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Abstract.  The notion of weak subobject, or variation, was introduced in [Gr4] as an extension of the
notion of subobject, adapted to homotopy categories or triangulated categories, and well linked with
their weak limits. We study here some formal properties of this notion. The variations in  X   can be
identified with the (distinguished) subobjects in the Freyd completion  FrX,  the free category with epi-
monic factorisation system over  X ,  which extends the Freyd embedding of the stable homotopy
category of spaces in an abelian category [Fr2]. If  X  has products and weak equalisers, as  HoTop  and
various other homotopy categories,  FrX  is complete; similarly, if  X  has zero-object, weak kernels and
weak cokernels, as the homotopy category of pointed spaces, then  FrX   is a homological category
[Gr1]; finally, if  X  is triangulated,  FrX  is abelian and the embedding  X  FrX   is the universal
homological functor on  X,  as in the original case [Fr2]. These facts have consequences on the ordered
sets of variations.
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Introduction

A variation, or weak subobject, of an object  A  in the category  X  is an equivalence class of
morphisms with values in  A,  where  x A y   if there exist maps  u, v  such that  x = yu,  y = xv
[Gr4]; among them, the monic variations (having some representative which is a monomorphism) can
be identified with subobjects. The variations of  A  form an ordered set  Var(A),  possibly large,
which is a lattice under weak assumptions on  X  (1.1). Dually, a covariation, or weak quotient, of
the object  A  is an equivalence-class of morphisms from  A,   extending the notion of a quotient.

Variations are well connected with weak limits (these are defined by the existence part of the usual
universal property), much in the same way as subobjects are connected with limits; thus, they are of
particular interest in homotopy categories and triangulated categories, which generally have ordinary
products but only weak equalisers. Nevertheless, the study of weak subobjects in ordinary categories,
like abelian groups or groups, is interesting in itself and relevant to classify variations in homotopy
categories of spaces, by means of homology and homotopy functors.

Various classifications are given in [Gr4]. The choice of the ground-category is crucial to obtain
results of interest. E.g., finitely generated abelian (co)variations always yield countable lattices,
whereas any prime order group  Z/p  has at least a continuum of abelian variations and a proper class
of abelian covariations. In the homotopy category of topological spaces,  HoTop = Top/ ,  we get a
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distributive lattice  Var (A) = Fib(A)  of types of fibrations over the space  A  (1.3), which is hard to
classify even in the simplest cases; restricting to CW-spaces, the cw-variations of the circle  S1  are
classified by the standard fibrations  n: S1  S1  (n > 0),  together with the universal covering  R 
S1,  consistently with what one might expect as "homotopy subobjects" of the circle (1.4).

Here, after a brief review of these results (Section 1), we show in Section 2 that variations can be
viewed as (distinguished) subobjects in a new category, by a universal construction. In fact, any cate-
gory  X  can be embedded in the Freyd completion  FrX,  or epi-monic completion, a quotient of the
category of morphisms  X2,  by the "same" procedure used by Freyd to embed the stable homotopy
category of spaces in an abelian category [Fr2]; in our general case, the result is the free category with
epi-monic factorisation structure over  X  (2.3). The weak subobjects of  X  in  X  correspond to the
distinguished subobjects of  X  in  FrX.  If  X  has ordinary products and weak equalisers,  FrX  has
all limits; moreover, counterimages of variations in  X  correspond to counterimages of distinguished
subobjects in  FrX.  Dual results hold for covariations, sums and weak coequalisers in  X,  quotients
and colimits in  FrX.  The regularity of  FrX  is considered in 2.6c.

Finally, the exactness properties of the completion are considered in Section 3. If  X  has zero
object, weak kernels and weak cokernels, as the homotopy category of pointed spaces,  FrX  is a
homological category, in the sense of [Gr1], and the normal variations of an object in  X  form a
lattice. If moreover in  X  every map is a weak kernel and a weak cokernel, then  FrX  is exact in the
sense of Puppe [Pu1, Mi, FS] and the variations of  X  (all normal) form modular lattices. Adding
also the existence in  X  of finite products (or sums),  FrX  is abelian; in particular, this holds for
every triangulated category  X,  and the embedding  X  FrX  is then the universal homological
functor on  X  (3.7), as in Freyd's original result.

 Normal or regular variations have appeared in Eckmann - Hilton [EH] and Freyd [Fr4-5], under
the equivalent form of "principal right ideals" of maps, to deal with weak kernels or weak equalisers.
Recently, in connection with proof theory, Lawvere [La] has considered a "proof-theoretic power set

X(A)",  defined as the "poset-reflection of the slice category  X/A",  which amounts to  Var(A).  A
different approach to "subobjects" in homotopy categories can be found in Kieboom [Ki].  FrX  is
related with the regular and Barr-exact completions of a category with limits or weak limits, studied in
Carboni [Ca] and Carboni - Vitale [CV]. Finally, let us recall that the pseudo algebras for the 2-monad
X  X2  are known to correspond to the factorisation systems over  X  (Coppey [Co]; Korostenski
- Tholen [KT]); similar relations link the induced 2-monad  X   FrX   with the epi-monic
factorisation systems over  X  (2.3).

The author gratefully acknowledges helpful remarks from F.W. Lawvere and P. Freyd.

1. Review of variations

This review of some results of [Gr4] is meant to motivate the interest of weak subobjects. Technically,
only the main definitions are necessary for the sequel.  X  is a fixed category.

