
Weakly exact categories and their relations

(Preprint: Dip. Mat. Univ. Genova 20 (1987) - Revised version: December 2002)

Marco Grandis (Genova)

Abstract. This work is a first step in extending to the non-commutative case previous works

concerned with the study of spectral sequences via universal models. We characterise categories of

relations on weakly exact categories, i.e. γ-categories in the sense of Burgin; we also study their

lattices of subobjects and various lattice-theoretical properties of such categories.

0. Introduction

0.1. We want to extend to the non-commutative case a series of three papers [G10-12] on

commutative homological algebra and universal models of spectral sequences. Here, we are mostly

concerned with the extension of the first, [G10], which will be cited as Part I; the reference I.1, or

I.1.2, or I.1.2.3 applies respectively to its Section 1, or Subsection 1.2, or item (3) in the latter.

The categorical frame we chose in the former series is  EX,  the 2-category of exact categories (in

the sense of Puppe-Mitchell [Pu, Mi]), exact functors and natural transformations. We have shown

that in such a frame the biuniversal model of "homological theories", as the filtered complex or the

double complex, can be explicitly described: the biclassifying exact category can be "drawn" in the

(discrete or real) plane, yielding a graphic tool (a sort of algebraic crossword chasing) for studying the

associated spectral sequences; in the case of the discrete filtered complex we recover the Zeeman

diagram [ZE, HW].

As a crucial, distinctive fact (see I.0.1), all the above theories are distributive, in the sense that

their biclassifying exact category has distributive lattices of subobjects, while – generally – the lattices

of subobjects of an exact category are just modular.

Notice that such results cannot be achieved in  AB,  the 2-category of abelian categories: the

biclassifying abelian category of the above theories is not distributive (as any non-trivial abelian

category); also, it is much more complicated than the exact one and probably cannot be given simple

representations. Note also that the lack of an additive structure in  EX  will make easier the present

extension of results to non-commutative algebra.

Homological algebra is – essentially – a calculus of subquotients. Therefore, an important tool to

prove our results is the calculus of relations, which reduce subquotients in  E  to subobjects in  RelE.

More precisely, for a p-exact category  E,  a relation  a: A' =; A"  has a W-factorisation  a = nq#pm#

by four arrows of  E,  determined up to isomorphism, as in the lower part of the left diagram below
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A'/Ann(a) A"/Ind(a) A/K

   p' ù# ó*  m'  n' %° ìÚ   q'  %°    s ìÚ
(1) A' – à –+   L ± à –=   A"   H/K ± à –=   A

  m ó* ù#  p   q ìÚ %°  n  ìÚ %°
 Def(a)   Val(a) H

it also has a dual W*-factorisation  a = q'#n'm'#p',  as in the upper part; the fact that the two

factorisations yield the same relation is ensured by the two squares being pullbacks (or, equivalently,

pushouts). The dotted diagonals give the (essentially unique) factorisation of  a  in epirelation /

monorelation; thus, a monorelation  s  with values in  A  amounts to a subquotient  H/K  of  A  in  E
(a quotient of a subobject, or equivalently a subobject of a quotient), as shown in the right diagram

above, again a bicartesian square.

The construction of  RelE  is realised by equivalence classes of W-shaped diagrams in  E,  up to

three central isomorphisms (or, dually, by equivalence classes of W*-shaped diagrams): cf. Calenko

[C1, 2], Brinkmann-Puppe [BP], or a brief description here (4.3). If  E  has finite products, than it is

abelian and relations can be equivalently constructed as equivalence classes of spans (or cospans).

It is important to note that a subquotient  s: H/K =; A   can also be represented by a projection  e:

A =; A,  i.e. a symmetric idempotent endorelation  (e = ee = e#)

(2) e  =  (A ´ H + H/K 0 H ≠ A) (e = ee = e#),

with the advantage that  e  is uniquely determined: two monorelations  s, t  (with values in  A)  are

equivalent if and only if they have the same associated projection:  ss# = tt#: A =; A;  further, we can

simulate the numerator  (H)  and the denominator  (K)  of a subquotient by two restrictions

(projections ≤ 1), which again are strictly determined

(3) n(e)  =  (A ´ H ≠ A), d(e)  =  (A ´ K ≠ A),

and strictly preserved by "good" functors, the ones which preserve involution and order.

This is why we preferred to replace the pseudo-complete 2-category  EX  with the strictly 2-

complete category  RE  of RE-categories, involutive ordered categories generalising the categories of

relations over exact categories. Thus, in  RE,  strict 2-universal problems can be solved, simplifying

our work; a weak adjunction between  EX  and  RE  yields the transfer of results. (Note, however,

that one can obtain directly in  EX  such results, applying suitable theorems on the existence of

biuniversal models, as in [BG].)

More complete motivations can be found in the Introduction of Part I.

0.2. We want now to extend this study of "homological theories" to the non-commutative case, so

that it can be applied to such categories as  Gp  (groups) or  Rng  (associative rings, without unit

assumption). The weaker notion of exactness which is suitable for our purposes is given by γ-

categories, a non selfdual notion introduced and studied by Burgin [Bu], together with the

construction of relations by means of W-diagrams (while W*-diagrams work in the dual case,

including the category of pointed sets). These γ-categories will also be called weakly exact or w-exact,

for the sake of uniformity of terminology.
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We begin here by extending Part I. Therefore we introduce and study RW-categories, by

weakening the RE-axioms (I.4.1): a projection  e: A =; A,  with  e = ee = e#  (simulating a

subquotient  H/K  of  A),  is no longer assumed to have a c-denominator  cd(e)  (simulating the

quotient  A/K,  which would require  K  to be normal in  A)  but only a denominator  d(e)  (simulating

the subobject  K  normal in  H).  The categories of proper morphisms of "projection-complete" RW-

categories appear to be precisely those categories whose connected components are γ-categories;

conversely, RW-categories coincide with the "projection-full" involutive subcategories of the

categories of relations over γ-categories.

This work is not a straightforward generalisation of Part I. The normality relation  x ≤ y  between

restrictions, which appears in the present case, makes various notions (e.g. RE-functors, their

factorisations, RE-subcategories...) to have at least two extensions, of which the non-standard one,

related with the reflection of normality, is often more interesting. Moreover we have to extend many

results of related works [G6-8] which we used in Part I; in particular modular lattices and their exact

category Mlc of modular connections [G8], simulating the covariant and contravariant images of

subobjects in exact categories, are here generalised by w-modular weak lattices (wm-lattices; see 11.1,

2) and their w-exact category of wm-connections. These notions we consider well-adapted to study

the lattices of subgroups and subrings, in the same way as modular lattices are the good notion for

lattices of submodules.

0.3. In Sections 1-3 we introduce the 2-category  RW:  an RW-category  A  is provided with a

regular involution  (–)#  and a consistent order ≤, so that each projection  e: A = A  (e = ee = e#)  has

two associated restrictions (i.e. projections ≤ 1), the numerator and the denominator

(1) n(e): A = A, d(e): A = A,

and each object  A  has suitable null projections  ωA  and  ΩA;  RW-functors preserve all that (2.1).

The canonical factorisation of RE-functors extends here to the ordinary factorisation (3.2) and to the

less obvious but more interesting closed factorisation (3.6), via weak quotients and closed faithful

RW-functors (reflecting normality between restrictions).

In Sections 4, 5 we prove the connections between RW-categories and γ-categories (w-exact

categories) previously expounded. The RW-category  wMlr  of wm-lattices and wm-relations is

introduced in Section 6, together with the w-exact category  wMlc = Prp(wMlr)  formed by its

proper morphisms, the wm-connections. In Section 7 we deal with the transfer functors

(2) RstA: A = wMlr, SubE: E = wMlc,

of RW-categories and w-exact categories, their lattice-theoretical properties (e.g., distributivity) and a

general treatment of expansions (7.5-11). Every wm-lattice can be realised as the w-lattice of

subobjects of some object in a (fixed) w-exact category  (wMlc),  and no other lattice-like notion can

be suitable for w-exact categories.

The distributive and idempotent cases for RW-categories and w-exact categories are characterised

in Section 8, and "universal representatives" of this type are given. In Section 9 a further lattice

property is considered, corresponding to the stability of normal subobjects with respect to intersection

in w-exact categories.
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Last, Section 10 deals with the dual case of RW0-categories and w*-exact ones; the self-dual case

reduces to RE-categories and exact categories. Section 11 is an appendix containing the generalisation

of modular and distributive lattices used throughout this work.

0.4. Conventions. We follow the same conventions as in Part I (I.0.6), which we briefly recall

here. We generally use Mac Lane's terminology [Ma] for categories and Kelly - Street's [KS, Ke, S1,

S2] for 2-categories. The set of subobjects ("chosen monos") or quotients ("chosen epis") of the

object  A  in the category  C  is written  SubC(A)  or  QuoC(A),  respectively.

0.5. RO-categories. The results of I.1-3 on involutive ordered categories need no adaptation to be

used here; we only recall some basic terminology.

An involutive category  A = (A, #)  is a category provided with an involution  (–)#: A = A,  i.e. a

contravariant endofunctor identical on the objects and involutive, whose result on the morphism  a: A'

= A"  will be written as  a#: A" = A'.  Actually we only consider regular involutions, satisfying

(1) a  =  aa#a, for every morphism  a.

A projection  e: A = A is a symmetric idempotent endomorphism: e = ee = e#;  an equivalent

condition is:  e = e#e,  or also  e = ee#.

 The projections of the object  A  form a set  PrjA(A),  non closed with respect to composition: the

product  ef  of two projections is an idempotent; it is a projection if and only if  e  and  f  commute;

conversely, every idempotent  e  is the product of two projections  e = (ee#)(e#e);  Prj(A)  is

canonically ordered by

(2) e < f   if   e  =  ef (⇔   e = fe   ⇔   e = fef).

Every morphism  a: A' = A"  has a covariant and contravariant transfer of projections (I.1.3), by

order preserving mappings

(3) aP: Prj(A') = Prj(A"), aP(e)  =  aea#,

aP: Prj(A") = Prj(A'), aP(f)  =  a#fa  =  (a#)P(f),

in a functorial way:  (ba)P = bPaP,  (ba)P = aPbP.  The morphism  a  has two associated projections,

simulating its coimage and its image

(4) c(a)  =  aP(1)  =  a#a ∈ Prj(A'), i(a)  =  aP(1)  =  aa# ∈ Prj(A"),

a  is mono   ⇔   a#a  = 1, a  is epi   ⇔   aa#  = 1,

thus, all monos are split, as well as all epis; if  a  is mono and epi then it is an iso, with  a–1 = a#.

Now, a RO-category (I.1.2)  A = (A, #, ≤)  is a category  A  provided with a regular involution

and an order relation ≤ on parallel morphisms, consistent with composition and involution;

furthermore we assume that  A  is Prj-small, i.e. all its projection-sets  Prj(A)  are small.

Then, the set  Prj(A)  has two order relations, < and ≤, generally different. It is easy to see that

these orders coincide on the subset  Rst(A)  of the restrictions  x: A = A  (defined by  x ≤ 1),  which

is a meet-semilattice with respect to composition. On the other hand, they are opposite on the subset

Crs(A)  of the corestrictions  x'  of  A  (x' ≥ 1):  x' < y'  if and only if  x' ≥ y'.
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Proper morphisms  a: A' = A"  (defined by the usual conditions  a#a ≥ 1,  aa# ≤ 1)  and null

morphisms  (aa'a = a,  for all  a': A" = A')  are also studied in I.1. If  u, v  are proper and  u ≤ v,

then  u = v.

A RO-functor  F: A = B  is a functor between RO-categories preserving involution and order

(hence also projections, restrictions, corestrictions and proper morphisms). A RO-transformation

(I.2.3)

(5) ϕ: F = F': A = B,

assigns, to each A-object  A,  a proper morphism  ϕA: F(A) = F'(A) of  B,  so that a lax-naturality

condition holds

(6) ϕA".Fa  ≤  Ga.ϕA', for every  a ∈ A(A', A"),

which implies equality when  a  is proper.

This defines  RO,  the 2-category of RO-categories, RO-functors and RO-transformations,

equipped with an obvious 2-functor

(7) Prp:  RO = CAT.

Last we recall (from I.3) that the following conditions on a RO-category are equivalent:

(a)  it has epi-mono factorisations (necessarily unique),

(b)  every idempotent  e  splits (factors  e = ts#,  where  s  and  t  are mono),

(c)  every projection  e  splits (factors  e = ss#,  where  s  is a mono);

then, we say that our RO-category is projection-complete, or factorising.

Every RO-category  A  has an associated projection completion  Fct(A),  solving the obvious

biuniversal problem (I.3.8): the objects of  Fct(A)  are the projections of  A,  while a morphism  (a; e,

f): e = f  is a morphisms of  A   such that  a = fae.  The well-known idempotent completion, with

idempotents as objects and similar morphisms, is equivalent to  Fct(A).

1. RW-categories

We introduce here our extension of RE-categories (I.4), which will be shown in Section 5 to
generalise also the categories of relations on γ-categories. Basic notions and results on R0-categories
(I.1-3, recalled here in 0.5) are often used without reference.

1.1. Definition. An RW-category will be a triple  A = (A, #, ≤)  satisfying:

(RW.0)  A  is a RO-category (0.5).

(RW.1)  For every projection  e  there exists precisely one restriction  n(e)  such that  e < ne ≤ e,

called the numerator of  e.

(RW.2)  Every object  A  has a null restriction  ω = ωA  and a null corestriction  Ω = ΩA.

For any  e ∈ Prj(A)  the denominator of  e  is defined to be the restriction
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(1) d(e)  =  n(eωAe).

(RW.3)  For all parallel projections  e, f

(a) e < f   ⇔   (ne < nf  and  de > df),

(b) e ≤ f   ⇔   (ne < nf  and  de < df).

The projections  ωA,  ΩA  are uniquely determined, since the axiom (RW.2) is equivalent to the

following one (in the presence of (RW.0)):

(RW.2')  For every object  A,  the set of endomorphisms  A(A, A)  has a least element  ωA  and a

greatest one  ΩA,  satisfying  ω = ωΩω,  Ω = ΩωΩ.

 By I.4.1, I.4.4, the RE-categories are precisely those RW-categories which admit c-denominators

(opposite to numerators, with respect to the order ≤): for every projection  e  there exists precisely one

corestriction  cd(e)  such that  e < cde ≥ e.

