
HIGHER COSPANS AND WEAK CUBICAL CATEGORIES
(COSPANS IN ALGEBRAIC TOPOLOGY, I)

MARCO GRANDIS

Abstract.

We define a notion of weak cubical category, abstracted from the structure of n-cubical
cospans x : ∧n → X in a category X, where ∧ is the ‘formal cospan’ category. These di-
agrams form a cubical set with compositions x +i y in all directions, which are computed
using pushouts and behave ‘categorically’ in a weak sense, up to suitable comparisons.
Actually, we work with a ‘symmetric cubical structure’, which includes the transposition
symmetries, because this allows for a strong simplification of the coherence conditions.
These notions will be used in subsequent papers to study topological cospans and their
use in Algebraic Topology, from tangles to cobordisms of manifolds.

We also introduce the more general notion of a multiple category, where - to start with -
arrows belong to different sorts, varying in a countable family, and symmetries must be
dropped. The present examples seem to show that the symmetric cubical case is better
suited for topological applications.

Introduction

A cospan in a category is a diagram of shape

u = (u− : X− → X0 ← X+ : u+), (1)

viewed as a morphism u : X− ·→ X+; they are composed with pushouts, forming a bicate-
gory; or, also, the weak arrows of a larger structure, the pseudo double category Cosp(X),
as in [11]. Typically, the bicategories of cobordisms between manifolds used in Topological
Quantum Field Theories and the bicategories of tangles are of this type.

This is the first paper in a series devoted to topological cospans in Algebraic Topology
(i.e., cospans of continuous mappings), together with their higher dimensional versions.
We begin by preparing the cubical structure of higher cospans Cosp∗(X) on a category X
with pushouts, and abstract from the construction the general notion of a ‘weak cubical
category’.

An n-cubical cospan in X is defined as a functor x : ∧n → X, where ∧ is the category

∧ : −1→ 0 ← 1 (the formal cospan). (2)
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Plainly, these diagrams form a cubical set (cf. Kan [15, 16]), equipped with composi-
tions x +i y of i-consecutive n-cubes, for i = 1, ..., n; such compositions are computed by
pushouts, and behave ‘categorically’ in a weak sense, up to suitable comparisons.

To make room for the latter, the n-th component of Cosp∗(X)

Cospn(X) = Cat(∧n,X), (3)

will not be just the set of functors x : ∧n → X (the n-cubes, or n-dimensional objects,
of the structure) but the category of such functors and their natural transformations
f : x → x′ : ∧n → X (the n-maps of the structure, which should actually be viewed as
(n + 1)-cells). The comparisons will be invertible n-maps; but general n-maps are also
important, e.g. to define limits and colimits (cf. 4.6).

Thus, a weak cubical category will have countably many weak (or cubical) directions
i = 1, 2, ..., n, ... all of the same sort, and one strict (or transversal) direction 0, which
can be of a different sort. The compositions x +i y along the cubical directions behave
weakly and, typically, are obtained as (co)limits; the composition gf in the transversal
direction behaves strictly and, typically, arises from composition in a ordinary category;
the comparisons for the weak compositions are isomorphisms of the strict one. It is
tempting to view the transversal direction as ‘temporal’ and the cubical ones as ‘spatial’,
but this interpretation might clash with applications in physics and we will not follow it.

Truncating the cubical structure in degree 1 (see 4.5), we get a weak 2-cubical category,
with one strict direction and one weak direction. This coincides with a pseudo (or weak)
double category, as defined and studied in [11, 12]. The theory of weak cubical categories
will likely be an extension of the theory of weak double categories developed in those
papers.

In a strict cubical category, i.e. a weak cubical category where all comparisons are
identities, there are no weak laws and we prefer to speak of (countably many) cubical
directions and (one) transversal direction; the former are of the same sort, generally
different from the transversal one.

In Section 1 we begin by the strict case, defining cubical categories and treating a
simple example: the cubical category Cub∗(X) of commutative cubical diagrams x : in →
X on a category X (with their natural transformations). The construction is based on
the structure of the ordinal category i

i = 2 = {0→ 1} (the formal arrow), (4)

as a formal interval (see 1.3), with faces, degeneracy and a concatenation pushout (16).
The substructure Cub∗(X;X0,X

′) defined in 1.1 shows an example of a cubical cat-
egory where the transversal and cubical sorts are distinct. Then, in Section 2, we intro-
duce the transposition symmetries, for cubical sets and cubical categories; in the case of
Cub∗(X), such symmetries are generated by the basic transposition s : i2 → i2.

In Sections 3 and 4, we construct the symmetric weak cubical category Cosp∗(X)
mentioned above, based on a similar structure of (symmetric) formal interval for ∧; and
abstract from this construction the general notion of a symmetric weak cubical category.
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Notice that the interchange of weak compositions only works in a weak sense, even in this
relatively simple construction; symmetries allow us to reduce the interchange comparisons
to one (in each dimension), and this fact strongly simplifies the coherence problems. Other
examples, like spans and diamonds (or bispans), are sketched (see 4.7); higher cobordisms
will be dealt with in a sequel. A strict cubical category Rel∗(Ab), of higher relations for
abelian groups, can be obtained as a quotient of the weak cubical structures for spans or
cospans (4.8).

We end in Section 5, dealing with (strict) multiple categories, where the cubical direc-
tions can be of different sorts. One might think that this should be the natural extension
of double categories in higher dimension; yet, various examples of topological or homo-
topical kind fall into the cubical case, where all the weak directions are of the same sort
and - moreover - transpositions permute them.

Size problems can be easily dealt with, fixing a hierarchy of two universes, U0 ∈ U ,
and assuming that ‘small’ category means U -small. Then, for instance, we can apply
Cosp∗(−) to the small categories Set and Top of U0-small sets or spaces. Cat will be the
category (or 2-category) of U -small categories, to which Set and Top belong.

Cubical categories with connections have been studied by Al-Agl, Brown and Steiner
[1], and proved to be equivalent to globular categories. Monoidal n-categories of higher
spans can be found in Batanin [3]. A structure for cobordisms with corners, using 2-
cubical cospans, has been recently proposed by J. Morton [17] and J. Baez [2], in the form
of a ‘Verity double bicategory’ [18]; its relations with the present 2-truncated version
2Cosp∗(X) (a weak 3-cubical category, according to our terminology) are briefly examined
in 4.5. See also Cheng-Gurski [6].

Acknowledgements. The author gratefully acknowledges many suggestions of the ref-
eree, in order to make the exposition clearer.

1. Cubical categories

We begin by the notion of a (strict) cubical category. Symmetries will be introduced in
the next section. The index α takes the values 0 and 1, but is written −, + in superscripts.

1.1. Commutative cubes and their transformations. For a small category X, we
will construct in this section a cubical category Cub∗(X) of commutative cubes, of any
dimension; the present subsection is an overview of this construction.

First, we start with a reduced cubical category Cub∗(X) (note the different notation),
which - loosely speaking - is a cubical set with categorical compositions in any direction,
satisfying the interchange property. In the present case, 0-cubes are points x ∈ X (i.e.,
objects of X), 1-cubes are arrows x : x0 → x1 in X, 2-cubes are commutative squares of
X, and so on. Faces and degeneracies are obvious, as well as the i-directed composition
of i-consecutive n-cubes, for 1 6 i 6 n.

All the structure will be obtained from a cocubical object, based on the ordinal

i = 2 = {0→ 1} (the formal arrow), (5)



4

an order category on two objects (identities being understood, as we will generally do). In
fact, an n-cube is the same as a functor x : in → X and the n-th component of Cub∗(X)
is the set

Cubn(X) = Cat(in,X) (n > 0). (6)

But this component is naturally a category Cubn(X), whose morphisms are the natural
transformations f : x → x′ : in → X of commutative n-cubes. The (non-reduced) cubical
category Cub∗(X) will also contain such n-maps between n-cubes, forming a category
object within reduced cubical categories, or equivalently a reduced cubical category within
categories.