1.1. Variations and covariations. A variation  [x]A,  or weak subobject, of the object  A  in  X
denotes a class of morphisms with values in  A,  equivalent with respect to mutual factorisation
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(1) x A y iff there exist  u,  v  such that   x = yu,   y = xv

   x
X A

(2)    u    v

Y A
  y

In other words,  x  and  y  generate the same principal right ideal of maps with values in  A  (or,
also, are connected by morphisms  x  y  x  in the slice-category  X/A  of objects over  A).  By a
standard abuse of notation, as for subobjects, a variation  [x]A  will generally be denoted by any of its
representatives  x.  The domain of a variation  x: X  A  is only determined up to a pair of arrows  u:
X  Y,  v: Y  X  such that  x.vu = x  (x  sees  its domain as a retract of  Y;  and symmetrically,
x' = xv: Y  A  sees its domain as a retract of  X).

The variations of  A  form a (possibly large) ordered set  Var(A),  with  x ! y  iff  x  factors
through  y.  The identity variation  1A  is the maximum. If  X  has an initial object,  Var(A)  has also a
minimum  0A:   A.  Weak pullbacks give meets of covariations; sums give joins

(1) "(xi: Xi  A)  =  x: #i Xi  A

(but weak sums would be sufficient). Recall that a weak (co)limit is defined by the existence part of
the usual universal property (see also 1.3 and 2.8).

A variation  x: X  A  is said to be epi if it has a representative which is so in  X,  or equivalently
if all of them are so. It is equivalent to the identity iff it is a retraction; a split epi onto  A  should thus
be viewed as giving the same information with values in  A  as  1A,  with redundant duplication. A
variation is said to be a subobject if it has some monic representative  m: M  A  (all the other
representatives are then given by the split extensions of  M,  and include all monics equivalent to  m).
The ordered set  Sub(A)  of subobjects of  A  is thus embedded in  Var(A).

Transformations of weak subobjects, induced by morphisms (direct and inverse images), or by
adjoint functors, or by product decompositions of objects, are considered in [Gr4]; in particular,
counterimages of variations are obtained via weak pullbacks.

Dually, the covariations, or weak quotients, of  A  form an ordered set  Cov(A),  containing its
quotients.

1.2. Examples. In  Set,  every epi splits, by the axiom of choice, and the unique epi variation of a
set  A  is its identity: variations and subobjects coincide. The covariations of a non-empty set coincide
with its quotients; but  Ø  has two covariations, the identity and  0Ø: Ø  {*}.

Similarly, in any category with epi-monic factorisations where all epis split, weak subobjects and
subobjects coincide. This property, and its dual as well, hold in the category  Set   of pointed sets, or
in any category of vector spaces (over a fixed field), or also in the category of relations over any
(well-powered) abelian category. In all these cases, the sets  Var(A)  and  Cov(A)  are small.

Consider now the category  Ab  of abelian groups and its full subcategory  Abfg  of finitely
generated objects (fg-abelian groups, for short). We have the lattice  Var(A)  of all abelian variations
of  A,  and – if  A  is finitely generated – the sublattice  Varfg(A)  of fg-variations of  A  (having repre-
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sentatives in  Abfg).  By the structure theorem of fg-abelian groups,  Varfg(A)  and  Covfg(A)  are
always countable.

Since every subgroup of a free abelian group is free, it is easy to show that the abelian variations
of a free abelian group  F  coincide with its subobjects (and are finitely generated whenever  F  is so).
In particular, the weak subobjects of the group of integers  Z  form a noetherian distributive lattice,
and can be represented by its "positive" endomorphisms

(1) xn: Z  Z, xn(a)  =  n.a (n $ 0)

xm ! xn    iff    mZ % nZ,    iff    n  divides  m.

The prime-order group  Z/p  has two subobjects and a totally ordered set of fg-variations, anti-
isomorphic to the ordinal  &+2,  which can be represented by the natural homomorphisms  xn
(including the natural projection  x': Z  Z/p)

(2) xn: Z/pn  Z/p, xn((1)  =  (1 (0 ! n ! ')

0  =  x0  <  x'  <  ...   <  x3  <  x2  <  x1  =  1.

But  Z/p  has at least a continuum of non-finitely generated variations ([Gr4], 1.5). Similarly,  Z/p
has a totally ordered set of fg-abelian covariations, anti-isomorphic to  &+1,  and a proper class of
abelian covariations ([Gr4], 1.6). The fg-variations of any cyclic group and of  Z/p)Z/p  are
classified in [Gr4] (Section 4).

Also in the category  Gp  of groups, the weak subobjects of a free group coincide with its
subobjects, by the Nielsen-Schreier theorem (any subgroup of a free group is free). But here a
subgroup of a free group of finite rank may have countable rank ([Ku], § 36). Thus, the set  Varfg(G)
% Var(G)  of fg-variations of an fg-group  G  is at most a continuum.

Consider now the full embedding  Ab % Gp.  For an abelian group  A,  the set of abelian
variations  Var(A)  is embedded in the set  VarGp(A)  of its group-variations. Every group-variation
y: G  A  has an obvious abelian closure  aby: ab(G)  A,  which is the least abelian variation of  A
following  y;  the latter is abelian iff it is equivalent to  aby;  Var(A) % VarGp(A)  is a retract.

The group-variations of  Z,  which is also free as a group, coincide with its subobjects and are all
abelian. On the other hand,  Z/2  has also non-abelian fg-variations ([Gr4], 1.7).

1.3. Homotopy variations. Consider a quotient category  X/ ,  modulo a congruence  f  g
(an equivalence relation between parallel morphisms, consistent with composition), which may be
viewed as a sort of homotopy relation, since our main examples will be of this type.

A -variation of  A  in  X  is just a variation in the quotient  X/ .  But it is simpler to take its
representatives in  X,  as morphisms  x:   A  modulo the equivalence relation:  x A y  iff there
are  u,  v  such that   x  yu,   y  xv.  The ordered set  Var (A)  is thus a quotient of  Var(A),  often
more manageable and more interesting. Similarly for covariations.