1.2. Normality. Henceforth  A  is an RW-category and  A, A', A"  are objects of  A.

Every projection  e  of  A  is determined by the pair  (ne, de)  of its numerator and denominator

(RW.3); by applying (RW.3b) to the inequality  eωe ≤ e,  we get:  de ≤ ne.

Now, if  x, y ∈ Rst(A),  we write  y ≤ x  (y  is normal in  x)  whenever there exists a projection  e

such that  ne = x  and  de = y;  then  y ≤ x  while  e  is determined and will be written as  x/y.

Thus, for  x ∈ Rst(A)  and  e ∈ Prj(A)

(1) x  =  x/ω, ω ≤ x, 1  =  1/ω, ω ≤ 1,

(2) xΩx  =  x/x, x ≤ x, ω  =  ω/ω, Ω  =  1/1,

(3) e ∈ Rst(A)   ⇔   de  =  ω   ⇔   e  =  ne,

(4) e ∈ Crs(A)   ⇔   ne  =  1   ⇔   e  =  1/de,

(5) e ∈ Nul(A)   ⇔   ne  =  de.

Actually, for (5), if  e  is null then  de = n(eωe) = ne;  conversely, if  ne = de,  then  e  and  eωe

have the same numerator and denominator, hence coincide and  e  is null.

Last it follows from (5) and (RW.3b) that the meet-semilattice  Rst(A)  is isomorphic to the set

(Npr(A), ≤)  of null projections of  A,  via

(6) x  ±  x/x, e  ±  ne.

1.3. Transfer of restrictions. For  a ∈ A(A', A")  let us define the covariant and contravariant

transfer of restrictions along  a,  by two mappings (deduced from the transfer of projections, 0.5.3)

(1) aR: Rst(A') = Rst(A"), aR(x)  =  n(aP(x))  =  n(axa#),

aR: Rst(A") = Rst(A'), aR(y)  =  n(aP(y))  =  n(a#ya)  =  (a#)R(y),

which will be seen later to form a "wm-relation between wm-lattices" (7.1). Now

(2) aP(x/y)  =  aR(x)/aR(y), for  y ≤ x  in  Rst(A'),

aP(x)  =  aR(x)/aR(ω), for  x ∈ Rst(A').
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Indeed, as the transfer of projections  aP  preserves the orders ≤ and <, by (RW.3)

(3) aP(x/y)  <  aP(x), aP(x/y)  ≥  aP(x),

aP(x/y)  >  aP(y/y), aP(x/y)  ≥  aP(y/y),

therefore, again by (RW.3)

(4) n(aP(x/y))  =  n(aP(x))  =  aR(x),

(5) d(aP(x/y))  =  d(aP(y/y))  =   n(aP(y/y))  =  aR(y).

In particular we have

(6) c(a)  =  a#a  =  aP(1)  =  aR(1)/aR(ω), i(a)  =  aa#  =  aP(1)  =  aR(1)/aR(ω).

The transfer of restrictions is functorial, like the one of projections (0.5)

(7) (ba)R(x)  =  bR(aR(x)), (ba)R(y)  =  aR(bR(y)),

as it follows from (2)

(8) (ba)P(x)  =  bP(aP(x))  =  bP(aR(x)/aR(ω))  =  bR(aR(x))/bR(aR(ω)).

1.4. Definition and annihilator. For a morphism  a: A' = A"  we shall consider the following

restrictions of its domain and codomain, called definition, annihilator, values and indetermination of  a

(simulating the analogous subobjects, which exist when  A  is the category of relations of some w-

exact category: see 4.6 and 5.6)

(1) def(a)  =  n(a#a)  =  aR(1)  ∈  Rst(A'), ann(a)  =  d(a#a)  =  aR(ω)  ∈  Rst(A'),

val(a)  =  n(aa#)  =  aR(1)  ∈  Rst(A"), ind(a)  =  d(aa#)  =  aR(ω)  ∈  Rst(A"),

so that

(2) ann(a)  ≤  def(a), ind(a)  ≤  val(a),

(3) def(a)  =  val(a#), ann(a)  =  ind(a#),

(4) a  is mono   ⇔   (def(a) = 1  and  ann(a) = ω),

a  is epi   ⇔   (val(a) = 1  and   ind(a) = ω),

(5) a  is proper   ⇔   (def(a) = 1  and   ind(a) = ω),

(6) a  is null   ⇔   def(a)  =  ann(a)   ⇔   val(a)  =  ind(a).

Moreover, for a projection  e

(7) ne  =  def(e)  =  val(e), de  =  ann(e)  =  ind(e).

1.5. The operation &. The set  Prj(A)  will be provided with the binary operation &

(1) e&f  =  efe  =  eP(f),

a sort of generalised meet, which will be calculated in the next subsection. The operation is

idempotent, with identity  1A,  generally neither associative nor commutative: we shall prove that & is

associative (for all objects) if and only if  A  is w-distributive (7.5; 8.1). We have

(a) e < f   ⇔   e  =  f&e,
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(b) e  and  f  commute   ⇔   e&f  =  f&e   ⇔   e&f < f&e.

Indeed, (a) follows from  (0.5.2); for (b), if the third property holds

(2) ef  =  ef.ef.ef  =  efe.fef  =  efe,

hence  ef  is a projection and  e, f  commute.

1.6. Theorem (Calculus of projections). In the RW-category  A,  for all projections  e, f ∈ Prj(A)

(a) e&f  =  efe  =  eP(f)  =  eP(f)  =  (xz∨y)/(xt∨y) (for  e = x/y,  f = z/t);

(b) e  and  f  commute  if and only if   ne > df   and   nf > de;  in this case

(1) ef  =  fe  =  e&f  =  f&e  =  (ne.nf)/(de∨df);

(c) for all  y' ∈ Rst(A),   y'  =  de   ⇔   (y' ≤ ne   and  y'e = ey' ∈ NulA).

(Recall that  Rst(A)  is a meet-semilattice for composition (0.5 ); joins need not exist (see 1.7). We

also note that in Part I the analogous, more particular, result for RE-categories (I.6.9) was deduced

from the theory of exact categories; the present direct approach is more satisfactory.)

Proof. First we prove the following part of (b)

(b') if the restriction  x  is ≥ t,  then  x  commutes with  f = z/t.

Indeed, by 1.3.2 and (RW.3)

(2) xfx  =  xP(f)  =  xR(z)/xR(t)  =  xz/xt  =  xz/t;

xz  =  zxz  ≤  fxf; fxf  ≤  f,

Thus  n(xfx) = xz ≤ n(fxf)  and  d(xfx) = df ≥ d(fxf);  by (RW.3a),  x&f < f&x;  by 1.5b,  x  and

f  commute.

Now we prove (a). By 1.3.2

(3) efe  =  eP(f)  =  eR(z)/eR(t),

therefore we need only to verify that

(4) n(eze)  =  xz∨y.

Actually

(5) xz  =  xzx  ≤  eze, y  ≤  y/y.y/y  =  (y/y)z(y/y)  ≤  eze,

hence, by (RW.3b),  xz ≤ n(eze)  and  y ≤ n(eze). Take now some restriction  r  greater than  xz  and

y  in  Rst(A);  by (b'),  r  commutes with  e = x/y  and

(6) r.(eze)  =  r.ex.ze  =  er.xz.e  =  e.xz.e  =  eze.

Thus  eze < r  and  n(eze) ≤ r,  which achieves (4).

It is now easy to deduce (b):  e  and  f  commute iff  e&f = f&e  (1.5b), iff

(7) xz ∨ y  =  xz ∨ t; xt ∨ y  =  zy ∨ t,

if and only if  x > t  and  z > y.

Last, for (c),  de  commutes with  e  by (b); conversely, if  y'  satisfies the conditions in (c)
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(8) y'  =  y'.ne  =  n(y'e)  =  d(y'e)  =  ω∨de  =  de. ∆

1.7. Theorem (Normomodularity). For all objects  A  of the RW-category  A,  the set  Rst(A)  is a

w-modular w-lattice (11.1, 2) with respect to its relations ≤ and ≤.

Proof. We already know that  Rst(A)  is a meet-semilattice with respect to ≤ and product, with

minimum  ω  and maximum 1; also the axiom (wl.1) in 11.1 is known to hold (1.2.1-2). Take  x, y,

z, t ∈ Rst(A).

Assume that  y ≤ x.  For (wl.2), it is sufficient to note that (by 1.6)

(2) z & (x/y)  =  zx/zy,

hence  zy ≤ zx.  If moreover  t ≤ z ≤ x

(3) (x/y) & (z/t)  =  (xz∨y)/(xt∨y)  =  (z∨y)/(t∨y),

which proves both (wl.3), by taking  z = t,  and (wl.4).

Now, for the first normomodularity condition (wm.1), suppose that  y ≤ x  and  t ≤ xz.  Consider

the projections

(4) e  =  z & ((x/y) & t)  =  z (x/y) t (x/y) z,

(5) f  =  (z & (x/y)) & t  =  z (x/y) ztz (x/y) z,

which are equal because  t ≤ z;  calculating their numerators, by 1.6, we get our goal

(6) ne  =  z ∧ n((x/y) & t)  =  z ∧ (xt∨y)  =  z ∧ (t∨y),

(7) nf  =  (n(z & (x/y)) ∧ t) ∨ d(z & (x/y))  =  (zx ∧ t) ∨ zy  =  t ∨ zy.

Last (wm.2) is proved in a similar way. Suppose that  y ≤ x,  t ≤ x,  y ≤ z  and consider the

projections

(8) e  =  z & ((x/y) & t)  =  z(x/y)t(x/y)z, f  =  (x/y) & zt  =  (x/y)zt(x/y),

which coincide since  z  commutes both with  x/y  (1.6) and  t.  Also here it suffices to calculate their

numerators

(9) ne  =  z ∧ n((x/y) & t)  =  z ∧ (xt∨y)  =  z ∧ (t∨y),

nf  =  xzt ∨ y  =  zt ∨ y. ∆

1.8. Normal RW-categories. The normal restrictions  x≤1  of  A  form a join-semilattice

Nrm(Rst(A))  (11.4), which is anti-isomorphic to the ordered set  (Crs(A), <),  hence isomorphic to

(Crs(A), ≤),  via

(1) NrmRst(A) = Crs(A), x ± 1/x,

(2) Crs(A) = NrmRst(A), e ± de.

We say that the RW-category  A  is normal (resp. subnormal) when all its wm-lattices  Rst(A)  are

so, i.e. when every restriction  x  of each object  A  is normal (resp. subnormal).

It is easy to see that  A  is normal if and only if it is an RE-category (I.4.1). Actually, if  A  is

normal, it satisfies (RE.1b): each projection  e = x/y  has denominator  y ≤ 1, hence by (RW.3) there
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is exactly one corestriction  x'  of  A  such that  e ≤ x'  and  e < x',  i.e.  x' = 1/y;  thus  A  is an RE-

category. The converse is trivial.

We shall consider in 9.1 certain RW-categories in which normal restrictions are meet-stable, so

that all sets  NrmRst(A)  are modular lattices.

1.9. Theorem (The projection completion). The projection complete RO-category  B = Fct(A)

(0.5) on the RW-category  A  is an RW-category. Moreover, if  e ∈ Prj(A)  and

(1) f'  =  (f; e, e) ∈ PrjB(A), f  =  x/y  <  e,

then

(2) ωe  =  (eωAe; e, e), Ωe  =  (eΩAe; e, e),

(3) nf'  =  (ex; e, e)  =  (nf/de; e, e), df'  =  (ey; e, e)  =  (df/de; e, e).

Proof. We already know that  B  is a projection complete RO-category. Clearly it satisfies (RW.2)

with null restrictions and corestrictions as specified in (2). As to (RW.1), by (1)

(4) de  ≤  y   ≤  x  ≤  ne,

so that both  x  and  y  commute with  e  (1.6b). The restriction  x' = (xe; e, e)  of  e  is a numerator

for  f'  since

(5) x'  ≤  f'    (xe = xex ≤ fef = f), x'.f'  =  (xef; e, e)  =  (f; e, e)  =  f'.

Conversely, if  x" ∈ Rst(e)  and

(6) x"  =  (g; e, e), x"  ≤  f'  <  x",

we have

(7) g  <  e, g  ≤  e, g  ≤  f  <  g,

so that, by (RW.3) in  A

(8) ng  =  nf   and   dg  =  de;

thus  g  is determined, as  g = nf/de.  Last

(9) df'  =  n(f'ωef')  =  n(feωef; e, e)  =  n(fωf; e, e)  =  (n(fωf)/de; e, e)  =  (df/de; e, e).

It follows easily that  B  satisfies (RW.3). ∆

1.10. Lemma (Characterisation of order). Let  a, b ∈ A(A, A')  and

(1) x  =  def(a), z  =  def(b)  ∈  Rst(A), x'  =  val(a)  ∈  Rst(A').

Then  a ≤ b  if and only if

(2) a  =  az   and   a.b#b.a#a  =  x'bx.

In particular

(3) (a ≤ b,  ca = cb,  ia = ib)   ⇒   a  =  b.

Proof. If (2) holds, then
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(4) a  =  az  =  axz  =  azx  =  a.n(b#b).n(a#a)  ≤  a.b#b.a#a  =  x'bx  ≤  b.

Conversely, if  a ≤ b,  clearly  a = az  and

(5) a.b#b.a#a  =  x' (a.b#b.a#a) x  ≤  x' (b.b#b.b#b) x  =  x'bx,

(6) a.b#b.a#a  ≥  aa#.b.a#a  ≥  n(aa#).b.n(a#a)  =  x'bx. ∆

1.11. Order and restrictions. A first consequence of the above lemma is that the order ≤ in  A  is

determined by the restrictions of  A.  More precisely, let  A1 = (A, #, ≤1)  and  A2 = (A, #, ≤2)  be

two RW-structures on the same involutive category  (A, #),  and assume that  A1  and  A2  have the

same restrictions. Since the numerator  ne  of the projection  e  of  Ai  is the smallest (for <) restriction

x  such that  xe = e,  A1  and  A2  have the same numerators; by the above lemma the orders ≤1 and ≤2

coincide.

2. The complete 2-category RW

A  and  B  are always RW-categories.

