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Abstract. This work is a first step in extending to the non-commutative case previous works
concerned with the study of spectral sequences via universal models. We characterise categories of
relations on weakly exact categories, i.e. y-categories in the sense of Burgin; we also study their
lattices of subobjects and various lattice-theoretical properties of such categories.

0. Introduction

0.1. We want to extend to the non-commutative case a series of three papers [G10-12] on
commutative homological algebra and universal models of spectral sequences. Here, we are mostly
concerned with the extension of the first, [G10], which will be cited as Part I; the reference 1.1, or
1.1.2, or 1.1.2.3 applies respectively to its Section 1, or Subsection 1.2, or item (3) in the latter.

The categorical frame we chose in the former seriesis EX, the 2-category of exact categories (in
the sense of Puppe-Mitchell [Pu, Mi]), exact functors and natural transformations. We have shown
that in such a frame the biuniversal model of "homological theories’, as the filtered complex or the
double complex, can be explicitly described: the biclassifying exact category can be "drawn" in the
(discrete or real) plane, yielding a graphic tool (asort of algebraic crossword chasing) for studying the
associated spectral sequences; in the case of the discrete filtered complex we recover the Zeeman
diagram [ZE, HW].

As acrucial, distinctive fact (see 1.0.1), all the above theories are distributive, in the sense that
their biclassifying exact category has distributive |attices of subobjects, while —generally — the lattices
of subobjects of an exact category are just modular.

Notice that such results cannot be achieved in AB, the 2-category of abelian categories. the
biclassifying abelian category of the above theories is not distributive (as any non-trivial abelian
category); aso, it is much more complicated than the exact one and probably cannot be given simple
representations. Note also that the lack of an additive structurein EX will make easier the present
extension of results to non-commutative algebra.

Homological algebrais— essentially —a calculus of subquotients. Therefore, an important tool to
prove our resultsis the calculus of relations, which reduce subquotientsin E to subobjectsin RelE.
More precisely, for a p-exact category E, arelation a A' - A" has aW-factorisation a= ng*pm®
by four arrows of E, determined up to isomorphism, asin the lower part of the left diagram below
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it also has a dual W*-factorisation a=g*n'm#p', asin the upper part; the fact that the two
factorisations yield the same relation is ensured by the two squares being pullbacks (or, equivalently,
pushouts). The dotted diagonals give the (essentially unique) factorisation of a in epirelation /
monorelation; thus, amonorelation s with valuesin A amountsto asubquotient H/K of A in E
(aquotient of a subobject, or equivalently a subobject of a quotient), as shown in the right diagram
above, again a bicartesian sguare.

The construction of RelE isrealised by equivalence classes of W-shaped diagramsin E, up to
three central isomorphisms (or, dualy, by equivalence classes of W*-shaped diagrams): cf. Calenko
[C1, 2], Brinkmann-Puppe [BP], or abrief description here (4.3). If E hasfinite products, than it is
abelian and relations can be equivaently constructed as equivalence classes of spans (or cospans).

It isimportant to note that a subquotient s: H/K - A can aso be represented by a projection e
A - A, i.e. asymmetric idempotent endorelation (e = ee= €

2 e=(A<~H-—HK=<« H—A) (e=ee=¢€",

with the advantage that e is uniquely determined: two monorelations s, t (with valuesin A) are
equivalent if and only if they have the same associated projection: ss* = tt*: A - A; further, we can
simulate the numerator (H) and the denominator (K) of a subguotient by two restrictions
(projections < 1), which again are strictly determined

(3 n(e) = (A < H—A), de = (A <= K — A),
and strictly preserved by "good" functors, the ones which preserve involution and order.

This is why we preferred to replace the pseudo-complete 2-category EX with the strictly 2-
complete category RE of RE-categories, involutive ordered categories generalising the categories of
relations over exact categories. Thus, in RE, strict 2-universal problems can be solved, ssimplifying
our work; aweak adjunction between EX and RE vyieldsthe transfer of results. (Note, however,
that one can obtain directly in EX such results, applying suitable theorems on the existence of
biuniversal models, asin [BG].)

More complete motivations can be found in the Introduction of Part I.

0.2. We want now to extend this study of "homological theories" to the non-commutative case, so
that it can be applied to such categories as Gp (groups) or Rng (associative rings, without unit
assumption). The weaker notion of exactness which is suitable for our purposes is given by y-
categories, a non selfdual notion introduced and studied by Burgin [Bu], together with the
construction of relations by means of W-diagrams (while W*-diagrams work in the dual case,
including the category of pointed sets). These y-categories will aso be called weakly exact or w-exact,
for the sake of uniformity of terminology.



We begin here by extending Part |. Therefore we introduce and study RW-categories, by
weakening the RE-axioms (1.4.1): a projection e A - A, with e=ee=¢€* (simulating a
subquotient H/K of A), isno longer assumed to have a ¢-denominator °d(e) (simulating the
quotient A/K, which would require K to benormal in A) but only adenominator d(e) (simulating
the subobject K normal in H). The categories of proper morphisms of "projection-complete” RW-
categories appear to be precisely those categories whose connected components are y-categories,
conversely, RW-categories coincide with the "projection-full" involutive subcategories of the
categories of relations over y-categories.

Thiswork is not a straightforward generalisation of Part I. The normality relation x =y between
restrictions, which appears in the present case, makes various notions (e.g. RE-functors, their
factorisations, RE-subcategories...) to have at least two extensions, of which the non-standard one,
related with the reflection of normality, is often more interesting. Moreover we have to extend many
results of related works [G6-8] which we used in Part |; in particular modular |attices and their exact
category MIc of modular connections [G8], simulating the covariant and contravariant images of
subobjectsin exact categories, are here generalised by w-modular weak lattices (wm-lattices; see 11.1,
2) and their w-exact category of wm-connections. These notions we consider well-adapted to study
the lattices of subgroups and subrings, in the same way as modular lattices are the good notion for
lattices of submodules.

0.3. In Sections 1-3 we introduce the 2-category RW: an RW-category A is provided with a
regular involution (-)* and aconsistent order <, so that each projection e A — A (e=ee=¢€") has
two associated restrictions (i.e. projections < 1), the numerator and the denominator

(1) ne:A — A, de): A — A,

and each object A has suitable null projections wa and Qa; RW-functors preserve all that (2.1).
The canonical factorisation of RE-functors extends here to the ordinary factorisation (3.2) and to the
less obvious but more interesting closed factorisation (3.6), via weak quotients and closed faithful
RW-functors (reflecting normality between restrictions).

In Sections 4, 5 we prove the connections between RW-categories and y-categories (w-exact
categories) previously expounded. The RW-category wMIr of wm-lattices and wm-relations is
introduced in Section 6, together with the w-exact category wMIc = Prp(wMIr) formed by its
proper morphisms, the wm-connections. In Section 7 we deal with the transfer functors

(2) Rsta: A — wMlr, Subg: E — wMlc,

of RW-categories and w-exact categories, their lattice-theoretical properties (e.g., distributivity) and a
general treatment of expansions (7.5-11). Every wm-lattice can be realised as the w-lattice of
subobjects of some object in a (fixed) w-exact category (wMlc), and no other lattice-like notion can
be suitable for w-exact categories.

The distributive and idempotent cases for RW-categories and w-exact categories are characterised
in Section 8, and "universal representatives' of this type are given. In Section 9 a further lattice
property is considered, corresponding to the stability of normal subobjects with respect to intersection
in w-exact categories.



Last, Section 10 deals with the dual case of RWO-categories and w* -exact ones; the self-dual case
reduces to RE-categories and exact categories. Section 11 is an appendix containing the generalisation
of modular and distributive lattices used throughout this work.

0.4. Conventions. We follow the same conventions as in Part | (1.0.6), which we briefly recall
here. We generally use Mac Lane'sterminology [Ma] for categories and Kelly - Street's[KS, Ke, S1,
S2] for 2-categories. The set of subobjects ("chosen monos') or quotients ("chosen epis’) of the
object A inthecategory C iswritten Subc(A) or Quoc(A), respectively.

0.5. RO-categories. The results of 1.1-3 on involutive ordered categories need no adaptation to be
used here; we only recall some basic terminology.

Aninvolutive category A = (A, #) isacategory provided with aninvolution (% A — A, i.e.a
contravariant endofunctor identical on the objects and involutive, whose result on the morphism a A’
— A" will bewritten as & A" — A'. Actualy we only consider regular involutions, satisfying
(1) a= ad'a, for every morphism a.

A projection e A — A is asymmetric idempotent endomorphism: e = ee = €*; an equivalent
conditionis: e=¢€", oralso e= e

The projections of the object A form aset Prja(A), non closed with respect to composition: the
product ef of two projectionsis an idempotent; it isa projection if and only if e and f commute;
conversely, every idempotent e is the product of two projections e = (ee”)(e"e); Prj(A) is
canonically ordered by
(2 e<f if e=¢€f (¢ e=fe = e=fdf).

Every morphism a A' — A" hasacovariant and contravariant transfer of projections (1.1.3), by
order preserving mappings
(3 ap: Prj(A) — Prj(A"), ap(e) = oed’,

a: Prj(A") — Prj(A), a(f) = d'fa = (@)e(f),
in a functorial way: (ba)p = bpap, (ba)" = abP. The morphism a has two associated projections,
simulating its coimage and itsimage
@) c@ = &(1) = aaE Prj(A), i@ = ap(1) = aa" € Prj(A"),
aismono < daa=1, aisepi < ad =1,
thus, all monos are split, aswell asall epis; if a ismono and epi thenitisaniso, with a = &

Now, a RO-category (1.1.2) A =(A,# <) isacategory A provided with aregular involution
and an order relation < on parallel morphisms, consistent with composition and involution;
furthermore we assumethat A isPrj-small, i.e. al its projection-sets Prj(A) are small.

Then, the set Prj(A) hastwo order relations, < and =, generally different. It is easy to see that
these orders coincide on the subset Rst(A) of therestrictions x: A — A (defined by x < 1), which
is a meet-semilattice with respect to composition. On the other hand, they are opposite on the subset
Crs(A) of the corestrictions x' of A (X'=1): X' <y ifandonly if X' =y"



Proper morphisms a: A' — A" (defined by the usual conditions a’a= 1, aa’ < 1) and null
morphisms (ada=a, foral a: A" — A') arealso studiedinl.1l. If u,v areproper and u=yv,
then u=v.

A RO-functor F: A — B isafunctor between RO-categories preserving involution and order
(hence also projections, restrictions, corestrictions and proper morphisms). A RO-transformation
(1.2.3)

(5) ¢:F— F:A — B,

assigns, to each A-object A, aproper morphism ¢A: F(A) — F(A) of B, sothat alax-naturality
condition holds

(6) ¢A".Fa = GagA', forevery a€ A(A', A"),

which implies equality when a isproper.

This defines RO, the 2-category of RO-categories, RO-functors and RO-transformations,
equipped with an obvious 2-functor

(7) Prp: RO — CAT.
Last werecal (from |.3) that the following conditions on a RO-category are equivalent:
(a) it has epi-mono factorisations (necessarily unique),
(b) every idempotent e splits (factors e =ts*, where s and t are mono),
(c) every projection e splits (factors e =ss*, where s isamono);
then, we say that our RO-category is projection-complete, or factorising.

Every RO-category A has an associated projection completion Fct(A), solving the obvious
biuniversal problem (1.3.8): the objects of Fct(A) arethe projectionsof A, whileamorphism (g g,
f): e — f isamorphismsof A suchthat a=fae. The well-known idempotent completion, with
idempotents as objects and similar morphisms, is equivalent to Fct(A).

1. RW-categories

We introduce here our extension of RE-categories (1.4), which will be shown in Section 5 to
generalise also the categories of relations on y-categories. Basic notions and results on RO-categories
(1.1-3, recalled here in 0.5) are often used without reference.

1.1. Definition. An RW-category will be atriple A = (A, #, <) satisfying:
(RW.0) A isaRO-category (0.5).

(RW.1) For every projection e there exists precisely one restriction n(e) suchthat e < ne< e,
called the numerator of e.

(RW.2) Every object A hasanull restriction o =wa and anull corestriction Q = Q.
For any e€ Prj(A) the denominator of e isdefined to be the restriction



(1) d(e = n(ewae).

(RW.3) For al parallel projections e, f
@ e<f < (ne=<nf and de - df),
(b) e<f < (ne=<nf and de~ df).

The projections wa, Qa are uniquely determined, since the axiom (RW.2) is equivalent to the
following one (in the presence of (RW.0)):

(RW.2) For every abject A, the set of endomorphisms A(A, A) hasaleast element wp and a
greatest one Qp, Saisfying o = 0Qo, Q = QuQ.

By 1.4.1, 1.4.4, the RE-categories are precisely those RW-categories which admit °-denominators
(opposite to numerators, with respect to the order <): for every projection e there exists precisely one
corestriction °d(e) suchthat e~ ‘de=e.

1.2. Normality. Henceforth A isan RW-category and A, A', A" are objectsof A.

Every projection e of A isdetermined by the pair (ne, de) of its numerator and denominator
(RW.3); by applying (RW.3b) to theinequality ewe<e, weget: de<ne.

Now, if X,y € Rst(A), wewrite y = x (y isnormal in X) whenever there exists aprojection e
suchthat ne=x and de=Yy; then y =x while e isdetermined and will be written as x/y.

Thus, for x € Rst(A) and e€ Prj(A)
D x = xlo, o < X, 1= 1o, w =1,
(2) xQx = x/X, X < X, o = olo, Q = 1/,
(3 e€Rst(A) = de=w = e =ne
(4 e€Crs(A) = ne=1 = e = 1de,
(5) eENul(A) <= ne = de.
Actudly, for (5), if e isnull then de= n(ene) = ne; conversely, if ne=de, then e and ewe
have the same numerator and denominator, hence coincide and e isnull.
Last it follows from (5) and (RW.3b) that the meet-semilattice Rst(A) isisomorphic to the set
(Npr(A), <) of null projectionsof A, via

(6) x — x/X, e — ne.

1.3. Transfer of restrictions. For a€ A(A', A") let us define the covariant and contravariant
transfer of restrictionsalong a, by two mappings (deduced from the transfer of projections, 0.5.3)

(1) ar:Rsi(A) — Rst(A"), ar(x) = n(ap(x)) = n(axd),

at Ret(A") — Rsi(A), a(y) = n(@(y)) = n(@ya) = (@Rr(y),
which will be seen later to form a"wm-relation between wm-lattices' (7.1). Now
(2 ap(xly) = ar(x)/ar(y), for y = x in Rst(AY),

ap(x) = ar(X)/ar(w), for x € Rst(A").



Indeed, asthetransfer of projections ap preservesthe orders < and <, by (RW.3)
() ap(xly) = ap(x), ap(xly) = ap(X),
ap(xly) - ap(yly), ap(xly) = ap(yly),
therefore, again by (RW.3)
(4 n(ap(xly)) = n(ap(x)) = ar(x),
() dae(xly)) = d(@ps(yly)) = n(ap(yly)) = ar(y)-
In particular we have
(6) c@ = da = a(1) = &(1)/a(w), i@ = aa = ap(1) = ar(1)/ar(w).
The transfer of restrictions is functorial, like the one of projections (0.5)
(7)) (ba)r(x) = br(ar(x)), (ba)R(y) = a(b(y)),

asit followsfrom (2)

(8) (ba)p(x) = bp(ap(x)) = bp(ar(X)/ar(w)) = br(ar(x))/br(ar(w)).