For a space  X,  we consider thus the ordered set  Var (X)  of its homotopy variations, in the
homotopy category  HoTop = Top/   of topological spaces (coinciding with the category of
fractions of  Top  which inverts homotopy equivalences). This ordered set, invariant up to homotopy
type, is a lattice. In fact,  Top  has (small) sums, consistent with homotopies, and homotopy pull-
backs [Ma], whence the quotient  Top/   has sums and weak pullbacks. Moreover, each homotopy
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variation can be represented by a fibration, because every map in  Top  factors as a homotopy equiva-
lence followed by a fibration; we can thus view  Var (X) = Fib(X)  as the lattice of types of fibrations
over  X.  Each homology functor  Hn: Top  Ab  can be used to represent homotopy variations as
abelian variations and, in particular, distinguish them.

A homotopy class  * = [f]: X  Y  acts on such lattices by direct and inverse images, giving a
covariant connection (an adjunction between ordered sets)

(2) ** :  Fib(X) Fib(Y) :  **

**[x]  =  [fx], **[y]  =  class of a weak pullback of  y  along  f

1 ! ****, ****[y]  =  [y]+**[1].

Globally, we get a homotopy-invariant functor  Fib  defined over  Top,  with values in the cate-
gory of (possibly large) lattices and "right-exact" connections [Gr4]. Dual facts hold for the lattice
Cov (X) = Cof(X)  of homotopy covariations, or types of cofibrations from  X.  Most of these
results can be extended to various other "categories with homotopies", as pointed spaces, chain
complexes, diagrams of spaces, spaces under a space (or over), topological monoids, etc. (see [Gr2,
Gr3, GM]; and references therein for other approaches to abstract homotopy).

Finally, it is interesting to show that the lattice  Fib(A) = Var (A)  is distributive, and actually
binary meets distribute over small joins. First, note that pullbacks in  Top  distribute over sums (see
[CLW] for the notion of "extensive" categories): given a (small) topological sum with injections  ui:
Xi % X  and a map  f: Z  X,  the pullback-spaces  Zi = f–1(Xi)  have topological sum  Z.  Second,
the sum-injections  ui  are fibrations (every homotopy in  X,  starting from a map with values in  Xi,
has image contained in the latter), whence the previous pullbacks are homotopy pullbacks in  Top
and weak pullbacks in  HoTop.  Now, given a family of variations  xi: Xi  A,  their join  x: X 
A  and a variation  y: Y  A,  form the following commutative diagram

      xi
Xi A

ui X x

(2)  fi     f    y

vi Z z
Zi Y

  zi

where the right-hand square is a weak pullback in  HoTop,  whence  yz = y+x  in  Fib(A),  and the
left-hand square too, constructed as above. Also the rectangle is a weak pullback, for every  i;  since
(vi)  is the family of injections of a topological sum, the join of  y+xi  =  yzi  is  yz = y+x.

1.4. CW-variations. But is important to restrict the class of spaces we are considering, to obtain
more homogeneous sets of variations, which one might hopefully classify. A first standard restriction
is the category  CW  of CW-spaces (pointed spaces having the homotopy type of a connected CW-
complex), with pointed maps; the variations of  X  in  CW/   will be called cw-variations, and
Varcw(X)  is a sublattice of the lattice  Var (X)  of all homotopy variations of  X.  But  Varcw(X)  may
still be large (as follows from Freyd's results on the non-concreteness of homotopy categories [Fr4-
5]), and further restrictions should be considered.
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The group variations of  Z,  coinciding with its abelian variations  xn: Z  Z  (1.2.1), have
corresponding cw-variations of the pointed circle  S1 = R/Z

(1) yn: S1  S1, yn[,]  =  [n,] (n $ 0)

ym ! yn    iff    n  divides  m

which realise them via  -1.  In fact, this sequence classifies all the cw-variations of the circle ([Gr4],
3.4). Note that, for  n > 0,  yn  is the covering map of  S1  of degree  n;  the universal covering map
p: R  S1  corresponds to the weak subobject  y0,  also represented by  {*}  S1.

More generally, any cluster of circles  #I S1  has cw-variations determined by the group-variations
of the free group  #I Z,  i.e. its subgroups ([Gr4], 3.4). Cw-variations of the sphere and the
projective plane are also studied in [Gr4] (2.4-5).

2. Weak subobjects and the generalised Freyd completion

We prove that variations in the category  X  can be identified with distinguished subobjects in the
Freyd completion  FrX,  which extends the Freyd embedding of the stable homotopy category into an
abelian category [Fr1-3].

2.1. Factorisation systems. A category with factorisation system  C,  or fs-category for short, is
equipped with a pair  (E, M)  satisfying the usual axioms [FK, KT, CJKP, JT]:

(fs.1) E,  M  are subcategories of  C  containing all the isomorphisms,

(fs.2) every morphism  u  has a factorisation  u = u".u'  with  u'.E,  u".M,

(fs.3) (orthogonality) given a commutative square mf = ge, with  e.E,  m.M,  there is a unique
morphism  u  making the following diagram commute

   e
A B

(1) f u     g

C D m

The factorisation  u = u".u',  determined up to a unique central isomorphism, will be called the
structural, or fs-factorisation, of  u;  its middle object will be written  Im(u).  An fs-functor, of
course, is a functor between fs-categories which preserves their structure.

We also need to consider a strict  factorisation system  (E0, M0)  over  C,  satisfying:

(i) E0, M0  are subcategories of  C  containing all the identities,

(ii) every morphism  u  has a strictly unique factorisation  u = u".u'  with  u'.E0,  u".M0.