2.1. RW-functors and transformations. An RW-functor will be an RO-functor  F: A =  B
between RW-categories which preserves null morphisms (or, equivalently, all projections  ω;  or also,

all projections  Ω).  Hence it preserves projections, restrictions and their meet, corestrictions, numera-

tors, denominators, as well as the normality relation ≤.

It also preserves ≤-unions (11.1) of restrictions: indeed, if  y ≤ x  and  z ≤ x,  consider the follow-

ing projection  e  (applying the calculus of projections 1.6)

(1) e  =  (x/y)z(x/y)  =  (z∨y)/y,

(2) F(z∨y)  =  F(ne)  =  n(Fe)  =  n((Fx/Fy).Fz.(Fx/Fy))  =  F(z) ∨ F(y).

An RW-transformation

(3) α: F = G: A = B,

is an RO-transformation (0.5) between RW-functors; recall that such transformations are just lax-

natural (with respect to the 2-categorical structure given by the order ≤), yet "natural on proper

morphisms".

These functors and transformations define  RW,  a sub-2-category of  RO.

It is easy to see that an RW-functor is an isomorphism (resp. an equivalence) in  RW  if and only

if it is bijective on objects and morphisms (resp. faithful, representative and full).

The full embedding (I.3.8; 1.9)

(4) ηA:  A = FctA, A ± (A, 1), a ± (a; 1, 1),

yields a biuniversal arrow (I.0.6) from the object  A  to the 2-functor  Fct: RW = FRW,  the latter

being the full sub-2-category of  RW  determined by projection complete RW-categories.
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2.2. Basic reflection properties. We need to study various reflection properties for an RW-

functor  F: A = B;  the trivial ones are exposed below, others will follow (e.g.: 2.3, 2.4, 3.1, 3.3).

Every projection (resp. restriction)  e' ∈ B(FA, FA)  such that  e' = Fa  for some  a: A = A'  can

be written as  Fe  for some projection (resp. restriction)  e: A = A:  just take  e = ca = a#a  (resp.  e =

def(a) = n(a#a)).

Moreover, for  x, y ∈ RstA(A)  and  Fy ≤ Fx  in  RstB(FA)  there exist  x0, y0 ∈ RstA(A)  such

that  y0 ≤ x0,  Fx0 = Fx,  Fy0 = Fy:  just take  x0 = x,  y0 = xy.  The analogous property for the

relation ≤ need not hold, but yields the following definition.

2.3. Closed RW-functors. The RW-functor  F: A =  B  will be said to be ≤-closed, or closed,

whenever

(a) for all  x, y ∈ RstA(A)  such that  Fy ≤ Fx,  there exist  x0, y0 ∈ RstA(A)  such that  y0 ≤ x0,  Fx0

= Fx,  Fy0 = Fy.

By 2.2, a faithful RW-functor is ≤-closed if and only if it reflects the relation ≤, when acting on

parallel restrictions. Closed RW-functors are stable for composition. Conversely, if the composite  F

= F2F1  of two RW-functors is closed and the second  (F2)  is faithful (more generally, Rst-faithful

(3.3)) then the first functor  (F1)  is closed too.

2.4. Lemma (Order reflection). Let  F: A = B  be an RW-functor and  a, b ∈ A(A', A").  Then

Fa ≤ Fb  in  B  if and only if there exist  c, c', c" ∈ A(A', A")  such that

(1) a  ≈F  c ≤  c' ≈F  c"  ≤  b,

where  a ≈F b  means that  a  and  b  are parallel in  A  and  Fa = Fb.

Proof. The condition (1) is clearly sufficient. Conversely if  Fa ≤ Fb,  consider the restrictions  x, z,

x'  of Lemma 1.10 and take

(2) c  =  az, c'  =  a.b#b.a#a, c"  =  x'bx,

so that  c = az = azx ≤ c'  and  c" ≤ b, while  Fa = Fc  and  Fc' = Fc"  by 1.10 applied to  Fa  and  Fb

in  B. ∆

2.5. RW-subcategories. An  RW-subcategory  A'  of  A  is an involutive subcategory such that

(a) for each object  A  of  A'  and each  e ∈ PrjA'(A)  the projections  ωA, ΩA  and  ne  belong to  A'.

Then  A'  will be equipped with the induced RW-structure, i.e. the only one making the inclusion

F: A' = A  an RW-functor.

We say that  A'  is ≤-closed, or closed, in  A  if the inclusion  F  is so, which is equivalent to each

of the following conditions

(b) for all restrictions  x, y  of  A',  if  x ≤ y  in  A  then this holds in  A',

(b') every projection of  A,  whose numerator and denominator are in  A',  belongs to  A'.

Every full subcategory of  A  is a closed RW-subcategory. More generally, every Rst-full (resp.

Prj-full (3.3)) involutive subcategory of  A  is an RW-subcategory (resp. a closed one). Last, any
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intersection of (closed) RW-subcategories is so. A closed RW-subcategory of an RE-category (i.e., a

normal RW-subcategory (1.8)) is an RE-category.

2.6. Generation by subgraphs.  Let  ∆  be a subgraph of  A;  the last remark above proves the

existence of the RW-subcategory  A'  (resp. the closed RW-subcategory  A")  of  A  spanned by  ∆.

A"  will also be called the RW- closure  of  ∆  in  A,  and written as  
−
∆ = clA(∆).

A'  can be constructed as

(1) ObA'  =  Ob∆, MorA'  =  ∪ ∆n,

where the sets  ∆n  ⊂ MorA  (n ≥ 0)  are inductively defined by:

(a) ∆0  =  (Mor∆) ∪ {1A, ωA, ΩA | A ∈ Ob∆},

(b1) if  a ∈ ∆n,  then  a# ∈ ∆n+1,

(b2) if  a, b ∈ ∆n  are composable in  A,  then  ba ∈ ∆n+1,

(b3) if  e ∈ ∆n  is a projection of  A,  then  ne ∈ ∆n+1.

The construction of  A" = 
−
∆  needs one inductive rule more

(b4) if  x, y ∈ ∆n  and  y ≤ x  in  A,  then  x/y ∈ ∆n+1.

As a consequence

(2) card(MorA')  ≤  card(MorA")  ≤  max(card(Ob∆), card(Mor∆), ℵ0).

2.7. Completeness of RO. We recall (from I.9) that the 2-category  RO  is strictly 2-complete. 2-

products and 2-equalisers are constructed as in  CAT,  and provided with the obvious involution and

order. The comma square  Z = (F↓G)  of two RO-functors has the following construction

  D'
  Z - -=   A

(1) D" :ò ù§δ :ò   F

  B - -=   C
G

the objects of  Z  are triples

(2) (A, B; u: FA = GB) (u ∈ PrpC),

where  A  and  B  are in  A  and  B;  the morphisms are pairs

(3) (a, b): (A, B; u) = (A', B'; u'),

a ∈ A(A, A'), b ∈ B(B, B'), u'.Fa  ≤  Gb.u;

the composition, involution and order are obvious, as well as the RO-functors  D', D"  and the (lax!)

RO-transformation

(4) δ: FD' = GD": Z = C, δ(A, B; u)  =  (u: FA = GB).

Clearly the 2-functor  Prp: RO = CAT  preserves 2-limits.
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2.8. Projections in comma squares. Consider again a comma category  Z = (F↓G)  in  RO.  In

order to study the RW-case, we need to characterise the projections and the restrictions of the object

(A, B; u: FA = GB)  in  Z.  The projections are clearly the pairs

(1) (e, f) ∈ PrjA(A)×PrjB(B)

which satisfy

(a) u.Fe  ≤  Gf.u,

or also the following more explicit conditions, both equivalent to (a)

(b) uP(Fe)  ≤  Gf,

(c) Fe  ≤  uP(Gf).

Indeed, recalling that  u ∈ PrpC,  if (a) holds

(2) uP(Fe)  =  u.Fe.u#  ≤  Gf. uu#  ≤  Gf,

while from (b) it follows that

(3) Fe  ≤  u#u.Fe.u#u  =  uPuP(Fe)  ≤  uP(Gf),

and from (c)

(4) u.Fe  ≤  u.uP(Gf)  =  uu#.Gf.u  ≤  Gf.u.

Thus the restrictions of  (A, B; u)  in  Z  are exactly those pairs  (x, y) ∈ RstA(A)×RstB(B)  which

satisfy the equivalent conditions

(a') u.Fx ≤ Gy.u,

(b') uR(Fx) ≤ Gy,

(c') Fx ≤ uR(Gy),

since  uR(Fω) = uR(ω) = ind(u) = ω = Gω  and  Fω = ω ≤ uR(ω) = uR(Gω).

2.9. Completeness of RW. Clearly the 2-embedding  RW = RO  creates 2-limits and also  RW
is strictly 2-complete. We shall need the two following results concerning 2-limits and closure.

First, the equaliser of two parallel RW-functors is easily seen to be a closed embedding.

Second, if  Z = (F↓G)  is the comma square of the converging RW-functors  F  and  G  (2.7), the

faithful RW-functor

(1) J: Z = A×B, (A, B; u) ± (A, B), (a, b) ± (a, b),

is closed because of the previous characterisation of projections and restrictions in  Z  (2.8): if  (x0,

y0) ≤ (x, y)  in  RstZ(A, B; u)  and  (x0, y0) ≤ (x, y)  in  Rst(A, B),  we have

(2) uR(Fx0)  ≤  Gy0, uR(Fx)  ≤  Gy, x0 ≤ x  in  A, y0 ≤ y  in  B;

therefore, by letting  e = x/x0 ∈ PrjA(A)  and  f = y/y0 ∈ PrjB(B),  it results

(3) uP(Fe)  =  (uR(Fx))/(uR(Fx0))  ≤  Gy/Gy0  =  Gf,

hence  (e, f) ∈ PrjZ(A, B; u)  and  (x0, y0) ≤ (x, y)  in  Z.
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3. Factorisations of RW-functors

The factorisation of RE-functors via RE-quotients and faithful RE-functors (I.5.10) has an obvious
extension to RW-functors (3.2) and a less obvious extension via "weak quotients" and closed faithful RW-
functors (3.6), which will result to be more useful. We also extend here the factorisation of graph-
morphisms considered in [G11], Section 1.  A  is always an RW-category.

3.1. Strict quotients and faithful functors. A (strict) RW-quotient  F: A  =  B   will be an

RW-functor which is bijective on the objects and full; by the order-reflection lemma (2.4), the RW-

structure of  B  (i.e. composition, involution and order) is determined by the one of  A  and by the

mapping  F.

A faithful RW-functor  F: A = B,  again by 2.4, reflects the order between parallel maps; it also

reflects proper and null morphisms; its restriction to endomorphisms reflects restrictions and

corestrictions. The RW-structure of  A  is determined by the one of  B  and by the mapping  F

together with the "domain" and "codomain" mappings of  A.

3.2. The ordinary factorisation. The factorisation of RE-functors (I.5.10) extends trivially to

the ordinary RW-factorisation of an RW-functor  F

F1 F2

(1)   A - -=   C - -=   B, F  =  F2F1,

where  F1  is an RW-quotient and  F2  a faithful RW-functor. Such a factorisation is essentially

unique. If  A  is projection complete, so is  C.

3.3. Local properties of RW-functors. Also here (see I.5.11) an RW-functor  F: A =  B  will

be said to be Prj-faithful (resp. Prj-full) whenever the mappings

(1) PrjA(A) = PrjB(FA), e ± F(e),

are injective (resp. surjective) for all objects  A.  Analogously we define the Rst-faithful and Rst-full

RW-functors, by the same conditions on the mappings

(2) RstA(A) = RstB(FA), x ± F(x).

It is easily seen that  F is Prj-faithful if and only if it is Rst-faithful (if and only if, in the ordinary

factorisation  F = F2F1,  the first functor  F1  is so). On the other hand,  F  is Prj-full if and only if it

is both Rst-full and ≤-closed (if and only if  F2  is so).

A Rst-faithful functor reflects the order < of projections, hence also their order ≤ (RW.3b). It

reflects also monos, epis, proper morphisms, null morphisms; when acting on endomorphisms, it

reflects projections and restrictions.

3.4. Dense subgraphs. We say that the subgraph  ∆  of  A  is ≤-dense (or dense) in  A  whenever

the closed RW-subcategory spanned by  ∆,  i.e.  
−
∆ = clA∆  (2.6), coincides with  A.

For every RW-functor  F: A = B  and every subgraph  ∆  of  A,  we have a sort of continuity

property
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(1) F(
−
∆)  ⊂  (F∆)−,

because, following the inductive construction of  
−
∆  (2.6) and  (F∆)−,  it is easy to prove that  F(∆n)

⊂ (F∆)n,  for every  n ≥ 0.  Analogously one proves that, if  A  is an RW-subcategory of  B

(2) clA(∆)  =  clB(∆) ∩ A.

3.5. Weak quotients. The RW-functor  F: A = B  will be said to be a weak quotient if

(a)  F  is injective on the objects,

(b)  the graph  F(A)  is dense in  B.

In such a case  F(A)  is an RW-subcategory of  B  and  F  is actually bijective on the objects. By

3.4.1, weak quotients are stable for composition: if  G: B = C  is also so, then

(1) (GFA)−  ⊃  G((FA)−)  =  G(B), (GFA)−  ⊃  (G(B))−  =  C.

Conversely if  GF  is a weak quotient and  G  is injective on the objects then  G  itself is a weak

quotient as  (G(B))− ⊃ (GFA)− = C.

3.6. Theorem (The closed factorisation). Every RW-functor  F: A = B  has an essentially unique

closed RW-factorisation, or closed factorisation

F1 F2

(1)   A - -=   C - -=   B, F  =  F2F1,

where  F1  is a weak quotient and  F2  a closed faithful RW-functor.

Proof. To establish the existence, consider first the following decomposition of  F  in RW-functors

G H

(2)   A - -=   B ' - -=   B, F  =  HG,

ObB'  =  ObA, B'(A1, A2)  =  B(FA1, FA2),

G(A)  =  A, G(a)  =  F(a),

H(A)  =  F(A), H(b: A1 = A2)  =  (b: FA1 = FA2).

Here  G  is injective on the objects, hence  G(A)  is an RW-subcategory of  B'.  Now let

(3) C  =  clB' (GA),

be the closed RW-subcategory of  B '  spanned by  G(A),  and define our functors  F1  and  F2

(3.6.1) as restrictions of  G  and  H  respectively.

