaces and continuous mappings (between them);

Ab:  the category of abelian groups and their homomorphisms;

Gp:  the category of groups and their homomorphisms;

Mon:  the category of monoids (i.e. unitary semigroups) and their (unitary) homomorphisms;

Rng:  the category of unitary rings and their (unitary) homomorphisms;

R-Mod:  the category of modules on the unitary commutative ring  R  and their homomorphisms;

Ban:  the category of (real or complex) Banach spaces and their linear continuous mappings;

Ban1:  the category of (real or complex) Banach spaces and their linear mappings with norm # 1;

Mtr:  the category of metric spaces and Lipschitz mappings;

Mtr1:  the category of metric spaces and weak contractions.

R-modules are always assumed to be unitary. If the commutative ring  R  is a field, a module on  R
is also called a vector space, and  R-Mod  can be written as  R-Vct.

1.3. Small categories. A category  C  is said to be small if its class of objects is a set. Then the class
MorC  of all its morphisms is also a set.

(a) Every set  X  can be viewed as a small category  X,  where the objects are the elements of  X,  the
only morphisms are identities  id(x)  and the composition law only says that  id(x).id(x) = id(x),  for all
x $ X.  Such categories are called discrete. For instance, the cardinal  2 = {0, 1}  is a finite, discrete
category with two arrows,  id(0)  and  id(1).

(b) Let  X  be a preordered set, which means that it is equipped with a preorder relation  x  x'
(reflexive and transitive). Then  X  can be viewed as a small category  X,  where the objects are the
elements of  X;  the set  X(x, x')  contains precisely one arrow if  x  x'  (which can be written as
(x, x'): x  x'),  and no arrow otherwise. The composition is (necessarily)  (x', x").(x, x') = (x, x"),
and  id(x) = (x, x).  In particular, each finite ordinal defines a category, which will be written  0, 1, 2,...
Thus,  0  is the empty category,  1  is the discrete category on one object and  2  has precisely one non-
identity arrow:  0  1.

(c) Let  M  be a monoid. Then  M  can be viewed as a small category  M,  where there is one object
(say *)  and  M(*, *) = M.  Composition is the multiplication in  M;  the identity is the algebraic unit.
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(d) Let  R  be a unitary ring. One can define a small category  Mat(R)  whose objects are the natural
numbers, whose arrows  n  m  are the matrices  m×n  with coefficients in  R,  and whose
composition  BA  is matrix multiplication  (for  A: p  n,  B: n  m  and  BA: p  m).  The
identity  In = id(n)  is the  n×n  unit matrix. Notice that for every pair  (m, n)  there is a null matrix
Omn,  including when  m = 0  (no rows) or  n = 0  (no columns); this will become clearer at the light of
further developments, where such matrices correspond to null linear mappings (see 2.2, Exercise 1).

(e) Let  X  be a topological space. The fundamental groupoid  %1(X)  is the small category whose
objects are the elements of  X  and whose maps  [a]: x  x'  are equivalence classes of paths in  X,
from  x  to  x',  up to homotopy with fixed endpoints. Composition is by concatenation of consecutive
paths. The general definition of a groupoid is given below (1.4).

1.4. Isomorphisms, monomorphism, epimorphisms. Let  C   be a category. A morphism  f: X  Y
is said to be invertible, or an isomorphism, if it has an inverse, i.e. a morphism  g: Y  X  such that
gf = 1X  and  fg = 1Y.  Then,  g  is uniquely determined; it is called the inverse of  f  and written as  f–1.

Obvious verifications prove that:

(a) the identity of any object  X  is invertible, with  (1X)–1 = 1X;

(b) the inverse of an isomorphism  f  is invertible, with  (f–1)–1 = f;

(c) the composite of two consecutive isomorphisms  f, g  is invertible, with  (gf)–1 = f–1g–1.

Thus, the isomorphism relation  X  Y  between objects of  C   (meaning that there exists an
isomorphism  X  Y)  is an equivalence relation.

A morphism  f: X  Y  is said to be a monomorphism, or mono, if it satisfies the following
cancellation property: for every pair of maps  u, v: X'  X  such that  fu = fv,  one has  u = v.

A morphism  f: X  Y  is said to be an epimorphism, or epi, if it satisfies the 'other' cancellation
property: for every pair of maps  u, v: Y  Y'  such that  uf = vf,  one has  u = v.

Every isomorphism is mono and epi. A category is said to be balanced if the converse holds: every
morphism which is mono and epi is invertible. A groupoid is a category where every map is invertible;
e.g. the fundamental groupoid of a space (see 1.3(e)).

Proposition. Let  f: X  Y  and  g: Y  Z  be two consecutive maps in a category. Then:

- if  f  and  g  are both mono,  gf  is also mono; if  gf  is mono, then  f  is also;

- if  f  and  g  are both epi,  gf  is also epi; if  gf  is epi, then  g  is also.

Exercises. 1. Characterise the isomorphisms of the categories listed in 1.2 and 1.3.

2. Characterise the monomorphisms and epimorphisms of  Set,  Top,  Hsd,  Ab,  R-Mod,  Ban.
Notice that epimorphisms in  Hsd  need not be surjective mappings. Which of these categories are
balanced?

3. Prove that there exists a non-surjective morphism in  Mon  which is epi. (There is no elementary
characterisation of epimorphisms in this category, nor in  Rng.)

4. Epimorphism in  Gp  coincide with the surjective homomorphisms. The proof is not easy, see [Ma].

1.5. Retracts, split monos and epis. Suppose we have, in a category  C ,  two maps  i: A  X  and
p: X  A  such that  pi = idA.  Then  i  is a monomorphism (called a section, or a split
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monomorphism),  p  is an epimorphism (called a retraction, or a split epimorphism) and one says that
A  is a retract of  X.

Proposition. Let  f: X  Y  and  g: Y  Z  be consecutive maps in a category. Then:

(a) if  f  and  g  are both split mono,  gf  is also; if  gf  is a split mono,  f  is also;

(a*) if  f  and  g  are both split epi,  gf  is also; if  gf  is a split epi,  g  is also;

(b) if  f  is a split mono and an epi, then it is invertible;

(b*) if  f  is a split epi and a mono, then it is invertible.

Exercise. Characterise split monomorphisms and split epimorphisms in  Set  and  Ab.

Remark. There is no elementary characterisation of retracts in  Top.  Homology groups allow one to
prove, for instance, that the n-sphere  Sn  is not a retract of the euclidean space  Rn+1.

1.6. Subcategories. Let  C  be a category. A subcategory  C '  is defined by assigning:

(a) a subclass  ObC ' & ObC  (weak inclusion, of course), whose elements are called objects of  C ',

(b) for every pair of objects  X, Y  of  C ',  a subset  C '(X, Y) & C (X, Y),  whose elements are called
morphisms of  C ',  from  X  to  Y,

so that the following conditions hold:

(1) for every pair of consecutive morphisms of  C ',  their composite in  C  belongs to  C ',

(2) for every object of  C ',  its identity in  C  belongs to  C '.