Then,  E0/M0  is the subcategory of identities; and there is a unique factorisation system  (E, M)
containing the former (or spanned by it), where  u = u".u'  is in  E  (resp.  M)  if   u"  (resp.  u')  is
iso. To prove this, the only non obvious point is the closure of  E,  or  M,  under composition. First,
one proves that, if  e.E0,  i  is iso and  ei = n.f  is the unique (E0, M0)-factorisation, then  n  is an



7

iso. Now, if  u  and  v  are consecutive in  E,  with  u", v"  iso, we have  vu = v"v'.u"u' =
v".(v'u").u' = v".(a".a').u' = v"a".a'u',  with  a'.E0,  a".M0  and  a"  iso; thus  vu . E.

A factorisation system is epi-monic if all E-maps are epi and M-maps are monics. Then, the
morphisms of  E  and  M  will be called fs-epis (or distinguished epis) and fs-monics, respectively.
There is a decomposition property for E-maps:  if  e.E  and  e = vu  then  v.E;  dually for  M.

2.2. The factorisation completion. Let  X  be any category and  X2  its category of maps. An
object of the latter is an X-morphism  x: X'  X",  which we may write as  x  when viewed as an
object of  X2;  a morphism  f = (f', f"): x  y  is a commutative square of  X

  f'
X ' Y'

(1)    x
 f"

   y

X" Y"

and the composition is obvious.  X2  has a canonical factorisation system (not epi-monic, generally),
where the map  f = (f', f")  is in  E  (resp. in  M)  iff  f'  (resp. f")  is an isomorphism

   f'
X ' X ' Y'

(2)    x
 f"

    (f    y

X" Y" Y"

but it is relevant to note that, inside this system, the morphism  f  has a unique strict factorisation (2),
whose middle object is the diagonal  (f  = f"x = yf'  of our square (1). In other words, our system is
spanned by a canonical strict system, where  (f', f")  is in  E0  (resp. in  M0)  iff  f'  (resp. f")  is an
identity.

X  is fully embedded in  X2,  identifying the object  X  with  1X,  and  f: X  Y  with  (f, f):
1X  1Y.  Each object  x  can be viewed as the structural image of the corresponding morphism  x:
X'  X"  of  X % X2,  whose (strict) factorisation is

(3) x  =  (x, 1).(1, x):  X'  x  X" Im(x)  =  x.

One deduces easily that the category with factorisation system  X2  is the factorisation completion,
or the free fs-category on  X:  every functor  F: X  C  with values in an fs-category has an fs-
extension  G: X2  C,  determined up to a unique natural isomorphism

(4) G(x)  =  ImC(Fx)

 (Fx)'   (Fx)"
FX' G(x) FX"

(5) Ff'
 (Fy)'

Gf
 (Fy)"

   Ff"

FY' G(y) FY"

(the uniqueness of  Gf  follows from the orthogonality axiom).
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2.3. The Freyd completion.  Now, the Freyd completion, or epi-monic completion,  FrX  is a
quotient  X2/R  of the category of morphisms of  X:  two parallel morphisms  f = (f', f"): x  y  and
g = (g', g"): x  y  of  X2  are R-equivalent whenever their diagonals  (f ,  (g  coincide

  f'
X ' Y'

(1)    x    (f    y

X" Y"
f"

The morphism of  FrX  represented by  f  will be written as  [f]  or  [f', f"].  Plainly, if  f'  is epi
(resp.  f"  is monic)  in  X,  so is  [f]  in  FrX.

Consider the previous strict factorisation in  X2  (2.2.2) and note that its middle object is precisely
(f ,  as well as the diagonals of both morphisms. Thus, our strict factorisation system in  X2  induces a
similar system in  FrX,  which is now epi-monic: a canonical epi (resp. monic) in  FrX  is a
morphism which can be represented by a square whose upper (resp. lower) arrow is an identity, and
every morphism  [f]  has a strictly unique canonical factorisation as a canonical epi followed by a
canonical monic (2.2.2). By 2.1, this strict system spans an epi-monic factorisation system for  FrX,
in the usual sense: the distinguished epis (or fs-epis, denoted by  )  are those maps  [f]  whose
factorisation presents an iso at the right-hand; dually for fs-monics (denoted by  ).

The quotient induces a full embedding  X  FrX,  which identifies  X  with  1X: X  X,  and
f: X  Y  with  [f, f]: 1X  1Y.  FrX  is the free category with epi-monic factorisation system over
the category  X:  every functor  F: X  C  with values in an epi-monic fs-category has an essentially
unique fs-extension  G: FrX  C.  The construction of  G  is the same as above (2.2.4-5); now,
G[f]  is well defined, independently of the representative  f,  because E- and M-maps of  C  are
respectively epi and monic, and the diagonal of the rectangle 2.2.5 is determined by  [f].

It is interesting to recall that the Cat-endofunctor  X  X2  has an obvious 2-monad structure
(with "diagonal" multiplication) whose pseudo algebras  X2  X  correspond to the factorisation
systems over  X  ([Co, KT]). Similarly, as suggested by F.W. Lawvere, one can show that the
pseudo algebras for the induced Cat-monad  X  FrX  correspond to the epi-monic factorisation
systems over  X.

2.4. Subobjects. The ordered set  SubFrX(X)  of subobjects of  X  in  FrX  (pertaining to the fs-
structure, i.e. determined by fs-monics, or equivalently by the canonical ones) can be identified with
the ordered set of variations of  X  in  X

   m
M X

(1)  m    1 SubFrX(X)  =  VarX(X).
X X

More generally, the ordered set  SubFrX(x) can be identified with the set of X-variations of  X"
lesser than  x.  Indeed, consider two morphisms  m: M  X',  n: N  X'  and the associated fs-
monics;  [m, 1] ! [n, 1]  means that there exist a map  [f', f"]: xm  xn  forming a commutative
triangle  [n, 1].[f', f"] = [m, 1]
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  f'  n  m
M N X ' M X '

(2)    xm
 f"

   xn    x =    xm xm    x

X" X" X" X" X"

This is equivalent to the existence of  f', f"  in  X  making the following diagram commute

  f'
M N

(3)    xm xm    xn

X" X"
 f"

but  f"  can always be replaced with  1X",  and all this reduces to  xm !X" xn.