1.4. Definition and annihilator. For amorphism a A" — A" we shall consider the following
restrictions of its domain and codomain, called definition, annihilator, values and indetermination of a
(simulating the analogous subobjects, which exist when A isthe category of relations of some w-
exact category: see 4.6 and 5.6)

(1) def(a) = n(@a) = a¥(1) € Rst(A), an(@) = d(@a) = a¥(w) € Rs(A),
va(a) = n(ad’) = ar(l) € R(A"), ind(a) = d(a&) = ar(w) € Rs(A"),

o that

(2) ann(a) - def(a), ind(a) = val(a),

(3) def(a) = val(&), ann(a) = ind(@),

(49 aismono <= (def(a) =1 and ann(a) = w),
aisepi < (va(@=1 and ind(@) = o),

(5) aisproper = (def(a)=1 and ind(a) = w),

(6) aisnul < def(a) = ann(d) = val(@ = ind(a).
Moreover, for aprojection e

(7) ne = def(e) = val(e), de = ann(e) = ind(e).

1.5. The operation &. The set Prj(A) will be provided with the binary operation &
(1) e&f = efe = ep(f),

a sort of generalised meet, which will be calculated in the next subsection. The operation is
idempotent, with identity 15, generally neither associative nor commutative: we shall provethat & is
associative (for all objects) if and only if A isw-distributive (7.5; 8.1). We have

@ e<f =« e=f&e



(b) e and f commute = e&f = f&e « e&f <« f&e
Indeed, (a) follows from (0.5.2); for (b), if the third property holds
(2) ef = ef.efef = efefef = efe,

hence ef isaprojectionand e, f commute.

1.6. Theorem (Calculus of projections). In the RW-category A, for al projections e, f € Prj(A)
(@ e&f = efe = ep(f) = €°(f) = (xzvy)/(xtvy) (for e=xly, f=2z/);
(b) e and f commute if andonly if ne - df and nf - de; inthiscase

(1) ef = fe = e&f = f&e = (ne.nf)/(devdf);

(¢ fordl y'eRst(A), y'=de « (Y =he and ye=ey' € NulA).

(Recall that Rst(A) isameet-semilattice for composition (0.5); joins need not exist (see 1.7). We
also note that in Part | the analogous, more particular, result for RE-categories (1.6.9) was deduced
from the theory of exact categories; the present direct approach is more satisfactory.)

Proof. First we prove the following part of (b)
(b) if therestriction x is=t, then x commuteswith f = z/t.
Indeed, by 1.3.2 and (RW.3)
(2) xfx = xp(f) = XRr(2)/XR(t) = xz/xt = xz/t;
Xz = zxXz =< fxf; fxf < f,

Thus n(xfx) = xz < n(fxf) and d(xfx) = df = d(fxf); by (RW.3a), x&f < f&x; by 1.5b, x and
f commute.

Now we prove (a). By 1.3.2
(3) efe = ex(f) = er(2)/er(D),
therefore we need only to verify that
(4 n(eze) = xzvy.
Actudly
(5) xz = xzx = eze, y = yiyyly = (yly)z(yly) = eze,

hence, by (RW.3b), xz <n(eze) and y = n(eze). Take now some restriction r greater than xz and
y in Rst(A); by (b), r commuteswith e=x/y and

(6) r.(eze) = r.ex.ze = er.xz.e = exz.e = eze

Thus eze < r and n(eze) < r, which achieves (4).
It isnow easy to deduce (b): e and f commuteiff e&f =f&e (1.5b), iff

(7) xzvy =xzvt; Xtvy = zy vt
ifandonly if x -t and z »y.
Last, for (c), de commuteswith e by (b); conversdly, if y' satisfiesthe conditionsin (c)



(8) y' = y.ne = n(y'e) = d(y'e) = wvde = de. O

1.7. Theorem (Normomodularity). For all objects A of the RW-category A, theset Rst(A) isa
w-modular w-lattice (11.1, 2) with respect to itsrelations < and <.

Proof. We aready know that Rst(A) is a meet-semilattice with respect to < and product, with
minimum o and maximum 1; also the axiom (wl.1) in 11.1 is known to hold (1.2.1-2). Take X, VY,
Z,t € Rst(A).

Assumethat y < x. For (wl.2), it is sufficient to note that (by 1.6)
(2) z& (xty) = zx/zy,
hence zy < zx. If moreover t = z<Xx

() (ly) & (Zt) = (xzvy)l(xtvy) = (zvy)/(tvy),
which proves both (wl.3), by taking z=t, and (wl.4).
Now, for the first normomodularity condition (wm.1), supposethat y < x and t < xz. Consider
the projections
4 e=z& (xly)&t) = z(xly) t (xly) z,
(B) f=z&KXYy)&t = z(xly)ztz(xly) z,
which are equal because t < z; calculating their numerators, by 1.6, we get our goa
(6) ne = zan((xly) &t) = za (xtvy) = za (tvy),
(7) nf = (nz& Xy) at)yvd(z& (Xly)) = (zXat)vzy = tvzy.
Last (wm.2) is proved in a similar way. Suppose that y < X, t=<X, Y=z and consider the
projections
8 e =z& ((xly) &1t) = z(xly)t(xly)z, f = (xly) & zt = (xly)zt(xly),

which coincide since z commutes both with x/y (1.6) and t. Also hereit sufficesto calculate their
numerators

(9) ne = zan((xly) &t) = za (xtvy) = za (tvy),

nf = xztvy = ztvy. o

1.8. Normal RW-categories. The normal restrictions x<1 of A form a join-semilattice
Nrm(Rst(A)) (11.4), which is anti-isomorphic to the ordered set (Crs(A), <), hence isomorphic to
(Crs(A), =), via
() NrmRst(A) — Crs(A), X — 1/X,
(2) Crs(A) — NrmRst(A), e — de.

We say that the RW-category A isnormal (resp. subnormal) when all itswm-lattices Rst(A) are
so, i.e. when every restriction x of each object A isnormal (resp. subnormal).

Itiseasy to seethat A isnormal if and only if it is an RE-category (1.4.1). Actually, if A is
normal, it satisfies (RE.1b): each projection e = x/y hasdenominator y < 1, hence by (RW.3) there
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is exactly one corestriction x' of A suchthat e<x' and e~ x', i.e. xX'=1ly; thus A isan RE-
category. The converseistrivial.

We shall consider in 9.1 certain RW-categories in which normal restrictions are meet-stable, so
that al sets NrmRst(A) are modular lattices.

1.9. Theorem (The projection completion). The projection complete RO-category B = Fct(A)
(0.5) onthe RW-category A isan RW-category. Moreover, if e€ Prj(A) and

D f = (f; e € € Prig(A), f=xly < ¢

then

(2) we = (ewa€; € €), Qe = (246 € €),

(3 nf' = (ex; e € = (nf/de; g, €), df' = (ey; e, € = (df/de; e, €).

Proof. We already know that B is a projection complete RO-category. Clearly it satisfies (RW.2)
with null restrictions and corestrictions as specified in (2). Asto (RW.1), by (1)

(4 de<y =X = ne

so that both x and y commute with e (1.6b). Therestriction x' = (xe; €, €) of e isanumerator
for ' since

(B) x' = f (xe=xexs=fef =f), xf''= (xef;e,6) = (f;e, € = f.
Conversdly, if X" € Rst(e) and

(6) x" = (g ee), X" < f o< X",

we have

(7 g~ & g=e g=f-<g,

so that, by (RW.3) in A

(8) ng = nf and dg = de;

thus g isdetermined, as g = nf/de. Last

(9) df' = n(fwe’) = n(fewef; e, €) = n(fof; g, €) = (n(fof)/de; e €) = (df/de; e, €).

It follows easily that B satisfies (RW.3). o

1.10. Lemma (Characterisation of order). Let a,b& A(A, A") and

(1) x = def(a), z = def(b) € Rst(A), X' = va(a € Rst(A").
Then a<b if and only if

(2 a=az and ab’b.a’a = x'bx.
In particular

(3) (a=b, ca=ch, ia=ib) = a=h.

Proof. If (2) holds, then
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(4 a=az = axz = azx = an(b*b).n(a’a) < abb.a’a = xbx < b.
Conversely, if a<b, clearly a=az and
(5 abfb.a’a = x' (ab’b.a’a) x < x' (b.b"b.bb) x = x'bx,
(6) ab’p.a’a = aa’b.a’a = n(aa”).b.n(a’a) = x'bx. O

1.11. Order and restrictions. A first consequence of the above lemmacis that the order <in A is
determined by the restrictionsof A. More precisely, let A1 = (A, # <1) and A = (A, # <)) be
two RW-structures on the same involutive category (A, #), and assumethat A; and A, havethe
same restrictions. Since the numerator ne of the projection e of A; isthe smallest (for <) restriction
X suchthat xe=e, A; and A, have the same numerators; by the above lemmathe orders <; and <,
coincide.

2. The complete 2-category RW

A and B are dways RW-categories.

2.1. RW-functors and transformations. An RW-functor will be an RO-functor F: A — B
between RW-categories which preserves null morphisms (or, equivalently, all projections »; or aso,
al projections Q). Henceit preserves projections, restrictions and their meet, corestrictions, numera-
tors, denominators, as well as the normality relation =.

It also preserves <-unions (11.1) of restrictions: indeed, if y < X and z = X, consider the follow-
ing projection e (applying the calculus of projections 1.6)
(D) e = (xy)z(xly) = (zvy)ly,
(2) F(zvy) = Fne) = n(Fe) = n((FxX/Fy).Fz.(FX/Fy)) = F(2) v F(y).
An RW-transformation
B aF— G A — B,

is an RO-transformation (0.5) between RW-functors; recall that such transformations are just lax-
natural (with respect to the 2-categorical structure given by the order <), yet "natural on proper
morphisms".

These functors and transformations define RW, a sub-2-category of RO.

It is easy to see that an RW-functor is an isomorphism (resp. an equivalence) in RW if and only
if it is bijective on objects and morphisms (resp. faithful, representative and full).

The full embedding (1.3.8; 1.9)
(4 nA: A — FctA, A— (A, a— (211,

yields a biuniversal arrow (1.0.6) from the object A to the 2-functor Fct: RW — FRW, the latter
being the full sub-2-category of RW determined by projection complete RW-categories.
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2.2. Basic reflection properties. We need to study various reflection properties for an RW-
functor F: A — B; thetrivial ones are exposed below, others will follow (e.g.: 2.3, 2.4, 3.1, 3.3).

Every projection (resp. restriction) € € B(FA, FA) suchthat € = Fa for some a A — A' can
be written as Fe for some projection (resp. restriction) et A — A: just take e=ca=a'a (resp. e=
def(a) = n(aa)).

Moreover, for X,y € Rsta(A) and Fy < Fx in Rstg(FA) there exist X, Yo € Rsta(A) such
that yg = Xo, FXg=FX, Fyg=Fy: just take Xp =X, Yo = Xy. The analogous property for the
relation < need not hold, but yields the following definition.

2.3. Closed RW-functors. The RW-functor F: A — B will be said to be <-closed, or closed,
whenever

(@ foral x,y &€ Rsta(A) suchthat Fy < Fx, thereexist Xg, Yo € Rsta(A) suchthat yg < Xg, FXp
=FX, Fyo=Fy.

By 2.2, afaithful RW-functor is <=-closed if and only if it reflects the relation =, when acting on
parallel restrictions. Closed RW-functors are stable for composition. Conversely, if the composite F
= F,F1 of two RW-functorsis closed and the second (F,) isfaithful (more generally, Rst-faithful
(3.3)) then thefirst functor (F1) is closed too.

2.4. Lemma (Order reflection). Let F: A — B be an RW-functor and a, b€ A(A', A"). Then
Fa<Fb in B if and only if there exist c, c', c" € A(A", A") such that

() a~gc=scCc~pcC"=b

where a~pb meansthat a and b areparald in A and Fa=Fb.

Proof. The condition (1) is clearly sufficient. Conversely if Fa=< Fb, consider the restrictions X, z,
X' of Lemma 1.10 and take

(2 c¢ = az ¢ = ab"b.a"a, c" = xbx,

sothat c=az=azx=<C and c" < b, while Fa=Fc and Fc'=Fc" by 1.10 applied to Fa and Fb
in B. o

2.5. RW-subcategories. An RW-subcategory A' of A isan involutive subcategory such that
(a) for each object A of A' and each e& Prja(A) the projections wa, 2a and ne belongto A'.

Then A" will be equipped with the induced RW-structure, i.e. the only one making the inclusion
F: A" — A an RW-functor.

Wesay that A' is =-closed, or closed, in A if theinclusion F isso, which isequivalent to each
of the following conditions

(b) forall restrictions x,y of A', if x=y in A thenthisholdsin A’,

(b") every projection of A, whose numerator and denominator arein A', belongsto A'.

Every full subcategory of A isaclosed RW-subcategory. More generally, every Rst-full (resp.
Prj-full (3.3)) involutive subcategory of A isan RW-subcategory (resp. a closed one). Last, any
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intersection of (closed) RW-subcategoriesis so. A closed RW-subcategory of an RE-category (i.e., a
norma RW-subcategory (1.8)) is an RE-category.

2.6. Generation by subgraphs. Let A be asubgraph of A; the last remark above proves the
existence of the RwW-subcategory A' (resp. the closed RW-subcategory A") of A spanned by A.
A" will also be called the RW- closure of A in A, and writtenas A = cla(A).

A" can be constructed as
(1) ObA' = ObA, MorA' = U A,
wherethe sets A, C MorA (n=0) areinductively defined by:
(@ Ag = (MorA) U {1a, wa, Qa | A € ObA},
(by) if a€ Ay, then & € Aps1,
(by) if a, b& A, arecomposablein A, then ba& Aniq,
(b3) if e€ A, isaprojection of A, then ne &€ Ap+1.

The construction of A" =A needs one inductive rule more
(bg) if X,yE Ay and y =x in A, then x/y € Aps1.
As aconsegquence

(2) card(MorA") = card(MorA") = max(card(ObA), card(MorA), Xg).

2.7. Completeness of RO. We recall (from 1.9) that the 2-category RO isstrictly 2-complete. 2-
products and 2-equalisers are constructed asin CAT, and provided with the obvious involution and
order. The commasquare Z = (F|G) of two RO-functors has the following construction

o
Z — A
) D" l i/a l F

B — C
G

the objectsof Z aretriples
(20 (A,B;u:FA — GB) (ue PrpC),
where A and B arein A and B; the morphisms are pairs
(3 (ab): (A B;u) — (A, B;U),
acA(A,A), b € B(B, B"), u.Fa < Gb.u;

the composition, involution and order are obvious, as well as the RO-functors D', D" and the (lax!)
RO-transformation

(4 &8 FD' — GD":Z — C, 3(A,B;u) = (u: FA — GB).
Clearly the 2-functor Prp: RO — CAT preserves 2-limits.
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2.8. Projections in comma squares. Consider again a comma category Z = (F|G) in RO. In
order to study the RW-case, we need to characterise the projections and the restrictions of the object
(A,B;u:FA — GB) in Z. Theprojections are clearly the pairs

(D) (&) € Pria(A)xPrig(B)
which satisfy
(@ uFe = Gf.u,
or also the following more explicit conditions, both equivalent to (a)
(b) up(Fe) = Gf,
(© Fe = uP(Gf).
Indeed, recalingthat u & PrpC, if (a) holds
(2) up(Fe) = uFeu” < Gf.uu” < Gf,
while from (b) it follows that
(3) Fe = ufu.Fe.uu

uPup(Fe) = uP(Gf),

A

and from (c)

(4) uFe = uuf(Gf) = w#Gf.u < Gf.u

Thustheredtrictionsof (A, B; u) in Z are exactly those pairs (X, Y) € Rsta(A)xRstg(B) which
satisfy the equivaent conditions

(@) uFx = Gy.u,
(b') UR(FX) < Gy,
(c) Fx = uR(Gy),

since UR(Fo) = Ur(w) =ind(u) = w = Gw and Fo = o < UR(0) = UR(Go).