Then  C',  equipped with the induced composition law, is a category.

One says that  C '  is a full subcategory of  C   if, for every pair of objects  X, Y  of  C ',  we have
C'(X, Y) = C (X, Y),  so that  C'  is determined by assigning its subclass of objects. For instance,  Ab  is
a full subcategory of  Gp,  which is a full subcategory of  Mon;  Hsd  is a full subcategory of  Top.

On the other hand, one says that  C '  is a wide subcategory of  C   if it contains all its objects.  For
instance,  Ban1  is a wide subcategory of  Ban  and  Mtr1  is a wide subcategory of  Mtr.

1.7. Congruences and quotients of categories. A congruence  R = (RXY)  in a category  C  consists
of a family of equivalence relations  RXY  in each set of morphisms  C (X, Y);  the family must be
consistent with composition:

(1)  if  f RXY f'  and  g RYZ g',  then  gf RXZ g'f'.

Then one defines the quotient category  D = C / R:  the objects are those of  C,  and  D(X, Y) =  C(X,
Y)/RXY;  in other words, a morphism  [f]: X  Y  in  D  is an equivalence class of morphisms  X  Y
in  C.  The composition is induced by that of  C,  which is legitimate because of (1):

(2) [g].[f]  =  [gf].

Exercises. 1. Prove that property (1) is equivalent to the conjunction of the following properties:

(3a) if  f RXY f'  and  g: Y  Z,  then  gf RXZ gf',

(3b) if  f: X  Y  and  g RYZ g',  then  gf RXZ g'f.
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2. Prove that, in  Top,  the homotopy relation  f  f'  is a congruence of categories. The quotient
category  HoTop = Top/   is called the homotopy category of topological spaces, and is important in
Algebraic Topology. Prove that a continuous mapping  f: X  Y  is a homotopy equivalence if and
only if its homotopy class  [f]  is an isomorphism of  HoTop.

1.8. Product categories. If  C   and  D  are categories, one defines the product category  C×D.  An
object is a pair  (X, Y)  where  X  is in  C  and  Y  in  D.  A morphism

(1) (f, g): (X, Y)  (X', Y'), f $ C (X, X'),   g $ D (Y, Y'),

is a pair of morphisms in  C  and  D.  The composition of  (f, g)  with  (f', g'): (X', Y')  (X", Y")  is
component-wise

(2) (f', g').(f, g)  =  (f'f, g'g).

The axioms of categories are easily verified. More generally, one defines the product  %i C i  of a
family of categories indexed on a set.

1.9. Opposite category and duality. If  C   is a category, the opposite (or dual) category, written  C*

or  Cop,  has the same objects as  C  and 'reversed' arrows,

(1) C*(X, Y)  =  C(Y, X),

with 'reversed composition'  g*f = fg.

Every notion of category theory has a dual notion, which comes from the opposite category (or
categories): thus, monomorphism and epimorphism are dual to each other, while isomorphism is a
selfdual notion. Every statement of category theory has a dual one: for instance, in 1.5, the statements
(a) and (a*) are dual, and it suffices to prove one of them; similarly, (b) and (b*) are dual.

CHAPTER 2. Functors and natural transformations

2.1. Covariant functors and isomorphism of categories. A (covariant) functor  F: C   D
consists of the following data:

(a) a mapping  F0: ObC   ObD,  whose action is generally written as  X  F(X),

(b) for every pair of objects  X, X'  in  C,  a mapping  FXX': C (X, X')  D(F(X), F(X')),  whose action
is generally written as  f  F(f),

so that composition and identities are preserved. In other words:

(1) if  f, g  are consecutive maps in  C,  then  F(gf) = F(g).F(f),

(2) if  X  is in  C,  then  F(idX) = idF(X).

Given a second functor  G: D  E ,  one defines in the obvious way the composed functor  GF:
C  E.  This composition is associative and has identities: the identity functor of each category

(2) idC: C   C, X  X,      f  f.

An isomorphism of categories is a functor  F: C  D  which is invertible, i.e. admits an inverse  G:
D  C.  This means a functor such that  GF = idC  and  FG = idD.
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Proposition (Characterisation of isomorphisms of categories). A functor  F: C   D  is an isomor-
phism if and only if all the mappings  F0  and  FXX'  considered above are bijective.

Being isomorphic categories is an equivalence relation  C  D,  by the usual argument (as in 1.4).

Exercise. Prove that  Ab  is isomorphic to the category  Z-Mod  of modules on the ring of integers.

Remarks. (a) Isomorphic categories are often perceived as 'the same thing'. For instance, the various
equivalent ways of defining topological spaces give rise to isomorphic categories that are nearly never
distinguished.

(b) Restricting to small categories (to avoid higher set-theoretic problems), there is a category  Cat  of
small categories and their functors.

2.2. Forgetful and structural functors. (a) Forgetting structure, or part of it, yields various examples
of functors between categories of structured sets, like the following obvious instances

(1) Top  Set, Rng  Ab  Set, Ban  R-Vct  Ab, Ban  Mtr  Hsd.

These are called forgetful functors, and often denoted by the letter  U,  which refers to the underly-
ing set, or underlying abelian group, and so on.

(b) A subcategory  C '  of C  yields an inclusion functor  C '  C,  which we also write as  C ' & C .  For
instance,  Hsd & Top  and  Ab & Gp & Mon.  Notice that these functors forget properties rather than
structure (being Hausdorff, etc.).

(c) A congruence  R  in a category  C  yields an obvious projection functor  P: C  C/R,  which is the
identity on objects and sends a morphism  f  to its equivalence class  [f].  For instance,  Top 
HoTop = Top/ .

(d) A product category  C×D  has two obvious projection functors  P1: C×D  C,  P2: C×D  D.

(e) By definition, a functor in two variables is simply an ordinary functor  F: C×D  E  defined on the
product of two categories. Fixing an object  X0  in  C ,  we have a functor  F(X0, -): D  E ;  and
symmetrically.

Exercises. 1. For a commutative unitary ring  R,  define a functor  F: Mat(R)  R-Mod  which
sends the natural number  n  to the free R-module  Rn.

2. Show that a functor  2  C   amounts to a map in  C ,  while a functor  2×2  C   amounts to a
commutative square in  C.

3. Define a functor  Set × Set  Set  which sends a pair of sets  (X, Y)  to their cartesian product
X×Y.

4. The construction of the fundamental groupoid  %1(X)  leads to a functor  %1: Top  Cat.  Since
this functor is invariant up to homotopy, there is an induced functor  HoTop  Cat.

2.3. Faithful and full functors. For a functor  F: C    D,  let us consider the mappings (of sets):

(1) FXX': C (X, X')  D(F(X), F(X')),  f  F(f).

F  is said to be faithful if all these mappings, for  X, X'  objects of  C,  are injective;  F  is said to be
full if all these mappings are surjective. An isomorphism of categories is full and faithful.
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The inclusion  C'  C  of a subcategory is always a faithful functor; it is full if and only if  C '  is a
full subcategory of  C  (see examples in 1.6).