Every object  UX  is fs-projective in  FrX  (satisfies the usual lifting property with respect to fs-
epis) and, dually, fs-injective. Moreover, each object  x  can be viewed as the image of the morphism
x: X'  X"  of  X % FrX,  whose canonical factorisation is

(4) x  =  [x, 1].[1, x]:  X'  x  X" Im(x)  =  x

so that  x  is a quotient of an fs-projective (namely,  X')  and a subobject of an fs-injective (X"):  FrX
has sufficient projectives and injectives, as an fs-category, belonging to the same class  U(ObX)  (a
sort of "Frobenius condition", according to [Fr1-2]). As an easy consequence, the fs-projectives of
FrX  coincide with the retracts of such objects  UX;  the fs-injectives as well.

2.5. Limits. We show now that: if  X  has (finite) ordinary products and weak equalisers, then
FrX  has all (finite) limits. These hypotheses apply to homotopy categories like  HoTop,  which do
have ordinary products and weak equalisers (see 2.8) but lack ordinary equalisers (a fact related to the
notion of flexible limits in bicategories, in the sense of [BKPS]). Of course, limits and weak limits are
understood to be small.

a) Products in  X  give products in  FrX,  in the obvious way (inherited from  X2)

   pi
0X'i X 'i

(1)    x
   qi

   xi x  =  0xi

0X"i X"i

and  U: X  FrX  preserves the existing products. Note that the cancellation property of the family
of projections  [pi, qi]  comes from the similar property of the family  (qi)  in  X;  generally, we
cannot replace  0X"i   with a weak product.

b) Weak equalisers in  X  produce ordinary equalisers in  FrX

    e      f'
E X ' Y'

(2)  xe    x
  

g'

f"
   y

X" X" Y"
  g"
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given a pair  [f], [g]: x  y,  if  e  is a weak equaliser of the pair  (yf', yg'),  the fs-monic  [e, 1X"]
is the equaliser of the pair.

Moreover, the embedding  U  takes a weak equaliser  e: E  X  (of a pair  f, g: X  Y)  to a
cone  Ue: UE  UX  which factors through the equaliser  [e, 1]  by a distinguished epi  [1, e]

   e      f
E E X Y

(3)    e
  

g

f
E X X Y

   e   g"

c) Our initial statement on the completeness of  FrX  is proved. But it is interesting and easy to give
an explicit construction of arbitrary limits (assuming X  has products and weak equalisers). Let be
given a diagram  D = ((xi), ([fu])): S  FrX  (a functor defined over a small category, with  i.ObS
and  u.MorS).  Choose a weak limit  L,  in  X,  of the diagram formed of all the arrows  xi: X'i  
X"i   and all the arrows  (f u: X'i   X"j ;  L  comes equipped with arrows  ai: L  X'i   such that  (f u.ai =
xjaj: L  X"j   (weakly universally); take a product  0X"i   with projections  qi

  ai   f'u
L X'i X 'j

(4)    a
  qi

   xi   f"u
   xj

0X"i X"i X"j

and let  a = <xiai>: L  0X"i .  Then the cone  [ai, qi]: a  xi   is the limit of  D  in  FrX.

d) In particular, if  X  has products,  U  satisfies a property with respect to all the existing weak limits
of  X,  extending the one already considered for weak equalisers:

  ai
L L Xi

(5)
   a

   a
  qi

L 0Xi Xi

(*)  U takes any weak limit  (L, ai)  of a diagram  X = ((Xi), (fu)): S  X  to a cone which is
connected to the limit-cone of  UX  in  FrX  by a distinguished epi.

e) As a marginal remark, one can note that, if in  X  weak equalisers exist and every map is a weak
equaliser of some pair, the fs-monics of  FrX  coincide with the regular monics and are categorically
determined. Practically, this assumption on  X  is mostly of interest for triangulated categories and
stable homotopy, when  FrX  is even abelian (3.7).

2.6. Theorem: Completeness properties of  FrX.  Let  X   be a category,  F: X   B   a
functor with values in an epi-monic fs-category,  G: FrX  B  its fs-extension. In the following,
one can also restrict everything to the finite case: finite products, finite limits, finite weak limits...

a)  If  X  has products,  also  FrX  has them and  U  preserves them. Moreover,  F  preserves them iff
G  does  (FrX  is the free epi-monic fs-category with products over  X,  as a category with products).
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b)  If  X  has products and weak equalisers,  FrX  is complete and fs-monics, fs-epis are stable under
pullbacks. The ordered sets of variations in  X  have small meets.  U  preserves products and satisfies
the property (*) on weak limits (2.5). Moreover, the following conditions are equivalent

(1) F  preserves products and satisfies (*) on equalisers

(2) F  preserves products and satisfies (*) on weak limits

(3) G  preserves all limits.

The property (*) in (1) can be equivalently replaced with the following (and similarly for (2)):

(**)  every diagram  X = ((Xi), (fu)): S  X  has a weak limit  (L, ai)  taken by  U  to a cone which
is connected to the limit-cone of  UX  in  FrX  by a distinguished epi.

c) If  X  has finite products and weak equalisers, and every map is a weak coequaliser, then  FrX  is
a regular category and all distinguished epis are regular.