In the present case, a natural transformation of n-dimensional commutative cubes is
just an (n + 1)-commutative cube of X, and Cub∗(X) can be viewed as a re-indexing of
Cub∗(X). But it is easy to construct examples where this is not the case: for instance,
the sub-structure Cub∗(X;X0,X

′) defined by two subcategories X0,X
′ of X, with cubes

belonging to Cub∗(X
′) and natural transformations f : x→ x′ : in → X restrained to have

components in X0, so that a map f : x→ x′ of 0-cubes is not the same as a 1-cube with
the same faces. (More generally, fixing a subcategory Xi for any direction i > 0, one
would obtain a multiple category, see Section 5.) A cubical category of higher relations
will be constructed in 4.8.

Introducing the new maps will be crucial for two goals:

(a) defining weak cubical categories, where the ‘cubical’ composition laws only behave
well up to invertible n-maps,

(b) defining limits and colimits in (weak or strict) cubical categories.

The notions studied here should not be confused with a category enriched in the
cartesian or monoidal category of cubical sets. (The latter is important in homotopy
theory, since any cylinder functor automatically produces such a structure.)

1.2. The reduced case. Let us begin defining a reduced cubical category A as a cubical
set equipped with compositions in all directions, which are strictly categorical (i.e., strictly
associative and unital) and satisfy the interchange property.

(cub.1) A reduced cubical category A is, first of all, a cubical set ((An), (∂α
i ), (ei)) in the

usual sense [15, 16, 5]: a sequence of sets An, for n > 0 (whose elements are called n-
cubes, or n-dimensional objects), with faces ∂α

i and degeneracies ei which satisfy the usual
cubical relations

∂α
i : An � An−1 : ei (i = 1, ..., n; α = ±),

∂α
i .∂β

j = ∂β
j .∂α

i+1 (j 6 i),
ej.ei = ei+1.ej (j 6 i),
∂α

i .ej = ej.∂
α
i−1 (j < i), or id (j = i), or ej−1.∂

α
i (j > i).

(7)

(Cubical sets form a category of presheaves, as we will recall in 1.5.)
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(cub.2) Moreover, for 1 6 i 6 n, the i-concatenation x +i y (or i-composition) of two
n-cubes x, y is defined when x, y are i-consecutive, i.e. ∂+

i (x) = ∂−i (y), and satisfies the
following ‘geometrical’ interactions with faces and degeneracies

∂−i (a +i b) = ∂−i (a), ∂+
i (a +i b) = ∂+

i (b),
∂α

j (a +i b) = ∂α
j (a) +i−1 ∂α

j (b) (j < i),
= ∂α

j (a) +i ∂α
j (b) (j > i),

(8)

ej(a +i b) = ej(a) +i+1 ej(b) (j 6 i 6 n),
= ej(a) +i ej(b) (i < j 6 n + 1).

(9)

(cub.3) For 1 6 i 6 n, we have a category An
i = (An−1, An, ∂

−
i , ∂+

i , ei, +i ), where faces
give domains and codomains, and degeneracy yields the identities.

(cub.4) For 1 6 i < j 6 n, and n-cubes x, y, z, u, we have

(x +i y) +j (z +i u) = (x +j z) +i (y +j u) (middle-four interchange), (10)

whenever these compositions make sense:

∂+
i (x) = ∂−i (y), • • •

∂+
i (z) = ∂−i (u), x y •

i //
j

��∂+
j (x) = ∂−j (z), • • •

∂+
j (y) = ∂−j (u), z u

• • •

(11)

Notice that the nullary interchange is already expressed above, in (9).
A cubical functor F : A → B between reduced cubical categories is a morphism of

cubical sets which preserves all composition laws.

1.3. Commutative cubes. We formalise now the construction of the reduced cubical
category Cub∗(X), where an n-cube is a commutative n-cubical diagram of the given
category X.

Recall that an n-cube is a functor x : in → X (1.1). The category i = 2 has the
structure of a formal interval (or reflexive cograph), with respect to the cartesian product
in Cat: in other words, it comes equipped with two (obvious) faces ∂α, defined on the
singleton category 1 = {∗} = i0 and a (uniquely determined) degeneracy e

{∗}
∂α

//// i
e

oo ∂α(∗) = α (α = 0, 1). (12)

These maps (trivially) satisfy the equations e∂α = id.
Thus, a 1-cube x : i → X amounts to an arrow x : x0 → x1 and has faces ∂α(x) =

x.∂α = xα, while the degeneracy, or identity, of an object x is e(x) = x.e : i→ X.
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Then, as usual in formal homotopy theory (based on a formal interval), the functors

(−)n
i = ii−1×−×in−i : Cat→ Cat (1 6 i 6 n), (13)

produce the higher faces and degeneracies of the interval

∂α
i : in−1 → in, ∂α

i (t1, ..., tn−1) = (t1, ..., α, ..., tn−1),
ei : in → in−1, ei(t1, ..., tn) = (t1, ..., t̂i, ..., tn) (tj = 0, 1).

(14)

(Note that these functors between order-categories are determined by their action on
objects; the dimension n is often omitted in notation.)

By a contravariant action, we get the faces and degeneracies of the cubical set Cub∗(X),
denoted in the same way:

∂α
i (x) = x.∂α

i , ei(x) = x.ei (i = 1, ..., n; α = ±). (15)

Composition of 1-cubes comes, formally, from the concatenation pushout, in Cat,
which gives the category i2 = 3 = {0→ 1→ 2}, equipped with a concatenation map k

{∗} ∂+
//

∂−

��

i

k−

��

k : i→ i2,

__
�
�

i
k+

// i2 k(0) = 0, k(1) = 2.

(16)

And indeed, given two consecutive 1-cubes x, y : i → X (with ∂+
1 x = ∂−1 y), their

composite z = yx is computed using the functor [x, y] : i2 → X determined by the pushout
in X

z = [x, y].k : i→ i2 → X. (17)

Moreover, acting on the concatenation pushout and the concatenation map k, the func-
tors (−)n

i produce the n-dimensional i-concatenation pushout ini
2 and the n-dimensional

i-concatenation map ki : in → ini
2

in−1 ∂+
//

∂−

��

in

k−

��

ini
2 = ii−1×i2×in−i,

___
�
�

in
k+

// ini
2 ki = ii−1×k×in−i : in → ini

2 .

(18)

Now, given two i-consecutive n-cubes x, y : in → X (with ∂+
i x = ∂−i y), their i-

concatenation z = x +i y is computed using the functor [x, y] : ini
2 → X determined

by the pushout in X
z = [x, y].ki : in → ini

2 → X. (19)

Plainly, a functor F : X→ Y can be extended to a cubical functor F∗, which coincides
with F in degree 0 (up to identifying X with Cub0(X))

F∗ : Cub∗(X)→ Cub∗(Y), F∗(x : in → X) = F ◦x : in → Y. (20)

In the next section we will add to Cub∗(X) further structure, produced by the trans-
position of coordinates.
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1.4. Cubical categories. As envisioned above, the reduced cubical category Cub∗(X)
has a natural extension Cub∗(X), introducing transversal maps f : x→ x′ of n-cubes (also
called n-maps, or (n + 1)-cells) as natural transformations f : x → x′ : in → X, so that
the n-th component Cubn(X) = Cat(in,X) is now a category. The new faces, degeneracy
and composition are written

∂−0 f = x, ∂+
0 f = x′, e0x = id(x), c0(f, g) = gf : x→ x′′, (21)

where gf is the ordinary (vertical) composition of natural transformations.
The new structure we are interested in, a cubical category A, is a category object

within reduced cubical categories (and their cubical functors)

A0

e0

// A1

∂α
0oooo A2

c0oo (α = ±) (22)

or equivalently a reduced cubical category within categories

A = ((An), (∂α
i ), (ei), ( +i )), An = (An, Mn, ∂

α
0 , e0, c0). (23)

Explicitly, the latter statement means that A is a reduced cubical category where each
component An is a category, while the cubical faces, degeneracies and compositions are
functors

∂α
i : An � An−1 : ei, +i : An ×i An → An. (24)

(The pullback An×iAn is the category of pairs of i-consecutive n-cubes.)
A cubical functor F : A → B between cubical categories strictly preserves the whole

structure. A reduced cubical category amounts to a cubical category all of whose n-maps
are identities.