2.9. Completeness of RW. Clearly the 2-embedding RW — RO creates 2-limitsand also RW
isgrictly 2-complete. We shall need the two following results concerning 2-limits and closure.

First, the equaliser of two parallel RW-functorsis easily seen to be a closed embedding.

Second, if Z = (F|G) isthe comma square of the converging RW-functors F and G (2.7), the
faithful RW-functor

(1) X2z — AxB, (A,B;u) — (A,B), (ab)— (ahb),

is closed because of the previous characterisation of projections and restrictionsin Z (2.8): if (X,
Yo) = (X, ¥) in Rstz(A, B; u) and (xo, Yo) = (X,y) in Rst(A, B), we have

(2) ur(Fxp) = Gy, ur(Fx) = Gy, Xp= X in A, Yo=Y in B;
therefore, by letting e =x/xg € Prja(A) and f =ylyg € Prjg(B), it results

(3) up(Fe) = (ur(FX))/(ur(Fxo)) = Gy/Gyo = Gf,

hence (e, f) € Prjz(A, B; u) and (Xo, Yo) = (X, y) in Z.
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3. Factorisations of RW-functors

The factorisation of RE-functors via RE-quotients and faithful RE-functors (1.5.10) has an obvious
extension to RW-functors (3.2) and a less obvious extension via "weak quotients' and closed faithful RW-
functors (3.6), which will result to be more useful. We also extend here the factorisation of graph-
morphisms considered in [G11], Section 1. A is aways an RW-category.

3.1. Strict quotients and faithful functors. A (strict) RW-quotient F: A — B will be an
RW-functor which is bijective on the objects and full; by the order-reflection lemma (2.4), the RW-
structure of B (i.e. composition, involution and order) is determined by the one of A and by the
mapping F.

A faithful RW-functor F: A — B, again by 2.4, reflects the order between parallel maps; it also
reflects proper and null morphisms; its restriction to endomorphisms reflects restrictions and
corestrictions. The RW-structure of A is determined by the one of B and by the mapping F
together with the "domain" and "codomain” mappings of A.

3.2. The ordinary factorisation. The factorisation of RE-functors (1.5.10) extends trivialy to
the ordinary RW-factorisation of an Rw-functor F

Fy F2
@ A C B, F = FFy,

where F; isan RW-quotient and F, a faithful RW-functor. Such a factorisation is essentially
unique. If A isprojection complete, sois C.

3.3. Local properties of RW-functors. Also here (see 1.5.11) an RW-functor F: A — B will
be said to be Prj-faithful (resp. Prj-full) whenever the mappings

(1) Pria(A) — Prig(FA), e— Fe),

are injective (resp. surjective) for al objects A. Analogously we define the Rst-faithful and Rst-full
RW-functors, by the same conditions on the mappings

(2) Rsta(A) — Rstg(FA), X — F(X).

Itiseasly seenthat FisPrj-faithful if and only if it is Rst-faithful (if and only if, in the ordinary
factorisation F = FyF4, thefirst functor F; isso). Onthe other hand, F isPrj-full if and only if it
is both Rst-full and =-closed (if and only if F» iSs0).

A Rst-faithful functor reflects the order < of projections, hence also their order < (RW.3b). It
reflects also monos, epis, proper morphisms, null morphisms; when acting on endomorphisms, it
reflects projections and restrictions.

3.4. Dense subgraphs. We say that the subgraph A of A is <-dense (or dense) in A whenever
the closed RW-subcategory spanned by A, i.e. A =claA (2.6), coincides with A.

For every RW-functor F: A — B and every subgraph A of A, we have a sort of continuity
property
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(1) F@A) C (FA),

because, following the inductive construction of A (2.6) and (FA)™, it is easy to prove that F(A,)
C (FA),, forevery n=0. Analogously one provesthat, if A isan RW-subcategory of B

2) cla(A) = clg(A) N A.

3.5. Weak quotients. The RW-functor F: A — B will be said to be aweak quotient if
(@) F isinjective onthe objects,
(b) thegraph F(A) isdensein B.

Insuch acase F(A) isan RW-subcategory of B and F isactualy bijective on the objects. By
3.4.1, weak quotients are stable for composition: if G: B — C isaso so, then

(1) (GFA)™ D G((FA)") = G(B), (GFA)™ D (G(B))~ = C.

Conversaly if GF isaweak quotient and G isinjective on the objectsthen G itself is aweak
guotient as (G(B))™ D (GFA)™ =C.

3.6. Theorem (The closed factorisation). Every RW-functor F: A — B has an essentially unique

closed RW-factorisation, or closed factorisation

F1 F2
D A C B, F = FF,

where F; isaweak quotient and F, aclosed faithful RW-functor.

Proof. To establish the existence, consider first the following decomposition of F in RW-functors

G H
2) A B B, F = HG,

ObB' = ObA, B'(A1, Ay) = B(FA4, FA)),

G(A) = A, G@) = K@),

H(A) = F(A), H(b: A1 — Ay = (b: FA1 — FA)).

Here G isinjective on the objects, hence G(A) isan RW-subcategory of B'. Now let
(3 C = clg(GA),
be the closed RW-subcategory of B' spanned by G(A), and define our functors F; and F;
(3.6.1) asrestrictionsof G and H respectively.

Triviadly, F1 isaweak quotient and F, is faithful. Moreover F, isclosed: let y' < X' in
Rstc(A) with y' = F(y') = X' = Fy(X") in Rstg(FA); then € =x'ly' € Prjg(FA) and therefore €
€ Prjg((A); since ne=x"' and de=y' belongto C whichisclosedin B', it followsthat € €
Pric(A).

Now, for uniqueness, assume that F = FoF; isany closed factorisation of F and define K: C
— B' asfollows
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@) I |« I

K(F1A) = G(A) = A, K(c: FIAFAY) = F(0): A — A

Thus K isan RW-functor and (4) commutes. Moreover K is bijective on the objects (F; and G
are s0) and faithful (F, isso): thisprovesthat C isisomorphicto K(C), and it sufficesto prove
that K(C) = (GA)™. Infact, K(C) isclosedin B' (since F, isclosed and H is faithful) and
G(A) isdensein K(C), because

(6) (GA)”™ D (KF(A)™ D K(Fi(A)7) = K(C). o

3.7. Remarks. (a) If F=F,F; isaclosed RW-factorisation, then F isclosed iff F; isso, iff F;
isaquotient (by 3.4.2).

(b) Weak quotients are epi in the category RW. Actudly, if F: A — B isaweak quotient and G1F
=Gy F in RW (with Gj: B — C), write H: Bo — B the equaliser of G; and G, (a closed
embedding, by 2.9) and factor F=HG. Thus FA C By and Bg =clg( Bg) D clg(FA) =B, i.e
Gl = Gz.

3.8. Factorisation of graph-morphisms. The closed factorisation can be easily generalised to a
graph morphism F. A — B, defined on a graph, with values in an RW-category: F factors
uniquely as

F1 F2
D A — RWF — B, F = FFy,

where F1 isaqg-morphism (a graph morphism which satisfies the conditions 3.5a, 3.5b) and F, isa
closed faithful RW-functor (same proof as above, for 3.6). Finaly, say that F: A — B isRst-
spanning if thisfunctor F, isRst-full (or, equivaently, Prj-full; cf. 3.3).

4. A review of W-categories and W-relations

Because of the lack of general pullbacks in exact categories, and a fortiori in their generalisations,
relations over these categories cannot be constructed as equivalence classes of span diagrams (V-
relations"), but as equivalence classes of four-arrow diagrams (W-relations, see 4.3) as first established by
Calenko [C1-2] for exact categories, and extended in various ways by Brinkmann-Puppe [BP], Burgin
[Bu], Calenko-Gisin-Raikov [CGR] and others. We recall here (from [G1]), briefly and without proofs, a
construction of W-relations based on minimal assumptions, together with its basic properties.

4.1. Factorisation systems. A category with factorisation system (see, for instance, [AHS,
CJKP]) isacategory E equipped with subcategories P and M which contain all isomorphisms, so
that each morphism u in E hasacanonical factorisation
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(1) u=mp (PEP; mEM),
essentialy unique in the usual sense. Then PnM isthe subcategory of the isomorphismsof E and
2 vwueP = veP, VUEM = uUeM.

Here we are only interested in proper factorisation systems, where P and M are contained in the
subcategories of epis and monos, respectively. In the sequel, the arrows —, — will always stand
for morphisms of P and M, with regard to some (specified) factorisation system. The terms
subobject and quotient will always refer to M -subobjects and P-quotients; similarly for well powered
and well copowered.

Of course, a category with unique epi-mono factorisations will always be provided with its unique
proper factorisation system.

4.2. W-categories. A W-category E = (E, P, M) isacategory E equipped with subcategories
P and M, sothat:

(W.1) (E, P, M) isacategory with proper factorisation system, well powered and copowered,

(W.2) every pair of arrows of M with the same codomain has a pullback in M (which is till a
pullback in E, by (W.1)),

(W.2*) every pair of arrows of P with the same domain has a pushout in P (whichisstill soin
E),

(W.3) everydiagram A — + — B hasa"mixed pullback” A <~ « — B in E,

(W.4) (modular cubic axiom) every commutative diagram, as at the left-hand in (1)

A — - — B A — - — B
® P b I
C — + — D C — + — D

formed of a mixed pullback and a pushout of P-epis, yields— by canonical factorisation of its rows—
the commutative diagram at the right hand, formed of a pushout of P-epis and a mixed pullback.

These categories were introduced (as quaternary categories) in [G1], extending the axioms of
Brinkmann-Puppe [BP]; actually the original formulation is written for categories with unique epi-
mono factorisation, but the generalisation to a proper factorisation system is obvious and useful (e.g.,
toinclude Rng). Notethat azero object need not exist: Set® isaW-category.

4.3. W-relations. We recall now, briefly and without proofs, the construction of the RO-category
of relationsof E [G1], which wewrite hereas Rel\(E).

The objectsaretheonesof E; aW-relation a=[m, p, g, n]: A — B isaclass of equivalence of
W-diagramsof E

(1) A <= ¢« —» « «— + > B

two such diagrams being identified when there is a commutative diagram of E
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m
A <= +« —» + «— =« > B
|

@ e fw vl
A <—r;< . — . & . — B

P q n

where u, v, w areisomorphisms (uniquely determined).
The composition of W-relations a=[m, p,g,n: A — B and b=[m', p, d,n]: B — C is
constructed (as for p-exact categories) by means of the following diagram of E

m p q n

A <= +« —» o+ «— « > B

[oa T2 T I

1 1
— > . “— . —

l——,s l 3 ip'

(3) . “«— . [ .
T— -5 Tq'

I
C

where the square <1> is a pullback of M -monos (W.2), <2> and <3> are commutative (W.1), <4>
and <5> are mixed pullbacks (W.3), <6> is a pushout of P-epis (W.2*).
Of course, the involution is obtained by reversing diagram (1)
@ [mpan*= [ngpm:B— A,
whilethe order between parallel W-relaions
®) [mp,agn < [mp,d,n],
is defined by the existence of morphisms u, v, w of E making (2) commutative.

Relw(E) is thus a RO-category. The crucial part of the proof is the associativity of the
composition; it uses heavily the "modular cubic axiom™" (W.4).

4.4. W-factorisations. The proper morphisms of A = Relw(E) are the W-relations of type u =
[1,p, 1, N

) A— +« —» « — .« »— B

We shall identify E and Prp(A), identifying the morphism u=mp (canonical factorisation in
E) with the W-relation (1); thisis coherent with the compoasition.

Thusthe W-relation a=[m, p, g, n]: A — B hasaW-factorisation
(2) a = ngpm* (MneM, p,geP),

essentialy unique, up to three isomorphisms uniquely determined (4.3.2).



20

We also recall ([G1], 3.7-10) that
(3) aisamonoreation (i.e.,, monoinA) iff m and p areisoin E,
(4) aisproper iff m and q areisoin E,

(5 aisanisomorphismof A iff itismonoandepiin A, iff a and & are both proper, iff a is
isoin E, iff m,p,q,n areisoin E,

(6) aeM iff m,p,q areiso, iff a isaproper mono of A,
(7) a€P iff m,q,n areiso, iff a isaproper epi of A.

The RO-category A = Relw(E) isaways projection complete (0.5); the canonical factorisation of
therelation (2) is

® a= (ng").(pm").
By 1.3.3, for each object A, the mapping
(9) Suba(A) — Prja(A), s — s,

is an isomorphism of ordered sets (with regard to <). By (W.1) and the characterisation of
monorelationsin (3) this also provesthat A isPrj-small. Note that, by (3), an A-subobject s: L —
A isactualy an E-subquotient

m

p
(10) L o« « »>— A s = mp?,

i.e.aquotient (p) of asubobject (m) of A withrespectto E.

4.5. Projections. Thus, an endorelation e: A — A isaprojection (i.e., a symmetric idempotent)
if and only if it has a W-factorisation of the following type

(1) e = mppm* (MEM, pEP).
By 1.3.2, e isaredtriction (e<1) iff p isiso, iff e hasaW-factorisation

(2 e=mm* (me M),

whileeisacoredtriction (e=1) iff m isiso, iff e hasaW-factorisation

(3) e = pp* (pEP).

In other words, the isomorphism 4.4.9 produces the following isomorphisms of semilattices (with
regardto <)

(4) ial Subg(A) — Rsta(A), i(m) = mm?,

(5) ca: Quog(A) — Crsa(A), cp) = pp.

4.6. Definition and values. Last, every W-relation a = ng’pm#: A — B determines the
following subobjectsof A and B ([G1], 3.3)

(1) def(a): Def(a) — A, def(a) ~ m,
(2) va(a):Vvd(@ — B, va(a ~ n,
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and werecall that ([G1], 3.3-4)

(3) def(a) = val(a’) = def(a’a) = va(a’a),

(4) asa .=. def(a) ~ def(a) and val(a) < va(a),

(5) a=cb .=. def(a) < def(b) and val(a) < val(c),

(6) da=1 < def(a) = 1, ad’>1 < va(a@ = 1

4.7. SW-categories. To characterise the categories of W-relations we introduce the following
definition (rephrasing the "quaternary symmetrisations" of [G1]): an S\V-category isatriple A = (A,
# <) satisfying:

(SW.0) A isaRO-category,

(SW.1) every morphism a of A hasaW-factorisation

(1) a = ng’pm”,

where m, n are proper monosof A and p, q areproper episof A,

(SW.2) this factorisation is essentially unique: if ngpm® = n'q#p'm?, there exist isomorphisms
u, v, w of A making diagram 4.3.2 commutative.