Trivially,  F1  is a weak quotient and  F2  is faithful. Moreover  F2  is closed: let  y' ≤ x'  in

RstC(A)  with  y' = F2(y') ≤ x' = F2(x')  in  RstB(FA);  then  e' = x'/y' ∈ PrjB(FA)  and therefore  e'

∈ PrjB'(A);  since  ne = x'  and  de = y'  belong to  C  which is closed in  B',  it follows that  e' ∈

PrjC(A).

Now, for uniqueness, assume that  F = F2F1  is any closed factorisation of  F  and define  K: C
= B'  as follows
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F1 F2

  A - -=   C - -=   B

(4) / :ò   K /
  A - -=   B ' - -=   B

G H

K(F1A)  =  G(A)  =  A, K(c: F1AF1A')  =  F2(c): A = A'.

Thus  K  is an RW-functor and (4) commutes. Moreover  K  is bijective on the objects  (F1  and  G

are so) and faithful  (F2  is so): this proves that  C  is isomorphic to  K(C),  and it suffices to prove

that  K(C) = (GA)−.  In fact,  K(C)  is closed in  B'  (since  F2  is closed and  H  is faithful) and

G(A)  is dense in  K(C),  because

(5) (GA)−  ⊃  (KF1(A))−  ⊃  K(F1(A)−)  =  K(C). ∆

3.7. Remarks. (a) If  F = F2 F1  is a closed RW-factorisation, then  F  is closed iff  F1  is so, iff  F1

is a quotient (by 3.4.2).

(b) Weak quotients are epi in the category  RW.  Actually, if  F: A = B  is a weak quotient and  G1F

= G2 F  in  RW  (with  Gi: B =  C),  write  H: B0 =  B  the equaliser of  G1  and  G2  (a closed

embedding, by 2.9) and factor  F = HG.  Thus  FA ⊂ B0  and  B0 = clB( B0) ⊃ clB(FA) = B,  i.e.

G1 = G2.

3.8. Factorisation of graph-morphisms. The closed factorisation can be easily generalised to a

graph morphism  F: ∆ =  B,  defined on a graph, with values in an RW-category:  F  factors

uniquely as

F1 F2

(1)   ∆ - -=   RW(F) - -=   B, F  =  F2F1,

where  F1  is a q-morphism (a graph morphism which satisfies the conditions 3.5a, 3.5b) and  F2  is a

closed faithful RW-functor (same proof as above, for 3.6). Finally, say that  F: ∆ =  B  is Rst-

spanning if this functor  F2  is Rst-full (or, equivalently, Prj-full; cf. 3.3).

4. A review of W-categories and W-relations

Because of the lack of general pullbacks in exact categories, and a fortiori in their generalisations,
relations over these categories cannot be constructed as equivalence classes of span diagrams ("V-
relations"), but as equivalence classes of four-arrow diagrams (W-relations, see 4.3) as first established by
Calenko [C1-2] for exact categories, and extended in various ways by Brinkmann-Puppe [BP], Burgin
[Bu], Calenko-Gisin-Raikov [CGR] and others. We recall here (from [G1]), briefly and without proofs, a
construction of W-relations based on minimal assumptions, together with its basic properties.

4.1. Factorisation systems. A category with factorisation system (see, for instance, [AHS,

CJKP]) is a category  E  equipped with subcategories  P  and  M  which contain all isomorphisms, so

that each morphism  u  in  E  has a canonical factorisation
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(1) u  =  mp (p ∈ P;  m ∈ M),

essentially unique in the usual sense. Then  P∩M  is the subcategory of the isomorphisms of  E  and

(2) vu ∈ P   ⇒   v ∈ P, vu ∈ M   ⇒   u ∈ M.

Here we are only interested in proper factorisation systems, where  P  and  M  are contained in the

subcategories of epis and monos, respectively. In the sequel, the arrows  +, ≠  will always stand

for morphisms of  P  and  M,  with regard to some (specified) factorisation system. The terms

subobject and quotient will always refer to M-subobjects and P-quotients; similarly for well powered

and well copowered.

Of course, a category with unique epi-mono factorisations will always be provided with its unique

proper factorisation system.

4.2. W-categories.  A W-category  E = (E, P, M)  is a category  E  equipped with subcategories

P  and  M,  so that:

(W.1) (E, P, M)  is a category with proper factorisation system, well powered and copowered,

(W.2) every pair of arrows of  M  with the same codomain has a pullback in  M  (which is still a

pullback in  E,  by (W.1)),

(W.2*) every pair of arrows of  P  with the same domain has a pushout in  P  (which is still so in

E),

(W.3) every diagram  A + à ´ B  has a "mixed pullback"  A ´ à + B  in  E,

(W.4) (modular cubic axiom) every commutative diagram, as at the left-hand in (1)

  A ≠= à -+   B   A -+ à ≠=   B

(1) :¡ – | :¡ | – :¡ :¡ | – :¡ –
| :¡

  C ≠= à -+   D   C -+ à ≠=   D

formed of a mixed pullback and a pushout of P-epis, yields – by canonical factorisation of its rows –

the commutative diagram at the right hand, formed of a pushout of P-epis and a mixed pullback.

These categories were introduced (as quaternary categories) in [G1], extending the axioms of

Brinkmann-Puppe [BP]; actually the original formulation is written for categories with unique epi-

mono factorisation, but the generalisation to a proper factorisation system is obvious and useful (e.g.,

to include  Rng).  Note that a zero object need not exist:  Setop  is a W-category.

4.3. W-relations. We recall now, briefly and without proofs, the construction of the RO-category

of relations of  E  [G1], which we write here as  RelW(E).

The objects are the ones of  E;  a W-relation  a = [m, p, q, n]: A = B  is a class of equivalence of

W-diagrams of  E

   m   p q    n
(1)   A ´é à -+ à -0 à ≠=   B

two such diagrams being identified when there is a commutative diagram of  E
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   m   p q    n
  A ´é à -+ à -0 à ≠=   B

(2) /    u :ò :ò   w :ò   v /
  A ´é à -+ à -0 à ≠=   B

   m'   p' q'    n'

where  u, v, w  are isomorphisms (uniquely determined).

The composition of W-relations  a = [m, p, q, n]: A = B  and  b = [m', p', q', n']: B = C  is

constructed (as for p-exact categories) by means of the following diagram of  E

   m   p q    n
  A ´é à -+ à -0 à ≠=   B

.! – | 4 .!   2 .! – | 1 .!   m'

à -+ à -0 à ≠= à
:¡ – | 6 :¡   3 :¡   p'

(3) à -0 à ≠= à
:˘ – | 5 :˘   q'

à ≠= à
;ò   n'

  C

where the square <1> is a pullback of M-monos (W.2), <2> and <3> are commutative (W.1), <4>

and <5> are mixed pullbacks (W.3), <6> is a pushout of P-epis (W.2*).

Of course, the involution is obtained by reversing diagram (1)

(4) [m, p, q, n]#  =   [n, q, p, m]: B = A,

while the order between parallel W-relations

(5) [m, p, q, n]  ≤  [m', p', q', n'],

is defined by the existence of morphisms  u, v, w  of  E  making (2) commutative.

RelW(E)  is thus a RO-category. The crucial part of the proof is the associativity of the

composition; it uses heavily the "modular cubic axiom" (W.4).

4.4. W-factorisations. The proper morphisms of  A = RelW(E)  are the W-relations of type  u =

[1, p, 1, n]

   p    n
(1)   A _ à -+ à _ à ≠=   B

We shall identify  E  and  Prp(A),  identifying the morphism  u = mp  (canonical factorisation in

E)  with the W-relation (1); this is coherent with the composition.

Thus the W-relation  a = [m, p, q, n]: A = B  has a W-factorisation

(2) a  =  nq#pm# (m, n ∈ M,   p, q ∈ P),

essentially unique, up to three isomorphisms uniquely determined (4.3.2).
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We also recall ([G1], 3.7-10) that

(3) a  is a monorelation (i.e., mono in A)  iff  m  and  p  are iso in  E,

(4) a  is proper  iff  m  and  q  are iso in  E,

(5) a  is an isomorphism of  A   iff it is mono and epi in  A,  iff  a  and  a#  are both proper, iff  a  is

iso in  E,  iff  m, p, q, n  are iso in  E,

(6) a ∈ M  iff  m, p, q  are iso, iff  a  is a proper mono of  A,

(7) a ∈ P  iff   m, q, n  are iso, iff  a  is a proper epi of A.

The RO-category  A = RelW(E)  is always projection complete (0.5); the canonical factorisation of

the relation (2) is

(8) a  =  (nq#).(pm#).

By I.3.3, for each object  A,  the mapping

(9) SubA(A) = PrjA(A), s  ±  ss#,

is an isomorphism of ordered sets (with regard to <). By (W.1) and the characterisation of

monorelations in (3) this also proves that  A  is Prj-small. Note that, by (3), an A-subobject  s: L =

A  is actually an E-subquotient

    p   m
(10)   L -0 à ≠=   A s  =  mp#,

i.e. a quotient  (p)  of a subobject  (m)  of  A  with respect to  E.

4.5. Projections. Thus, an endorelation  e: A = A  is a projection (i.e., a symmetric idempotent)

if and only if it has a W-factorisation of the following type

(1) e  =  mp#pm# (m ∈ M,  p ∈ P).

By I.3.2,  e  is a restriction  (e ≤ 1)  iff  p  is iso, iff  e  has a W-factorisation

(2) e  =  mm# (m ∈ M),

while e is a corestriction  (e ≥ 1)  iff  m  is iso, iff  e  has a W-factorisation

(3) e  =  pp# (p ∈ P).

In other words, the isomorphism 4.4.9 produces the following isomorphisms of semilattices (with

regard to <)

(4) iA: SubE(A) = RstA(A), i(m)  =  mm#,

(5) cA: QuoE(A) = CrsA(A), c(p)  =  p#p.

4.6. Definition and values. Last, every W-relation  a = nq#pm#: A =  B  determines the

following subobjects of  A  and  B  ([G1], 3.3)

(1) def(a): Def(a) = A, def(a) ≈ m,

(2) val(a): Val(a) = B, val(a) ≈ n,
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and we recall that ([G1], 3.3-4)

(3) def(a)  =  val(a#)  =  def(a#a)  =  val(a#a),

(4) a ≤ a'   .⇒.   def(a) < def(a')  and  val(a) < val(a'),

(5) a  =  cb   .⇒.   def(a) < def(b)  and  val(a) < val(c),

(6) a#a ≥ 1   ⇔   def(a)  =  1, aa# ≥ 1   ⇔   val(a)  =  1.

4.7. SW-categories. To characterise the categories of W-relations we introduce the following

definition (rephrasing the "quaternary symmetrisations" of [G1]): an SW-category is a triple  A = (A,
#, ≤)  satisfying:

(SW.0) A  is a RO-category,

(SW.1) every morphism  a  of  A  has a W-factorisation

(1) a  =  nq#pm#,

where  m, n  are proper monos of  A  and  p, q  are proper epis of  A,

(SW.2) this factorisation is essentially unique: if  nq#pm# = n'q'#p'm'#,  there exist isomorphisms

u, v, w  of  A  making diagram 4.3.2 commutative.

These axioms are clearly equivalent to the following ones:

(a)  A  is a projection complete RO-category,

(b)  every monomorphism  s  of  A  has a W-factorisation  s = nq#  where  n  is a proper mono and  q

a proper epi of  A,

(c)  such factorisations are essentially unique.

4.8. W-Symmetrisation Theorem, I.  Let  A = (A, #, ≤)  be a RO-category and  E = Prp(A);

write  P  and  M  the subcategories of proper epis and proper monos of  A,  characterised respectively

by

(1) p#p  ≥  1, pp#  =  1,

(2) m#m  =  1, mm#  ≤  1.

The following conditions are equivalent

(a)  E = (E, P, M)  is a W-category and  A  is RO-isomorphic to  RelW(E),

(b)  A  is an SW-category,

(c)  A  is projection complete and satisfies (RW.1).

When they hold, for every morphism  a ∈ A(A, B)

(3) def(a)  =  iA(def(a)), val(a)  =  iB(val(a)).

Proof.  The conditions (a), (b) are equivalent by [G1; 2.9, 2.11].

(b) ⇒ (c). Let  e ∈ Prj(A)  have a W-factorisation (4.5.1)

(4) e  =  mp#pm# (m ∈ M, p ∈ P),
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and take  x  =  mm#  =  i(def(e)),  so that  x ≤ m(p#p)m# = e  and  x.e = e.  Conversely, if  y ∈ Rst(A)

and  y ≤ e < y  then (4.5.4)  y = nn#  with  n ≈ def(y)  and, by 4.6.4-5

(5) def(y)  <  def(e)  =  def(ey)  <  def(y),

therefore  n ≈ def(e)  and  y = x.  Thus  A  satisfies (RW.1); we have also proved that  ne = i(def(e)),

from which property (3) follows at once

(6) def(a)  =  n(a#a)  =  i(def(a#a))  =  i(def(a)).

(c) ⇒ (b). We need only to prove that  A  satisfies 4.7b and 4.7c.

Let  a: A0 = A  be a monorelation and take  e = aa# ∈ Prj(A),  x = n(e) ∈ Rst(A);  by 4.5 there

exists  m ∈ M  such that  x = mm#.  Take now  p = a#m,  so that

(7) mp#  =  mm#a  =  (mm#)ea  =  ea  =  a,

which also proves that  p#  is a monorelation and  p  is epi. To prove that  p  is proper (hence  p ∈ P)

it is sufficient to consider the restriction  y = n(p#p)  and prove that  y = 1  (1.2.5)

(8) mym#  ≤  mm#  =  x  ≤  e,

(mym#)e  =  my(m#a)a#  =  myp#(pm#)  =  m(y.p#p)m#  =  mp#pm#  =  aa#  =  e,

thus the restriction  mym#  is the numerator of  e:  mym# = x = m1m#,  which proves that  y = 1.

Last, for the uniqueness of the W-factorisation of  a,  let us take two of them

p   m

  L -0 à ≠=   A

(9) / |ò   i / a  =  mp#  =  nq#.

  L -0 à ≠=   A
q   n

As  mm# ≤ mp#pm# = aa#  and  mm#.aa# = aa#,  we have

(10) mm#  =  n(aa#)  =  nn#.