The forgetful functors listed in 2.2.1 are faithful, not full. The following functor is not faithful

(1) Ob: Cat  Set, C    ObC,      F    F0

(It sends a small category to its set of objects and a functor  F  to the mapping  F0.)

Definition. A concrete category will be a category  C  equipped with a faithful functor  U: C    Set,
called its forgetful functor. Notice that  U  reflects monos and epis (see the Proposition below), but
need not preserve them.

Remarks. 1. All the categories of structured sets of 1.2 can be made concrete with the obvious
'underlying set' functor. However,  Ban1  has a more important forgetful functor, the unit ball (see 2.9)

(2) B1: Ban1  Set, B1(X)  =  {x $ X |  ||x|| # 1}.

2. The functor  Mat(R)  R-Mod  of Section 2.2 is faithful, and can be used to make  Mat(R)  into a
concrete category. It is often better to replace the vague notion of 'category of structured sets' with the
precise, more general notion of concrete category.

3. Not every category can be made concrete, but there are no elementary examples of this fact. P.
Freyd has proved that the homotopy category  HoTop  cannot be made concrete (1.7).

Proposition (Preservation and reflection properties of functors). (a) Every functor preserves
commutative diagrams, isomorphisms, retracts, split monos and split epis. (b) A faithful functor reflects
monos and epis (i.e. if  F(f)  is mono or epi, then  f  is also) and commutative diagrams. (c) A full and
faithful functor reflects isomorphisms, split monos and split epis.

Remarks. As a consequence of point (b) above, in a concrete category every morphism whose
underlying mapping is injective (resp. surjective) is mono (resp. epi). We already know that the
converse need not be true (cf. 1.4). As an application of point (a), the usual way of proving that a
topological subspace  A & X  is not a retract (in  Top)  is to find a functor  F: Top  Ab  (e.g. a
homology functor  Hn)  such that the associated homomorphism  F(A)  F(X)  is not a split mono in
Ab.

2.4. Natural transformations. Given two functors  F, G: C   D,  a natural transformation  ': F 
G: C   D  consists of the following data:

(a) for each object  X  of  C,  a morphism  'X: FX  GX  in  D  (called the component of  '  on  X,
and also written as  'X),

so that, for every arrow  f: X  X'  in  C,  we have a commutative square in  D:

 'X
 FX GX

(1)  Ff    Gf 'X'.F(f)  =  G(f).'X (naturality condition).
FX' GX'

'X'

In particular, a functor  F: C   D  always has a natural transformation  idF: F  F,  with
components  (idF)X = id(FX).
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Exercise. Characterise the natural transformations  idC  idC,  where  C  is  Set,  Ab  or  R-Mod.

2.5. Vertical composition and categories of diagrams. Suppose we have two vertically consecutive
natural transformations  ', (

F

 ' ': F  G: C   D,
(1)   C D

 (
(: G  H: C   D,

  H

Their vertical composition  (': G  H: C   D   is simply obtained by composing the
components of  '  and  (:

(2) ((')X  =  (X.'X:  FX  GX  HX.

Again, this composition is associative and has identities, given by the identities of functors (2.4).

A natural transformation  ': F  G  is invertible if it admits an inverse  (: G  F  for vertical
composition  (('  = idF,  '(  = idG).  Then  '  is also called a natural isomorphism, or an
isomorphism of functors; we say that  F, G  are isomorphic functors, and we write  F  G.  The latter
is, again, an equivalence relation.

Proposition (Characterisation of isomorphisms of functors). The natural transformation  ': F  G: C
 D  is invertible if and only if all its components are isomorphisms of  D .  Then the inverse has

components  (X = ('X)–1,  for all objects of  C.

Let  I  be a small category and  I = ObI  its set of objects. A functor  X: I  C   is also called a
diagram in  C  of shape  I.  It will often be written in 'index notation'

(3) X: I  C, i  Xi, a  (Xa: Xi  Xj) (for  i $ I  and  a: i  j  in  I).

 One writes  CI  the category whose objects are the functors  I  C  and whose morphisms are the
natural transformations  ': X  Y: I  C,  with vertical composition.

Examples.  For the discrete category  2  (1.3),  C2  is isomorphic to the product category  C×C.  For the
ordinal category  2,  C2  is the category of morphisms of  C  and commutative squares.  As to  C2×2,  we
already know (from 2.2) that a diagram of this type is a commutative square of  C

 X00   X10

(4)   

 X01   X11

while a morphism  ': X  Y: 2×2  C  amounts to a commutative cube in  C.

Exercise. Prove that assigning a natural transformation  ': F  G: C  D  is equivalent to giving a
functor  C  D2,  or also to giving a functor  C×2  D.

2.6. Whisker composition and horizontal composition. In the following situation:
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H   F  K
(1) C'   C   '   D  D'

 G

one defines the whisker composition  K'H:  KFH  KGH: C '  D',  with components

(2) (K'H)X'  =  K('(HX')): KFH(X')  KGH(X') (for every object  X'  in  C').

This 'ternary' composition law is associative and has identities, in the appropriate sense:

(3) K'(K'H)H'  =  (K'K) ' (HH') (associativity),

1D '1C  =  ', K.id(F).H  =  id(KFH). (identities).

Moreover, we have a reduced interchange property:

   F   F'
(4) C   '   D   (   E (G.F''  =  G''.(F.

  G  G'

This allows one to define the horizontal composition of two natural transformations  ', (  which
are horizontally consecutive, as in diagram (4)

(5) ( * '  =  (G.F''  =  G''.(F:  F'F  G'G: C    E.

Proposition. The horizontal composition of natural transformations is associative, has identities
(consisting of the identity transformations of identity functors) and satisfies the middle-four
interchange property with vertical composition:

F F'

 '  )
(1)   C D E  (*)) * ((')  =  (* * ')() * ').

 (   *

 H   H'

Remark. Restricting to small categories, we have enriched the category  Cat  of small categories and
functors (2.1) with 'higher morphisms', the natural transformations, having two composition laws,
vertical and horizontal, which satisfy various algebraic equations (for associativity, identities,
interchange). All this can be expressed by saying that  Cat  forms a 2-category (see 5.4); it is the
beginning of 'higher-dimensional category theory' - which is presently one of the main fields of
research in Category Theory.

2.7. Equivalence of categories and skeleta. An equivalence of categories is a functor  F: C   D
which is invertible up to isomorphism of functors, i.e. there exists a functor  G: D  C  such that  GF

 idC  and  FG  idD.

An adjoint equivalence of categories is a four-tuple  (F, G, +, ,)  where:

(1) F: C  D  and  G: D  C  are functors,

+: idC  GF  and  ,: FG  idD  are isomorphisms of functors,

F+  =  (,F)–1: F  FGF, +G  =  (G,)–1: G  GFG.
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Theorem (Characterisation of the equivalence of categories). The following conditions on a functor  F:
C  D  are equivalent:

(a) F  is an equivalence of categories,

(b) F  can be completed to an adjoint equivalence of categories  (F, G, +, ,),

(c) F  is faithful, full and essentially surjective on objects.