These axioms are clearly equivaent to the following ones:
(@ A isaprojection complete RO-category,

(b) every monomorphism s of A hasaW-factorisation s=ng* where n isaproper mono and q
aproper epi of A,

(c) such factorisations are essentially unique.

4.8. W-Symmetrisation Theorem, |. Let A = (A, # <) be a RO-category and E = Prp(A);
write P and M the subcategories of proper epis and proper monos of A, characterised respectively

by

D pp= 1, pp* = 1,
(2 mm =1, mm* < 1.

The following conditions are equiva ent
@ E=(E,P,M) isaW-category and A is RO-isomorphicto Relw(E),
(b) A isan SW-category,
(c) A isprojection complete and satisfies (RW.1).
When they hold, for every morphism a&€ A(A, B)
(3) def(a) = ia(def(a)), va(a) = ig(val(a)).
Proof. The conditions (a), (b) are equivalent by [G1; 2.9, 2.11].
(b) = (¢). Let e€ Prj(A) have aW-factorisation (4.5.1)
(4) e = mppm* (MEM, peP),
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andtake x = mm* = i(def(e)), sothat x < m(p"p)m”=e and x.e=e. Conversely, if yE Rst(A)
and y<e=<y then (4.5.4) y =nn* with n ~ def(y) and, by 4.6.4-5

(5) def(y) < def(e) = def(ey) < def(y),

therefore n ~ def(e) and y =x. Thus A satisfies (RW.1); we have also proved that ne = i(def(e)),
from which property (3) follows at once

(6) def(a) = n(a’a) = i(def(a’a)) = i(def(a)).
(c) = (b). Weneed only to provethat A satisfies4.7b and 4.7c.

Let & Ag — A beamonorelation and take e = aa” € Prj(A), x =n(e) € Rst(A); by 4.5 there
exists mMEM suchthat x = mm*. Takenow p = am, so that

(7) mp? = mm*fa = (mm)ea = ea = a,

which also provesthat p* isamonorelation and p isepi. To provethat p is proper (hence p € P)
it is sufficient to consider the restriction y = n(p”p) and provethat y =1 (1.2.5)

(8 mym* < mm* = x < g
(mymfe = my(m*a)a® = myp(pm") = m(y.p*p)m* = mp*pm* = aa’ = e,
thus the restriction mym? isthe numerator of e mym* = x = mim®, which provesthat y = 1.

Last, for the uniqueness of the W-factorisation of a, let us take two of them

p
L o« « > A
|

N | a = mp* = ng.

9)

L «— « — A
q n

As mm* < mppm* = aa and mm*.aa” = aa’, we have
(10) mm# = n(aa®) = nn?.

Thustherelation i = n"m isanisomorphism (of A and E)
(1) i = m*onfm = mf(mmf)m = 1,
and similarly ii* = 1. Finaly

(12) g = gnn = (pmm = p, ni = nnfm = mm"m = m.

4.9. The 2-categories W and SW. We aso recall ([G1], 4.6) that a functor F: E — E'
between W-categories has a (necessarily unique) extension RelF: RelE — RelE' in RO if and only
if F isaW-functor;i.e.
() F preservesthe factorisation system,
(b) F preserves pullbacksof M, mixed pullbacks and pushouts of P.

Moreover RelF isfaithful if and only if F isso ([G1], 4.10). It is also easy to prove, by the

same argument asin 1.2.7, that every W-transformation o: F — G: E — E' (natural transformation
of W-functors) yields a RO-transformation



23

(1) Rel(o): RelF — RelG: RelE — ReE/, (Rel(w))A = aA: FA — GA,
which has the same components as «, but isjust lax-natural with respect to the morphisms of RelE.

Thus, we have established a 2-adjoint 2-equivalence

Rel Prp
2 W — SW — W,

n=1 1y — Prp.Rd, e: Rel.Prp — lsw,

between the 2-category W of W-categories, W-functors, W-transformations and the 2-category SW
of SW-categories, SW-functors (i.e., RO-functors between SW-categories) and SW-transfor mations
(i.e., RO-transformations between SW-functors).

4.10. W-symmetrisation theorem, Il. Let A be an SW-category and E = PrpA the
associated W-category, with factorisation system (P, M). The following conditions are equivalent

(& A isconnected, non empty and satisfies (RW.2),

(b) E hasazero-object 0 (i.e. initial and terminal) coherent with the factorisation system, in the
sensethat all morphisms A — 0 — A arerespectivelyin P and M.

In such acase the zero objects of E coincide with the null objects of A; the projections wa and
Qa arerespectively given by

1) A <= 0— A, A — 0« A,
If e=mp*pm?* € Prj(A) and h=ker(p) (existing by (W.2)), then
(2) de = (mh)(mh)*,
Further, one implication of (RW.3a, b) holds:
(RwW.3a) if e<f in Prj(A), then ne~ nf and de - df,
(RW.3b") if e<f in Prj(A), then ne~< nf and de - df.

Proof. If E hasazero abject with the required conditions, for each object A therelations wa and
Qa defined in (1) areindeed the least and the greatest morphismin A(A, A)

A —< 0 — 0 — 0 — B
A e
(3) A << ¢« —» « «— « > B
[ l In
A — A — 0 «— B — B

Conversely, if A isconnected, non empty and satisfies (RW.2), let A be any object: the W-
factorisation of the restriction wa = mm*, with m: Z — A, yieldsan object Z whichisnull in A,
since itsidentity isanull morphism

4 1z = m"m = m .mm"m = m*.op.m;

then, by 1.4.11-12 (which only depend on (RE.2), i.e. (RW.2)), Z isazero-object for E.
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From now on, we assume that (a) and (b) hold. In order to verify (2), let e = mp*pm* € Prj(A)
and h=ker(p): H — A; thenthe projection ewe can be calculated by the following diagram, asin
4.3.3

m p p m
A <= +« —» + «— e« > A
©) T
H-—»> 0=— 0= 0
Po

(6) (mppm*)my = (mh)pg®,
evae = (mpPpm®)(memo®)(mp*pm®) = (mh).popo.(mh)?,
de = n(ewe) = (mh)(mh)*,
Consider now a second projection f = nggn” € Prj(A). For (RW.3b), let e=<f; then def(e) <

def(f) (4.6.4) and ne=nf; moreover ewe=fof and de<df. For (RW.3a), let e < f. By [G]],
3.12, this condition is equivalent to the existence of acommutative diagramin E

n q
A = . —>»
(7) | omol-- I p=pp
A =< = I—» —
m p p

with cartesian right square. By the commutativity of the left square, ne < nf. By the universal
property of the pullback, it follows that

(8) mo.ker(p) ~ ker(q),
n.ker(g) ~ nmg.ker(p) = mker(p) < m.ker(p),
d(f) = i(n.ker(q)) = i(m.ker(p)) = de. o

5. RW-categories and w-exact categories

We show here that RW-categories coincide with the Prj-full involutive subcategories of the categories
of relations over Burgin's y-categories [Bu]; the latter we also call w-exact categories.

5.1. y-categories. A y-category [Bu] E is assumed to satisfy the following axioms

(A.0) E hasazeroobject 0; every morphisms u hasacanonical factorisation u=mp where p is
aconormal epi (i.e. acokernel of somemap) and m is mono.

Such afactorisation is necessarily unique up to isomorphism; E will aways be provided with this
canonical factorisation system (P, M): therefore (4.1) the terms "quotient” and "subobject”, as well
asthearrows" —" and "—", will always be used for conormal epis and monos, respectively. (This
axiom (A.0) is egquivalent to the conjunction of the original axioms (A.2, 3, 5) of Burgin. We recall
that a zero object is, by definition, both initial and terminal; then for al objects A and B, the zero
morphism Oag = (A — 0 — B) isdetermined.)
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(A.1) E iswel powered,

(A.4a) E has counterimages of monos (pullbacks of diagrams A — - < B);

(A.4b) the pullback of two arrows A — -+ << B isof theform A < . — B (preserving
conormal epis);

(A.6) theimage of anormal mono by aconormal epi isanorma mono;

(A.7) if thediagram

h p
. — . — .
(1) [— [
. — . — .

k q

is commutative with exact rows (i.e. h ~ ker(p) and k ~ ker(q) (4.2)) then m isiso.

Here ay-category will also be called a w-exact category, for the sake of uniformity of the present
terminology.

5.2. Kernels, cokernels, exact sequences. Let E be w-exact (or, more generaly, any
category satisfying (A.0, 4)). It is easy to see that the zero-object is coherent with the factorisation
system, in the sense that all zero morphisms A — 0 — A are respectively conormal epis (the
cokernel of 15) and (normal) monos. E haskerndls, by (A.44).

For each object A, by well-known arguments, there is an anti-isomorphism between the ordered
sets of quotients and of normal subobjects
(1) ker: Quo(A) — NrmSub(A), cok: NrmSub(A) — Quo(A),
proving that (if (A.1) holds) E isalsowell copowered.

Actually, this mapping "ker" clearly reverses the order. Now, let h = ker(u) (u: A — B) bea
normal subobject of A and u=mp acanonical factorisation: trivially, h = ker(p); we want to prove
that p isacokernel of h. Indeed p ~ cok(v), for some morphism v

h p
— A —>
e ! [ :

— A —
v w

hence pv=0 and v factorsthrough h = ker(p); therefore, for any w, wh =0 implies wv =0
and w factors through p. This proves that the mapping "cok" in (1) is well defined, and
cok(ker(p)) = p, for all quotients p. Since "ker" is easily seen to be surjectivein (1), the conclusion
follows.

Asusual, the sequence

u Vv

©) A — B — C,
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issaidto beexactin B if im(u) = ker(v) (in which case the morphism uisnormal, i.e. itsimageis
s0); the sequenceis exact if it is so in each term. In particular the short sequence

h p
(4) o (heM; pEP),

isexact if and only if h ~ ker(p), if andonly h isnormal and p ~ cok(h).

5.3. Proposition (Pushouts of conormal epis [Bu]). In the w-exact category E, given the
commutative diagram with exact rows

(1) % T q T q

(PE) the right square is a pushout if and only if there is a conormal epi qg which fills-in
commutatively.

More precisely, for every category E satisfying (A.O, 4), the axiom (A.6) is equivaent to the
existence of pushouts of conormal epis together with (PE).

Proof. First assumethat E satisfies (A.0, 4, 6).
If the right square of (1) is a pushout, consider the canonical factorisation

(2 dh = ha.

By the universal property of pushoutsit is easy to seethat cok(h;) ~ p'; since hy isnhormal by
(A.6), it followsthat h; ~ ker(p) ~ h'. Thus g; (more precisely, an equivalent epi) satisfies our
condition.

Conversdly, given aconorma epi g making (1) commutative, let us prove that the right square is
cocartesian. Consider a commutative square p"q=(d"'p, where we may assumethat p" and ' are
conormal epis, because of (A.0). Now p"h'=0 as

(3) p"h.qo = p"gh = g"ph = 0,

therefore p" factors through cok(h') ~ p' and the conclusion follows. The existence of pushouts of
P isatrivial consegquence.

Last, if E satisfies (A.0) and these pushouts do exist, (PE) implies clearly (A.6). o

5.4. Proposition (Mixed pullbacks, [Bu]). In the w-exact category E, given the commutative
diagram with exact rows
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(MP) the right sgquare is a pullback if and only if there is an isomorphism i which fills-in
commutatively.

More precisely, for every category E satisfying (A.0, 4), the axiom (A.7) is equivalent to (MP).

Proof. First assumethat E satisfies (A.0, 4, 7).

If the right square of (1) isa pullback, it is easy to seethat mk isakernel of p, hence mk ~ h.
Conversdly, given theisomorphism i, form the commutative diagram

)

where the upper squares are pullbacks (A.4), 'm'=m (universal property of the right pullback) and
n"'m" =i (universal property of the upper rectangle). Since i isiso, n" isaconormal epi; thus n" is
isoand m" too. By (A.7), applied to the lower rectangle, m' isiso: thus the right square of (1) isa
pullback.

Last, if E satisfies (A.0), (MP) impliestrivialy (A.7). o

5.5. W-Symmetrisation Theorem, IIl. Let A be a RO-category and E = PrpA. The
following conditions are equivalent:

(@ A isaprojection complete, connected, non empty RW-category;

(b) A isaprojection complete, connected, non empty RO-category satisfying (RW.1, 2) together
with:

(RW.3a") foreach e, f € Prja(A), if ne~< nf and de - df then e~ f;
(c) A isaconnected, non empty SW-category (4.7) satisfying (RW2, 3a");

(d) E isw-exact (i.e., ay-category) and A is RO-isomorphic to the Burgin's category of relations
over E;

(e) E satisfies (A.0), is a W-category with regard to this factorisation structure and satisfies (A.7);
moreover A isRO-isomorphicto Relw(E).

When these conditions hold, there are two commutative squares of (vertical) isomorphisms and
(horizontal) anti-isomorphisms of ordered sets, with respect to the relations <

Quog(A) == NrmSubg(A)
cok
(1) ¢ [

Crsa(A) —— NrmRsta(A)

where d isthe denominator-mapping and
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2 d(x) = Lx, for x = 1a.

Proof. (a) = (b). Obvious.
(b) = (¢). Follows from the W-symmetrisation theorem | (4.8).
(c) = (e). From the same theorem we know that E isaW-category with respect to the factorisation
system (P, M) of proper epis and proper monos of A; moreover A and Relw(E) are RO-
isomorphic.

Thuswe only need to provethat E satisfies (A.0) and (A.7). Note that, by the W-symmetrisation
theorem Il (4.10), A satisfies (RW2, 33).

For (A.0), we know (4.10) that E has a zero object, which determines the projections » and Q
as in the formulas 4.10.1. Consider now the above factorisation system (P, M) of E, and let us
first provethat all p& P are conormal epis.

Takesome p&€ P and h = ker(p) (W.2): we want to prove p ~ cok(h). Trivially hp =0;
assumethat also hqg=0 (itissufficient to consider g & P) and build the left diagram below

k q % Ko
. — . — . . — AO — .
© } b v } } b
0O = ¢« —> 0 — Al — e

where the left square is a pullback and the right one a pushout (W.2*). By (W.4) the factorisation of
the rows yields the pushout/pullback diagram at the right, where Ag isnull for A

(4 1a, = (ko"ko)(@o0"0) = ko"0qe” € Nul(A),

hence a zero object for E. Analogously A; is azero object and Ker(p") = 0. It follows that
(4.10.2)

(5) d(p*p) = koko” = o = d(),
hence, by (RW.34), p*p' = 1; therefore p' isanisomorphism and q factors through p.

It isnow easy to deduce that P coincides with the subcategory of conormal epis: if p isso and
p=mqg with g€P and m& M, then m isiso, which gives p& P. Similarly M coincides with
the subcategory of monos.