1.5. Truncation. An n-cubical set A = ((Ak), (∂
α
i ), (ei)) has components indexed on

k = 0, ..., n. Of course, also its faces ∂α
i : Ak → Ak−1 and degeneracies ei : Ak−1 → Ak

undergo the restriction k 6 n, and satisfy the cubical relations as far as applicable.
Cubical sets are presheaves A : Iop → Set, the cubical site I being the subcategory of

Set with objects 2n, for 2 = {0, 1} and n > 0, together with those mappings 2m → 2n

which delete some coordinates and insert some 0’s and 1’s, without modifying the order of
the remaining coordinates. (A study of this site and its extensions, including connections
and symmetries, can be found in [10]). And, of course, an n-cubical set is a presheaf on
its truncation In, with objects k 6 n.

The truncation functor

trn : Cub→ nCub, skn a trn a coskn, (25)

has left and right adjoint, called n-skeleton and n-coskeleton, which can be constructed
by means of left or right Kan extensions along the embedding In ⊂ I of the n-cubical site
into the cubical one
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In
A //

��

η
��

Set In
A //

��

Set
ε

OO

I
sknA

99sssssssssss
I

cosknA

99sssssssssss

(26)

Recalling that a k-map between k-cubes is viewed as a (k + 1)-dimensional cell (1.4),
an n-truncated cubical category will be called an (n + 1)-cubical category. For instance

2Cub∗(X) = tr2Cub∗(X), 2Cub∗(X;X0,X
′) = tr2Cub∗(X;X0,X

′),

are 3-cubical categories; and, indeed, their 2-maps are commutative 3-dimensional cubes.
Thus, a 1-cubical category is a category, a 2-cubical category amounts to a (strict) dou-

ble category, and a 3-cubical category amounts to a (strict) triple category of a particular
kind, with:

- objects (of one type);
- arrows in directions 0, 1 and 2, where the last two types coincide;
- 2-dimensional cells in directions 01, 02, 12, where the first two types coincide;
- and 3-dimensional cells (of one type).

2. Symmetric cubical categories

We develop here a notion of symmetric cubical category, where the symmetric group Sn

operates on the n-dimensional component, i.e. on n-cubes and n-maps. The presence of
these symmetries will grant a relatively simple description of the weak case, in the next
section.

2.1. Symmetries of the interval. The standard interval I = [0, 1] of topological
spaces has two basic symmetries

r : I→ I, r(t) = −t, (reversion),
s : I2 → I2, s(t1, t2) = (t2, t1) (transposition),

(27)

They produce the n-dimensional symmetries, applying (−)n
i and (−)n−1

i , respectively:

ri : In → In (i = 1, ..., n), si : In → In (i = 1, ..., n− 1). (28)

Together, they generate the group of symmetries of the euclidean n-cube In, also called
the hyperoctahedral group, which is isomorphic to the semidirect product (Z/2)n o Sn.
The transpositions si generate the subgroup of permutations of coordinates, isomorphic
to the symmetric group Sn, under the Moore relations

si.si = 1, si.sj.si = sj.si.sj (i = j − 1), si.sj = sj.si (i < j − 1), (29)

(see Coxeter-Moser [7], 6.2; or Johnson [14], Section 5, Thm. 3). Of course, in this
isomorphism, the transposition si : In → In corresponds to the permutation si = (i, i +
1): {1, ..., n} → {1, ..., n}.
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Now, as is generally the case in directed algebraic topology (see [8, 9] and references
therein), our formal interval i, in Cat, has no reversion. But it has transpositions

s : i2 → i2, s(t1, t2) = (t2, t1), si = ii−1×s×in−1−i : in → in (i = 1, ..., n−1). (30)

They operate, contravariantly, on every category Cubn(X) = Cat(in,X)

si(x) = x.si : in → in → X, (31)

together with the whole symmetric group Sn.
With faces and degeneracies, transpositions generate the symmetric cubical site Is, a

subcategory of the extended cubical site K of [10] (which also contains the connections).
Is is generated by faces, degeneracies and transpositions under the ordinary cocubical
relations (for faces and degeneracies), the Moore relations (29) and other equations which
link transpositions with faces and degeneracies; we write down, below, their duals.

2.2. Symmetric cubical sets. A symmetric cubical set will be a cubical set (1.2)

A = ((An), (∂α
i ), (ei)),

which is further equipped with transpositions

si : An → An (i = 1, ..., n− 1). (32)

The latter must satisfy the Moore relations (29) and the following equations:

j < i j = i j = i + 1 j > i + 1
∂α

j .si = si−1.∂
α
j ∂α

i+1 ∂α
i si.∂

α
j

si.ej = ej.si−1 ei+1 ei ej.si.
(33)

The symmetric cubical relations consist thus: of the cubical relations (7), of the (self-
dual) Moore relations (29) and of the above equations (33).

2.3. Symmetric cubical categories. A symmetric cubical category

A = ((An), (∂α
i ), (ei), ( +i ), (si)),

will be a cubical category (1.4) equipped with transposition functors si : An → An which
make it a symmetric cubical set. Furthermore, cubical compositions and transpositions
must be consistent, in the following sense

si−1(x +i y) = si−1(x)+i−1si−1(y), sj(x +i y) = sj(x) +i sj(y) (j 6= i−1, i). (34)

Cub∗(X) is a symmetric cubical category, with transpositions defined as above, in
(31). The involutive case, further equipped with reversions under axioms which can be
easily deduced from [10], is also of interest - not for commutative cubes, but certainly
for higher cospans; however, we will not go here into such details. A symmetric cubical
functor is a cubical functor which also preserves transpositions.
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3. A formal interval for cubical cospans

We construct, here and in the next section, a cubical structure for higher cospans. The
index α takes now the values −1, 1, also written −, +.

3.1. The setting. We shall follow a formal procedure, similar to the previous one for
commutative cubes, in order to describe cospans in a category X and their higher dimen-
sional versions.

The model of the construction will be the formal cospan ∧, together with its cartesian
powers

−1→ 0 ← 1 ∧, (−1,−1) //

��

(0,−1)

��

(1,−1)oo

��

•
1 //

2

��(−1, 0) // (0, 0) (1, 0)oo

(−1, 1) //

OO

(0, 1)

OO

(1, 1)oo

OO

∧2.
(35)

(In such diagrams, displaying finite categories, identities and composed arrows are
always understood.) On the other hand, a pt-category, or category with distinguished
pushouts, will be a (U -small) category where some spans (f, g) have one distinguished
pushout

•
f //

g

��

•

g′

��

x
f //

1

��

x′

1

��
__

�
� __

�
�

•
f ′

// • x
f

// x′

(36)

and we assume the following unitarity constraints:

(i) each square of identities is a distinguished pushout,

(ii) if the span (f, 1) has a distinguished pushout, this is (1, f); and symmetrically (see
the right diagram above).

A pt-functor F : X → Y is a functor between pt-categories which strictly preserves
the distinguished pushouts. We speak of a full (resp. trivial) choice, or of a category X
with full (resp. trivial) distinguished pushouts, when all spans in X (resp. only the pairs
of identities) have a distinguished pushout.