Thus the relation  i = n#m  is an isomorphism (of  A  and  E)

(11) i#i  =  m#nn#m  =  m#(mm#)m  =  1,

and similarly  ii# = 1.  Finally

(12) qi  =  qn#n  =  (pm#)m  =  p, ni  =  nn#m  =  mm#m  =  m.

4.9. The 2-categories W and SW. We also recall ([G1], 4.6) that a functor  F: E  =  E '

between W-categories has a (necessarily unique) extension  RelF: RelE = RelE'  in  RO  if and only

if  F  is a W-functor; i.e.

(a)  F  preserves the factorisation system,

(b)  F  preserves pullbacks of  M,  mixed pullbacks and pushouts of  P.

Moreover  RelF  is faithful if and only if  F  is so ([G1], 4.10). It is also easy to prove, by the

same argument as in I.2.7, that every W-transformation  α: F = G: E = E'  (natural transformation

of W-functors) yields a RO-transformation
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(1) Rel(α): RelF = RelG: RelE = RelE', (Rel(α))A  =  αA: FA = GA,

which has the same components as  α,  but is just lax-natural with respect to the morphisms of  RelE.

Thus, we have established a 2-adjoint 2-equivalence

   Rel   Prp
(2) W - -= SW - -= W,

η = 1: 1W = Prp.Rel, ε: Rel.Prp = 1SW,

between the 2-category  W  of W-categories, W-functors, W-transformations and the 2-category  SW
of SW-categories, SW-functors (i.e., RO-functors between SW-categories) and SW-transformations

(i.e., RO-transformations between SW-functors).

4.10. W-symmetrisation theorem, II.  Let  A   be an SW-category and  E  = PrpA   the

associated W-category, with factorisation system  (P, M).  The following conditions are equivalent

(a)  A  is connected, non empty and satisfies (RW.2),

(b)  E  has a zero-object  0 (i.e. initial and terminal) coherent with the factorisation system, in the

sense that all morphisms  A = 0 = A  are respectively in  P  and  M.

In such a case the zero objects of  E  coincide with the null objects of  A;  the projections  ωA  and

ΩA  are respectively given by

(1) A ´é  0 ≠= A, A -+  0 -0 A.

If  e = mp#pm# ∈ Prj(A)  and  h = ker(p)  (existing by (W.2)), then

(2) de  =  (mh)(mh)#.

Further, one implication of (RW.3a, b) holds:

(RW.3a') if  e < f  in  Prj(A),  then  ne < nf  and  de > df,

(RW.3b') if  e ≤ f  in  Prj(A),  then  ne < nf  and  de < df.

Proof. If  E  has a zero object with the required conditions, for each object  A  the relations  ωA  and

ΩA  defined in (1) are indeed the least and the greatest morphism in  A(A, A)

  A ´é   0 _   0 _   0 ≠=   B

/   m :ò   p :ò    q :ò   n /
(3)   A ´é à -+ à -0 à ≠=   B

/   m :ò :ò :ò   n /
  A _   A -+   0 -0    B _   B

Conversely, if  A  is connected, non empty and satisfies (RW.2), let  A  be any object: the W-

factorisation of the restriction  ωA = mm#,  with  m: Z ≠ A,  yields an object  Z  which is null in  A,

since its identity is a null morphism

(4) 1Z  =  m#m  =  m#.mm#.m  =  m#.ωA.m;

then, by I.4.11-12 (which only depend on (RE.2), i.e. (RW.2)),  Z  is a zero-object for  E.
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From now on, we assume that (a) and (b) hold. In order to verify (2), let  e = mp#pm# ∈ Prj(A)

and  h = ker(p): H ≠ A;  then the projection  eωe  can be calculated by the following diagram, as in

4.3.3

   m   p p    m
  A ´é à -+ à -0 à ≠=   A

(5)   h .! – | .! .! – | .!   m0

  H -+   0 _   0 _   0
  p0

(6) (mp#pm#)m0  =  (mh)p0
#,

eωAe  =  (mp#pm#)(m0m0
#)(mp#pm#)  =  (mh).p0

#p0.(mh)#,

de  =  n(eωe)  =  (mh)(mh)#.

Consider now a second projection  f = nq#qn# ∈ Prj(A).  For (RW.3b'), let  e ≤ f;  then  def(e) <

def(f)  (4.6.4) and  ne ≤ nf;  moreover  eωe ≤ fωf  and  de ≤ df.  For (RW.3a'), let  e < f.  By [G1],

3.12, this condition is equivalent to the existence of a commutative diagram in  E

   n   q
  A ´é à -+ à

(7) / m0 .! – | .!   m1 p  =  p"p',

  A ´é à -+ à -+ à
  m   p'   p"

with cartesian right square. By the commutativity of the left square,  ne ≤ nf. By the universal

property of the pullback, it follows that

(8) m0.ker(p') ≈ ker(q),

n.ker(q) ≈ nm0.ker(p')  =  m.ker(p')  <  m.ker(p),

d(f)  =  i(n.ker(q))  ≤  i(m.ker(p))  =  de. ∆

5. RW-categories and w-exact categories

We show here that RW-categories coincide with the Prj-full involutive subcategories of the categories
of relations over Burgin's γ-categories [Bu]; the latter we also call w-exact categories.

5.1. γγγγ-categories. A γ-category [Bu]  E  is assumed to satisfy the following axioms

(A.0) E has a zero object  0;  every morphisms  u  has a canonical factorisation  u = mp  where  p  is

a conormal epi (i.e. a cokernel of some map) and  m  is mono.

Such a factorisation is necessarily unique up to isomorphism;  E  will always be provided with this

canonical factorisation system  (P, M):  therefore (4.1) the terms "quotient" and "subobject", as well

as the arrows "+" and "≠", will always be used for conormal epis and monos, respectively. (This

axiom (A.0) is equivalent to the conjunction of the original axioms (A.2, 3, 5) of Burgin. We recall

that a zero object is, by definition, both initial and terminal; then for all objects  A  and  B,  the zero

morphism  0AB = (A = 0 = B)  is determined.)
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(A.1) E  is well powered;

(A.4a) E  has counterimages of monos (pullbacks of diagrams  A = à´ B);

(A.4b)  the pullback of two arrows  A + à ´ B  is of the form  A ´ à + B  (preserving

conormal epis);

(A.6) the image of a normal mono by a conormal epi is a normal mono;

(A.7) if the diagram

    h   p
à ≠= à -+ à

(1) /  m .! /
à ≠= à -+ à

  k   q

is commutative with exact rows (i.e.  h ≈ ker(p)  and  k ≈ ker(q)  (4.2)) then  m  is iso.

Here a γ-category will also be called a w-exact category, for the sake of uniformity of the present

terminology.

5.2. Kernels, cokernels, exact sequences. Let  E   be w-exact (or, more generally, any

category satisfying (A.0, 4)). It is easy to see that the zero-object is coherent with the factorisation

system, in the sense that all zero morphisms  A = 0 = A  are respectively conormal epis (the

cokernel of  1A)  and (normal) monos.  E  has kernels, by (A.4a).

For each object  A,  by well-known arguments, there is an anti-isomorphism between the ordered

sets of quotients and of normal subobjects

(1) ker:  Quo(A) = NrmSub(A), cok:  NrmSub(A) = Quo(A),

proving that (if (A.1) holds)  E  is also well copowered.

Actually, this mapping "ker" clearly reverses the order. Now, let  h = ker(u)  (u: A = B) be a

normal subobject of  A  and  u = mp  a canonical factorisation: trivially,  h = ker(p);  we want to prove

that  p  is a cokernel of  h.  Indeed  p ≈ cok(v),  for some morphism  v

    h   p
à ≠=   A -+ à

(2) |! / |ò
à -=   A -= à

  v   w

hence  pv = 0  and  v  factors through  h = ker(p);  therefore, for any  w,  wh = 0  implies  wv = 0

and  w  factors through  p.  This proves that the mapping "cok" in (1) is well defined, and

cok(ker(p)) = p,  for all quotients  p.  Since "ker" is easily seen to be surjective in (1), the conclusion

follows.

As usual, the sequence

    u   v
(3) A -=   B -= C,
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is said to be exact in  B  if  im(u) = ker(v)  (in which case the morphism u is normal, i.e. its image is

so); the sequence is exact if it is so in each term. In particular the short sequence

    h   p
(4) à ≠= à -+ à (h ∈ M;  p ∈ P),

is exact if and only if  h ≈ ker(p),  if and only  h  is normal and  p ≈ cok(h).

5.3. Proposition (Pushouts of conormal epis [Bu]). In the w-exact category  E ,  given the

commutative diagram with exact rows

    h'  p'
à ≠= à -+ à

(1)  q0 |˘ : ̆  q :˘   q'

à ≠= à -+ à
  h   p

(PE) the right square is a pushout if and only if there is a conormal epi  q0  which fills-in

commutatively.

More precisely, for every category  E  satisfying (A.0, 4), the axiom (A.6) is equivalent to the

existence of pushouts of conormal epis together with (PE).

Proof.  First assume that  E  satisfies (A.0, 4, 6).

If the right square of (1) is a pushout, consider the canonical factorisation

(2) qh  =  h1q1.

By the universal property of pushouts it is easy to see that  cok(h1) ≈ p';  since  h1  is normal by

(A.6), it follows that  h1 ≈ ker(p') ≈ h'.  Thus  q1  (more precisely, an equivalent epi) satisfies our

condition.

Conversely, given a conormal epi  q0  making (1) commutative, let us prove that the right square is

cocartesian. Consider a commutative square  p"q = q"p,  where we may assume that  p"  and  q"  are

conormal epis, because of (A.0). Now  p"h' = 0  as

(3) p"h'.q0  =  p"qh  =  q"ph  =  0,

therefore p" factors through  cok(h') ≈ p'  and the conclusion follows. The existence of pushouts of

P  is a trivial consequence.

Last, if  E  satisfies (A.0) and these pushouts do exist, (PE) implies clearly (A.6). ∆

5.4. Proposition (Mixed pullbacks, [Bu]). In the w-exact category  E,  given the commutative

diagram with exact rows

    h   p
à ≠= à -+ à

(1)   i |! .!   m .!   n

à ≠= à -+ à
  k   q
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(MP) the right square is a pullback if and only if there is an isomorphism  i  which fills-in

commutatively.

More precisely, for every category  E  satisfying (A.0, 4), the axiom (A.7) is equivalent to (MP).

Proof.  First assume that  E  satisfies (A.0, 4, 7).

If the right square of (1) is a pullback, it is easy to see that  mk  is a kernel of  p,  hence  mk ≈ h.

Conversely, given the isomorphism  i,  form the commutative diagram

    h   p"
à ≠= à -+ à

 n" .!
  h'

.!   n'
   p'

.!   n

(2) à ≠= à -+ à
m" .! .!   m' /
à ≠= à -+ à

  k   q

where the upper squares are pullbacks (A.4),  n'm' = m  (universal property of the right pullback) and

n"m" = i  (universal property of the upper rectangle). Since  i  is iso,  n"  is a conormal epi; thus  n"  is

iso and  m"  too. By (A.7), applied to the lower rectangle,  m'  is iso: thus the right square of (1) is a

pullback.

Last, if  E  satisfies (A.0), (MP) implies trivially (A.7). ∆

5.5. W-Symmetrisation Theorem, III. Let  A   be a RO-category and  E  = PrpA .  The

following conditions are equivalent:

(a)  A  is a projection complete, connected, non empty RW-category;

(b)  A  is a projection complete, connected, non empty R0-category satisfying (RW.1, 2) together

with:

(RW.3a") for each  e, f ∈ PrjA(A),  if  ne < nf  and  de > df  then  e < f;

(c)  A  is a connected, non empty SW-category (4.7) satisfying (RW2, 3a");

(d)  E  is w-exact (i.e., a γ-category) and  A  is RO-isomorphic to the Burgin's category of relations

over  E;

(e)  E  satisfies (A.0), is a W-category with regard to this factorisation structure and satisfies (A.7);

moreover  A  is RO-isomorphic to  RelW(E).

When these conditions hold, there are two commutative squares of (vertical) isomorphisms and

(horizontal) anti-isomorphisms of ordered sets, with respect to the relations <

    ker
QuoE(A) _) _£ NrmSubE(A)

(1)    c :ò    
cok

d
:ò   i

CrsA(A) _) _£ NrmRstA(A)
 d'

where  d  is the denominator-mapping and
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(2) d'(x)  =  1/x, for   x ≤ 1A.

Proof.  (a) ⇒ (b). Obvious.

(b) ⇒ (c). Follows from the W-symmetrisation theorem I (4.8).

(c) ⇒ (e). From the same theorem we know that  E  is a W-category with respect to the factorisation

system  (P, M)  of proper epis and proper monos of  A;  moreover  A  and  RelW(E)  are RO-

isomorphic.

Thus we only need to prove that  E  satisfies (A.0) and (A.7). Note that, by the W-symmetrisation

theorem II (4.10),  A  satisfies (RW2, 3a).

For (A.0), we know (4.10) that  E  has a zero object, which determines the projections  ω  and  Ω

as in the formulas 4.10.1. Consider now the above factorisation system  (P, M)  of  E,  and let us

first prove that all  p ∈ P  are conormal epis.

Take some  p ∈ P  and  h = ker(p)  (W.2): we want to prove  p ≈ cok(h).  Trivially  hp = 0;

assume that also  hq = 0  (it is sufficient to consider  q ∈ P)  and build the left diagram below

    k   q  q0   k0

à ≠= à -+ à à -+   A0 ≠= à
(3) :¡ :¡   p :¡   p' :¡ :¡ :¡   p'

   0 ≠= à -+ à    0 -+   A1 ≠= à
  q'

where the left square is a pullback and the right one a pushout (W.2*). By (W.4) the factorisation of

the rows yields the pushout/pullback diagram at the right, where  A0  is null for  A

(4) 1A0
  =  (k0

#
 k0)(q0 q#

0)  =  k0
#0q0

#  ∈  Nul(A),

hence a zero object for  E.  Analogously  A1  is a zero object and  Ker(p') = 0.  It follows that

(4.10.1)

(5) d(p'#p')  =  k0k0
#

  =  ω  =  d(1),

hence, by (RW.3a),  p'#p' = 1;  therefore  p'  is an isomorphism and  q  factors through  p.