The last condition means that: for every object  Y  of  D  there exists some object  X  in  C  such that
F(X)  is isomorphic to  Y  in  D.  The proof of the equivalence is rather long and requires the axiom of
choice, for classes.

Remark. One says that two categories  C, D  are equivalent, and one writes  C  D,  if there exists an
equivalence as above. From property (c) it follows easily that this is indeed an equivalence relation.
Being isomorphic categories, written  C  D,  is a stronger fact.

Exercise. Prove that, for any commutative unitary ring  R,  the functor  F: Mat(R)  R-Mod  (see
2.2, Ex. 1) induces an equivalence of categories

(1) F: Mat(R)  D,

where  D  is the full subcategory of  R-Mod  determined by the finite-dimensional free R-modules.

Definition. A category  C   is said to be skeletal if any two isomorphic objects of  C   coincide. The
skeleton of a category  C  is, by definition, a skeletal category  C0  equivalent to  C .  One can prove its
existence by choosing (with the axiom of choice for classes) precisely one object in every
isomorphism class of objects of  C   and letting  C0  be the full subcategory of  C   determined by the
chosen objects. Then the inclusion  C 0 &  C   is an equivalence of categories, by the previous
characterisation theorem.

Proposition. (a) Two skeletal categories are equivalent if and only if they are isomorphic.

(b) If  C , D  have skeleta  C0, D0  (respectively), then  C, D  are equivalent if and only if  C0, D0  are
isomorphic.

Remark. Skeleta are not really important. But they make clear that an equivalence of categories is,
loosely speaking, an 'isomorphism up to multiplication of isomorphic objects'.

Exercises. 1. Without using the axiom of choice, construct a skeleton of the category  fSet  of finite
sets and mappings.

2. Prove that, if  K  is a commutative field, then  Mat(K)  is a skeleton of the category of finite
dimensional vector spaces on  K.

2.8. Contravariant functors. A contravariant functor  F: C   D  (notice the dot-marked arrow)
consists of the following data:

(a) a mapping  F0: ObC   ObD,  generally written as  X  F(X),

(b) for every pair of objects  X, X'  in  C ,  a mapping  FXX': C  (X, X')  D(F(X'), F(X)),  generally
written as  f  F(f),

so that composition is 'reversed' and identities are preserved. In other words:

(1) if  f, g  are consecutive maps in  C,  then  F(gf) = F(f).F(g),
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(2) if  X  is in  C,  then  F(idX) = idF(X).

F  can be viewed as a covariant functor  F': Cop  D,  which allows us to reduce contravariant
functors to the covariant ones.

Exercises. 1. Define a covariant functor  P*: Set  Set  which sends every set  X  to its set of parts
PX  and a contravariant functor  P*: Set  Set  which acts in the same way on objects.

2. Define, for an arbitrary category  C,  a functor

(3) Mor: Cop × C  Set, (X, Y)    C(X, Y),

and prove that, for  C = Set,  the functor  P*  considered above is isomorphic to the functor  Mor(-, 2):
Cop  Set  (where  2 = {0, 1}).

2.9. Representable functors. Let  X0  be an object of the category  C.  The functor

(1) Mor(X0, -): C   Set,

is said to be represented by the object  X0.  More generally, a functor  F: C    Set  is said to be
representable if it is isomorphic to the functor (1), for a suitable object  X0  in  C.  One proves that this
object is determined by  F  up to isomorphism.

Exercises. Prove that the standard forgetful functor  U: C  Set  is representable, when  C   is one of
the following categories:  Set, Top, Hsd, Ab, Gp, Mon, R-Mod, Ban.  Prove the same for the unit-ball
functor  B1: Ban1  Set.  The last exercise of 2.8 amounts to saying that  P*: Setop  Set  is
representable. Prove that  P*: Set  Set  is not representable.

Yoneda Lemma. Let  F, G: C    Set  be two functors, with  F = Mor(X0, -).  Then the canonical
mapping

(1) y:  Nat(F, G)  G(X0), '    ('X0)(idX0) $ G(X0),

from the set of natural transformations  ': F  G  to the set  G(X0)  is a bijection. This result can be
extended to a representable functor  F  Mor(X0, -),  making use of this isomorphism.

Hint. One constructs the inverse mapping as follows:

(2) y': G(X0)  Nat(F, G), y'(x)(X): Mor(X0, X)  GX,   f  (Gf)(x).

CHAPTER 3. Limits and colimits

3.1. Products and terminal object. In a category  C ,  the product of a family  (Xi)i$I  of objects,
indexed on a set  I,  is defined as an object  X  equipped with a family of morphisms  pi: X  Xi  (i $
I),  called projections, which satisfy the following universal property:

- for every object  Y  and every family of morphisms  fi: Y  Xi,  there exists a unique morphism  f: Y
 X  such that, for all  i $ I,  pif = fi.

The solution need not exist. But, if it exists, it is determined up to a unique coherent isomorphism,
in the sense that if  Y  is also a product of the family  (Xi)i$I  with projections  qi: Y  Xi,  then the
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morphism  f: X  Y  which commutes with all projections (i.e.  qif = pi,  for all indices  i)  is an
isomorphism.  The product of the family  (Xi)  is denoted as  %i Xi.

Hint. Let  g: Y  X  be the unique morphism such that  pig = qi,  for all  i,  and prove that  f  and  g
are inverse.

Definition. We say that a category  C   has products (resp. has finite products) if every family of
objects indexed on a set (resp. on a finite set) has a product in  C.

Remark. A family  (Xi)i$I  of objects of  C  amounts to a mapping  X: I  ObC .  Therefore, there is
one empty family of such objects, the trivial mapping  Ø  ObC .  Its product means an object  X
(equipped with no projections) such that for every object  Y  (equipped with no maps) there is a unique
morphism  f: Y  X  (satisfying no conditions). The solution is called the terminal object of  C ;
again, it need not exist, but is determined up to a unique isomorphism. It can be written as  .

Exercises. 1. Prove that a category has finite products if and only if it has binary products  X1 × X2
and a terminal object.

2. Prove that the categories  Set, Top, Hsd, Ab, Gp, Mon, R-Mod  have products. Prove that  Ban,
Ban1, Mtr  and  Mtr1  have finite products.

Remark.  Ban1  also has infinite products, but their construction is less elementary.

3.2. Equalisers and regular subobjects. Let  f, g: X  Y  be two parallel maps. Their equaliser is a
map  m: E  X  such that

(a)  fm  =  gm,

(b)  every map  h: Z  X  such that  fh = gh  factorises uniquely through  m,  i.e. there exists a unique
map  w: Z  E  such that  mw = h.

The solution, if it exists, is determined up to a unique isomorphism coherent with the data. The
uniqueness part in (b) is equivalent to saying that  m  is a monomorphism.