Last, we check the axiom (A.7): let the commutative diagram 5.1.1 be given, with exact rows, and
consider the projectionsof A (the codomain of h)

(6) e = mgfgm* = my(g*q) = mr(1)/mr(kk¥) = (mm¥)/(hh?),
z = p'p = 1(hh?).
Since e~ z (RW.3a), it follows that
(7) mg'gm” = e = ez = mg*q.m*p*p = mq'q.q".p = mg’pl”,

which, by the uniqueness of W-factorisations, provesthat m isiso.
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(e) = (d). Since the symmetrisation procedure is the same in both cases, we have only to verify (A.6).
Let h=Kker(p): H— A beanorma monoand g A — Q some conormal epi. Form the
commutative diagram at the |eft

h q k
H — A — . . — . I>——) .
®) | be v | L
0 — - 0 > 0 > -

where the left square is cartesian and the right one cocartesian. Apply now (W.4) and form the right-
hand diagram above: itsright squareis cartesian, hence k (theimageof h by ) isanorma mono.

(d) = (a). By the W-symmetrisation theorem |1 (4.10) we have just to prove that A satisfies
(RW.3a", b"). Consider the projections of A

(9) e = mppm?, f = ngfgn®.

Let ne< nf and de - df and let us provethat e < f building the following diagram (as in
4.10.7)

n q
A “«— . — .
(10) | ml-- Im p=pp,
A <+ — -
m p p

Thefirst condition, ne < nf, alowsusto build itsleft square. Take h=ker(p) and k = ker(q)
(1) nk ~ ind(f) < ind(€) ~ mh = nmgh.

Thus k < mph and there exists one mono kg suchthat k = mghkg

k q
. s . —_— .
(12) | oml-- m
. e e
hk, p

now factor gmp = m'p": it iseasy to seethat hko ~ ker(p’) and, by 5.4, the right square is a
pullback. Moreover p(hkp) = Okg =0, hence p factorsthrough p' ~ cok(hkg) and diagram (10) is
built.

Now, for (RW.3b"), let ne < nf, de < df and form the commutative diagrams

n k q
N = A . — N —>
(13)  m] [ n | fm 7
M — A e = M —
m h p
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with h=ker(p) and k = ker(g). By an obvious lemma there exists exactly one morphism w which
fills-in commutatively (factor gmg=m'p’; then p' = gp, because p = cok(h); take w =m'qg). This
provesthat ex<f, by definition of the order <in Relw(E).

Finally, consider diagram (1). As we already know that their rows are formed by inverse anti-
isomorphisms of ordered sets (5.2.1; 1.8.1-2), it is sufficient to check the commutativity of the "ker-
square”; this follows from 4.10.1: if p € Quo(A) and k = ker(p), then d(p”p) = kk*. o

5.6. Annihilator and indetermination. Let E be a w-exact category and A = Rely(E). Each
relation a= ng’pm* A' — A" determines, together with the subobjects def(a) ~ m and val(a) ~
n, two other subobjectsof A' and A", called annihilator and indetermination

(1) ann(a): Ann(a) — A’ ann(a) ~ m.ker(p),
(2) ind(a): Ind(@ — A", ind(@ ~ n.ker(q),
satisfying

(3) ann(a) < def(a), ind(a) < val(a),

(4) ann(a) = ind(a) = ann(a’a) = ind(aa).

By the W-symmetrisation theorem I (4.10) it follows easily that
(5) ann(a) = ann(a’a) = d(a’a)
(6) ind(®) = ind(a’a) = d(ael)

i(ann(a)),

i(ind(a)).

5.7. W-exact functors. A functor F: E — E' between w-exact categories will be said to be w-
exact if it satisfies these equivalent conditions:
(@ F isaW-functor (4.9) and preserves zero objects;
(b) F preserves zero objects, monos, conormal epis, finite intersections of monos, kernels;
(c) Fpreserves monos, their finite intersections and short exact sequences;
(d) Fhasa(necessarily uniqgue) RW-extension RelywF: RelwE — RelwE'.
Indeed (a) = (b) = (c) istrivial. (c) = (&) follows from the characterisations in terms of short

exact sequences:. - of the zero abject (0 — 0 — 0 is short exact), - of kernels and cokernels, - of
"mixed pullbacks' (5.4), - of pushouts of conormal epis (5.3). Last (a) < (d) by 4.9-10.

5.8. The equivalence. It follows that the 2-adjoint 2-equivalence between the 2-categories W and
SW described in 4.9.2 restricts to an equivalence

Rel Prp
(1) WE — RWE —— WE

where WE isthe 2-category of w-exact categories, w-exact functors and w-transformations (i.e.,
natural transformations of w-exact functors), while RWE is the full sub-2-category of RW
containing the projection complete, connected, non empty RW-categories.

The equivalence extends trivially to WE' (componentwise w-exact categories) and FRW
(projection complete RW-categories).
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5.9. Weak adjunctions. From this equivalence and the biuniversal embedding A — FctA (3.3)
one gets afull RW-embedding

(1) n:A — Relw(E) (E = Prp(FctA)),
which isabiuniversal arrow from A tothe 2-functor Rel: WE' — RW.

Thus, also because of 5.5, RW-categories coincide up to isomorphism with the full subcategories
of categories of relations over componentwise w-exact categories.

Analogously to 1.6.7, one forms biuniversal arrows
(2 n:A — Relw(E), (E = Z(Prp(FctA))),

where Z(E') isasuitable W-exact category associated to the componentwise W-exact category E'
(and E' is=-closed in Z(E")).

Thus RW-categories can also be considered as Prj-full involutive subcategories of categories of
relations over w-exact categories.

6. W-MODULAR W-LATTICES, RELATIONS, CONNECTIONS

We introduce here the RW-category wMIr of wm-lattices and wm-relations and its w-exact
subcategory wMlc = Prp(wMIr) of wm-lattices and wm-connections. These categories will be shown
(Section 7) to model, respectively, the transfer of restrictions for RW-categories and the transfer of
subobjects for w-exact categories. X, Y, Z are aways wm-lattices (see the appendix, Section 11).

6.1. Wm-relations. A wm-relation a X — Y between (small) wm-lattices will be a pair a =
(a.,a") suchthat (for x,xX' € X and y,y' €Y)

@ a:X—Y and a:Y — X aremappings preserving < and =,
(b) if y=y then a'((axay)vy) = (xaay)vay,
(0 if X =x then a((@yax)vx) = (yaax)vax.

Other characterisations will be given in 6.6. Define the compositionof a X — Y and brY — Z
as

(1) ba = (b.,b")(a, &) = (b.a., ab"),
which is possible because, for z< z' in Z
2 ab'((baxarz)vz) = a((axabz)vb'z) = (xaab'z)vab'z.
This category wMIr, of wmtlatices and wm-relations, has obviousinvolution and order
Q) (a, ) = (@, a)yY — X,
(4) (a., @) =<(b.,b") if aand b areparalel morphismand a. <b., a" <b".

(Where a. < b. obviously means ae(x) < be(x), for al x € X.)
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6.2. Regularity. The ordered involutive category wMIr is a RO-category: the regularity of the
involution follows from

D adaX) = a(@a(X)r1)v0) = (&) ra(l) va( = a(x).
Therefore
(2) aismono < da=1 < aa=1x < a isinective < a' issurjective,
(3) aisiso « (adfa=1land aad’=1) <« a isbijective < a isanisoof wMlh (11.6).

We usually identify anisomorphism a: X — Y of wMIr withits"covariant part" a.: X — Y,
an isomorphism of the category wMIh of wm-lattices and homomorphisms (11.6): thus the two
categories "have the same isomorphisms'. The subabjects of wMIr will be characterised in 6.4.

6.3. Null relations. Every set wMIr(X, Y) hasaminimum oxy and amaximum Qxy
(1) wxYy- X — Y, X — Oy, y — Ox,
(2) Qyy: X =Y, X — 1y, y — 1x.

A null wm-relation a X — Y ischaracterised by the condition: a= awyxa, or equivaently a=
aQyxa; thus a isapair of constant mappings

Q) a(x) = a(wyxs(a(x)) = a(0x), for every x € X,

(4) a'y) = a(wyx'(a'(y))) = a'(0v), forevery yey.
Conversely every pair (Xo, Yo) € XxY determines two constant mappings

®) a() = yo, a(y) = Xo,

which are easily seen to form a null wm-relation a X — Y. Accordingly, null wm-relations
coincide with pairs of constant mappings.

6.4. Theorem (Projections and monorelations). The RO-category wMIr is projection complete.
For a wm-lattice X, there is a biunivocal correspondence among: (a) equivalence classes of
monorelations m: « — X, (b) projections e X — X, and (c) normal intervals of X

(D) [Xo xa] = {yEX|x=y=xd, X0 = X1.
More precisdly, given Xg = X1, 0One constructs a canonical monorelation
(2 mY = [Xo,x1] — X, me(y) =y, m(X) = (XaXy)v Xo;

given amonorelation m: « — X, one takes the projection e = ¢(m) = mm*: X — X; finaly, a
projection e €& Prj(X) yieldsanormal pair of elementsof X (and anormal interval)

B X0 = e(0) = x1 = e(l).

Theloop is closed: starting from xg < X4, the projection e=mm?* gives back the original pair
(4) e.(x) = €'(x) = (XaXq)vXo, e.(0) = Xo, e(1) = x1.

We shall often write e(x) for e.(x) = €e"(x). We have

(5) e isaredriction = Xg=0 < €X)=XaXq,
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(6) e isacoredtriction < Xx;=1 < €X)=XvXg (xo = €0), x1=¢€(1)),
(7) e<€ = (x1=x and Xo=zX) <= [Xo, X1 C [x, X1,
(8 e<€ <« (xg=x and Xp=X)) (% = €(0), x4 = €'(2)).

Proof. The biunivocal correspondence needs only to be checked at itsfirst step, from Xxg = X1.

The normal interval [Xg, X1], equipped with the induced relations < and =, is clearly awm-lattice.
The wm-relation (2) iswell defined, since m® preserves < and < ((wl.2,4), see 11.1); moreover, for
X'=axin X andy' =y in Y =[Xq, X1]

(9 m*((Myax)vx) = (((yaxX)vX)axy)vXg = (YaxX) v (X'aX1) v Xg (by (wm.1))
= ((ya(xax1))vXo) v ((X'aX1)vX0)
= (Ya((XaX2)vXo)) v (X'aX1)vX) = (yam*(x))vm*(X’) (by (wm.2)),
(10) m.((MXay)vy) = ((XaX2)vXo)ay)vy') = ((XaX1aY)vXo)vy' (by (wm.2))

= (Xay)vy' = (Xam.y)vm.y'.
Last, m ismono since m'm.(y) = (yaXy)vxg =Yy (for yeY) and m"m = (m'm., m'm.) = 1y.
The properties (5)-(8) are now straightforward. We have also proved that al projections split. o

6.5. Theorem (The RW axioms). The RO-category wMIr is a projection complete, connected
RW-category. (Its category of proper morphismswill be considered in 6.9-10.)

For any relation aa X — Y
(1) def(a) = n(@a) = —a(@al) = a’l: X — X,
ann(a) = d(a@a) = —v(a'a0) = —va'0: X — X.
Proof. To prove (RW.1), let e & Prj(X)
(2 ex) = (Xaxg)vXo, (xo=¢€(0) = x1=e)).
Then the restriction ne
(3) ne(x) = xXaxy = xn&(1),

isthe only restriction of X satisfying: e < ne< e (by 6.4.7-8). The axiom (RW.2) follows from
6.3, with

@ ox: X — X, ox(X) = 0, Q: X — X, Qx(X) = 1x.
Then
(5) ewe(x) = &0x) = Xo,
de(x) = n(ewe) (X) = Xa(ewe(1)) = XaXo,
and the last axiom (RW.3) follows straightforwardly from 6.4.7-8.

Finally, we already know that wMIr is projection complete (6.4); it is connected because of
6.3.1-2. Therelations (1) are obvious. o

6.6. Proposition (Characterisation of wm-relations). Let a.: X — Y and a: Y — X beapair of
mappings preserving < and =; the following conditions are equivalent:



@ (a., &) isawm-relation (i.e., a and a satisfy 6.1b, 6.1¢),
(b) -foral xeX: aa(x) = (xaa'l)va'o,
-fordl yeyY: aa(y)

(yra1)va.0,
-ada = a, dad =a,

(c) themappings a. and & factor respectively as

Pe b. m.
) X = [a@0,a'1l] = [a0,al] — Y
p. b. m.

where m=(m., m*) and p”=(p°, p.) are canonical monorelations (6.4.2) and
(2) b.(x) = a.(x), for @0<x=<a'l,
3) b'(y) = a(y), for a0=<y=<al,

are inverse isomorphisms of wm-lattices (hence b = (b., b*) isanisomorphism of wMIr (6.2)).

Proof. (a) = (b). Trivial,as 0= 1 in X and Y.

(b) = (¢). First notethat b. and b* are inverse mappings by (b) and preserve < and <, because a.
and & do; moreover

4 a(X) = a(@ax) = a((xsal)va’0) = m.b.p.(x),

and similarly a’(y) = p’b'm*(y).

(c) = (a). Since p=(p., p°), b=(b., b") and m=(m., m*) arewm-relations, by 6.2 and 6.4, so is
their composite mbp = (a., &). o

6.7. Full subcategories. We are interested in the following full subcategories of Mrw (hence
RW-subcategories; other subcategories will be considered in 7.4)

(&) wDlr, containing the w-distributive w-lattices (11.2); this category will be shown in Section 8 to
model the transfer of restrictions for w-distributive RW-categories,

(b) Mlr, containing the modular lattices (i.e., normal wm-lattices); it is an RE-category, modelling
the transfer of restrictions for RE-categories (i.e., normal RW-categories): seel.7;

(c) DIr =wDIr n MIr, containing the distributive lattices (i.e., normal wd-lattices).

6.8. Double categories of w-lattices. Also here, in order to model the action of RW-functors
on restrictions (7.1), we need to combine homomorphisms and relations, forming the double category
wMlhr having for objects the wm-lattices, horizontal morphismsin wMIh, vertical onesin wMIr
and cells given by "bicommutative squares’ of type
h

X — X
1) a I ka. = b.h; ha' = b'k;

Y P Y'
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(composition of mappings). The underlying vertical category (homomorphisms as objects and
bicommutative squares as morphisms) has an obvious RW-structure.

The full double subcategories determined by wd-lattices, or modular lattices, or distributive lattices
will be written here as wDlhr, Mlhr, DIhr (the last two were introduced in 1.7.2).

6.9. Wm-connections. We proved in 6.5 that wMIr is a projection complete, connected RW-
category. By the W-symmetrisation theorem (5.5) its category of proper morphisms

(1) wMlc = Prp(wMlIr),

isw-exact, and will be called the category of wm-lattices and wm-connections. Thus a wm-connection
2 u=(Uu,u)yX—Y,

is characterised, among wm-relations, by the conditions

(3) def(u) = n(u*u) = 1, ind(u) = d(uw) =0,

which, by 6.5.1 are equivalent to

4 u@® =1, u.(0) = 0.

In other words, by the characterisation 6.6b of wm-relations, a wm-connection (2) isa pair (u.,
u®) such that
@ u:X —Y and u’: Y — X are mappings, preserve < and =, and satisfy u.0=0, u*l=1,
(b) u'u.(x) = xvu*(0) = x,
© uwu(ly) = yau.(1) =<y.