We will work in the category ptCat of pt-categories and pt-functors, which is U -
complete and U -cocomplete. For instance, the product of a family (Xi)i∈I of pt-categories
indexed on a U -small set is the cartesian product X (in Cat), equipped with those
(pushout) squares in X whose projection in each factor Xi is a distinguished pushout. In
particular, the terminal object of ptCat is the terminal category 1 with the trivial (and
unique) choice: its only square is a distinguished pushout.
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Cat embeds in ptCat, equipping a small category with the trivial choice of pullbacks
(left adjoint to the forgetful functor). Limits and colimits are preserved by the embedding.
Our construction will require this sort of double setting Cat ⊂ ptCat, with ‘models’ ∧n

having a trivial choice and cubical cospans ∧n → X living in categories with a full choice
(which is necessary to compose them).

Notice that ∧, ∧2 (and all powers) have all pushouts; however, should we use the
full choice suggested by diagram (35), the pt-functors ∧2 → X would only reach very
particular 2-cubical cospans. Notice also that, in the absence of the unitarity constraint
(i) on the choice of pushouts, the terminal object of ptCat would still be the same, but a
functor x : 1→ X could only reach an object whose square of identities is distinguished.
On the other hand, condition (ii) will just simplify things, making our units work strictly;
one might prefer to omit it, to get a ‘more general’ behaviour.

3.2. The interval structure. As i in the previous section, the category ∧ has a basic
structure of formal symmetric interval, with respect to the cartesian product in Cat (and
ptCat)

∂α : 1 ⇒ ∧, e : ∧→ 1, s : ∧2 → ∧2 (α = ±1),
∂α(∗) = α, s(t1, t2) = (t2, t1).

(37)

Composition is - formally - more complicated. The model of binary composition will be
the pt-category ∧2 displayed below, with one non-trivial distinguished pushout

0 {∗} ∂+
//

∂−

��

∧

k−

��

PP
n n

a

88ppppp
c

ffNNNNN

− 1

66mmmmm
b

ggOOOOOO
77oooooo

1

ggOOOOO
∧

k+
// ∧2

(38)

Now, the commutative square at the right hand above is not a pushout; in fact, in
Cat or ptCat, the corresponding pushout is the subcategory ∧(2) lying at the basis of
∧2 :

−1→ a ← b→ c ← 1 ∧(2). (39)

But the relevant fact is that a category X with full distinguished pushouts ‘believes’
that the square above is (also) a pushout. Explicitly, we have the following para-universal
property of ∧2 (which, in itself, does not determine it, since it is also satisfied by ∧(2))

(a) given two cospans x, y : ∧→ X, with values in a category X with full distinguished
pushouts and ∂+

1 x = ∂−1 y, there is precisely one pt-functor [x, y] : ∧2 → X such that
[x, y].k− = x, [x, y].k+ = y.

The concatenation map
k : ∧→ ∧2, (40)

is an embedding, already displayed above by the labelling of objects in ∧2.
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Also here, the functors (−)n
i = ∧i−1×−×∧n−i : ptCat → ptCat produce the higher

structure of the interval, for 1 6 i 6 n and α = ±1

∂α
i : ∧n−1 → ∧n, ∂α

i (t1, ..., tn−1) = (t1, ..., α, ..., tn−1),
ei : ∧n → ∧n−1, ei(t1, ..., tn) = (t1, ..., t̂i, ..., tn),
si : ∧n+1 → ∧n+1, si(t1, ..., tn+1) = (t1, ..., ti+1, ti, , ..., tn).

(41)

Moreover, acting on ∧(2) (in (39)) and k, these functors yield the n-dimensional i-
concatenation model ∧ni

2 and the n-dimensional i-concatenation map ki : ∧n → ∧ni
2

∧n−1
∂+

i //

∂−i ��

∧n

k−i��

∧ni
2 = ∧i−1×∧2×∧n−i,

∧n

k+
i

// ∧ni
2 ki = ∧i−1×k×∧n−i : ∧n → ∧ni

2 .

(42)

Again, the square above is not a pushout, but X (having a full choice of pushouts)
believes it is. The formal interval ∧ has much further structure, which is certainly of
interest but will not be used here: for instance, the reversion symmetry r : ∧ → ∧,
r(t) = −t, and the connections (cf. [10]).

3.3. Ordinary cospans. Let X be a category with full distinguished pushouts. A pt-
functor x : ∧ → X is just a functor, and amounts to a cospan x−1 → x0 ← x1 in X,
i.e. a 1-cube with faces ∂α

1 (x) = x.∂α = xα. The degenerate 1-cube at the vertex x
is the constant functor e1(x) = x.e = (x → x ← x), with idx at both arrows. The
concatenation z = x +1 y of two consecutive cospans x, y : ∧ → X (with ∂+

1 x = ∂−1 y) is
computed using the pt-functor [x, y] : ∧2 → X determined by the para-universal property
of ∧2 (3.2)

z = [x, y].k : ∧→ ∧2 → X. (43)

This amounts to the usual composition of cospans, by a distinguished pushout in X
(because the pt-functor [x, y] preserves the choice)

z0

NN
p p

x0

77pppp
y0

ggNNNN

z−1 = x−1

55jjjjjjj
•

ffNNNNN
88ppppp y1 = z1

iiRRRRRR
(44)

The bicategory of cospans in X [Be] will not be used directly, even though it lies within
Cosp∗(X).

3.4. The symmetric pre-cubical category of cospans. A symmetric pre-cubical
category

A = ((An), (∂α
i ), (ei), (si), (+i)), (45)

will be a symmetric cubical set with compositions, satisfying the consistency axioms
(cub.1-2) of 1.2, where transpositions and compositions agree (in the sense of (34)). Thus,
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we are not assuming that the i-compositions behave in a categorical way or satisfy inter-
change, in any sense, even weak.

For a category X with full distinguished pushouts, there is such a structure A =
Cosp∗(X). An n-cube, or n-dimensional object, or n-cubical cospan, is a functor x : ∧n →
X; faces, degeneracies and transpositions are computed according to the formulas (41) for
the interval ∧

Cospn(X) = Cat(∧n,X) = ptCat(∧n,X),

∂α
i (x) = x.∂α

i : ∧n−1 → ∧n → X, ∂α
i (x)(t1, ..., tn−1) = x(t1, ..., α, ..., tn−1),

ei(x) = x.ei : ∧n → ∧n−1 → X, ei(x)(t1, ..., tn) = x(t1, ..., t̂i, ..., tn),
si(x) = x.si : ∧n+1 → ∧n+1 → X, si(x)(t1, ..., tn+1) = x(t1, ..., ti+1, ti, , ..., tn+1).

(46)

The i-composition x +i y is computed on the i-concatenation model ∧ni
2 (42), as

x +i y = [x, y].ki : ∧n → ∧ni
2 → X (∂+

i (x) = ∂−i (y)). (47)

A symmetric cubical functor F : A→ B between symmetric pre-cubical categories will
be a morphism of symmetric cubical sets which preserves all composition laws. Plainly,
a pt-functor F : X → Y between categories with full distinguished pushouts can be
extended to a symmetric cubical functor F∗ (which coincides with F in degree 0)

F∗ : Cosp∗(X)→ Cosp∗(Y), F∗(x : ∧n → X) = F ◦x : ∧n → Y. (48)

3.5. Formal associativity comparison. To prepare the next section, we extend now
the basic structure of the directed interval with formal comparisons for associativity (and
then for middle-four interchange).