A monomorphism  m: E  X  which is the equaliser of some pair of maps  f, g: X  Y  is said to
be a  regular monomorphism.  A regular mono  m': E'  X  is equivalent to  m  if there exists an
isomorphism  u: E  E'  such that  m = m'u  (which means that  m'  is also an equaliser of the same
pair). A regular subobject of  X  in  C   is an equivalence class  [m]  of regular monomorphisms of
codomain  X,  in this sense; or, better, a chosen representative of such a class. (More generally, one
defines a subobject as a distinguished monomorphism, in a similar equivalence class.)

Exercise. Characterise the equalisers, regular monos and regular subobjects in  Set, Top, Hsd, Ab, R-
Mod, Ban1, Ban, Mtr  and  Mtr1.

3.3. Pullbacks. Let  f: X  Z,  g: Y  Z  be two morphisms with the same codomain. Their
pullback is an object  A  equipped with two maps  u: A  X,  v: A  Y  such that:

 u
  A   X

(1)    v    f

  Y   Z
g
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(a)  fu  =  gv,

(b)  for every triple  (A', u', v')  such that  fu' = gv',  there exists a unique map  w: A'  A  such that
uw = u',  vw = v'.

The solution, if it exists, is determined up to a unique isomorphism coherent with the data.

Theorem. If a category has binary products and equalisers, it also has pullbacks.

Exercise. Describe pullbacks in  Set, Top, Hsd, Ab, R-Mod.

3.4. General limits. Let  I  be a small category and  X: I  C  a diagram, for which we use the index
notation described in 2.5.

A cone for  X  is an object  A  of  C  equipped with a family of maps  (fi: A  Xi)i$I   in  C   such
that all the following triangles commute

 fi

  A  Xi

(1)  fj    Xa Xa.fi  =  fj (a: i  j  in  I).
  Xj

The limit of  X: I  C  is a universal cone  (L, (ui: L  Xi)i$I).  This means a cone of  X  such
that every cone  (A, (fi: A  Xi)i$I  'factorises uniquely through the former': i.e. there is a unique map
f: A  L  such that, for all  i $ I,  uif = fi.

Again, the solution need not exist. When it does, it is determined up to a unique coherent
isomorphism. The object  L  is denoted as  Lim(X).

One says that a functor  F: C  D  preserves the limit  (L, (ui: L  Xi)i$I)  of a functor  X: I 
C  if the cone  (FL, (Fui: FL  FXi)i$I)  is the limit of the composed functor  FX: I  D.  One says
that  F  preserves limits if it preserves those limits which exist in  C.  Analogously for the preservation
of products, equalisers, finite limits, etc.

Exercises. 1. Prove that products, equalisers and pullbacks are limits, over convenient small categories.

2. Prove that the uniqueness of  f  in the universal property of the limit is equivalent to saying that the
family  (ui: L  Xi)i$I  is jointly mono. This means that, given two maps  f, g: X  L  such that, for
all  i $ I,  uif = uig,  one has  f = g.

3. Prove that a representable functor  C  Set  always preserves limits.

3.5. Complete categories. A category  C  is said to be complete (resp. finitely complete) if it has a limit
for every functor  I  C  defined over a small category (resp. a finite category).

Theorem (Construction and preservation of limits). (a) A category  C   is complete (resp. finitely
complete) if and only if it has equalisers and products (resp. finite products).

(b) If  C  is complete, a functor  F: C  D  preserves all limits (resp. all finite limits) if and only if it
preserves equalisers and products (resp. finite products).

Examples. We conclude that  Set, Top, Hsd, Ab, Gp, Mon, R-Mod, Ban1  are complete, while  Ban,
Mtr  and  Mtr1  are finitely complete.
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Remark. Most forgetful functors between such categories preserve limits. The unit-ball functor  Ban1
 Set  preserves all limits, while the underlying-set functor of  Ban1  just preserves finite limits (as

the construction of infinite products in  Ban1  would show).

Exercise. Let  I  be a small category. Suppose that the category  C  has all I-based limits, i.e. it has the
limit of every functor  I  C.  Then there is a functor which sends every diagram  X: I  C .  to its
limit

(1) Lim: CI  C, X  Lim(X).

Theorem. A small category which is complete is necessarily a preordered set (and therefore a
complete 'pre-lattice').

3.6. Sums. We begin now to dualise the previous notions, writing things in a less detailed way. The
sum, or coproduct in  C  of a family  (Xi)i$I  of objects, indexed on a set  I,  is an object  X  equipped
with a family of morphisms  ui: Xi  X  (i $ I),  called injections, which satisfy the following
universal property:

- for every object  Y  and every family of morphisms  fi: Xi  Y,  there exists a unique morphism  f: X
 Y  such that, for all  i $ I,  fui = fi.

Again, if the solution exists, it is determined up to a unique coherent isomorphism. The sum of the
family  (Xi)  is denoted as  -i Xi.

The sum of the empty family is the initial object  :  this means that, for every object  X  there is
precisely one map    X.

Exercise. Prove that the categories  Set, Top, Hsd, Ab, Gp, Mon, R-Mod  have sums. Prove that
Ban, Ban1  have finite sums. (Again,  Ban1  has arbitrary sums, but their construction is less
elementary.)

3.7. Coequalisers, regular quotients and pushouts. Let  f, g: X  Y  be two parallel maps. Their
coequaliser is a map  p: Y  C  such that

(a)  pf  =  pg,

(b)  every map  h: Y  Z  such that  hf = hg  factorises uniquely through  p,  i.e. there exists a unique
map  w: C  Z  such that  wp = h.

The uniqueness part is equivalent to say that  p  is epi. An epimorphism  p: Y  C  is said to be
regular if it is the coequaliser of some pair of maps  f, g: X  Y;  it is equivalent to another regular
epi  p': Y  C'  if there exists an isomorphism  u: C  C'  such that  p' = up.  A regular quotient of
Y  in  C  is an equivalence class  [p]  of regular epis of domain  Y,  in this sense.

Let  f: X  Y,  g: X  Z  be two morphisms with the same domain. Their pushout is an object  A
equipped with two maps  u: Y  A,  v: Z  A  such that:

 f
  X   Y

(1)    g    u

  Z   A
v
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(a)  uf  =  vg,

(b)  for every triple  (A', u', v')  such that  u'f = v'g,  there exists a unique map  w: A  A'  such that
wu = u',  wv =v'.

Theorem. If a category has binary sums and coequalisers, it also has pushouts.

Exercise. Characterise the coequalisers, regular epis, regular quotients in  Set, Top, Ab, R-Mod.
Describe pushouts in the same categories.

3.8. General colimits and cocomplete categories. Let  I  be a small category and  X: I  C   a
diagram, in the notation of 2.5.

A cocone for  X  is an object  A  of  C  equipped with a family of maps  (fi: Xi  A)i$I   in  C  such
that all the following triangles commute

 fi

  Xi  A
(1) Xa      fj fj.Xa  =  fi (for all arrows  a: i  j  in  I).