In particular u. — u* (u isa"covariant Galois connection” between the ordered sets X and Y,
which implies u. = u.uu., u* =u°u.u®), and each of these mappings determines the other; u.
preserves the existing unions while u® preserves intersections. wMIc is concrete and coconcrete.
Note that the last two propertiesin (a) are obviously a consequence of the adjunction u. — u* (but
we prefer to state them explicitly to avoid doubts on the meaning of (b), where the a priori existence of
xvu*(0) dependson u’(0) = u*(1) =1). Weidentify wMIr with the isomorphic RW-category
Rel(wMIc).

Equivaently, one can replace (b), (c) with

(b") u'(uxvy) = xvUly, foreach x& X andeach y =1 inY,
() W(UuyAX) = ¥aUX, foreach x& X andeach yeY.

6.10. Exactness. The zero object 0 of the w-exact category wMIc of wm-lattices and wm-
connections is the one-point lattice; zero morphisms are given by

(1) Oxy: X =Y, X’-*OY’ y'—>1x.

The subobjects (resp. quotients) of X are determined by proper canonical monorelationsin X
(resp. epirelationsfrom X); accordingly to 6.4, the latter are asin (2) (resp. in (3))

(20 m:Y =[0, x1] — X, m.(y) =y, m’(X) = XaXy,
@) p:X =[x, 1] =Y, P-(X) = xvXo, P'(Y) =Y.
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Therefore the set of subobjects of X isin biunivocal correspondence with X itself via m +— X3
=m.(ly), whilethe set of quotients of X isin biunivocal correspondence with the set Nrm(X) of
normal elementsof X, via p — Xo=p°(Oy)).

Thewm-connection u: X — Y has canonical factorisation (6.6.1)

p b m
4 X — [u0,1x] — [Ov,ul] — Y

and

(5) ker(u) = ([Ox,u'0] — X).
Each short exact sequence of wMlc isof the following kind, up to isomorphism

(6) [Ox,Xd — X — [Xo, 1x] (Xo = 1x).
Finaly, we write

(7) wDlIlc = Prp(wDlr),

the full w-exact subcategory of wMIc determined by wd-lattices. Analogously

(8) Mlc = Prp(MlIr), Dlc = Prp(DlIr),

are full w-exact subcategories of wMIc, and exact categories in their own right.

The double, vertically w-exact, categories wMlhc, wDlhe, Mlhe, DIhc have homomorphisms
as horizontal arrows, connections as vertical ones, bicommutative squares as cells. The last two were
introduced in [G8] and are vertically exact.

7. Transfer of restrictions and lattice properties

Extending 1.7 and [G8], we define here the transfer functor Rst: A — wMIr of the RW-category A
and deduce the transfer functor Sub: E — wMIc of the w-exact category E. This procedure (treat first
the "categories of relations") appears to be more clear and effective than the opposite one (treat first the
"exact categories') which we followed in the above references.

The transfer functor allows us to study "lattice properties” (7.5-6) of RW-categories, among which
normality and distributivity, and to construct "expansions" (7.6-8) which satisfy them.
7.1. The transfer RW-functor. Every RW-category A has an associated RW-functor
(1) Rsta: A — wMlr,

which will be called the transfer functor of A, since it describes the covariant and contravariant
transfer of its restrictions; it will be shown to be Rst-faithful, Rst-full and closed (7.3).

Namely, for every object A, Rst(A) is the wm-lattice of restrictions of A (1.7). For every
morphism a A" — A" in A
(2) Rst(d) = (ar, &): Rst(A") — Rst(A"),
is the wm-relation whose components are defined in 1.3.1. Indeed, the characterisation 6.6b is
satisfied: ag and aR preserve < by 1.3.2, therelation = by 1.3.2 and, for x € Rst(A")
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(3) dar(x) = (@a)r(x) = n((@a)x(a"a)) (by 1.3)
= (n(aa) A x) v d(@a) = (x » aX(1)) v a(w) (by 1.6 and 1.4).

Finally Rsta isan RW-functor: it preserves the composition by 1.3, the involution by 1.3.1, the
relation = by (RW.3b) and the projections o since

(4) or(X) = N(wXw) = N(w) = o.

Thus (6.1), for all x, x' € Rst(A") and vy, y' € Rst(A")
(6) a((arxry)vY) = (xady)valy (for y' =),
6) ar((@y A Xx)vX) = (yararX)varX (for x' = x).

Finally, the functorial aspect (1.7.2) extends easily to the RW-case: every RW-functor F: A — B
determines a horizontal transformation of vertical functors, with valuesin the double category wMIhr
of wm-homo-morphisms and wm-relations (6.8)

(7) Rste: Rty — Rstg.F: A — wMlhr,
RtrA: Rta(A) — Rstg(FA), x — Fx,

associating to each object A the wm-homomorphism x — Fx (2.1). Also here, Rstg isthe unique
horizontal transformation from Rsty to Rstg.F.

7.2. wm-lattices can be realised. The transfer functor of wMIr itself is canonically isomorphic
to the identity functor, via

(1) vRst — 1:wMlr — wMlr,
(2) X:Rst(X) — X, (X)e(r) = re(), (WX)*'(X) = Xa—,
asit follows from the characterisation of therestrictionsof X in 6.4.5.

Thisisomorphism shows that every wm-lattice X can be realised as a w-lattice of restrictions for
some object (X itself) in a (fixed) RW-category (wMIr). This also shows that no proper replete
subcategory of wMIr can suffice to treat the transfer of restrictions for RW-categories.

7.3. Local properties of transfer functors. The transfer functor Rsta: A — wMIr isRst-
faithful, Rst-full and closed. Let us check the last property, the proof of the other two being
analogous. Assumethat, for A in A and X = Rsta(A)

(D y=xin X, Rst(y) = Rst(x) in Rst(X),
and apply the isomorphism 7.2.2

) (X).(Rst(y)) = (Rst(y)).(1) = yr(D) =V;

analogoudly (1X).(Rst(X)) =%, hence y < x in X = Rsta(A).

7.4. Transfer RW-categories. The RW-category A issaid to be transfer if its transfer functor
Rsta: A — wMIr isfaithful. By 7.2, wMIr isso.

Every RW-category A has an associated transfer RW-category Trn(A) determined by the closed
RW-factorisation Rsta = RoR; (3.6)
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R1 Ri
1 A — TrmA) — wMIr

coinciding with the ordinary factorisation (3.2) since Rsta isclosed (7.3): Trn(A) isthestrict
quotient of A which identifiestwo paralel maps a, b of A when
(2) ar = bg, ak = bR,

In particular Trn(A) isprojection completewhen A isso (3.2).

7.5. Lattice properties for RW-categories. Many properties of RW-categories we want to
consider concern their transfer functor (e.g., the fact of being a transfer RW-category just
considered).

More particularly, let M be afull replete subcategory of wMIr (hence an RW-subcategory, by
2.5). We say that the RW-category A isM-latticed if its transfer functor takes valuesin M
(1) Rsta:A — M,
and refer generally to such a condition on A as a "lattice property” (dropping the prefix "w" for
simplicity).

Thus, the subcategory M = MIr of modular lattices (i.e. normal wm-lattices, 11.3) yields the
normal RW-categories, which coincide with RE-categories (1.8); similarly, subnormality (1.8) is
another lattice property.

We say now that A is Rst-finite when all itswm-lattices Rsta(A) arefinite: here M = wMIrf,
the full subcategory of finite wm-lattices. Note that the latter is clearly hom-finite: it follows that every
transfer Rst-finite RW-category is homHfinite.

Last, we say that A isw-distributive when al itswm-lattices Rsta(A) are so (11.2); here M =
wDIr (6.7).

Let F: A — B bean RW-functor. Then
(@) if F isastrict quotient and A is Rst-finite, or normal, or subnormal, or w-distributive, sois B
(for Rst-finiteness, it suffices F Rst-full),
(b) if F isRst-faithful and B is Rst-finite or w-distributive, sois A,
(c) if F isRst-faithful and closed and B isnormal or subnormal, sois A.

Distributivity, the main lattice property, will be studied in the next chapter and given various
characterisations (8.1). We associate now, to each RW-category, an M -latticed RW-category.

7.6. Theorem (M-expansions). Let M be a full subcategory of wMIr, stable for closed wm-
homomorphic images: if X belongsto M and h: X — Y isa <-closed surjective homomorphism
of wmlattices (hencein wMIh, notin wMIr, cf. 11.5, 7) then Y belongsto M.

Then every RW-category A has an associated M -latticed RW-category A¥, the M-expansion of
A, equipped with afaithful closed RW-functor F: A* — A satisfying the universal property

(@) every RW-functor G: D — A, where D isany M-latticed RW-category, has a unique Prj-full
(i.e. Rst-full and closed (3.3)) lifting G: D — A¥ satisfying FG' = G. Moreover, if M isstable
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for normal intervals (contains any normal interval [Xg, X] of any X in M, see6.4) and A is
projection complete, sois A”,

Proof. The objects of A# arethe pairs (A, X), where A isin A and X is a sub-w-lattice of
Rsta(A) belongingto M. A morphism
D (@& X, X): (A, X) — (A", X),
isgiven by any A-morphism a A — A' such that
2 &(X) C X, &X) C X;
in particular
(3) def(a) = aR(1) € X, ann(@ e X, va(@eX', ind@E X.
The composition, involution and order are "those of A"; the faithful functor
(4) F:A* — A; (A, X) — A, (&X,X)~— a

preserves involution and order: thus A# isaRO-category (and F a RO-functor). To prove that A#
isan RW-category and F aclosed RW-functor we have to verify the conditions 2.7a, b. By abuse of
notation we often write a for (a X, X").

Now, aprojection e= (g X, X) € Prj(A, X) of A¥ isgivenby any e€ Prj(A) such that
(5) ne€ X, de€e X,
the necessity of (5) following from (3), its sufficiency from
(6) er(x) = () = n(exe) = (neax) v de.

Thus (e X, X) has numerator (ne; X, X), whichisin A# since n(ne) = ne and d(ne) = ;
analogously (w; X, X) and (Q; X, X) arein A#. Lagt, if y<x in Rst(A, X), which means that
y=xin X, and y = x in A, theprojection e =x/y € Prja(A) isasoin Prja#(A, X) by (5), and
y =X in A%,

The RW-category A¥ is M-latticed, because
(7) Rsta#(A, X) = {(x; X, X) | x € X},
isisomorphicto X, hencebelongsto M.

Asto the universal property (), let G: D — A be as stated and define
(8) G:D — A% G'(D) = (G(D), Rstg(Rstp(D))),

G'(d) = G(d): G'(D) — G'(D) (for d:D — D' in D),

which is permitted since Rstg(Rstp(D)) is the image of the M -lattice Rstp(D) by the wm-
homomorphism

(9) RSG: RS[D (D) — RStA(G(D)),
provided with the "image" =, hence belongsto M by hypothesis; moreover, for x € Rstp(D)
(10) (G(d)r(Gx) = G(drx) € Rstg (Rstp(D)).
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Finally, let M be stable for normal intervalsand A be projection complete. Consider aprojection
e of (A, X) in A% let e=ss* where s:B — A ismonoin A, and take
(11) Y = {y € Rst(B) | sr(y) € X}.
Since Y isisomorphictoanormal interval of X via sg and st
(120 Y = [de ng C X,
Y belongsto M, hence (B, Y) isin A* and e factorsas ss* with s: (B, Y) — (A, X). 0

7.7. Some expansions. Thus, by taking M to be wMIr itself we get the wm-expansion
wMeA; note that the latter category is not equivalent to A, and solves a problem of some interest
(7.6). By considering M =wDlIr, we have the wd-expansion or w-distributive expansion wDeA.

Finaly M =MIr yieldsthe normal (or modular) expansion MleA, while DIr givesthe
distributive normal expansion DIeA. The latter are both RE-categories. (These expansions were
written MdIA and DstA inl.7.7, 7.10, for an RE-category A; actually in that paper there was no
need of distinguishing between the above expansions and wMeA, wDeA.)

7.8. Distributive and normal graph-morphisms. Let F: A — A be a graph morphism with
valuesin an RW-category: we shall say that F isw-distributive or normal when the category RW(F)
isso (3.8).

By extending [G11, 1.4], with asimilar proof, one shows that F isw-distributive (resp. normal)
if and only if it satisfies the following equivalent conditions:
(a) F factorsthrough some w-distributive (resp. normal) RW-category, via a closed RW-functor,

(b) thereis a closed Rst-faithful RW-functor G: A — B such that GF is w-distributive (resp.
normal),

(c) for every closed RW-functor G: A — B, GF isw-distributive (resp. normal)

7.9. The transfer w-exact functor. Consider now a w-exact category E (more generaly:
componentwise w-exact) and define the transfer w-exact functor of E

(1) Subg = Prp(Rstreg): E — wMlc.

According to the isomorphism 4.5.4, we identify Subg with the following "isomorphic copy"
(where u: A — A' isin E)

(2) Subg(A) = thewm-lattice of E-subobjectsof A,
Subg(u) = (s, US): Subg(A) — Subg(A),

where, as usual, us(m) is obtained by the canonical factorisation of um and uS(n) through the
pullback of (u, n). Indeed

() ur(mm®) = n(up(mm®) = n(umm?) = umm*# = i(um) = i(uSm),
and analogously uR(nn") = i(ugn).

Asthe pair (us, uS) is awm-connection (6.9), us — uS. Thus us preserves 0 and existing
unions (hence all =-unions) while uS preserves 1 and intersections; further
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(4) uS(usmvn) = mvusn, foreach me SubA and n= 1 in SubA',
us(USn A M) = na ugm, for each m & SubA and n & SubA'.

In particular the transfer functor of wMIc isisomorphic to the identity functor, and each wm-
lattice X isisomorphic to a lattice of subobjects of some object (X itself) in a suitable w-exact
category (wMIc).

7.10. Lattice properties for w-exact categories. All the above considerations for RW-
categories can be transferred to the present case.

We have thus the notion of transfer w-exact category, and aso the transfer w-exact category TrnE
associated to E: asort of category of projectivitiesof E, asremarkedin [G8].

We also have lattice properties for w-exact categories analogous to the ones considered in 7.7,
which we still call normality (i.e. exactness), subnormality, Sub-finiteness and distributivity.

Last, every w-exact category E has awm-expansion wMeE, awd-expansion wDeE, anormal
(or exact) expansion MleE, adistributive normal expansion DleE, a Sub-finite expansion, a sub-
normal expansion.

More generdly, if M isafull subcategory of wMIc stable for closed wm-homomorphic images
and normal intervals, the M-expansion E* of the w-exact category E satisfies, with the associated
faithful, closed w-exact functor F: E* — E, the following universal property

() every w-exact functor G: D — E, where D issome M -latticed w-exact category, has a unique
Sub-full closed w-exact lifting G: D — E* (satisfying G'F = G).

7.11. Bicommutative and exact squares. Last we recall the notion of bicommutative proper
sguare in an RW-category together with the corresponding notion of exact square in a w-exact one;
characterisations are given, respectively, by transfer mappings of restrictions and subobjects.

Take a commutative square diagram of proper morphisms in the RW-category A

X
—

(D) u

0O «— >

B
l v W = VX = yu,
_ D

y
so that xu” < viv.xu® = viy.uu” < vy. We say that (1) is abicommutative (proper) square of A if
it commutes and

(2) xu? = vy,

The square (1) in the w-exact category E issaid to be exact if it is bicommutativein RelE: vx =
yu and xu? = vfy.