It is now easy to deduce that  P   coincides with the subcategory of conormal epis: if  p  is so and

p = mq  with  q ∈ P  and  m ∈ M,  then  m  is iso, which gives  p ∈ P.  Similarly  M  coincides with

the subcategory of monos.

Last, we check the axiom (A.7): let the commutative diagram 5.1.1 be given, with exact rows, and

consider the projections of  A  (the codomain of  h)

(6) e  =  mq#qm#  =  mp(q#q)  =  mR(1)/mR(kk#)  =  (mm#)/(hh#),

z  =  p#p  = 1/(hh#).

Since  e < z  (RW.3a), it follows that

(7) mq#qm#  =  e  =  ez  =  mq#q.m#p#.p  =  mq#q.q#.p  =  mq#p1#,

which, by the uniqueness of W-factorisations, proves that  m  is iso.
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(e) ⇒ (d). Since the symmetrisation procedure is the same in both cases, we have only to verify (A.6).

Let  h = ker(p): H =  A  be a normal mono and  q: A =  Q  some conormal epi. Form the

commutative diagram at the left

    h    q    k

  H ≠=   A -+ à à -+ à ≠= à
(8) :¡ :¡   p :¡   p' :¡ :¡ – | :¡   p'

   0 ≠= à -+ à    0 -+    0 ≠= à
   q'

where the left square is cartesian and the right one cocartesian. Apply now (W.4) and form the right-

hand diagram above: its right square is cartesian, hence  k  (the image of  h  by  q)  is a normal mono.

(d) ⇒ (a). By the W-symmetrisation theorem II (4.10) we have just to prove that  A  satisfies

(RW.3a", b"). Consider the projections of A

(9) e  =  mp#pm#, f  =  nq#qn#.

Let  ne < nf  and  de > df  and let us prove that  e < f  building the following diagram (as in

4.10.7)

   n   q
  A ´é à -+ à

(10) / m0 .! – | .!   m1 p  =  p"p',

  A ´é à -+ à -+ à
  m   p'   p"

 The first condition,  ne < nf,  allows us to build its left square. Take  h = ker(p)  and  k = ker(q)

(11) nk ≈ ind(f) < ind(e) ≈ mh  =  nm0h.

Thus  k < m0h  and there exists one mono  k0  such that  k = m0hk0

    k   q
à ≠= à -+ à

(12) / m0 .! – | .!   m'

à ≠= à -+ à
  hk0   p'

now factor  qm0 = m'p':  it is easy to see that  hk0 ≈  ker(p')  and, by 5.4, the right square is a

pullback. Moreover  p(hk0) = 0k0 = 0,  hence  p  factors through  p' ≈ cok(hk0)  and diagram (10) is

built.

Now, for (RW.3b"), let  ne ≤ nf,  de ≤ df  and form the commutative diagrams

   n   k   q
  N ≠=   A à ≠=   N -+ à

(13) m0 .! / n0 .! .!   m0 |!
  M ≠=   A à ≠=   M -+ à

  m   h   p
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with  h = ker(p)  and  k = ker(q).  By an obvious lemma there exists exactly one morphism  w  which

fills-in commutatively (factor  qm0 = m'p';  then  p' = qp,  because  p = cok(h);  take  w = m'q).  This

proves that  e ≤ f,  by definition of the order ≤ in  RelW(E).

Finally, consider diagram (1). As we already know that their rows are formed by inverse anti-

isomorphisms of ordered sets (5.2.1; 1.8.1-2), it is sufficient to check the commutativity of the "ker-

square"; this follows from 4.10.1: if  p ∈ Quo(A)  and  k = ker(p),  then  d(p#p) = kk#. ∆

5.6. Annihilator and indetermination. Let  E  be a w-exact category and  A = RelW(E).  Each

relation  a = nq#pm#: A' = A"  determines, together with the subobjects  def(a) ≈ m  and  val(a) ≈

n,  two other subobjects of  A'  and  A",  called  annihilator and indetermination

(1) ann(a): Ann(a) ≠ A', ann(a) ≈ m.ker(p),

(2) ind(a):  Ind(a) ≠ A", ind(a) ≈  n.ker(q),

satisfying

(3) ann(a) < def(a), ind(a) < val(a),

(4) ann(a)  =  ind(a#)  =  ann(a#a)  =  ind(a#a).

By the W-symmetrisation theorem II (4.10) it follows easily that

(5) ann(a)  =  ann(a#a)  =  d(a#a)  =  i(ann(a)),

(6) ind(a)  =   ind(a#a)  =  d(aa#)  =  i(ind(a)).

5.7. W-exact functors. A functor  F: E = E'  between w-exact categories will be said to be w-

exact if it satisfies these equivalent conditions:

(a)  F  is a W-functor (4.9) and preserves zero objects;

(b)  F preserves zero objects, monos, conormal epis, finite intersections of monos, kernels;

(c)  F preserves monos, their finite intersections and short exact sequences;

(d)  F has a (necessarily unique) RW-extension  RelWF: RelWE = RelWE'.

Indeed (a) ⇒ (b) ⇒ (c) is trivial. (c) ⇒ (a) follows from the characterisations in terms of short

exact sequences: - of the zero object (0 = 0 = 0 is short exact), - of kernels and cokernels, - of

"mixed pullbacks" (5.4), - of pushouts of conormal epis (5.3). Last (a) ⇔ (d) by 4.9-10.

5.8. The equivalence. It follows that the 2-adjoint 2-equivalence between the 2-categories  W  and

SW  described in 4.9.2 restricts to an equivalence

   Rel    Prp
(1) WE - -=   RWE - -=   WE

where  WE  is the 2-category of w-exact categories, w-exact functors and w-transformations (i.e.,

natural transformations of w-exact functors), while  RWE  is the full sub-2-category of  R W
containing the projection complete, connected, non empty RW-categories.

The equivalence extends trivially to  WE'  (componentwise w-exact categories) and  FRW
(projection complete RW-categories).
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5.9. Weak adjunctions. From this equivalence and the biuniversal embedding  A = FctA  (3.3)

one gets a full RW-embedding

(1) η: A = RelW(E) (E  =  Prp(FctA)),

which is a biuniversal arrow from  A  to the 2-functor  Rel: WE' = RW.

Thus, also because of 5.5, RW-categories coincide up to isomorphism with the full subcategories

of categories of relations over componentwise w-exact categories.

Analogously to I.6.7, one forms biuniversal arrows

(2) η: A = RelW(E), (E  =  Z(Prp(FctA))),

where  Z(E')  is a suitable W-exact category associated to the componentwise W-exact category  E'

(and  E'  is ≤-closed in  Z(E')).

Thus RW-categories can also be considered as Prj-full involutive subcategories of categories of

relations over w-exact categories.

6. W-MODULAR W-LATTICES, RELATIONS, CONNECTIONS

We introduce here the RW-category  wMlr   of wm-lattices and wm-relations and its w-exact
subcategory  wMlc = Prp(wMlr)  of wm-lattices and wm-connections. These categories will be shown
(Section 7) to model, respectively, the transfer of restrictions for RW-categories and the transfer of
subobjects for w-exact categories.  X, Y, Z  are always wm-lattices (see the appendix, Section 11).

6.1. Wm-relations. A wm-relation  a: X =  Y  between (small) wm-lattices will be a pair  a =

(a�, a�)  such that (for  x, x' ∈ X  and  y, y' ∈ Y)

(a) a�: X = Y  and  a�: Y = X  are mappings preserving ≤ and ≤,

(b) if  y' ≤ y  then   a�((a�x ∧ y) ∨ y')  =  (x ∧ a�y) ∨ a�y',

(c) if  x' ≤ x  then   a�((a�y ∧ x) ∨ x')  =  (y ∧ a�x) ∨ a�x'.

Other characterisations will be given in 6.6. Define the composition of  a: X = Y  and  b: Y = Z

as

(1) ba  =  (b�, b�)(a�, a�)  =  (b�a�, a�b�),

which is possible because, for  z ≤ z'  in  Z

(2) a�b�((b�a�x ∧ z) ∨ z')  =  a�((a�x ∧ b�z) ∨ b�z')  =  (x ∧ a�b�z ) ∨ a�b�z'.

This category  wMlr,  of wm-latices and wm-relations, has obvious involution and order

(3) (a�, a�)#  =  (a�, a�): Y = X,

(4) (a�, a�) ≤ (b�, b�)  if  a  and  b  are parallel morphism and  a� ≤ b�,  a� ≤ b�.

(Where  a� ≤ b�  obviously means  a�(x) ≤ b�(x), for all  x ∈ X.)
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6.2. Regularity. The ordered involutive category  wMlr  is a RO-category: the regularity of the

involution follows from

(1) a�a�a�(x)  =  a�((a�a�(x) ∧ 1) ∨ 0)  =  (a�(x) ∧ a�(1)) ∨ a�(0)  =  a�(x).

Therefore

(2) a  is mono   ⇔   a#a = 1   ⇔   a�a� = 1X   ⇔   a�  is injective   ⇔   a�  is surjective,

(3) a  is iso   ⇔   (a#a = 1 and  aa# = 1)   ⇔   a�  is bijective   ⇔   a�  is an iso of  wMlh  (11.6).

We usually identify an isomorphism  a: X = Y  of  wMlr  with its "covariant part"  a�: X = Y,

an isomorphism of the category  wMlh  of wm-lattices and homomorphisms (11.6): thus the two

categories "have the same isomorphisms". The subobjects of  wMlr  will be characterised in 6.4.

6.3. Null relations. Every set  wMlr(X, Y)  has a minimum  ωXY  and a maximum  ΩXY

(1) ωXY: X = Y, x ± 0Y,     y ±  0X,

(2) ΩXY: X = Y, x ± 1Y,     y ±  1X.

A null wm-relation  a: X = Y  is characterised by the condition:  a =  aωYXa,  or equivalently  a =

aΩYXa;  thus  a  is a pair of constant mappings

(3) a�(x)  =  a�(ωYX�(a�(x)))  =  a�(0X), for every  x ∈ X,

(4) a�(y)  =  a�(ωYX
�(a�(y)))  =  a�(0Y), for every  y ∈ Y.

Conversely every pair  (x0, y0) ∈ X×Y  determines two constant mappings

(5) a�(x)  =  y0, a�(y)  =  x0,

which are easily seen to form a null wm-relation  a: X =  Y.  Accordingly, null wm-relations

coincide with pairs of constant mappings.

6.4. Theorem (Projections and monorelations). The RO-category  wMlr  is projection complete.

For a wm-lattice  X,  there is a biunivocal correspondence among: (a) equivalence classes of

monorelations  m: à = X,  (b) projections   e: X = X,  and (c) normal intervals of X

(1) [x0, x1]  =  {y ∈ X | x ≤ y ≤ x1}, x0 ≤ x1.

More precisely, given  x0 ≤ x1,  one constructs a canonical monorelation

(2) m: Y  =  [x0, x1] =  X, m�(y)  =  y,     m�(x)  =  (x ∧ x1) ∨ x0;

given a monorelation  m: à = X,  one takes the projection  e = c(m) = mm#: X = X;  finally, a

projection  e ∈ Prj(X)  yields a normal pair of elements of  X  (and a normal interval)

(3) x0  =  e�(0)  ≤  x1  =  e�(1).

The loop is closed: starting from  x0 ≤ x1,  the projection  e = mm#  gives back the original pair

(4) e�(x)  =  e�(x)  =  (x∧x1)∨x0, e�(0)  =  x0,   e�(1)  =  x1.

We shall often write  e(x)  for  e�(x) = e�(x).  We have

(5) e  is a restriction   ⇔   x0 = 0   ⇔   e(x) = x∧x1,
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(6) e  is a corestriction   ⇔   x1 = 1   ⇔   e(x) = x∨x0 (x0 = e(0),  x1 = e(1)),

(7) e < e'   ⇔   (x1 ≤ x'1  and  x0 ≥ x'0 )   ⇔   [x0, x1]  ⊂  [x'0, x'1],

(8) e ≤ e'   ⇔   (x1 ≤ x'1   and  x0 ≤ x'0 ) (x'0 = e'(0),  x'1 = e'(1)).

Proof. The biunivocal correspondence needs only to be checked at its first step, from  x0 ≤ x1.

The normal interval  [x0, x1],  equipped with the induced relations ≤ and ≤, is clearly a wm-lattice.

The wm-relation (2) is well defined, since  m�  preserves ≤ and ≤ ((wl.2,4), see 11.1); moreover, for

x' ≤ x  in  X  and y' ≤ y  in  Y = [x0, x1]

(9) m�((m�y∧x)∨x') = (((y∧x)∨x')∧x1)∨x0  =  (y∧x) ∨ (x'∧x1) ∨ x0 (by (wm.1))

=  ((y∧(x∧x1))∨x0) ∨ ((x'∧x1)∨x0)

=  (y∧((x∧x1)∨x0)) ∨ ((x'∧x1)∨x0)  =  (y∧m�(x))∨m�(x') (by (wm.2)),

(10) m�((m�x∧y)∨y')  =  (((x∧x1)∨x0)∧y)∨y')  =  ((x∧x1∧y)∨x0)∨y' (by (wm.2))

=  (x∧y)∨y'  =  (x∧m�y)∨m�y'.

Last,  m  is mono since  m�m�(y) = (y∧x1)∨x0 = y  (for  y∈Y)  and  m#m = (m�m�, m�m�) = 1Y.

The properties (5)-(8) are now straightforward. We have also proved that all projections split. ∆

6.5. Theorem (The RW axioms). The RO-category  wMlr  is a projection complete, connected

RW-category. (Its category of proper morphisms will be considered in 6.9-10.)

For any relation  a: X = Y

(1) def(a)  =  n(a#a)  =  –∧(a�a�1)  =  –∧a�1: X = X,

ann(a)  =  d(a#a)  =  –∨(a�a�0)  =  –∨a�0: X = X.

Proof. To prove (RW.1), let  e ∈ Prj(X)

(2) e(x)  =  (x∧x1)∨x0, (x0 = e(0)  ≤  x1 = e(1)).

Then the restriction  ne

(3) ne(x)  =  x∧x1  =  x∧e(1),

is the only restriction of  X  satisfying:  e < ne ≤ e  (by 6.4.7-8). The axiom (RW.2) follows from

6.3, with

(4) ωX: X = X,     ωX(x)  =  0X, ΩX: X = X,     ΩX(x)  =  1X.