  Xj

The colimit of  X: I  C  is a universal cocone  (L, (ui: Xi  L)i$I).  This means a cocone of  X
such that every cocone  (A, (fi: Xi  A)i$I  'factorises uniquely through the former': i.e. there is a
unique map  f: L  A  such that, for all  i $ I,  fui = fi.  The object  L,  determined up to a unique
coherent isomorphism, is denoted  Colim(X).

A category  C  is cocomplete (resp. finitely cocomplete) if it has a colimit for every functor  I  C
defined over a small category (resp. a finite category). If, for a fixed small category  I,  the category  C
has all I-based colimits, there is a functor

(2) Colim: CI  C, X  Colim(X).

Theorem (Construction and preservation of colimits). (a) A category  C   is cocomplete (resp. finitely
cocomplete) if and only if it has coequalisers and sums (resp. finite sums).

(b) If  C  is cocomplete, a functor  F: C  D  preserves all colimits (resp. all finite colimits) if and only
if it preserves coequalisers and sums (resp. finite sums).

3.9. Universal arrows, limits and colimits. We have a functor  U: A  C   and an object  X  of  C.

(a) A universal arrow from the object  X  to the functor  U  is a pair  (A, +: X  UA)  consisting of
an object  A  of  A  and arrow  +  of  C   which is universal, in the sense that every similar pair  (B, f:
X  UB)  factorises uniquely through  (A, +):  there exists a unique  g: A  B  in  A  such that the
following triangle commutes in  C

 +
  X  UA

(1)  f    Ug Ug.+  =  f.
 UB

(a*) Dually, a universal arrow from the functor  U  to the object  X  is a pair  (A, ,: UA  X)
consisting of an object  A  of  A  and arrow  ,  of  C   such that every similar pair  (B, f: UB  X)
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factorises uniquely through  (A, ,):  there exists a unique  g: B  A  in  A  such that the following
triangle commutes in  C

 ,
UA   X

(2)   Ug    f ,.Ug  =  f.
UB

Exercise. Construct the universal arrows from a set  X  to the forgetful functor  Mon  Set;   from a
set  X  to the forgetful functor  Ab  Set;  from a group  G  to the inclusion functor  Ab  Gp.

We show now that limits and colimits can be viewed as universal arrows. Let  I  be a small category
and  C  a category. Consider the category  CI  of diagrams  I  C   and their natural transformations
(2.5). Consider the diagonal functor

(3) D: C   CI, (DA)i  =  A,   (DA)a  =  idA (i $ I,  a  in  I)

which sends an object  A  to the constant functor at  A,  and a morphism  f: A  B  to the natural
transformation  Df: DA  DB: I  C  whose components are constant at  f.

Exercise. Prove that the limit of  X  in  C  is the same as a universal arrow  (L, ,: DL  X)  from the
functor  D  to the object  X  of  CI.  Dually, the colimit of  X  in  C  is the same as a universal arrow  (L,
+: X  DL)  from the object  X  of  CI  to the functor  D.

CHAPTER 4. Adjoint functors

4.1. Theorem and definitions of adjunction. Let  C   and  D  be categories. Adjoint functors  F: C
 D  and  G: D  C,  with  F  left adjoint to  G  (notation:  F  G)  can be equivalently presented in

four main forms.

(a) We assign two functors  F: C  D  and  G: D  C  together with a family of bijections

'XY: D(FX, Y)  C(X, GY) (X  in  C,  Y  in  D),

which is natural in  X, Y.  More formally, the family  ('XY)  is an invertible natural transformation

': D(F(-), .)  C( - , G(.)): Cop × D  Set.

(b) We assign a functor  G: D  C  and, for every object  X  in  C,  a universal arrow

(F0X, +X: X  GF0X) from the object  X  to the functor  G  (3.9).

(b*) We assign a functor  F: C  D  and, for every object  Y  in  D,  a universal arrow

(G0Y, ,Y: FG0Y  Y) from the functor  F  to the object  Y  (3.9).

(c) We assign two functors  F: C  D  and  G: D  C,  together with two natural transformations

+: idC  GF   (the unit), ,: FG  idD   (the counit),

which satisfy the triangular identities:  ,F.F+ = idF,  G,.+G = idG
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 F+  ,F  +G  G,
F FGF  F G GFG  G

  idF   idG

Given (a), one defines

+X  =  'X,FX(1FX): X  GFX, ,Y  =  ('GY,Y)–1(1GY): FGY  Y.

Given (b) or (c) and a map  v: FX  Y  in  D,  one defines

'XY(v)  =  G(v).+X: X  GFX  GY.

Moreover, in case (b), one defines  F  on maps in the unique way which makes the family  (+X)  a
natural transformation  +: idC  GF.

4.2. Remarks. The previous forms have different features. Form (a) is the classical definition of an
adjunction, and is at the origin of the name (compare with adjoint maps of Hilbert spaces). Form (b) is
used when one starts from an 'easily defined' functor and wants to construct its left adjoint; form (b*)
is dual to the previous one, and used in a dual way. Form (c) is the most adequate for the formal theory
of adjunctions (and makes sense in an abstract 2-category).

An adjoint equivalence (2.7) is the same as an adjunction where the unit and counit are invertible;
this follows immediately from form (c).

4.3. Main properties of adjoint functors

Theorem (Uniqueness). Given a functor, its left adjoint (if it exists) is uniquely determined up to
isomorphism.

Theorem (Composing adjoint functors). Given two consecutive adjunctions

(1) F:  C          D  :G, +: 1  GF, ,: FG  1,

H:  D          E  :K, .: 1  KH, ): HK  1,

there is a composed adjunction from the first to the third category:

(2) HF:  C          E  :GK,

G.F.+:  1  GF  GK.HF, ).H,K: HF.GK  HK  1.

Theorem (Adjoints and limits). A left adjoint preserves (the existing) colimits, a right adjoint preserves
(the existing) limits.

4.4. Exercises on adjunctions. 1. Construct the following adjoint functors.

(a) The left adjoint and the right adjoint to the forgetful functor  U: Top  Set.

(b) The left adjoint to the forgetful functors from  Ab, Gp, Mon, R-Mod  to  Set.  Prove also that such
functors do not have a right adjoint, showing that each of them does not preserve some colimit.

(c) The left adjoint to the embedding  Ab  Gp.  Prove also that the right adjoint does not exist.

2. Prove that the following constructions can be obtained as adjoints to obvious functors.

(d) Completion of a metric space.
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(e) Stone-Cech compactification of a topological space.

(f) Tensor product of modules.

(g) Rings of fractions.

(h) Limits and colimits in a category.

3. Show that the direct-sum functor  - / - : Ab × Ab  Ab  is, at the same time, left and right adjoint
to the diagonal functor  D: Ab  Ab × Ab.  The same holds, more generally, for  R-Mod.

4.5. Galois connections. A Galois connection is essentially an adjunction between ordered sets,
viewed as categories. Given a pair  X, Y  of ordered sets, it can also be presented in a contravariant
form, in the following equivalent ways.

(a) We assign two decreasing mappings  f: X  Y  and  g: Y  X  such that:

y # f(x)  in  Y   0   x # g(y)  in  X.