7.12. Lemma (Bicommutative squares). The commutative proper square 7.11.1 of A is
bicommutative if and only if the equivalent conditions (1) and (2) hold

(1) ur(ann(x)) = ann(y), vR(val(y)) = va(x),
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(2) xgr(ann(u)) = ann(v), yR(va(v)) = val(u);
inthiscase, if w=vx=yu
(3) ann(w) = ann(u) v ann(x), in Rst(A),
(4) va(w) = val(v) » val(y), in Rst(D).
(The conjunction of properties (3) and (4) is weaker than (1), assoon as A has anon-null object

A=B=C=D; take u=v=x=y=0Q: A — A, the proper null endomorphism of A).

Proof. If our square is bicommutative, then (1) holds

@) ur(@n(x) = ur(XxR(w)) = XUHR(w) = (V)R(w) = YRVR(w) = YR(w) = ann(y),

(5) VRwa(y) = vR(yr(2) = (V¥y)r(1) = (xuRr(1) = xruR(1) = xr(1) = val(x).

and, by symmetry, also (2) does. Now (1) = (2), since

©) an(v) = Vi) = VRo) r xr(1) = xpx¥(VR(w)) = by (1), 7.1.7
= xrURYR(w) = xpuR(@n(y)) = xrUR(URXR(w)) by (1)
= (xR (xHR(0) = xUR() = xrUR(0) = xr(@n(u)).

and analogously for the right-hand relation of (2). By symmetry, (1) and (2) are equivalent. Let us
assume now that (1) and (2) hold, and prove that the square 7.11.1 is bicommutative: since we
aready know that xu” < vy, by 1.10.3 we just need to show that

(6) c(xu”) = c(vy), ixu?) = i(vy).
Indeed
(7) def(xu) = (xu)R(1) = urx(1) = ur(d) = val(u) = yR(val(v)) = yR(vr(2))
= (VY)R(D) = def(vYy),
and smilarly for therestrictions ann, val, ind. Finaly, if (1) and (2) hold

(® amnw) = ()R(w) = xWR(w) = xX(@n(v)) = xX(xg@n(u)) = ann(u) v ann(x). o

7.13. Lemma (Exact squares). In the w-exact category E, the commutative square 7.11.1 is exact
if and only if the equivalent conditions (1) and (2) hold

(D) us(ker(x)) = ker(y), v(im(y)) = im(x),
(2) xg(ker(u) = ker(v), yS(im(v)) = im(u);
in this case

(3 ker(w) = ker(u) v ker(x), in Sub(A),

(4) im(w) = im(v) a im(y), in Sub(D).

Moreover, our square is exact, with normal horizontal morphisms, if and only if it satisfies the
equivaent conditions (a), (b)

(@) thereisin E acommutative diagram with exact rows
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. A
®) } |
. C

-
. < .

ker(x) X cok(x)
. _— A .
©® v ul [ [v
. _ C .
ker(y) y cok(y)

u' isepi and V' is mono.

Proof. The first assertion is just atrandation of the bicommutative square lemma (7.12). Therefore
(a) isequivaent to (c), while the equivalence of (b) and (c) is easy to check directly. o

8. Distributive and idempotent RW-categories

The interest of the w-distributive and idempotent cases has been recalled in the introduction.

8.1. Theorem (w-distributive RW-categories). The following conditions on the RW-category A
and the componentwise w-exact category E = Prp(FctA) are equivalent
(&) A isw-distributive, i.e. for each object A thew-lattice Rst(A) isw-distributive (7.4),

(b) for each morphism a A' — A" the mapping ar: Rst(A") — Rst(A") preserves (binary)
intersections and <-unions (generally ar isnotin wMIh, asit need not preserve o, 1),

(c) thecategory A isorthodox [G3] (AsA isprovided with aregular involution, thisjust means that
idempotent endomorphisms are stable for composition),

(d) thecategory A isquasi-inverse ([G5], 4.6),
(e) theproduct e&f =efe on each set Prj(A) isassociative,
(f) all themappings ap: Prj(A") — Prj(A") preservethe operation &,

(g) the componentwise w-exact category E isw-distributive, i.e. al its w-lattices of subobjects are
S0,

(h) in E all thetransfer mappings
(1) us Sub(A") — Sub(A"), uS: Sub(A") — Sub(A"),
preserve (binary) intersections and <-unions,

(i) in E all the direct images of subobjects (us) and all the inverse images of quotients (u?)
preserve (binary) intersections (these images trivialy exist, by canonical factorisation),

(1) E sdtisfiesthe "cubic distributivity axioms' (0Q) and (0Q*) of [G6].



Proof. The equivalence between (c), (d), (i), (j) holds more generally for SW-categories A and W-
categories E = Prp(FctA) ([G6], thm. 1.9), the equivalence of (j) and (g) for y-categories, i.e. w-
exact ones, was proved in [CM]; the equivalence of (g) and (&) follows from the isomorphisms 4.5.4.

(d) = (f). Provedin[G5], 4.7, and easy to check.

(f) = (b). For x,y € Rst(A), using the "calculus of projections’ (1.6)

(2) ar(xy) = n(ap(x&y)) = n(@(x)&ap(y)) = (ar(X) » ar(Y)) v ar(w) = a(X) A ar(Y);
assumenow that y = x and t<X

(3) ar(tvy) = n@p((tvy)ly)) = n(ap(x/y & 1)) = n(ap(xly) & a(t)) =

= (ar(X)rar(l) v ar(y) = ar(t) v ar(y).
(b) = h). By 7.9.

(h) = (i). Followsfrom the following formula (easy to check in any category satisfying (A.0, 4))
@ ker(u(p) = uM(ker(p)),
and the anti-isomorphism (5.2.1)

ker cok

(5) Quo(A) —— NrmSub(A) —— Quo(A)

which transforms intersections of quotients into unions of normal subobjects.

(f)= (e). Let e fe Prj(A). We actually prove the equivalence of (€) and (f) in any category A
with aregular involution

(6) (e&f)&g = (efe) g(efe) = (efe)(ege)(efe) = ep(f)&en(q) = ep(f&g) = efgf)e = e&(f&Q).
(e) = (f). Let e f € Prj(A") andtake g=a'a, againin Prj(A")

(7) ap(e&f) = a(e&f)d = a(g(e&f)g)d = ap(g&(e&f)) = ap((g&e)&f) =
= a(dfae.d’a).f.(a’aeda) d = (aecd’)(afd’)(aea”) = ap(e) & ap(f). o

8.2. Domination. Let A be a w-distributive RW-category: as every category provided with a
regular involution and orthodox [0C.2], A is provided with a canonical order, or domination, aa b
on paralel morphisms, characterised by the equivalent conditions
(1) a = ab,
(2) a = ad’.b.a’a,
(3) thereexist idempotent endomorphisms e, f suchthat a = fbe,
(4) thereexist projections e, f suchthat a = fbe.

This order is coherent with the composition and involution of A, and was shown in [G4] to yield
anotion of "induced relations" coherent with the composition. The associated canonical congruence

® of A (a®b iff aa ba a) isthefinest congruence of A making A/® aninverse category
[G2].
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8.3. The inverse symmetrisation. Let E be a w-distributive w-exact category. By 8.1,
Relw(E) isaw-digributive RW-category and the composed functor

Symyy, P
1) E —— Rdw(E) —— OE = Relw(E)®

isstill an embedding [G6], called the canonical inverse symmetrisation (or @-symmetrisation) of E,
and written

(2) Syme: E — OE.

Properties of ©-symmetrisations are studied in [G6] (and in the following two papers of the same
series), in the more general case of W-categories satisfying (0Q) and (0Q*) (8.1)).

We only recall ([G6], 1.16-18) that a functor F: E — E' between wd-exact categories has a
(necessarily unique) extension to ®-symmetrisationsif and ondly if it preserves monos, conormal epis
and the intersection of both

(3) OF: OE — OF..

8.4. Theorem (Exactness and distributivity). (This theorem extends theorems 6.1, 6.3 of [G7] with
adlightly different proof. In [G7], the notions of distributive union and partition in a semilattice are
studied and applied to semilattices of projectionsin inverse categories.)

Let E be aw-distributive w-exact category and K = GE its canonical inverse symmetrisation.
The short sequence

m p

@ - — A—

isof order two (i.e. pm = 0) if and only if

(20 mm* A pp = 0 in Prjx(A),

while (1) isexact (i.e., m ~ ker(p)) if and only if
() 1a = mm#v pp, apartitionin Prjk(A).

A functor F: E — E' between w-distributive w-exact categories is w-exact if it is a ®@-functor
(8.3) and for each object A of E the mapping

(4) PrierA: Prige A — Prjee (Fa), e — OFe),
preserves finite distributive unions (in particular, the null projection wa as union of the empty

family).

Proof. The first assertion istrivial, since pm=0 in E if and only if (pp)(mm*) =0 in K, if
and only if (2) holds.

Assume now that pm = 0. If m ~ ker(p), then pp = 1|(mm*) in K = ®E and (3) holds
because of 1.11. Conversely, assume (3) and take h =ker(p) » m

(5 hh* = hh* a1 = (hh#)a(mm#))v((hh*)a(p"p)) = mm* v wa = mm*;
thus m ~ h = ker(p).
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Now, if F: E — E' satisfies our conditions, it preserves monos, conormal epis and intersection
of monos; moreover, if (1) isexact in E then the partition (3) istransformed by ©F into a partition
of 1ra in Prige(FA); thismeansthat Fm ~ kerg:(Fp). m

8.5. Proposition (Subcategories and domination). Let A be aw-distributive RW-category.
(& If B isasub-RW-category of A, the closed sub-RW-category B' spanned by B (2.6)
contains the same objectsas B and the morphisms a&€ A(B, B") satisfying the following conditions
(i) ar(Xs) C Xg, a*(Xg) C Xg,
(i) aa b, for some b€ B(B, B,
where Xg = Rstg(B) isthe (w-distributive) w-lattice of restrictionsof B in B.
Moreover, for al B inB
(1) Rstg(B) = Rstg (B) = Xp,
(2) Prig(B) = {e€ Prja(B) | ne de€ Xg}.

(b) If A isasubgraphof A, the Rst-full (hence closed) sub-RW-category B of A spanned by A
containsthe same objectsas A and the morphisms a€ A(D, D") satisfying the following condition

(iii) aa b, for some b intheinvolutive subcategory of A spanned by A.

Proof. We only verify (a), the second part being analogous. Let B1 be the subcategory of A
described in our statement. Bi is clearly an involutive subcategory, closed with respect to
numerators, w- and Q-projections, normality (because any projection e € Prja(B) is dominated by
1g); thisalso provesthat B, satisfies properties (1) and (2).

Thus B'C By; conversely, if aa B — B' isin By, by (b)

(3 a = (ad)b(aa),

for some b in B; as By satisfies (2), n(aa”), d(aa”) € Xg = Rstg(B): thus aa” belongsto B';
analogously for a’a, which provesthat a€ B'. o

8.6. Q-morphisms. As a consequence, if F: A — B is agraph morphism with values in a w-
distributive RW-category, then F isag-morphism if and only if:

(@) F isbhijective onthe objects,

(b) F isRst-full,

(c) forevery b in B thereissome b' intheinvolutive subcategory of B spanned by F(A) such
that ba b'.

Actually, assume that F satisfies (a) and (b) (every g-morphism does) and apply 8.5b to the
subgraph F(A) of B.

In particular, if F: A — B isan RW-functor and B isw-distributive, then F isaweak quotient
if and only if it satisfies (a), (b) and

(c) forany b in B thereissome a in A suchthat b a Fa
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8.7. Idempotent RW-categories. The RW-category A will be said to be idempotent whenever
all its endomorphisms are so.

In such a case, for parallel morphisms a, b (by 1.2.8)
(1) a=b « (c(@=c(b) and i(a) =i(b)),
« (def(a) = def(b), ann(a) = ann(b), val(a) = val(b), ind(a) = ind(b)).
Therefore an RW-functor F: A — B (where A isidempotent) isfaithful if and only if it is Prj-
faithful, if and only if it is Rst-faithful.

Every idempotent RW-category istrivially orthodox, i.e. w-distributive (8.1); it is aso transfer by
the above remark. Every idempotent Rst-finite RW-category is hom-finite, by 7.5.

Letnow F: A — B beany RW-functor

(@) If F isastrict quotientand A isidempotent, sois B,
(b) if F isaweak quotient, A isidempotent and B isw-distributivethen B too isidempotent,

(c) if F isfaithful and B isidempotent sois A.

All these remarks are trivial, except (b) which is a consequence of 8.6: let b: FA — FA be some
endomorphism of B; then b a Fa for some a& A(A, A), which isidempotent: thus aa 15 and
b a Faa 1ga isidempotent too.

8.8. Pre-idempotent w-exact categories. We say that the (component- wise) w-exact category
E ispre-idempotent when A = Relw(E) isidempotent. Other equivalent conditions are;

(@) forall paralel monos s, t: H — A in A, tfs=1y
(b) for every commutative diagram of E

m

— A
o
.
+

— A

n

p
H «—

H o«
q

)

if (n', M) isthe pullback of (m, n), then pn' and gm' are the same conormal epi.

Indeed, () istrivialy equivalent to theidempotence of A. In order to prove the equivalence of (a)
and (b), consider the parallel monorelations

(2) s=mp"H— A, t =ng"H— A;
form the pullback in (1) and let
(3) u = pn, v = gm.

Since

@ ts = q'm)p* = (gm)(n*p¥) = v,
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if u=v isaconormal epi of E, ts*=1y; conversely if ts* =1 then the proper morphisms u, v
areepi in A, hence conormal episof E and u=1yu=vufu=v implies u=v.

8.9. Universal distributive and idempotent categories. In order to present embedding
theorems in the distributive or idempotent cases, we recall (in (a), (b), (c)) or introduce (in (d), (e),
(f)) the following categories.

(@ Thedistributive exact category J of (small) sets and partial bijections (1.6.1) and its distributive
RE-categories of relations, Rel(J).

(b) Thedistributive exact category J =Mle(J) = DlegJ) (1.6.2); its objects are semitopological spaces,
i.e. sets equipped with a lattice of closed subsets, whileamap u: S — T is a partial
homeomorphism, from some open subspace S of S (acomplement of a closed subset, provided
with the induced structure) to some closed subspace Tg of T.

(c) The pre-idempotent exact category Jo of sets and common parts, or partial identities (1.6.4), and
itsidempotent RE-category of relations, Rel(Jp).

(d) The w-distributive w-exact category of w-spaces and partial w-homeomor phisms
(1) J¥ = wMe(J) = wDe(J).

According to 7.7, an object, or w-space, isaset S provided with a (necessarily w-distributive)
sub-w-lattice X of Suby(S) = P(S) (see 11.6; note that the normality relation = of X isgeneraly
finer than the order relation C induced by P(S)); asin (b), the elements of X are called closed
subsets of S. A morphism (or partial w-homeomorphism) u: S — T isahomeomorphism of w-
spaces Ug: Sg — Tg from some open subspace Sp =SS of S (acomplement of aclosed normal
subset S=S, provided with the induced structure) to some closed subspace T of T.