Proof. After the previous construction of (co)limits in  FrX,  we only need to check the stability
property of the fs-factorisation under pullbacks, which is done below (2.7). The fact that (**) implies
(*) is easy: we know that  Uai = pi.e  with  e.E,  where  ((L, pi)  is the limit of  UX  in  FrX

UL Uai
   e

(4) Uu (L  – pi UXi
    f

UM Ubi

if  (M, bi)  is also a weak limit of  X,  take  u: L  M  such that  ai = biu  (all i)  and let  Ubi = pi.f;
cancelling the limit cone  (pi),  we have that  e = f.Uu,  whence also  f.E.

Note that the property (*) is not closed under composition, and does not lead - naturally - to a
category of categories with weak limits; to express the universal property b) as an adjunction would
require artificial constructs, probably of scarce interest.

2.7. Counterimages. In particular, we are interested in the construction of pullbacks in  FrX,
from weak pullbacks and ordinary products  A×B  in  X.

Given  [f]: x  z  and  [g]: y  z  in the left-hand diagram below

  f'  f'
X ' Z' X ' Z'

 h'   x
 k'

  g'
    z

 h'   x
k '

  g'
    z

(1) P Y' P Y'

   a X" f" Z"   xh' X" f" Z"

  h" k"
   y

  g"   1  f"
   y

  1

X"×Y" Y" X" Z"

let  h", k"  be the projections of the product  X"×Y",  let  (P, h', k')  be a weak pullback of  (zf', zg')
and  a = <xh', yk'>: P  X"×Y".  The morphisms  [h]: a  x  and  [k]: a  y  are our solution.
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In  FrX,  fs-epis and fs-monics are stable under pullbacks; the first property is obvious (if  g' = 1,
one can take  h' = 1);  the second is shown by another construction of the pullback, in the particular
case  g" = 1,  given in the right-hand diagram above.

The stability of fs-monics also shows that the identification  VarX(X) = SubFrX(X)  (2.4) is
consistent with counterimages, given by weak pullbacks of variations in  X  ([Gr4], 3.1) and
pullbacks of fs-monics in  FrX.  Take  f: X  Z  in X  (x = 1X,  z = 1Z)  and  g' = y . VarX(Z);  the
pullback of the fs-monic  [g', 1]: y  Z  is realised as above, so that the X-counterimage  h' = f*(y)
. VarX(X)  corresponds to the FrX-counterimage  [h', 1] = [f]*[y, 1] . SubFrX(X).

2.8. Spaces and homotopy. Let now  X = HoTop = Top/ ,  the homotopy category of spaces.

HoTop  has small products and weak limits. In fact,  Top  has small products, satisfying the
obvious 2-dimensional property with respect to homotopies (any family of homotopies  1i: fi  gi:
A  Xi  has a unique lifting  1: f  g: A  0Xi).  Moreover, it has homotopy equalisers, making
a pair of parallel maps homotopic, in a universal way (which induce weak equalisers in  HoTop)

   e    f, g
(1) E X Y 2: fe  ge: E  Y

(2) E  =  {(x, 3) . X×PY  |  3€(0) = f(x),  3€(1) = g(x)}, e(x, 3)  =  x, 2(x, 3; t)  =  3(t)

where the path-space  PY = Y[0, 1]  has the compact-open topology.

Similarly,  HoTop  has small sums and weak colimits, because  Top  has small sums, consistent
with homotopies, and homotopy coequalisers

   f, g     c
(3) X Y C 4: cf  cg: X  C

where  C  is a quotient  of  (I×X)+Y,  identifying  [0, x] = [fx]  and  [1, x] = [gx],  for  x.X.

It follows that the Freyd completion  FrHoTop  is complete and cocomplete. Every homotopy
invariant functor  F: Top  B  with values in an epi-monic fs-category has a unique extension to an
fs-functor  G: FrHoTop  B.  If  F  preserves (finite) products and satisfies the condition (*) over
weak equalisers (2.5) then  G  preserves (finite) limits; and dually.

In particular, for every space  S,  the S-homotopy functor  -S = [S, - ]: Top  Set  has a unique
extension to a limit-preserving fs-functor  - 'S: FrHoTop  Set;  since  Set  has unique epi-monic
factorisations, fs-functor means here to take fs-epis to epis and fs-monics to monics. Similarly, the
S-cohomotopy functor  -S = [ -, S]: Top  Setop  has a unique extension to a colimit-preserving fs-
functor  -'S: FrHoTop  Set op.

3. Weak subobjects and exactness properties of the Freyd completion

If  X   has a zero-object, weak kernels and weak cokernels, as the homotopy category of pointed
spaces  HoTop ,  then  FrX  is a homological category in the sense of [Gr1]. Further hypotheses (3.6)
make  FrX   Puppe exact, or abelian as in the original Freyd's result [Fr2]; the latter case occurs, in
particular, if  X  is triangulated (3.7). All this has consequences on the variations in  X.
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3.1. Exactness. In this section, we consider "exactness properties" for pointed categories (i.e.,
having zero object) and pointed functors (preserving the latter).

At the "weak level" (of  X)  we just need considering weak kernels and weak cokernels, and the
well-known notion of triangulated category (see Puppe [Pu2, 3], Verdier [Ve], Hartshorne [Ha],
Neeman [Ne]). At the "strict level" (of  FrX)  we need the notion of Puppe exact category (see Puppe
[Pu1], Mitchell [Mi], Freyd - Scedrov [FS]) and of homological category, a generalisation of the
former introduced in [Gr1]; both notions are briefly reviewed below. We refer to [Gr1] for examples
and a synopsis of homological algebra in homological categories; to references therein for the same
subject in Puppe exact categories (including the diagrammatical techniques of distributive homological
algebra, relevant for the study of spectral sequences and with no counterpart in the abelian context).