(b) We assign a decreasing mapping  g: Y  X  such that, for every  x $ X,  there exists:

f(x)  =  min{y $ Y  |  x # g(y)}.

(c) We assign two decreasing mappings  f: X  Y  and  g: Y  X  such that  gf 1 idX  and  fg 1 idY.

Remarks. This contravariant form is symmetric: there is no left and right part. An element of  X  is
said to be closed in the connection if  x = gf(x),  or equivalently if  x $ g(Y).

Exercises. 1. Prove that  f = fgf  and  g = gfg.  Prove that the connection restricts to a bijection
between the closed elements of  X  and those of  Y.

2. For a commutative unitary ring  R,  define a Galois connection between the following two sets of
parts, ordered by inclusion:

P(Rn), P(R[X1, X2,..., Xn]).

Plainly, every 'closed' subset of the second set is an ideal of polynomials, but the converse is not
true. If  R  is an algebraically closed commutative field, the 'closed' subsets of polynomials coincide
with the radical ideals (Nullstellensatz).

4.6. Reflective subcategories. A subcategory  C ' & C  is said to be reflective (notice: not 'reflexive') if
the inclusion functor has a left adjoint, and coreflective if it has a right adjoint.

Exercises. Prove that  Ab  is reflective in  Gp.  Prove that  Hsd  is reflective in  Top.  Prove that the
full subcategory of  Ab  formed by torsion abelian groups is coreflective in  Ab.

4.7. Theorem (Faithful and full adjoints). Suppose we have an adjunction  F  G,  with counit  ,:
FG  1.

(a)  G  is faithful if and only if all the components  ,Y  of the counit are epi;

(b)  G  is full if and only if all the components  ,Y  of the counit are split mono;

(c)  G  is full and faithful if and only if the counit is invertible.
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4.8. The adjoint Functor Theorem

Theorem (P. Freyd). Let  G: D  C  be a functor defined on a complete category. Then  G  has a left
adjoint if and only if it preserves all limits and:

(Solution Set Condition) for every  X  in  C  there exists a solution set, i.e. a set of objects  S(X)  in  D
such that every morphism  f: X  GY  (with  Y  in  D)  factorises as

f0

  X  GY0

(1)  f    Gg Gg.f0  =  f,
 GY

for convenient  Y0 $ S(X),  f0  in  C  and  g  in  D.

Exercises. Prove in this way the existence of the left adjoint to the forgetful functor  Gp  Set  and
to the embedding  Hsd  Top.

4.9. A digression on mathematical structures and categories. When studying a mathematical
structure with the help of category theory, it is crucial to choose the 'right' kind of structure and the
'right' kind of morphisms, so that the result is sufficiently general and 'natural' to have good properties
(with respect to the goals of our study) - even if we are interested in more particular situations.

For instance, the category  Top  of topological spaces and continuous mappings is a classical
framework for studying topology. Among its good properties there is the fact that all (co)products and
(co)equalisers exist, and are computed as in  Set,  then equipped with a suitable topology determined
by the structural maps. (More generally, this is true of all limits and colimits, and is a consequence of
the fact that the forgetful functor  Top  Set  has a left and a right adjoint, corresponding to discrete
and chaotic topologies). Hausdorff spaces are certainly important, but it is often better to view them in
Top,  as their category is less well behaved: coequalisers exist, but are not computed as in  Set,  i.e.
preserved by the forgetful functor to  Set.

(Many category theorists would agree with Mac Lane [Ma], saying that even  Top  is not suffi-
ciently good, because it is not a cartesian closed category, and prefer - for instance - the category of
compactly generated spaces; however, a reader interested in Algebraic Topology can be satisfied with
the fact that the standard interval and its powers are exponentiable in  Top;  see 5.2.)

Similarly, if we are interested in ordered sets, it is often better to view them in the category of
preordered sets and (weakly) increasing mappings, where (co)products and (co)equalisers not only
exist, but again are computed as in  Set,  with a suitable preorder determined by the structural maps.

Another point to be kept in mind is that the isomorphisms of the category (i.e. its invertible arrows)
should indeed 'preserve' the structure we are interested in, or we risk of studying something different
from our purpose. As a trivial example, the category  T  of  topological spaces and all mappings
between them has practically nothing to do with topology: an isomorphism of  T  is any bijection
between topological spaces. Indeed,  T  is equivalent to the category of sets, and is a 'deformed' way of
looking at the latter. Less trivially, the category  M  of metric spaces and continuous mappings misses
crucial properties of metric spaces, since its invertible morphisms do not preserve completeness. In
fact,  M  is equivalent to the category of metrisable topological spaces and continuous mappings, and
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should be viewed in this way. A 'reasonable' category of metric spaces should be based on Lipschitz
maps, as  Mtr  or  Mtr1.

Excluding particular cases is, generally speaking, a bad option.  Ab  and  Gp  are both important,
but the category of non-commutative groups seems to be of no importance; certainly, it has practically
none of the good categorical properties of  Ab  and  Gp.  Of course, one can always consider such
groups within the category  Gp,  when useful.

A striking example of this kind is concerned with the category  Sgr  of semigroups and their
homomorphisms. In the domain of 'Universal Algebra', a semigroup is assumed to be non-empty; now,
this exclusion - which is never assumed in Category Theory - would destroy much of the good
properties of  Sgr,  both from a categorical and a 'practical' point of view: for instance, subsemigroups
would not be closed under intersection and counterimages; the subsemigroups of a given semigroup
would no longer form a lattice; the category of semigroups would not be complete nor cocomplete.

CHAPTER 5. Complements

This is an outline of subjects which can be developed in seminars.

5.1. Monads and algebras. A monad in the category  C  is a triple  (T, +, µ)  where  T: C  C  is an
endo-functor, while  +: 1  T  and  µ: T2  T  are natural transformations (called the unit and
multiplication of the monad) which make the following diagrams commute:

+T T+    Tµ

  T   T2   T   T3   T2

(1)    µ    µT    µ

  T   T2   T
µ

It is easy to verify that an adjunction

(2) F:  C          A  :U, +: 1  UF,      ,: FU  1,

yields a monad  (T, +, µ)  on  C,  where  T = UF: C  C,  +  is the unit of the adjunction and  µ = U,F:
UF.UF  UF.

Given an arbitrary monad, as above, one defines the category  CT  of T-algebras (or Eilenberg-
Moore algebras for  T):  these are pairs  (X, a: TX  X)  consisting of an object  X  of  C  and a map
a  (the algebraic structure) satisfying two coherence axioms:

(2) a.+X  =  1X, a.Ta  =  a.µX,

+X    Ta
  X  TX   T2X TX

   a    µX    a

  X TX   X
a

A morphism of T-algebras  f: (X, a)  (Y, b)  is a morphism  f: X  Y  of  C  which preserves the
algebraic structures, in the sense that:  fa = b.Tf.
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There is an adjunction

(4) FT:  C          CT  :UT, +T = +: 1  UTFT,      ,T: FTUT  1,

whose associated monad coincides with the given one.