We also introduce the w-distributive RW-category
(2 LW = Rd(@") = wMe(Reg) = wDe(Rel]).
(e) The pre-idempotent w-exact category
(3 &" = wMe(do) = wDe(do),

whose morphisms L: S — T are given by common subspaces L of S and T, where L =SS
(with S=S) is closedin T. It determines the idempotent RW-category

(4) LOW = ReI(HOW) = WMe(ReIJo) = WDe(Rdjo)

(f) Last we consider the hom-finite (and Sub-finite or Rst-finite) full subcategories determined by
finite sets or finite w-spaces: Jf, Jof, gWf, LWl gowf, LW,

8.10. Concrete representations for w-distributive w-exact categories. Extending [G9],
§ 4.8, by means of these results one proves that every w-distributive w-exact category E (resp.
every w-distributive RW-category A) hasw-exact (resp. RW-) spectrum functors

(1) Spcg:E — 7, (resp. Spca: A — Reld)

(2) Spce# E — g%, (resp. Spca# A — LW)
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the second being Sub-full and <-closed (resp. Rst-full); these functors are embeddings when E is
transfer.

Analogously, by extending [G9], 4.9, we get that every small wd-exact category E (resp. every
small w-distributive RW-category A) has extended spectrum w-exact (resp. RW-) embeddings

(3 Spce™E— T, (resp. Spea™: A — Rell)
(4) Spce#M E — 3v, (resp. Spea#™: A — LW)

the second being Sub-full and <-closed (resp. Rst-full). These embeddings take valuesin I (resp.
Rd(7h, LW when E isfinite.

Finally, by extending [G9], § 5.7, we have that every pre-idempotent w-exact category E hasa
w-exact embedding in Jo and aclosed Sub-full onein g%, while every idempotent RW-category A
has an RW-embedding in RelJy and aRst-full onein Lg% = Rel(J o).

9. RW-categories and w-exact categories

We consider here the lattice property determined by wm-lattices (11.4). The corresponding w-exact
categories are characterised by the stability of normal subobjects with respect to intersection.

9.1. Definition. The RW-category A will be said to be w-latticed, or an RW-category, when all
its regtriction-sets Rst(A) are wm-lattices (11.4), i.e. satisfy a stronger variant of (wl.2)

(wl.2) if y=x and t=z then yt = xz.

As a consequence, the set Nrm(Rst(A)) of normal restrictions of the object A is a sub-w-lattice
of Rst(A) and amodular lattice in its own right. Notice, however, that ag-mappings do not preserve
normal restrictions, generaly: thereis no functor NrmRst: A — MIr.

9.2. Proposition. RW-categories are also characterised by the following axiom, to be added to
(RW.0-3):

(RW.4) each projection set Prja(A) isa a-semilattice with respect to <.

Proof. Actualy, if A isw-latticed and e=xly, f =z/t areprojectionsof A, by (RW3.b)
(1) (Xa2)/(yat) = enf.

Conversely, for y = x and t =z in Rsta(A), consider e=x/ly, f=2z/t and eaf = ulv. Again
by (RW.3b), usxaz and v=<yat, moreover

(2) xaz < eaf = ulv,
(3 (yat)/(yat) = eaf = ulv,
which provesthat xaz<u and yat=<v.

Thus xaz = u=n(enf), yat=v =d(eaf) and the latter isnormal in the former. m
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9.3. The 2-category RW. Let RW be the full sub-2-category of RW of RW-categories; it is
strictly 2-complete. Given an RW-functor (inthe original RW)

(1) H:C — D,
it is easy to see that

(@) if H isastrict quotientand C iSRW, sois D,
(b) if H isaclosed, Rst-faithful functor and D isRW, sois C.

It follows that both the ordinary and the canonical factorisation (Section 3) of an RW-functor F: A
— B have"central" category in RW, i.e. live entirely there.

A sub-RW-category Ap of A isasub-RW-category which isw-latticed; equivalently, by 9.2, it
has to be stable for intersection of parallel projections with respect to <.

9.4. The projection complete case. A projection complete RW-category A isw-latticed if and
only if itsrestriction-sets Rst(A) satisfy the following condition, generally weaker than (wl.2)

@ if x,y=1 then xy = 1.

Actudly, if (a) holdsand y < X, t <=z in Rst(A), split therestriction xz
m m

1 A— M — A Xz = mm?,

and consider in Rst(M)

(2) yo = mR(y) = m™(y), to = mR() = m°(Y).
Since

(3 mRx) = mR(xz2) = mRmg(1) = 1y,

we have yg = mR(x) = 1y. Analogously to = mR(z) =1y, and yoto = 1ym. Now

(4 mr(yo) = mrmR(y) = (Yax2)vo =yz

(5) mMgr(yoto) = MR(MR() A Yo) = (t A Mr(YD)) v MR(w) = tayz = yt,

and yt = mg(ly) = mm* = xz.

9.5. W-exact categories. Say w-exact any w-exact category E satisfying the following
properties, equivaent by 9.4 and the W-symmetrisation theorem 11 (5.5):

(@ Relw(E) isan RW-category,
(b) all w-lattices Subg(A) are w-lattices,
(c) intersection of normal subobjectsisnormal.

Of course the W-symmetrisation theorem and its conseguences have thus a W-version.

9.6. The w-expansion. Every RW-category A has an associated w-expansion (7.5-6) WMeA,
satisfying the universal problem determined by the full subcategory wMIr of wMIr, determined by
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wm-lattices. Similarly we have awd-expansion wDeA determined by wd-lattices. If A is projection
complete, so are these expansions (by the last point in 7.5).

Analogously for w-exact categories.

9.7. The universal distributive and idempotent RW-categories. The exact categories J
and Jg (8.10), being normal, are alsow-latticed. They produce

(@) thew-distributive w-exact category,
(1) & = wme = wDéJ,

of w-spaces and partial open-closed w-homeomorphisms, having a description similar to J% in 8.9d,
together with the w-distributive RW-category

(2) V= Rej" = wMe(RdJ) = wDe(RdlJ);

(b) the pre-idempotent w-exact category

(3) %" = wMe(Jp) = wDe(Jo),

of w-spaces and open-closed common parts (see 8.10d), together with the idempotent RW-category
(4) LoV = Rd(gV¥) = wMeRdTg) = wDeRdTp).

The embeddings considered in 8.10 have analogous ones here for RW-categories and w-exact
categories.

10. The dual and selfdual cases

We consider here briefly the dual case of RWO-categories and w*-exact categories. The selfdual case,
of course, leads to RE-categories and Puppe-exact categories.

10.1. Order duality. For an RO-category A = (A, # <) we are interested in its order opposite
RO-category
(1) A% = (A, #3).

(Owing to its 2-categorical structure, given by the order <, A has three "opposite" RO-categories,

but the other two, A* = (A*,# <) and A% = (A*, # ) are lessinteresting since the former is
RO-isomorphicto A and thelatter to A°, via a — &)

The order duality turns restrictions into corestrictions, proper morphisms into coproper
morphisms and w-projections into Q-projections; moreover there is anatural isomorphism

(2 (PrpA)* — Prp(A9), u— u,

showing that the order duality of RO-categories corresponds to the usual duality of categories, viathe
2-functor Prp: RO — CAT.
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10.2. RWO-categories. Accordingly, we say that the triple A = (A, # <) isan RW %-category if
A%=(A,* 3) isan RW-category.

In other words A isto satisfy the selfdual axioms (RW.0, 2) and
(RWO.1) for every projection e there exists exactly one corestriction n% (the conumerator of €)
suchthat e < n% = e; the corestriction d% = n%eQe) < n% will be called the codenominator of €
(RW0.3) for al parale projections e, f
(@ e<f < (nP%=<n% and d% - d°f),
(b) e=f < (n% < no and d% < d%).

The order duality takes conumerators and codenominators of A into numerators and
denominators of A°. Notethat ne coincides with the °-denominator recalled in 1.1.

10.3. Corestrictions and conormality. For each object A in the RWO-category A the set
Crs(A) of its corestrictionswill be mainly ordered by < (oppositeto <).

If x,y € Crs(A) wesaythat y <Ox (y isconormal in x) whenever there exists a (unique)
projection e of A suchthat y=d% and x =n% (iff y < x in A%; wewrite e=x/y.

10.4. W*-exact categories. We say that the category E isw*-exact if its opposite category E*
isw-exact; in particular the canonical factorisationin E isby epimorphisms and norma monos. A
classical exampleisthe category of pointed sets.

10.5. The weak adjunction. It is now straightforward to introduce the 2-complete 2-category
RW?O of RWO-categories, the 2-category WE* of w*-exact categories and dualise the equivalence
and weak-adjunction relations considered in Section 5.

10.6. Transfer of corestrictions. Every RWO-category A has atransfer RWO-functor
(1) Crsa = (Rstpa0)% A — wMIr® = (wMlr, # =),

assigning to each object A thewm-lattice (Crsa(A), <, =9 and to each morphism a: A' — A" the
wm-relation

(2 Crsa@ = (ac, &),
ac: Crs(A") — Crs(A"), x — nO(axa’),
aC: Crs(A") — Crs(A"), y — n9(axa).
Notethat a<b gives Crs(a) = Crs(b).

10.7. Transfer of quotients. Analogously every w*-exact category has a transfer w*-exact
functor (preserving epis, their intersections and short exact sequences)

() Quo: E — wMlic*.
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To every E-object A, we associate the wm-lattice of its quotients (Quo(A), <, <*), where y <*
X (y isconormal in x) means that there is a conormal epi p suchthat px =y; and to every
morphism u: A" — A" we associate the co-connection (ug, u9), with u® — ug

(2 Quo(u) = (ug, uY,

(3) ug: Quo(A’) — Quo(A™) (constructed by push-out),
(4) u® Quo(A") — Quo(A") (constructed by canonical factorisation),
satisfying

(5) ug and u? preserve < and <*; moreover ug(l) =1 and u®(0) =0,

(6) URug(X) = X a UX(1), for al x € Quo(A"),

(7) uguAy) =y v ug(0), for al y € Quo(A").

10.8. The self-dual case. Finally, the following conditions on a RO-category A are equivalent:
(& A isan RE-category,
(b) A isboth an RW and an RWO-category,
(c) A isanorma RW-category,
(d) A isaconorma RWO-category (i.e., every corestriction x € CrsA isconormal in 1p, for al
objects A).
Actualy (a) is equivalent to (c) by 1.8, and to (d) by order duality; thus (a) implies (b), and the
converseistrivial since (RE.1) is the conjunction of (RW.1) and (RWC.1).
Analogously the following conditions on the category E are equivalent:
(@) E isexact,
(b) E isboth w-exact and w* -exact,
(c) E isw-exact and normal (i.e., every subobject is normal),

(d) E isw*-exact and conormal (i.e., every quotient is conormal).

11. Appendix: w-lattices and homomor phisms

We introduce here the w-lattices and their homomorphisms.

11.1. Definition. A w-lattice (or weak lattice, or normolattice) isatriple X = (X, =, <) such that
(fordl x,y,z te X)

(wl.0) (X, =) isameet-semilattice with 0 and 1;

(wl.1) = isabinary relationon X (caled normality); 0= 1; X=X; X<y = X=<V;

(Wl.2) if x =y then XAz = yaz,

(wl.3) if x=tand y=t, then xvy exists,

(wl.4) if x=tand y=2z=<t, then xvy = xvz.



Notethat X, generally, isnot alattice; also when it is, the only structural joins (used below to
define homomorphisms) are the =-joins considered in (wl.3). The elements x = 1 will be said to be
normal; they form an ordered subset Nrm(X), which is ajoin-semilattice; note that the induced
normality relation coincides with <, by (wl.2).

11.2. Weak modularity and distributivity. A w-lattice X is said to be w-modular, or a wm-
latticeif it satisfies the following axioms:

(wm.l) if y<z, x=t, y=<t, then (Xvy)az = (XaZ)vy,
Xv(yaZz).

It is said to be w-distributive, or awd-lattice, if it satisfies the stronger axioms:

(wm.2) if X<z, x=t, y=t, then (Xvy)az

(wd.l) if x=1t, y=<t, then (Xvy)az = (Xa2)v(ya2),
(wd.2) if x=t, y=t, z=<t, then xv(yaz) = (Xvy)a(xvz).
To deduce (wm.2) from (wd.2), take z' = zat < t.

11.3. Normal w-lattices. Say that a w-lattice X isnormal when every element isso, i.e. X =
Nrm(X): then (X, <) isalattice and = coincides with <. Conversely every lattice X determinesa
normal w-lattice W(X) = (X, =, <). The modular and distributive cases proceed in the same way.

11.4. w-lattices. The subset Nrm(X) of the w-lattice X is not meet-stable, generally. For
instance, consider the following wd-lattice (the trivial normality relations are understood: 0 < X = X,
for al elements x)

M) 0<ab<p <1, 0 = ab=p =1,

where xay isnot normal. Wesay that X isaw-latticeif it satisfies the following condition, stronger
than (wl.2)

Wl.2) ysx and t=z .=. yat=Xaz

Analogously we consider wm-lattices and wd-lattices. If X isaw- (resp. wm-, wd-) lattice then
Nrm(X) isalattice (resp. amodular, distributive one).

11.5. Homomor phisms. A homomorphism of w-lattices h: X — X' has to preserve 0, 1,
(binary) intersection, the normality relation = and =-unions.

Thus we have the (ordered) category wLth of (small) w-lattices and homomor phisms. Its
isomorphisms are the bijective mappings preserving and reflecting the relations < and <. The category
wLth isclearly complete, with limits preserved by the forgetful functor into Set.

Thefunctor W: Lth — wLth, defined on the objectsin 11.3, embeds the category of lattices and
homomorphisms as a subcategory of wLth.

In the same way the full subcategories wMIh and wDIh of wLth given by wm- and wd-
lattices respectively contain, as a full reflective subcategory, the categories MIh and DIh of
modular and distributive lattices.
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11.6. Sub-w-lattices. The monos of the categories wLth, wMIh and wDlh are their injective
homomorphisms, in the usual set-theoretic sense. This follows from the existence of the free object on
onegenerator x, whichinal three casesis

@1 {0, x, 1}, O<x<1, 0=«0=l=l

Therefore we define a sub-w-lattice of X to beasubset X provided with the induced order <
and some relation =g so that, for al X, y, z,t € Xg

@ 0, 1, xay € Xy,

(b) 0=p1, X=X, Y=0X = Yy=X,
() X=0y = XaZ=gyaz,

(d) x=gt and y=t .=. Xvy € Yy,

(& X=gt and y=gz=st .=. Xvy 9gXvZ

Then Xg=(Xo, =, <¢) isaw-lattice, w-modular or w-distributiveif X isso, and the embedding
Xo — X isamonomorphism of wLth. However, if X isaw-lattice or is normal (i.e., alattice),
Xo need not be so.

11.7. Closed homomor phisms. A homomorphism of w-lattices h: X — X' issaid to be closed
(or =-closed) whenever

(D if x,x€ X and h(X) = h(x) in Y, thenthereexist a< a in X suchthat h(a) = h(x) and
h(@) = h(x").

A sub-w-lattice Xg of X issaidtobeclosedin X if its embedding is so; in other words, if its
normality relation is induced by the one of X, or - equivalently - if it is aregular subobject (an
equaliser).
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