Then

(5) eωe(x) = e(0X) = x0,

de(x) = n(eωe) (x) = x∧(eωe(1)) = x∧x0,

and the last axiom (RW.3) follows straightforwardly from 6.4.7-8.

Finally, we already know that  wMlr  is projection complete (6.4); it is connected because of

6.3.1-2. The relations (1) are obvious. ∆

6.6. Proposition (Characterisation of wm-relations). Let  a�: X = Y  and  a�: Y = X  be a pair of

mappings preserving ≤ and ≤; the following conditions are equivalent:
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(a) (a�, a�)  is a wm-relation (i.e.,  a�  and  a�  satisfy 6.1b, 6.1c),

(b) - for all  x ∈ X:  a�a�(x)  =  (x∧a�1)∨a�0,

- for all  y ∈ Y:  a�a�(y)  =  (y∧a�1)∨a�0,

-  a�a�a�  =  a�, a�a�a�  =  a�,

(c) the mappings  a�  and  a�  factor respectively as

       p�   b�   m�

(1) X _)£ [a�0, a�1] _)£ [a�0, a�1] _)£ Y
  p�   b�   m�

where  m = (m�, m�)  and  p# = (p�, p�)  are canonical monorelations (6.4.2) and

(2) b�(x)  =  a�(x), for  a�0 ≤ x ≤ a�1,

(3) b�(y)  =  a�(y), for  a�0 ≤ y ≤ a�1,

are inverse isomorphisms of wm-lattices (hence  b = (b�, b�)  is an isomorphism of  wMlr  (6.2)).

Proof.  (a) ⇒ (b). Trivial, as  0 ≤ 1  in  X  and  Y.

(b) ⇒ (c). First note that  b�  and  b�  are inverse mappings by (b) and preserve ≤ and ≤, because  a�
and  a�  do; moreover

(4) a�(x)  =  a�(a�a�x)  =  a�((x∧a�1)∨a�0)  =  m�b�p�(x),

and similarly  a�(y) = p�b�m�(y).

(c) ⇒ (a). Since  p = (p�, p�),  b = (b�, b�)  and  m = (m�, m�)  are wm-relations, by 6.2 and 6.4, so is

their composite  mbp = (a�, a�). ∆

6.7. Full subcategories. We are interested in the following full subcategories of  Mrw  (hence

RW-subcategories; other subcategories will be considered in 7.4)

(a)  wDlr, containing the w-distributive w-lattices (11.2); this category will be shown in Section 8 to

model the transfer of restrictions for w-distributive RW-categories;

(b)  Mlr, containing the modular lattices (i.e., normal wm-lattices); it is an RE-category, modelling

the transfer of restrictions for RE-categories (i.e., normal RW-categories): see I.7;

(c)  Dlr = wDlr ∩ Mlr,  containing the distributive lattices (i.e., normal wd-lattices).

6.8. Double categories of w-lattices. Also here, in order to model the action of RW-functors

on restrictions (7.1), we need to combine homomorphisms and relations, forming the double category

wMlhr  having for objects the wm-lattices, horizontal morphisms in  wMlh,  vertical ones in  wMlr
and cells given by "bicommutative squares" of type

  h
  X - -=   X '

(1)    a :ò :ò   b ka�  =  b�h;   ha�  =  b�k;

  Y - -=   Y'
k
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 (composition of mappings). The underlying vertical category (homomorphisms as objects and

bicommutative squares as morphisms) has an obvious RW-structure.

The full double subcategories determined by wd-lattices, or modular lattices, or distributive lattices

will be written here as  wDlhr, Mlhr, Dlhr  (the last two were introduced in I.7.2).

6.9. Wm-connections. We proved in 6.5 that  wMlr  is a projection complete, connected RW-

category. By the W-symmetrisation theorem (5.5) its category of proper morphisms

(1) wMlc  =  Prp(wMlr),

is w-exact, and will be called the category of wm-lattices and wm-connections. Thus a wm-connection

(2) u  =  (u�, u�): X = Y,

is characterised, among wm-relations, by the conditions

(3) def(u)  =  n(u#u)  =  1, ind(u)  =  d(uu#)  =  0,

which, by 6.5.1 are equivalent to

(4) u�(1)  =  1,  u�(0)  =  0.

In other words, by the characterisation 6.6b of wm-relations, a wm-connection (2) is a pair  (u�,

u�)  such that

(a) u�: X = Y  and  u�: Y = X  are mappings, preserve ≤ and ≤, and satisfy  u�0 = 0,  u�1 = 1,

(b) u�u�(x)  =  x∨u�(0) ≥ x,

(c) u�u�(y)  =  y∧u�(1) ≤ y.

In particular  u� – u�  (u  is a "covariant Galois connection" between the ordered sets  X  and  Y,

which implies  u� = u�u�u�,  u� = u�u�u�),  and each of these mappings determines the other;  u�
preserves the existing unions while  u�  preserves intersections.  wMlc  is concrete and coconcrete.

Note that the last two properties in (a) are obviously a consequence of the adjunction  u� – u�  (but

we prefer to state them explicitly to avoid doubts on the meaning of (b), where the a priori existence of

x∨u�(0)  depends on  u�(0) ≤ u�(1) = 1).  We identify  wMlr  with the isomorphic RW-category

Rel(wMlc).

Equivalently, one can replace (b), (c) with

(b') u�(u�x ∨ y)  =  x ∨ u�y, for each  x ∈ X  and each  y ≤ 1  in Y,

(c') u�(u�y ∧ x)  =  y ∧ u�x, for each  x ∈ X  and each  y ∈ Y.

6.10. Exactness. The zero object 0 of the w-exact category  wMlc  of wm-lattices and wm-

connections is the one-point lattice; zero morphisms are given by

(1) 0XY: X = Y,  x ± 0Y,    y ± 1X.

The subobjects (resp. quotients) of  X  are determined by proper canonical monorelations in  X

(resp. epirelations from  X);  accordingly to 6.4, the latter are as in (2) (resp. in (3))

(2) m: Y = [0, x1] = X, m�(y)  =  y,    m�(x)  =  x∧x1,

(3) p: X = [x0, 1] = Y, p�(x)  =  x∨x0,    p�(y)  =  y.
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Therefore the set of subobjects of  X  is in biunivocal correspondence with  X  itself via  m ± x1

= m�(1Y),  while the set of quotients of  X  is in biunivocal correspondence with the set  Nrm(X)  of

normal elements of  X,  via  p ± x0 = p�(0Y)).

The wm-connection  u: X = Y  has canonical factorisation (6.6.1)

       p   b   m

(4) X -= [u�0, 1X] -= [0Y, u�1] -= Y

and

(5) ker(u)  =  ([0X, u�0] ≠ X).

Each short exact sequence of  wMlc  is of the following kind, up to isomorphism

(6) [0X, x0]  ≠  X  +  [x0, 1X] (x0 ≤ 1X).

Finally, we write

(7) wDlc  =  Prp(wDlr),

the full w-exact subcategory of  wMlc  determined by wd-lattices. Analogously

(8) Mlc  =  Prp(Mlr), Dlc  =  Prp(Dlr),

are full w-exact subcategories of  wMlc,  and exact categories in their own right.

The double, vertically w-exact, categories  wMlhc,  wDlhc,  M lhc,  Dlhc  have homomorphisms

as horizontal arrows, connections as vertical ones, bicommutative squares as cells. The last two were

introduced in [G8] and are vertically exact.

7. Transfer of restrictions and lattice properties

Extending I.7 and [G8], we define here the transfer functor  Rst: A =  wMlr  of the RW-category  A
and deduce the transfer functor  Sub: E =  wMlc  of the w-exact category  E.  This procedure (treat first
the "categories of relations") appears to be more clear and effective than the opposite one (treat first the
"exact categories") which we followed in the above references.

The transfer functor allows us to study "lattice properties" (7.5-6) of RW-categories, among which
normality and distributivity, and to construct "expansions" (7.6-8) which satisfy them.

7.1. The transfer RW-functor. Every RW-category  A  has an associated RW-functor

(1) RstA: A = wMlr,

which will be called the transfer functor of  A,  since it describes the covariant and contravariant

transfer of its restrictions; it will be shown to be Rst-faithful, Rst-full and closed (7.3).

Namely, for every object  A,  Rst(A)  is the wm-lattice of restrictions of  A  (1.7). For every

morphism  a: A' = A"  in  A

(2) Rst(a)  =  (aR, aR): Rst(A') = Rst(A"),

is the wm-relation whose components are defined in 1.3.1. Indeed, the characterisation 6.6b is

satisfied:  aR  and  aR  preserve ≤ by 1.3.2, the relation ≤ by 1.3.2 and, for  x ∈ Rst(A')
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(3) aRaR(x)  =  (a#a)R(x)  =  n((a#a)x(a#a)) (by 1.3)

=  (n(a#a) ∧ x) ∨ d(a#a)  =  (x ∧ aR(1)) ∨ aR(ω) (by 1.6 and 1.4).

Finally  RstA  is an RW-functor: it preserves the composition by 1.3, the involution by 1.3.1, the

relation ≤ by (RW.3b) and the projections  ω  since

(4) ωR(x)  =  n(ωxω)  =  n(ω)  =  ω.

Thus (6.1), for all  x, x' ∈ Rst(A')  and  y, y' ∈ Rst(A")

(5) aR((aRx ∧ y) ∨ y')  =  (x ∧ aRy) ∨ aRy' (for  y' ≤ y),

(6) aR((aRy ∧ x) ∨ x')  =  (y ∧ aRx) ∨ aRx' (for  x' ≤ x).

Finally, the functorial aspect (I.7.2) extends easily to the RW-case: every RW-functor  F: A = B
determines a horizontal transformation of vertical functors, with values in the double category  wMlhr

of wm-homo-morphisms and wm-relations (6.8)

(7) RstF: RstA = RstB.F: A = wMlhr,

RstFA: RstA(A) = RstB(FA), x ±  Fx,

associating to each object  A  the wm-homomorphism  x ± Fx  (2.1). Also here,  RstF  is the unique

horizontal transformation from  RstA  to RstB.F.

7.2. wm-lattices can be realised. The transfer functor of  wMlr  itself is canonically isomorphic

to the identity functor, via

(1) ι: Rst = 1: wMlr = wMlr,

(2) ιX: Rst(X) = X, (ιX)�(r)  =  r�(1),    (ιX)�(x)  =  x∧–,

as it follows from the characterisation of the restrictions of  X  in 6.4.5.

This isomorphism shows that every wm-lattice  X  can be realised as a w-lattice of restrictions for

some object  (X  itself) in a (fixed) RW-category  (wMlr).  This also shows that no proper replete

subcategory of  wMlr  can suffice to treat the transfer of restrictions for RW-categories.

7.3. Local properties of transfer functors. The transfer functor  RstA: A =  wMlr  is Rst-

faithful, Rst-full and closed. Let us check the last property, the proof of the other two being

analogous. Assume that, for  A  in  A  and  X = RstA(A)

(1) y ≤ x  in  X, Rst(y) ≤ Rst(x)  in  Rst(X),

and apply the isomorphism 7.2.2

(2) (ιX)�(Rst(y))  =  (Rst(y))�(1)  =  yR(1)  =  y;

analogously  (ιX)�(Rst(x)) = x,  hence  y  ≤ x  in  X = RstA(A).

7.4. Transfer RW-categories. The RW-category  A  is said to be transfer if its transfer functor

RstA: A = wMlr  is faithful. By 7.2,  wMlr  is so.

Every RW-category  A  has an associated transfer RW-category  Trn(A)  determined by the closed

RW-factorisation  RstA = R2R1  (3.6)
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       R1                Rı

(1) A - -= Trn(A) - -= wMlr

coinciding with the ordinary factorisation (3.2) since  RstA  is closed (7.3):  Trn(A)  is the strict

quotient of  A  which identifies two parallel maps  a, b  of   A  when

(2) aR  =  bR, aR  =  bR.

In particular  Trn(A)  is projection complete when  A  is so (3.2).

7.5. Lattice properties for RW-categories. Many properties of RW-categories we want to

consider concern their transfer functor (e.g., the fact of being a transfer RW-category just

considered).

More particularly, let  M  be a full replete subcategory of  wMlr  (hence an RW-subcategory, by

2.5). We say that the RW-category  A  is M-latticed if its transfer functor takes values in  M

(1) RstA: A = M,

and refer generally to such a condition on  A  as a "lattice property" (dropping the prefix "w" for

simplicity).

Thus, the subcategory  M = Mlr  of modular lattices (i.e. normal wm-lattices, 11.3) yields the

normal RW-categories, which coincide with RE-categories (1.8); similarly, subnormality (1.8) is

another lattice property.

We say now that  A  is Rst-finite when all its wm-lattices  RstA(A)  are finite:  here  M = wMlrf,

the full subcategory of finite wm-lattices. Note that the latter is clearly hom-finite: it follows that every

transfer Rst-finite RW-category is hom-finite.

Last, we say that  A  is w-distributive when all its wm-lattices  RstA(A)  are so (11.2); here  M =

wDlr  (6.7).

Let  F: A = B  be an RW-functor. Then

(a)  if  F  is a strict quotient and  A  is Rst-finite, or normal, or subnormal, or w-distributive, so is  B
(for Rst-finiteness, it suffices  F  Rst-full),

(b)  if  F  is Rst-faithful and  B  is Rst-finite or w-distributive, so is  A,

(c)  if  F  is Rst-faithful and closed and  B  is normal or subnormal, so is  A.

Distributivity, the main lattice property, will be studied in the next chapter and given various

characterisations (8.1). We associate now, to each RW-category, an M-latticed RW-category.

7.6. Theorem (M-expansions). Let  M  be a full subcategory of  wMlr,  stable for closed wm-

homomorphic images: if  X  belongs to  M  and  h: X = Y  is a ≤-closed surjective homomorphism

of wm-lattices (hence in wMlh,  not in  wMlr, cf. 11.5, 7) then  Y  belongs to  M.