Let  A  be a pointed category with kernels and cokernels. Then every morphism  f  has a normal
factorisation  f = mgp,  where  p = cok(ker(f))  is its normal coimage (the cokernel of the kernel),  m
= ker(cok(f))  its normal image, and  g  is the unique map completing the factorisation

    ker(f)   f    cok(f)
Ker(f) A B Cok(f)

(1)    p   g    m

Cok(ker(f)) Ker(cok(f))

and we say that  f  is an exact morphism if  g  is iso.

The category  A  (pointed, with kernels and cokernels) is said to be Puppe exact if all its
morphisms are exact. Then, every monic is a normal monic (i.e., a kernel of some arrow) and every
epi is a normal epi. Every morphism has a unique factorisation by a normal epi and a normal monic;
and, conversely, this condition ensures that a pointed category is Puppe exact. For every object  A,
kernels and cokernels yield an anti-isomorphism between the lattices  Sub(A)  and  Quo(A)  of subob-
jects and quotients of  A;  such lattices are always modular. A category is abelian iff it is Puppe exact
and has finite products (or finite sums). A functor between Puppe exact categories is said to be exact
if it preserves kernels and cokernels (whence also zero objects); this amounts to preserving exact
sequences, or also the short exact ones. An exact functor between abelian categories automatically
preserves finite limits and colimits, and the sum of maps.

More generally, a pointed category  A  is homological [Gr1] if it satisfies the following axioms:

(ex1)  (semiexactness)  kernels and cokernels exist;

(ex2)  normal monics and normal epis are closed under composition;

(ex3)  (subquotient axiom, or homology axiom)  given a normal subobject  m: M  A  and a normal
quotient of  q: A  Q,  with  m $ ker(q),  the composite  qm  is an exact morphism (whose factorisa-
tion determines a subquotient of  A).

Let us also note that in a pointed epi-monic fs-category  C,  any normal monic is necessarily a
distinguished monic; in particular this holds for  (0  A) = ker(1A).  And dually for normal epis.

3.2. Kernels and cokernels. Assume now that the pointed category  X  has weak kernels and
weak cokernels. We shall prove (in 3.2-5) that  FrX  is a (pointed) homological category.
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To begin with, the zero object of  X  is still so in  FrX.  Moreover, every morphism  [f]  in  FrX
has kernel and cokernel, whose canonical representatives can be constructed choosing, in  X, a weak
kernel  m  and a weak cokernel  p  of the diagonal  (f

   m     f'
M X ' Y' Y' m . wker((f )

(1)    xm    x    (f    y    py

X" X" Y" P p . wcok((f )
  f"    p

(as in Section 2, the existence part of the universal properties comes from the analogue in  X;  the
uniqueness part from the fact that  [m, 1]  is monic in  FrX,  and  [1, p]  is epi). We shall write

(2) [m, 1]  =  ker[f]:  xm  x, [1, p]  =  cok[f]:  y  py.

We have thus proved that  FrX  satisfies (ex1), i.e. is (pointed) semiexact [Gr1]. The normal
factorisation  [f] = nim[f].[g].ncm[f]  considered above (3.1) is given by the following three maps

   g'     i
X ' X ' I Y'

(3)    x  cx    yi    y

X" C Y" Y"
   c   g"

(4) c . wcok(xm), i . wker(py); g'i  =  f', g"c  =  f"

(the existence of  g'  and  g"  being provided by the weak universal properties of  i  and  c,  since
py.f' = p (f  = 0  and  f".xm = (f m = 0).

Since  ncm[f]  and  nim[f]  are a distinguished epi and monic (3.1), respectively, the fs-factorisa-
tion of  [g]  yields the one of  [f].  The morphism  [f]  is exact when this  [g]  is iso; then, the normal
factorisation of  [f]  "coincides" with its fs-factorisation.

3.3. Short exact sequences. We prove now that every commutative diagram in  X  with

   m
M X ' X ' m . wker(px)

(1)    xm    x
  p

   px

X" X" P p . wcok(xm)

yields a short exact sequence in  FrX,  and actually the generic one (any such can be obtained in this
way, up to isomorphism)

   [m, 1]   [1, p]
(2) x [m, 1]  =  ker[1, p], [1, p]  =  cok[m, 1].

In fact, take a normal subobject of  x: X'  X",  [m, 1] = ker[f', f"],  with  m . wker(f"x).
Take now its cokernel  [1, p],  with  p . wcok(xm).  General properties of semiexact categories
would ensure that  [m, 1] = ker[1, p];  but, directly, we can say more: the pair  (m, 1)  is actually a
canonical representative for this kernel, i.e.  m . wker(px),  noting that  f"  factors through  p,  so
that any morphism  v  which annihilates  px  also annihilates  f"x  and factors through  m
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   m    x    f"
M X ' X"

(3)    v
   0

   p    u

P

In particular, a normal subobject of  x: X'  X"  is always determined by an arrow  µ = [m, 1],
where  m: M  X'  is a weak kernel in  X  of  px,  for some  p: X"  .  As in 2.4, two weak
kernels  m: M  X',  n: N  X'  give equivalent normal monics  [m, 1]  [n, 1]  (determine the
same normal subobject of  x)  iff  xm  and  xn  provide the same variation of  X".

Just because  FrX  is semiexact, the normal subobjects of any object  x: X'  X"  form a
(possibly large) lattice  Nsb(x)  [Gr1]. The normal quotients of  x  form a second lattice  Nqt(x),  anti-
isomorphic to the former via kernel-cokernel duality. In particular, for  x = 1X,  we get the lattice of
normal variations of  X  in  X,  determined by weak kernels  m: M  X  up to mutual factorisation.

3.4. The axiom (ex2). We prove now that normal monics in  FrX  are closed under composition;
by duality, the same holds for normal epis.