The model of ternary compositions ∧3 is the order-category displayed below, at the
left, with five non-trivial distinguished pushouts (as made explicit below)

0′
i′ // 0

i′′ // 0′′ {∗} ∂+
//

∂−
��

∧

��

•

66nnnnnn

>>}}}}}}}
•

``BBBBBBB

hhP P P P P P
∧3 {∗} ∂+

//

∂−

��

∧

!!CC
CC

CC
C

•

77ppppp

DD










•

ggOOOOO
77ooooo

•

ggOOOOO

ZZ5555555555

− 1

66llll
•

ggPPPP
66nnnnn

•

hhQQQQQ
66nnnnn

1

ggOOOO
∧ // ∧3

(49)

The role of ∧3 will come forth from the right-hand diagram, in ptCat, which behaves
as a colimit for a category X with full distinguished pushouts. The true colimit ∧(3),
in Cat and ptCat, consists of the six arrows along the bottom of the diagram of ∧3.
Furthermore, ∧3 also contains:

- a symmetric construction of three distinguished pushouts, ending up at the vertex 0,
- two more distinguished pushouts, which attain the vertices 0’ and 0”,
- three coherent isomorphisms i′ : 0′ → 0, i′′ : 0 → 0′′ and i = i′′i′ : 0′ → 0′′ (so that

each of these three objects is a colimit of the inclusion ∧(3) → ∧3).
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The functors κ′, κ′′ : ∧→ ∧3 with the following images

κ′ : −1→ 0′ ← 1 κ′′ : −1→ 0′′ ← 1 (50)

correspond to two iterated concatenations of the obvious three consecutive cospans ∧→
∧3 which ‘cover’ ∧(3). They are linked by a functorial isomorphism

κ : κ‘→ κ′′ : ∧→ ∧3 (formal associativity comparison),
κ(α) = idα, κ(0) = i : 0′ → 0′′ (α = ±1).

(51)

Now, given three consecutive cospans x, y, z in X (having a full choice), the pt-functor
w = [x, y, z] : ∧3 → X resulting from the para-universal property contains both iterated
concatenations x +1 (y +1 z) and (x +1 y) +1 z. Thus, these consecutive cospans produce
a natural isomorphism

κ(x, y, z) = [x, y, z].κ : x +1 (y +1 z)→ (x +1 y) +1 z (associativity comparison). (52)

(One can note that the functor [x, y, z] also ‘contains’ an intermediate regular ternary
concatenation x +1 y +1 z, through the object w(0)).

3.6. Formal interchange comparisons. The pt-category ∧2 = ∧×∧ (a product in
Cat and ptCat, with trivial choice) is represented in (35). We have already remarked that
∧2 has pushouts, but none of them is distinguished (except the trivial ones, the squares
of identities); which is what we need to represent all double cospans in X as pt-functors
∧2 → X. Double cospans can be concatenated in two directions (as will be formalised
below, in any dimension > 2). The model ∧2×2 for the 2-dimensional interchange of
concatenations is constructed below, starting with the colimit in Cat and ptCat of the
following diagram (again, any category X with a full choice will believe that also ∧2×2 is
a colimit of the same diagram)

∧2 ∧
∂+
1oo

∂−1 // ∧2

∧
∂+
2

OO

∂−2 ��

∧
∂+
2

OO

∂−2��
∧2 ∧

∂+
1

oo
∂−1

// ∧2

(53)

The (true) colimit is the pasting of four copies of ∧2, displayed in the solid diagram
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below, and amounts to the product ∧(2)×∧(2) (cf. (39))

(0,−1)

���
�
�

(−1,−1) //

��

(a,−1)

��

33ffffff
(b,−1)oo //

��

(c,−1)

��

ggPP

(1,−1)oo

��
•

(−1, a) // (a, a)

22eeeeeeeee
(b, a)oo // (c, a)

iiS S S
(1, a)oo

•

OO�
�
�

���
�
�

(−1, b) //

OO

��

(a, b)

OO

��

22eeeeeeeee
(b, b)oo //

OO

��

(c, b)

OO

��

iiS S S S
(1, b)oo

OO

��

•
1 //

2

��

•

(−1, c) // (a, c)

22eeeeeeeee
(b, c)oo // (c, c)

iiS S S
(1, c)oo

•

OO�
�
�

(−1, 1) //

OO

(a, 1)

OO
22eeeeeeeee

(b, 1)oo //

OO

(c, 1)

OO
iiS S S

(1, 1)oo

OO

(54)

(0, a)

%%JJJ
JJJ

J

(0, b)

OO

��

0′
i //_________ 0′′

(0, c)

99ttttttt
(a, 0)

88q
q

q
q

(b, 0)oo_ _ //___ (c, 0)

ffM
M

M
M

(55)

By definition, the category ∧2×2 also contains two constructions, which correspond to
two symmetric procedures: first composing in direction 1 and then in direction 2, or vice
versa; namely:

(a) a copy of ∧2×∧(2) (adding in the dashed arrows pertaining to the five distin-
guished pushouts (0, j), with j = −1, a, b, c, 1), together with the (solid) distin-
guished pushout 0′ displayed in (55);

(b) a symmetric construction, not displayed above: a copy of ∧(2)×∧2 (with five dis-
tinguished pushouts (j, 0)), together with the (dashed) distinguished pushout 0′′

displayed in (55);

(c) a coherent isomorphism i : 0′ → 0′′ which links these two objects, so that each of
them becomes a colimit of the inclusion ∧(2)×∧(2) → ∧2×2.

The two symmetric procedures correspond to the functors χ′, χ′′ : ∧2 → ∧2×2 displayed
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below

(−1,−1) //

��

(0,−1)

��

(1,−1)oo

��

(−1,−1) //

��

(0,−1)

��

(1,−1)oo

��
(−1, 0) // 0′ (1, 0)oo (−1, 0) // 0′′ (1, 0)oo •

1 //

2

��(−1, 1) //

OO

(0, 1)

OO

(1, 1)oo

OO

(−1, 1) //

OO

(0, 1)

OO

(1, 1)oo

OO

χ′ χ′′

(56)

and are linked by a natural isomorphism, all of whose components are identities except
the central one:

χ : χ′ → χ′′ : ∧2 → ∧2×2, χ(0, 0) = i : 0′ → 0′′ (middle-four interchange). (57)

3.7. Higher interchanges. Applying the functor (−)n−1
i , for 1 6 i < n, gives a natural

transformation which concerns the interchange of the cubical compositions in directions i
and i + 1

χi = ∧i−1×χ×∧n−i−1 : ∧i−1×χ′×∧n−i−1 → ∧i−1×χ′′×∧n−i−1 :
∧n → ∧i−1×∧2×2×∧n−i−1 (formal i-interchange comparison),

(58)

Plainly, this is sufficient, since transpositions allow us to permute any two directions;
actually, the single comparison χ1 = χ×∧n−2 will suffice.

Without transpositions, in order to define ‘general’ weak cubical categories, we should
construct formal interchanges

χij : χ′
ij → χ′′

ij : ∧n → ∧ni
j (1 6 i < j 6 n), (59)

generalising the previous procedure, on the basis of a new diagram (53) containing the
faces ∂α

i , ∂β
j : ∧n−1 → ∧n. This is not complicated in itself, but would make much more

complicated the coherence axioms of the next section.

4. Symmetric weak cubical categories

This section contains our main definitions and examples. Relations with weak double
categories [11, 12] and Morton’s structure of 2-cubical cospans [17] are examined in 4.5.
Again, the index α takes the values ±1, also written −, +.

4.1. Introducing transversal maps. As in Section 1, we introduce now a richer
structure, having maps between n-objects in a new direction 0, which can be viewed as
strict or ‘transversal’ in opposition with the previous weak or ‘cubical’ directions. The
comparisons for units, associativity and interchange will be invertible maps of this kind.
Being invertible, their orientation is inessential; but, for a possible extension to the lax
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case, we will choose the orientation which is consistent with directed homotopy, see [9].
The new maps will also be used, below, to introduce limits (and then, one cannot restrict
to the invertible ones).

Let us start with considering a general category object A within the category of sym-
metric pre-cubical categories and their functors

A0

e0

// A1

∂α
0oooo A2

c0oo (α = ±). (60)

We have thus:

(wcub.1) A symmetric pre-cubical category A0 = ((An), (∂α
i ), (ei), (si), (+i)), whose entries

are called n-cubes, or n-dimensional objects of A.

(wcub.2) A symmetric pre-cubical category A1 = ((Mn), (∂α
i ), (ei), (si), (+i)), whose en-

tries are called n-maps, or (n + 1)-cells, of A.