A functor  U: A  C  is said to be monadic, or to make  A  monadic over  C,  if it has a left adjoint
F: C  A  and moreover the following comparison functor from  A  to the category of algebras  CT  of
the monad associated to the adjunction

(5) K: A  CT, K(A)  =  (UA, U,A: UFUA  UA),

 is an equivalence of categories.

This formalisation of the algebraic character of a category is much wider than that given in
Universal Algebra: for instance, the category of compact Hausdorff spaces is monadic over  Set  (see
[Ma]).

Another important topic in this subject is Kleisli algebras: a category of free algebras on the given
monad.

Exercise. Present the category  Ab  of abelian groups as a category of T-algebras over  Set.

5.2. Monoidal categories. A monoidal category  (C , 2, E)  is a category equipped with a tensor
product, which is a functor in two variables

(1) C × C  C, (A, B)    A2B.

The latter is assumed to be associative up to a natural isomorphism  (A2B)2C  A2(B2C),  and
the object  E  is assumed to be an identity, up to natural isomorphisms  E2A  A  A2E.  All these
isomorphisms must form a coherent system, which allows one 'to forget them' and write  (A2B)2C =
A2(B2C),  E2A = A = A2E.

A symmetric monoidal category is further equipped with a symmetry isomorphism, coherent with
the other ones:

(2) s(X, Y): X2Y  Y2X.

The latter cannot be omitted: notice that  s(X, X): X2X  X2X  is not the identity, in general.

In a symmetric monoidal category  C,  an object  A  is said to be exponentiable if the functor  -2A:
C  C  has a right adjoint, often written as  ( - )A: C  C  or  Hom(A, -)  (and called then an internal
hom). Since adjunctions compose, it follows easily that all its powers  An  are also exponentiable, with

(3) Hom(An, -)  =  (Hom(A, -))n.

A symmetric monoidal category is said to be closed if all its objects are exponentiable. In the non-
symmetric case, one should consider a left and a right Hom functor. (For instance, this is the case of
the Kan tensor product of cubical sets.)

A category  C  with finite products has a symmetric monoidal structure given by the categorical
product. This structure is called cartesian, and  C   is said to be cartesian closed if all its objects are
exponentiable with respect to the cartesian product.  Cat  is cartesian closed, with the exponential
defined in 2.5. The category  Ab  of abelian groups is symmetric monoidal closed, with respect to the
usual tensor product and  Hom  functor.
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Ab  is not cartesian closed: for every abelian group  A " 0,  the product  –×A  does not preserve
sums.  Top  is not cartesian closed: for a fixed Hausdorff space  A,  the product  –×A  preserves
quotients, i.e. coequalisers, (if and) only if  A  is locally compact ([Mc], Thm. 2.1 and footnote (5)).
However, every locally compact Hausdorff space is exponentiable in  Top;  in particular, the standard
interval (and its powers) is exponentiable, a crucial fact in homotopy theory.

5.3. Additive categories. A preadditive category  C  is a category enriched on  Ab.  Explicitly, this
means that every hom-set  C(X, Y)  is equipped with a structure of abelian group and that composition
is bilinear. The zero element of  C(X, Y)  is written as  0XY: X  Y.

Let  C  be preadditive. The following conditions on the object  Z  are equivalent:

(a)  Z  is terminal, (b)  Z  is initial,

(c)  C(X, X)  is the null group, (d)  idZ  =  0ZZ.

In this case  Z  is the zero object, written as  0.

In the same situation, given two objects  X1, X2,  their biproduct  X = X1/X2  comes with injections
ui: Xi  X  and projections  pi: X  Xi  satisfying the following equivalent properties:

(i) (X, p1, p2)  is the product of  X1, X2  and the injections are  u1 = (idX1, 0),  u2 = (0, idX2);

(ii) (X, u1, u2)  is the sum of  X1, X2  and the projections are  p1 = [idX1, 0],  p2 = [0, idX2];

(iii) the following relations hold

 X1  X2
 u1  u2 piui  =  idXi,

(1)   X

  p1  p2 u1p1 + u2p2  =  idX.

 X1  X2

Therefore, in a preadditive category, the existence of binary (or finite) products is equivalent to the
existence of binary (or finite) sums, which are called biproducts and written as  /i Xi.

An additive category is a preadditive category with finite biproducts. A preadditive category is
finitely complete if and only if it is additive and has kernels.

Further topics to be developed are: additive functors; kernels and cokernels; abelian categories;
exact sequences; left and right exact functors.

5.4. Two-dimensional categories. A sesqui-category is a category  C  equipped with:

(a) for each pair of parallel morphisms  f, g: X  Y,  a set of 2-cells  C2(f, g)  whose elements are
written as  ': f  g: X  Y  (or  ': f  g),  so that each map  f  has a trivial (or degenerate, or
identity) endocell  id(f): f  f  (here also,  '  must determine its domain and codomain);

(b) a whisker composition, or reduced horizontal composition, for maps and homotopies
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h   f k
(1) X'   X   '   Y  Y' k˚'˚h:  kfh  kgh:  X'  Y',

 g

also written as  k'h;

(c) a concatenation, or vertical composition of 2-cells  (.'

f

 '
(2)   X Y (.': f  h: X  Y.

 (

  h

These data must satisfy the following axioms:

(3) k'˚(k˚'˚h)˚h'  =  (k'k)˚'˚(hh'), 3.((.')  =  (3.().', (associativities),

1Y˚'˚1X  =  ', k˚id(f)˚h  =  id(kfh) '.id(f)  =  '  =  id(g).', (identities),

k˚((.')˚h  =  (k˚(˚h).(k˚'˚h) (distributivity of the vertical composition).

A 2-category is a sesqui-category which also satisfies:

   f   f'
(4) X   '   Y   (   Z (g.f''  =  g''.(f (reduced interchange).

  g  g'

Then, one defines the horizontal composition of 2-cells  ', (  which are horizontally consecutive, as
in diagram (4)

(5) (˚'  =  (g.f''  =  g''.(f:  f'f  g'g: X   Z.

One can prove that the horizontal composition of 2-cells is associative, has identities (consisting of
the identity endocells  id(1X)  of identity arrows) and satisfies the middle-four interchange property
with vertical composition:

f f'

 '  )
(6)   X Y Z  (*.))˚((.')  =  (*˚().()˚').

 (   *

  h   h'

Examples and remarks. The prime example of such a structure is the 2-category  Cat  of small
categories, functors and natural transformations.

The usual definition of a 2-category is based on the complete horizontal composition, rather than on
the reduced one. But practically one generally works with the reduced horizontal composition; and
there are important cases of sesqui-categories where the reduced interchange property does not hold
(and one does not define a complete horizontal composition): for instance, the sesqui-category of chain
complexes, chain morphisms and homotopies.

The category  Top,  equipped with the ordinary homotopies of continuous mappings, forms a 2-
dimensional structure of a more general kind: it is not even a sesqui-category, since - for instance - the
vertical composition of homotopies is not associative (but associative up to higher homotopies).
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