Consider the consecutive normal monics  [n, 1]  and  [m, 1];  by 3.3, we know that they are linked
to their cokernels  [1, p]  and  [1, q]  by the following relations

M
   n

1    m

N M X ' X '
(1)  xmn    xm

  m
   x   a

  p
   px (a  =  qxm)

X" X" X" P

q    u
Q

(2) m . wker(px), p . wcok(xm); n . wker(q.xm), q . wcok(xm.n).

Thus,  p  vanishes over  xmn  and factors through  q,  as  p = uq.  It follows easily that  [mn, 1] =
ker [q, 1X']

 mn
N X ' X '

(3)  xmn    x    qx mn . wker(qx)
X" X" Q   q

(If  qx.v = 0,  also  px.v = 0,  whence  v = mv';  now  qxm.v' = qx.v = 0,  and  v'  factors through
n,  which means that  v  factors through  mn.)

3.5. The subquotient axiom (ex3). We finish proving that  FrX   is homological. Given a
normal subobject and a normal quotient of  x: X'  X",  satisfying the following relation

(1) [m, 1]: m  x, [1, q]: x  q, [m, 1]  $  [n, 1]  =  ker[1, q]

we have to show that the composite  [1, q].[m, 1]  is exact.
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Let  [1, p] = cok [m, 1] ! [1, q].  By hypothesis, there exist morphisms  f, g  such that  xm.f =
xn,  and  g.qx = px.  It suffices thus to consider the following commutative diagram

M
   f

1   m

N M X ' X ' X '
(2)     xn    xm

  m
   x   a

  q
   qx

   g
   px (a  =  qxm)

X" X" X" Q P

q  1
Q

where  [1M, q]  is a normal epi (since  q . wcok(xn) = wcok(xm.f))  and  [m, 1Q]  a normal monic
(since  m . wker(px) = wcok(g.qx)).

3.6. Theorem: Exactness properties of  FrX. Let  X   be a pointed category,  F: X   B  a
zero-preserving functor with values in a pointed epi-monic fs-category with kernels and cokernels,
G: FrX  B  its fs-extension.

a) Let  X  have weak kernels and weak cokernels. Then  FrX  is a pointed homological (3.1) epi-
monic fs-category; the normal variations (3.3) of  X  in  X  form a lattice, identified with the lattice of
normal subobjects of  X  in  FrX.  The functor  G  preserves kernels and cokernels iff

(**)  every X-morphism  f: X  Y  has a weak kernel  k: K  X  and a weak cokernel  c: Y  C
such that, in the following commutative diagram of  B,  u  is an fs-epi and  v  an fs-monic

    Fk Ff    Fc
FK FX FY FC

(4)    u
Ff

   v

Ker(Ff) FX FY Cok(Ff)

iff the same happens for all weak kernels and weak cokernels of  f.  In particular, this holds for  F =
U.

a') If, in the same hypotheses,  B  is Puppe exact, then  G  preserves kernels and cokernels iff every
X-morphism  f: X  Y  has a weak kernel  K  X  and a weak cokernel  Y  C  such that the
sequence  FK  FX  FY  FC  is exact in  B.

b) Assume that  X  has weak kernels and weak cokernels, and moreover every morphism is a weak
kernel and a weak cokernel. Then  FrX  is Puppe exact; all variations in  X  are normal and form a
modular lattice  Var(A) = SubFrX(A).  If also  B  is Puppe exact, the functor  G  is exact if and only if
the condition (**) is satisfied for its left-hand part (concerning  k  and  u),  if and only if it is satisfied
for its right-hand part (concerning  c  and  v).

c) If  X  satisfies the hypotheses of b) and has finite products (or sums), then  FrX  is abelian.

Proof. a) The first part has been proved above (3.2-5). The limit-colimit preserving properties are as
in 2.6. a') is a trivial consequence. Since c) follows from b), as already recalled in 3.1, we only need
to verify the latter.
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b) First, we have to prove that an arbitrary morphism  f = [f', f"]  factors as a normal epi followed by
a normal monic. In fact, recall the distinguished factorisation  f = [f', 1].[1, f"]  considered at the
beginning (2.2.2). Under the new hypotheses,  f"  is a weak cokernel in  X   and  [1, f"]  is a
cokernel in  FrX,  while  f'  is a weak kernel and  [f', 1]  a kernel. Thus,  FrX  is Puppe exact, by the
general theory recalled above (3.1). If also  B  is so, the functor  G  is exact iff it preserves short
exact sequences, iff it preserves kernels and epimorphisms; but the last condition is always satisfied
by  G,  because all the epis of  FrX  and  B  are distinguished.

3.7. Universal homology theories (Freyd). It follows easily that, if  X  is a triangulated cate-
gory, then  FrX  is abelian and  U: X  FrX  is the universal homological functor over  X. (See
[Fr2], Lemma 4.1, for  X  the stable homotopy category of spaces.)

In fact, the hypotheses of 3.6c are satisfied. First, if  (u, v, w)  is a (distinguished) triangle, it is
easy to show that  v  is a weak cokernel of  u  (and dually a weak kernel of  w)

u v w
X Y Z #X

(1)    f
1

0 A A 0

But any arrow can appear in a triangle, in any position, and the conclusion follows. Note that, in a
triangle, any arrow is a weak kernel of the following, and a weak cokernel of the preceding one.

Moreover, the functor  U: X  FrX  is homological (or the sequence  Un = U#–n  is a homology
theory), since it takes every triangle to an exact sequence; actually, it is the universal homological
functor on  X  (by 3.6a'): for every homological functor  H: X  B  (with values in an abelian
category, or more generally in a Puppe exact one) there is an essentially unique exact functor  G:
FrX  B  such that  GU = H.
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