(wcub.3) Symmetric cubical functors ∂α
0 and e0, called 0-faces and 0-degeneracy, with

∂α
0 .e0 = id.

Typically, an n-map will be written as f : x → x′, where ∂−0 f = x, ∂+
0 f = x′ are

n-cubes. Every n-dimensional object x has an identity e0(x) : x → x. Note that ∂α
0 and

e0 preserve cubical faces (∂α
i , with i > 0), cubical degeneracies (ei), transpositions (si)

and cubical concatenations ( +i ). In particular, given two i-consecutive n-maps f, g, their
0-faces are also i-consecutive and we have:

f +i g : x +i y → x′ +i y′ (for f : x→ x′, g : y → y′; ∂+
i f = ∂−i g). (61)

(wcub.4) A composition law c0 which assigns to two 0-consecutive n-maps f : x → x′

and h : x′ → x′′ (of the same dimension), an n-map hf : x → x′′ (also written h.f). This
composition law is (strictly) categorical, and forms a category An = (An, Mn, ∂

α
0 , e0, c0).

It is also consistent with the symmetric pre-cubical structure, in the following sense

∂α
i (hf) = (∂α

i h).(∂α
i f), ei(hf) = (eih)(eif), si(hf) = (sih)(sif), (62)

(h +i k).(f +i g) = hf +i kg, •
∂−i f

//

x

��

•
∂−i h

//

��

•

x′′

��
f h •

0 //

i

��
• //

y

��

• //

��

•

y′′

��
g k

•
∂+

i g

// •
∂+

i k

// •

(63)

The last condition is the (strict) middle-four interchange between the strict composi-
tion c0 and any weak one. An n-map f : x→ x′ is said to be special if its 2n vertices are
identities

∂αf : ∂αx→ ∂αx′, ∂α = ∂α
1
◦∂α

2
◦...∂α

n (αi = ±). (64)

In degree 0, this just means an identity.



18

4.2. Comparisons. We can now define a symmetric weak cubical category A as a cate-
gory object within the category of symmetric pre-cubical categories and symmetric cubical
functors, as made explicit in the preceding section, which is further equipped with invert-
ible special transversal maps, playing the role of comparisons for units, associativity and
cubical interchange, as follows. (We only assign the comparisons in direction 1 or 1, 2; all
the others can be obtained with transpositions.)

(wcub.5) For every n-cube x, we have an invertible special n-map λ1x, which is natural
on n-maps and has the following faces (for n > 0)

λ1x : (e1∂
−
1 x) +1 x→ x (left-unit 1-comparison),

∂α
1 λ1x = e0∂

α
1 x, ∂α

j λ1x = λ1∂
α
j x (1 < j 6 n)

(65)

•
∂−1 x

•

∂+
j x

•
∂−1 x

•

∂+
j x

e0∂
−
1 x

•

ooooooooooooo

ooooooooooooo
•

ooooooooooooo

ooooooooooooo
•

ooooooooooooo
x

j
//

1 ��

0 >>}}}}

e1∂
−
1 x λ1∂

+
j x λ1∂

−
j x

•

∂−j x

• • •

∂−j x

• •

x e0∂
+
1 x

•
∂+
1 x

•

ooooooooooooo

ooooooooooooo
•

∂+
1 x

ooooooooooooo

ooooooooooooo
•

llllllllllllllll

llllllllllllllll

The naturality condition means that, for every n-map f : x→ x′, the following square
of n-maps commutes

(e1∂
−
1 x) +1 x

λ1x //

(e1∂−1 f)+1f

��

x

f

��
(e1∂

−
1 x′) +1 x′

λ1x′
// x′

(66)

(wcub.6) For every n-cube x, we have an invertible special n-map ρ1x, which is natural
on n-maps and has the following faces

ρ1x : x→ x +1 (e1∂
+
1 x), (right-unit 1-comparison),

∂α
1 ρ1x = e0∂

α
1 x, ∂α

j ρ1x = ρ1∂
α
j x (1 < j 6 n)

(67)
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•
∂−1 x

•

∂+
j x

•
∂−1 x

•

∂+
j xe0∂

−
1 x x

•

∂−j x

nnnnnnnnnnnnn

nnnnnnnnnnnnn
•

ooooooooooooo

ooooooooooooo
• •

pppppppppppp
• •

j
//

1 ��

0 =={{{{

ρ1∂
+
j x ρ1∂

−
j e1∂

+
1 x

x • •

e0∂
+
1 x

•
∂+
1 x

•

oooooooooooooo

oooooooooooooo
•

∂+
1 x

qqqqqqqqqqqq

qqqqqqqqqqqq
•

ooooooooooooo

ooooooooooooo

(wcub.7) For three 1-consecutive n-cubes x, y, z, we have an invertible special n-map
κ1(x, y, z), which is natural on n-maps and has the following faces

•
∂−1 x

•

∂+
j x

•
∂−1 x

•

∂+
j xe0∂

−
1 x

•

∂−j x

nnnnnnnnnnnnnn

nnnnnnnnnnnnnn
•

rrrrrrrrrrrr

rrrrrrrrrrrr
•

∂+
j y

•

qqqqqqqqqqqqq

qqqqqqqqqqqqq
• x +1 y •

∂+
j y

x •

∂+
j z

• •

∂+
j z

j
//

1 ��

0 99ssss

κ1∂
+
j κ1∂

−
j z

•

∂−j y

• •

•

∂−j z

y +1 z • • • • •

e0∂
+
1 x

•
∂+
1 x

•

rrrrrrrrrrrr

rrrrrrrrrrrr
•

∂+
1 x

qqqqqqqqqqqqq

qqqqqqqqqqqqq
•

oooooooooooooo

oooooooooooooo

(wcub.8) Given four n-cubes x, y, z, u which satisfy the boundary conditions (11) for i = 1
and j = 2 6 n, we have an invertible n-map χ1(x, y, z, u), which is natural on n-maps
and has the following faces (partially displayed below)

χ1(x, y, z, u) : (x +1 y) +2 (z +1 u)→ (x +2 z) +1 (y +2 u) (interchange 1-comparison),

∂−1 χ1(x, y, z, u) = e0(∂
−
1 x +2 ∂−1 z), ∂+

1 χ1(x, y, z, u) = e0(∂
+
1 y +2 ∂+

1 u),
∂−2 χ1(x, y, z, u) = e0(∂

−
2 x +1 ∂−2 y), ∂−2 χ1(x, y, z, u) = e0(∂

−
2 x +1 ∂−2 y),

∂α
j χ1(x, y, z, u) = χ1(∂

α
j x, ∂α

j y, ∂α
j z, ∂α

j u) (2 < j 6 n),
(68)
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•
∂−2 x

•
∂−2 y

•

∂+
1 y

•
∂−2 x

•
∂−2 y

•

∂+
1 ye0 x y

•

∂−1 x

ooooooooooooo

ooooooooooooo
• •

pppppppppppp

pppppppppppp
•

∂+
1 u

•

∂−1 x

lllllllllllllll

lllllllllllllll
• +2 • +2 •

∂+
1 u

1
//

2 ��

0
CC����

x +1 y e0 e0 z u

•

∂−1 z

• • • •

∂−1 z

• • •

z +1 u e0

•
∂+
2 z

•
∂+
2 u

•

ooooooooooo

ooooooooooo
•

∂+
2 z

kkkkkkkkkkkkkkk

kkkkkkkkkkkkkkk •
∂+
2 u

•

mmmmmmmmmmmmmm

mmmmmmmmmmmmmm

(wcub.9) Finally, these comparisons must satisfy some conditions of coherence, listed
below (4.3). We say that A is unitary if the comparisons λ, ρ are identities.

4.3. Coherence. The coherence axiom (wcub.9) means that the following diagrams of
transversal maps commute (assuming that all the cubical compositions make sense):

(i) coherence pentagon for κ = κ1 :

x +1 (y +1 (z +1 u))
1+κ

qqdddddddd
κ

))SSSSSSSSSSSSSSSS

x +1 ((y +1 z) +1 u)

κ

��
(x +1 y) +1 (z +1 u)

κ
uukkkkkkkkkkkkkkkk

(x +1 (y +1 z)) +1 u

κ+1
--ZZZZZZZZ

((x +1 y) +1 z) +1 u

(69)

(ii) coherence hexagon for χ = χ1 and κ = κ1 :

(x +1 (y +1 z)) +2 (x′ +1 (y′ +1 z′))
κ+κ //

χ
��

((x +1 y) +1 z) +2 ((x′ +1 y′)

χ
��

(x +2 x′) +1 ((y +1 z) +2 (y′ +1 z′))

1+χ
��

((x +1 y) +2 (x′ +1 y′)) +1 (z +2 z′)

χ+1
��

(x +2 x′) +1 ((y +2 y′) +1 (z +2 z′)) κ
// ((x +2 x′) +1 (y +2 y′)) +1 (z +2 z′)

(70)

(iii) coherence triangle for λ1, ρ1, κ1 :

x +1 (e1∂
−
1 y +1 y)

κ //

1+λ ((QQQQQQQQQQQ
(x +1 e1∂

+
1 x) +1 y

x +1 y
ρ+1

66mmmmmmmmmmm
(71)

In the unitary case, one replaces the last condition requiring this occurrence of κ to be
an identity. Now, the question arises whether we have indeed listed a sufficient system of
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coherence relations, which would allow us to prove a Coherence Theorem: ‘all diagrams
naturally constructed with comparisons commute’. This problem will not be addressed
here.

4.4. The weak cubical category of cospans. Now, starting from a category X
with full distinguished pushouts, we have a symmetric weak cubical category Cosp∗(X),
which is unitary (under the unitarity constraint for the choice of pushouts in X).

(a) The symmetric pre-cubical category of n-dimensional objects is our previous Cosp∗(X)
of 3.4.

(b) An n-map f : x→ x′ (also called an (n+1)-cell) is a natural transformation of n-cubes
f : x → x′ : ∧n → X, or equivalently an n-cube in the pt-category X2 of morphisms of
X (with the coherent choice of distinguished pushouts). They form thus the symmetric
pre-cubical category Cosp∗(X

2), with:

∂α
i f = f.∂α

i : x∂α
i → x′∂α

i : ∧n−1 → X (i 6 n, α = ±1),
eif = f.ei : x.ei → x′.ei : ∧n → X (i 6 n),
sif = f.si : x.si → x′.si : ∧n → X (i 6 n− 1),
f +i g = [f, g].ki : ∧n → X2 (∂+

i f = ∂−i g).

(72)

(c) The symmetric pre-cubical functors of 0-faces and 0-degeneracies come forth, con-
travariantly, from the obvious functors linking the categories 1 and 2

e0 : Cosp∗(X) ←−−→←− Cosp∗(X
2) : ∂α

0 (∂α
0 : 1 −→←−−→ 2 : e0, α = ±). (73)

(d) The composite hf : x → x′′ of 0-consecutive n-maps is the composition of natural
transformations. It is categorical and preserves the symmetric cubical structure.

(e) The cubical composition laws behave categorically up to suitable comparisons for
associativity and interchange, which are invertible maps. These are defined as follows,
for n > 1 and i = 1, ..., n (even if we only need the case i = 1 to build up the required
structure).

(i) Given three i-consecutive n-cospans x, y, z : ∧n → X, the formal associativity com-
parison κ : κ‘ → κ′′ : ∧ → ∧3 (51) gives the associativity i-comparison, a natural
isomorphism κi = κi(x, y, z)

κi = [x, y, z].(∧i−1×κ×∧n−i) : x +i (y +i z)→ (x +i y) +i z : ∧n → X. (74)

(ii) Given four n-cospans x, y, z, u : ∧n → X, which satisfy the boundary conditions
(11) for i < i + 1 6 n, the formal interchange comparison χ : χ‘ → χ′′ : ∧2 → ∧2×2

(57) gives the following natural isomorphism, the interchange i-comparison χi =
χi(x, y, z, u) (for the directions i, i + 1)

χi =

[
x y
z u

]
.χi : (x +i y) +j (z +i u)→ (x +j z) +i (y +j u) : ∧n → X. (75)
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The coherence axioms hold, as the terms of each diagram in 4.3 are computed by
different systems of distinguished pushouts, which end up with various constructions of
the same colimit in X, and therefore are linked by coherent isomorphisms.

4.5. Truncation. As in 1.5, n-truncation yields the structure of a symmetric weak
(n + 1)-cubical category. Thus nCosp∗(X), which contains the k-cubes and k-maps of
Cosp∗(X) for k 6 n, is the symmetric weak (n + 1)-cubical category of n-cubical cospans.

In the 1-truncated case there is only one cubical direction and no transposition, so that
we drop the term ‘symmetric’. A weak 2-cubical category, like 1Cosp∗(X) = Cosp(X),
amounts, precisely, to a weak (or pseudo) double category, as defined in [11], Section
7: a structure with a strict ‘horizontal’ composition and a weak ‘vertical’ composition,
under strict interchange. According to the terminology of [11, 12], a 0-cube is an object,
a 0-map is a horizontal arrow, a 1-cube is a vertical arrow, and finally a 1-map is a double
cell. (Notice that in [11], 7.1, the axioms are written in the one-sorted approach, where
everything is a double cell, so that degeneracies do not appear.)

The 2-truncated structure 2Cosp∗(X), a symmetric weak 3-cubical category, is related
to Morton’s construction [Mo], which consists of a ‘Verity double bicategory’ [18]. Loosely
speaking, and starting from 2Cosp∗(X), one should omit the transpositions and restrict
transversal maps to the special ones.

4.6. Cubical limits. Limits in weak double categories (i.e. weak 2-cubical categories)
have been dealt with in [11]; this study can likely be extended to the general cubical
case. Here, we only deal with products, in order to show the importance of having general
n-maps, as opposed to only using the invertible ones - which would be sufficient for
comparisons.

Let A be a weak cubical category, or even a pre-cubical one. We say that A has cubical
products if:

(i) for every n > 0, the ordinary category An of n-cubes and n-maps of A has products:
i.e., every family (xi)i∈I of n-cubes (indexed on a small set) has an n-cube x =

∏
xi

equipped with a family pi : x → xi of n-maps (i ∈ I) satisfying the usual universal
property;

(ii) such products are preserved by faces and degeneracies.

If the pt-category X has products, then the weak cubical category Cosp∗(X) has
cubical products. Indeed, the category of functors Cospn(X) = Cat(∧n,X) has products,
which are computed pointwise; and these are preserved by faces and degeneracies, which
are computed via maps ∧n−1 � ∧n.

In the 1-truncated case, a weak double category A has cubical products if and only if,
according to the definition of [11], A has a lax functorial choice of products; this follows
straightforwardly from the characterisation of this property given in Lemma 4.4 of [11].
(Note that products in the pt-category X need not preserve pushouts, and - generally -
will only give ‘lax functors’ with respect to weak compositions.)
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4.7. Spans and diamonds. Dualising the construction of cospans, we have the sym-
metric weak cubical category Sp∗(X) of cubical spans, for a small category X with full
distinguished pullbacks. The construction is based on the formal span ∨ = ∧op (with a
trivial choice of pullbacks)

∨ : −1← 0→ 1
Sp∗(X) = Cosp∗(X

op), Spn(X) = Cat(∨n,X),
(76)

and its structure as a formal symmetric interval, dual to the one of ∧.
Notice that, formally, weak compositions are still based on pushouts (and their gen-

eralisations). The concatenation model is the pb-category ∨2 = (∧2)
op, displayed at the

left

− 1 b 1 {∗} ∂+
//

∂−

��

∨

k−

��
a

eeLLLLL
::ttttt

c

ddJJJJJ
99ttttt

p
p

N
N

0

eeKKKKK
99sssss
∨2 ∨

k+
// ∨2

(77)

The category ∨2 can be inserted in the commutative diagram above, at the right. It
is obtained from the corresponding pushout ∨(2) in Cat, adding a distinguished pullback
with vertex 0; but any category with a full choice of pullbacks believes that also ∨2 is a
pushout.

Similarly, for a category X with full distinguished pullbacks and pushouts, we have a
weak cubical category of cubical bispans, or cubical diamonds

Bisp∗(X), Bispn(X) = Cat(♦♦♦n,X). (78)

The construction is based on the category ♦♦♦

0′′

− 1

88qqq
1

ddIII
(the formal bispan),

0′
ffMMMM

::vvv
♦♦♦

(79)

which is just a ‘formal commutative square’, but becomes a formal bispan when equipped
with the obvious structure of formal symmetric interval, combining the structures of ∧
and ∨: faces end up at ±1, and so on.

4.8. Cubical relations. We end this section sketching the construction of a strict cubi-
cal category Rel∗(Ab), as a quotient of Cosp∗(Ab). One could equivalently use Sp∗(Ab);
and the same can be done with any abelian category. (For relations of sets, one should
work with spans.)

In dimension 1, let us say that two cospans x, x′ : ∧→ Ab with the same cubical faces
(at ±1) are equivalent when they have the same pullback-span (which is jointly monic);
they define thus one relation [x] = [x′] : x− ·→ x+, represented by this jointly monic span.
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Moreover, any transversal map f : x → y provides a transversal map [f ] : [x] → [y],
defined as a tranversal map in Sp∗(Ab) between jointly monic spans. Composition is
induced by the composition of cospans, which is consistent with our equivalence relation.
(Equivalently, one can take the jointly monic span associated to a concatenation of jointly
monic spans.)

In higher dimension, two n-cospans x, x′ : ∧n → Ab with the same outer vertices

x(t) = x′(t), t ∈ {−1, 1}n, (80)

are equivalent when all the ‘homologous’ pairs of 1-cospans which x, x′ ‘contain’

{t1, ..., ti−1}×∧×{ti+1, ..., tn} → ∧n ⇒ Ab, (81)

are equivalent, as above.
The 1-truncated cubical category Rel(Ab) coincides with the double category of

abelian groups, homomorphisms and relations considered in [11]. Notice that a double cell,
i.e. a transversal map f : u → v of 1-cubes in Rel∗(Ab), amounts to a lax-commutative
square of relations

X− f− //

u

��

Y −

v

��
6 f+u 6 vf−.

X+
f+

// Y +

(82)

which need not commute: generally, f is not a transversal map in the cubical category of
cubes of relations.

5. Strict multiple categories

We end with a generalisation of the cubical structure, having a countable family of cubical
directions, of different sorts.

5.1. The geometry. Loosely speaking, a strict multiple category A will be a generalised
strict cubical category where the cubical directions can be of different sorts, or colours.
The index i > 0 will represent such sorts, including the transversal one, which - in the
strict case - has no reason to be treated differently. Thus, we will have

• a set A∅ of objects,

• a set Ai of i-arrows, or i-coloured arrows, for every index i > 0 (with faces in A∅),

• a set Ai1i2 of 2-dimensional (i1, i2)-cells, for indices i1 < i2 (with faces in Ai1 and
Ai2),

• and generally a set Ai = Ai1i2...in of n-dimensional i-cells, for every multi-index i

i = (i1, ..., in), 0 6 i1 < i2 < ... < in (n > 0), (83)

(with faces in the various Ai1...̂ij ...in
).
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5.2. Multiple sets. We begin by extending the presheaf category SetIop of cubical sets.
While the site I (1.5) has objects 2n, i.e. the powers of the cardinal 2 = {0, 1}, the new
site M is based on a sequence of disjoint copies 2i = {0i, 1i} of the cardinal 2, for i > 0,
representing the various 1-dimensional directions. Then, each multi-index i (as in (83)
gives an object of M, namely the cartesian product of the corresponding copies of 2

2i = 2i1×2i2×...×2in (n > 0; 0 6 i1 < i2 < ... < in), (84)

Starting from the basic faces and degeneracy in direction i > 0

∂α
i : 1 � 2i : ei, (85)

the arrows of M are generated, under composition in Set, by the following higher faces
and degeneracies

∂α
ij

= 2i1×...×∂α
ij
×...×2in : 2i1×...×1×...×2i1 → 2i,

eij = 2i1×...×eij×...×2in : 2i → 2i1×...×1×...×2in (i1 < ... < ij < ... < in).
(86)

Note that the indexing we are using is (also here) incomplete: domains and codomains
must be written down; for a complete indexing, one can write ∂α

iij
and eiij .

Thus, a multiple set is a functor A : Mop → Set, which means a system of sets and
mappings

Ai = Ai1i2...in (n > 0; 0 6 i1 < i2 < ... < in),
∂α

ij
: Ai → Ai1...̂ij ...in

, eij : Ai1...̂ij ...in
→ Ai (i1 < ... < ij < ... < in),

(87)

satisfying the multiple relations

∂α
i .∂β

j = ∂β
j .∂α

i (i 6= j), eiej = ejei (i 6= j),
∂α

i .ej = ej.∂
α
i (i 6= j) or id (i = j).

(88)

These relations look simpler then the cubical ones because here an index i stands for
a particular sort, instead of a mere position, and is never ‘renamed’. A reduced multiple
set works with indices i > 1.

Alternatively, as suggested by the referee, one can view M as the direct limit of its
truncations

M0 →M1 →M2 → .... (89)

where M1 = I1 = {0 −→←−−→ 1} is the site of 1-cubical sets (or 1-simplicial sets, or reflexive
graphs) and Mn = (M1)

n is a cartesian power. The functor M0 = 1→M1 takes value at
the object 1, and the following ones are obtained by repeatedly applying −×M1.
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5.3. Multiple categories. We extend now the definition of a strict cubical category,
given in 1.4.

(mlt.1) A multiple category A is, first of all, a multiple set of components Ai, whose
elements will be called i−cells; as above, i is any multi-index (0 6 i1 < i2 < ... < in).

(mlt.2) Moreover, given two i-cells x, y which are ij-consecutive (∂+
ij
(x) = ∂−ij (y)), the ij -

concatenation x +ij y (or ij-composition) is defined and satisfies the following ‘geometrical’
interactions with faces and degeneracies

∂−ij (a +ij b) = ∂−ij (a), ∂+
ij
(a +ij b) = ∂+

ij
(b),

∂α
ih

(a +ij b) = ∂α
ih

(a) +ij ∂α
ih

(b) (h 6= j), eih(a +ij b) = eih(a) +ij eih(b).
(90)

(mlt.4) For i < j we have

(a +i b) +j (c +i d) = (a +j c) +i (b +j d) (middle-four interchange), (91)

whenever these composites make sense. (Again, the nullary interchange is already ex-
pessed above.)

A multiple functor F : A → B between multiple categories is a morphism of multiple
sets which preserves all composition laws.

Within the cubical category Cub∗(X), every sequence (Xi)i>0 of subcategories of X
brings forth a multiple category Cub∗(X, (Xi)), where the i-directed arrows belong to
Xi (and, for higher cells, form commutative diagrams of X). For instance, take as X
the category of smooth manifolds and continuous mappings, with Xi the subcategory of
mappings of class Ci.

Truncation works in the obvious way, as in 1.5. In particular, a strict triple category
coincides with the notion introduced by Gray [13], which amounts to a category object in
the category of double categories and double functors.
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Géom. Différ. Catég. 44 (2003), 281-316.

http://www.dima.unige.it/ grandis/Dht1.pdf

[9] M. Grandis, Lax 2-categories and directed homotopy, Cah. Topol. Géom. Différ. Catég.
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