Then every RW-category  A  has an associated M-latticed RW-category  A#,  the M-expansion of

A,  equipped with a faithful closed RW-functor  F: A# = A  satisfying the universal property

(a)  every RW-functor  G: D = A,  where  D  is any M-latticed RW-category, has a unique Prj-full

(i.e. Rst-full and closed (3.3)) lifting  G': D = A#  satisfying  FG' = G.  Moreover, if  M  is stable
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for normal intervals (contains any normal interval  [x0, x]  of any  X  in  M,  see 6.4) and  A  is

projection complete, so is  A#.

Proof. The objects of  A#  are the pairs  (A, X),  where  A  is in  A  and  X  is a sub-w-lattice of

RstA(A)  belonging to  M.  A morphism

(1) (a; X, X'): (A, X) =  (A', X'),

is given by any A-morphism  a: A = A'  such that

(2) aR(X)  ⊂  X', aR(X')  ⊂  X;

in particular

(3) def(a)  =  aR(1) ∈ X, ann(a) ∈ X, val(a) ∈ X', ind(a) ∈ X'.

The composition, involution and order are "those of  A";  the faithful functor

(4) F: A# = A; (A, X) ± A,    (a; X, X') ± a,

preserves involution and order: thus  A#  is a RO-category (and  F  a RO-functor). To prove that  A#

is an RW-category and  F  a closed RW-functor we have to verify the conditions 2.7a, b.  By abuse of

notation we often write  a  for  (a; X, X').

Now, a projection  e = (e; X, X) ∈ Prj(A, X)  of  A#  is given by any  e ∈ Prj(A)  such that

(5) ne ∈ X, de ∈ X,

the necessity of (5) following from (3), its sufficiency from

(6) eR(x)  =  eR(x)  =  n (exe)  =  (ne ∧ x) ∨ de.

Thus  (e; X, X)  has numerator  (ne; X, X),  which is in  A#  since  n(ne) = ne and d(ne) = ω;

analogously  (ω; X, X)  and  (Ω; X, X)  are in  A#.  Last, if  y ≤ x  in  Rst(A, X),  which means that

y ≤ x  in  X,  and  y ≤ x  in  A,  the projection  e = x/y ∈ PrjA(A)  is also in  PrjA#(A, X)  by (5), and

y ≤ x  in  A#.

The RW-category  A#  is M-latticed, because

(7) RstA#(A, X)  =  {(x; X, X) |  x ∈ X},

is isomorphic to  X,  hence belongs to  M.

As to the universal property (a), let  G: D = A  be as stated and define

(8) G': D =  A#, G'(D)  =  (G(D), RstG(RstD(D))),

G'(d)  =  G(d): G'(D) = G'(D') (for  d: D = D'  in  D),

which is permitted since  RstG(RstD(D))  is the image of the M-lattice  RstD(D)  by the wm-

homomorphism

(9) RstG: RstD (D) = RstA(G(D)),

provided with the "image" ≤, hence belongs to  M  by hypothesis; moreover, for  x ∈ RstD(D)

(10) (G(d))R(Gx)  =  G(dRx) ∈ RstG (RstD(D')).
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Finally, let  M  be stable for normal intervals and  A  be projection complete. Consider a projection

e  of  (A, X)  in  A#;  let  e = ss#  where  s: B = A  is mono in  A,  and take

(11) Y  =  {y ∈ Rst(B) | sR(y) ∈ X}.

Since  Y  is isomorphic to a normal interval of  X  via  sR  and  sR

(12)  Y _)£ [de, ne]  ⊂  X,

Y  belongs to  M,  hence  (B, Y)  is in  A#  and  e  factors as  ss#  with  s: (B, Y) = (A, X). ∆

7.7. Some expansions. Thus, by taking  M   to be  wMlr  itself we get the wm-expansion

wMeA;  note that the latter category is not equivalent to  A,  and solves a problem of some interest

(7.6). By considering  M = wDlr,  we have the wd-expansion or w-distributive expansion  wDeA.

Finally  M  = Mlr  yields the normal (or modular) expansion  MleA,  while  Dlr  gives the

distributive normal expansion  DleA.  The latter are both RE-categories. (These expansions were

written  MdlA  and  DstA  in I.7.7, 7.10, for an RE-category  A;  actually in that paper there was no

need of distinguishing between the above expansions and  wMeA,  wDeA.)

7.8. Distributive and normal graph-morphisms. Let  F: ∆ =  A  be a graph morphism with

values in an RW-category: we shall say that  F  is w-distributive or normal when the category  RW(F)

is so (3.8).

By extending [G11, 1.4], with a similar proof, one shows that  F  is w-distributive (resp. normal)

if and only if it satisfies the following equivalent conditions:

(a)  F factors through some w-distributive (resp. normal) RW-category, via a closed RW-functor,

(b)  there is a closed Rst-faithful RW-functor  G: A = B  such that  GF  is w-distributive (resp.

normal),

(c)  for every closed RW-functor  G: A = B,  GF  is w-distributive (resp. normal)

7.9. The transfer w-exact functor. Consider now a w-exact category  E  (more generally:

componentwise w-exact) and define the transfer w-exact functor of  E

(1) SubE  =  Prp(RstRelE): E = wMlc.

According to the isomorphism 4.5.4, we identify  SubE  with the following "isomorphic copy"

(where  u: A = A'  is in  E)

(2) SubE(A)  =  the wm-lattice of  E-subobjects of  A,

SubE(u)  =  (uS, uS): SubE(A) = SubE(A'),

where, as usual,  uS(m) is obtained by the canonical factorisation of  um  and  uS(n)  through the

pullback of  (u, n).  Indeed

(3) uR(mm#)  =  n(uP(mm#))  =  n(umm#u#)  =  umm#u#  =  i(um)  =  i(uS m),

and analogously uR(nn#) = i(uSn).

As the pair  (uS, uS)  is a wm-connection (6.9),  uS – uS.  Thus  uS  preserves 0 and existing

unions (hence all ≤-unions) while  uS  preserves 1 and intersections; further
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(4) uS(uSm ∨ n)  =  m ∨ uSn, for each  m ∈ SubA  and  n ≤ 1  in  SubA',

uS(uSn ∧ m)  =  n ∧ uSm, for each  m ∈ SubA  and  n ∈ SubA'.

In particular the transfer functor of  wMlc  is isomorphic to the identity functor, and each wm-

lattice  X  is isomorphic to a lattice of subobjects of some object  (X  itself) in a suitable w-exact

category  (wMlc).

7.10. Lattice properties for w-exact categories. All the above considerations for RW-

categories can be transferred to the present case.

We have thus the notion of transfer w-exact category, and also the transfer w-exact category  TrnE
associated to  E:  a sort of category of projectivities of  E,  as remarked in [G8].

We also have lattice properties for w-exact categories analogous to the ones considered in 7.7,

which we still call  normality (i.e. exactness), subnormality, Sub-finiteness and distributivity.

Last, every w-exact category  E  has a wm-expansion  wMeE,  a wd-expansion  wDeE,  a normal

(or exact) expansion  MleE,  a distributive normal expansion  DleE,  a Sub-finite expansion, a sub-

normal expansion.

More generally, if  M  is a full subcategory of  wMlc  stable for closed wm-homomorphic images

and normal intervals, the  M-expansion  E#  of the w-exact category  E  satisfies, with the associated

faithful, closed w-exact functor  F: E# = E,  the following universal property

(a)  every w-exact functor  G: D = E,  where  D  is some M-latticed w-exact category, has a unique

Sub-full closed w-exact lifting  G': D = E#  (satisfying  G'F = G).

7.11. Bicommutative and exact squares. Last we recall the notion of bicommutative proper

square in an RW-category together with the corresponding notion of exact square in a w-exact one;

characterisations are given, respectively, by transfer mappings of restrictions and subobjects.

Take a commutative square diagram of proper morphisms in the RW-category  A

  x
  A - -=   B

(1)    u :ò :ò   v w  =  vx  =  yu,

  C - -=   D
y

so that  xu# ≤  v#v.xu# = v#y.uu# ≤ v#y.   We say that (1) is a bicommutative (proper) square of  A  if

it commutes and

(2) xu#  =  v#y.

The square (1) in the w-exact category  E  is said to be exact if it is bicommutative in  RelE:  vx =

yu  and  xu# = v#y.

7.12. Lemma (Bicommutative squares). The commutative proper square 7.11.1 of  A   is

bicommutative if and only if the equivalent conditions (1) and (2) hold

(1) uR(ann(x))  =  ann(y), vR(val(y))  =  val(x),
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(2) xR(ann(u))  =  ann(v), yR(val(v))  =  val(u);

in this case, if  w = vx = yu

(3) ann(w)  =  ann(u) ∨ ann(x), in  Rst(A),

(4) val(w)  =  val(v) ∧ val(y), in  Rst(D).

(The conjunction of properties (3) and (4) is weaker than (1), as soon as  A  has a non-null object

A = B = C = D;  take  u = v = x = y = ωΩ: A = A,  the proper null endomorphism of A).

Proof. If our square is bicommutative, then (1) holds

(4) uR(ann(x))  =  uR(xR(ω))  =  (xu#)R(ω)  =  (v#y)R(ω)  =  yRvR(ω)  =  yR(ω)  =  ann(y),

(5) vR(val(y))  =  vR(yR(1))  =  (v#y)R(1)  =  (xu#)R(1)  =  xRuR(1)  =  xR(1)  =  val(x).

and, by symmetry, also (2) does. Now (1) ⇒ (2), since

(6) ann(v)  =  vR(ω)  =  vR(ω) ∧ xR(1)  =  xRxR(vR(ω))  = by (1), 7.1.7

 =  xRuRyR(ω)  =  xRuR(ann(y))  =  xRuR(uRxR(ω)) by (1)

 =  (xu#)R (xu#)R(ω)  =  (xu#)R(ω)  =  xRuR(ω)  =  xR(ann(u)).

and analogously for the right-hand relation of (2). By symmetry, (1) and (2) are equivalent. Let us

assume now that (1) and (2) hold, and prove that the square 7.11.1 is bicommutative: since we

already know that  xu# ≤ v#y,  by 1.10.3 we just need to show that

(6) c(xu#)  =  c(v#y), i(xu#)  =  i(v#y).

Indeed

(7) def(xu#)  =  (xu#)R(1)  =  uRxR(1)  =  uR(1)  =  val(u)  =  yR(val(v))  =  yR(vR(1))

=  (v#y)R(1)  =  def(v#y),

and similarly for the restrictions  ann,  val,  ind.  Finally, if (1) and (2) hold

(8) ann(w)  =  (vx)R(ω)  =  xRvR(ω)  =  xR(ann(v))  =  xR(xR(ann(u)))  =  ann(u) ∨ ann(x). ∆

7.13. Lemma (Exact squares). In the w-exact category  E,  the commutative square 7.11.1 is exact

if and only if the equivalent conditions (1) and (2) hold

(1) uS(ker(x))  =  ker(y), vS(im(y))  =  im(x),

(2) xS(ker(u))  =  ker(v), yS(im(v))  =  im(u);

in this case

(3) ker(w)  =  ker(u) ∨ ker(x), in  Sub(A),

(4) im(w)  =  im(v) ∧ im(y), in  Sub(D).

Moreover, our square is exact, with normal horizontal morphisms, if and only if it satisfies the

equivalent conditions (a), (b)

(a)  there is in  E  a commutative diagram with exact rows
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à - -=   A - -=   B - -= à
(5) :¡ :ò :ò ;ò

à - -=   C - -=   D - -= à

(b)  x  and  y  are normal morphisms, and in the commutative diagram with exact rows

 ker(x) x cok(x)
à - -=   A - -=   B - -= à

(6)   u' :ò    u :ò :ò   v :ò   v'

à - -=   C - -=   D - -= à
 ker(y) y cok(y)

u'  is epi and  v' is mono.

Proof. The first assertion is just a translation of the bicommutative square lemma (7.12). Therefore

(a) is equivalent to (c), while the equivalence of (b) and (c) is easy to check directly. ∆

8. Distributive and idempotent RW-categories

The interest of the w-distributive and idempotent cases has been recalled in the introduction.

8.1. Theorem (w-distributive RW-categories). The following conditions on the RW-category  A
and the componentwise w-exact category  E = Prp(FctA)  are equivalent

(a)  A  is w-distributive, i.e. for each object  A  the w-lattice  Rst(A)  is w-distributive (7.4),

(b)  for each morphism  a: A' =  A"  the mapping  aR: Rst(A') =  Rst(A")  preserves (binary)

intersections and ≤-unions (generally  aR  is not in  wMlh,  as it need not preserve  ω, 1),

(c)  the category  A  is orthodox [G3] (As A is provided with a regular involution, this just means that

idempotent endomorphisms are stable for composition),

(d)  the category  A  is quasi-inverse ([G5], 4.6),

(e)  the product  e&f = efe  on each set Prj(A) is associative,

(f)  all the mappings  aP: Prj(A') = Prj(A")  preserve the operation &,

(g)  the componentwise w-exact category  E  is w-distributive, i.e. all its w-lattices of subobjects are

so,

(h)  in  E  all the transfer mappings

(1) uS: Sub(A') = Sub(A"), uS: Sub(A") = Sub(A'),

preserve (binary) intersections and ≤-unions,

(i)  in  E  all the direct images of subobjects  (uS)  and all the inverse images of quotients  (uQ)

preserve (binary) intersections (these images trivially exist, by canonical factorisation),

(j)  E  satisfies the "cubic distributivity axioms" (0Q) and (0Q*) of [G6].
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Proof.  The equivalence between (c), (d), (i), (j) holds more generally for SW-categories A and W-

categories  E = Prp(FctA)  ([G6], thm. 1.9), the equivalence of (j) and (g) for γ-categories, i.e. w-

exact ones, was proved in [CM]; the equivalence of (g) and (a) follows from the isomorphisms 4.5.4.

(d) ⇒ (f).  Proved in [G5], 4.7, and easy to check.

(f) ⇒ (b).  For  x, y ∈ Rst(A),  using the "calculus of projections" (1.6)

(2) aR(xy)  =  n(aP(x&y))  =  n(aP(x)&aP(y))  =  (aR(x) ∧ aR(y)) ∨ aR(ω)  =  aR(x) ∧ aR(y);

assume now that  y ≤ x  and  t ≤ x

(3) aR(t∨y)  =  n(aP((t∨y)/y))  =  n(aP(x/y & t))  =  n(aP(x/y) & aP(t))  =
 =  (aR(x)∧aR(t)) ∨ aR(y)  =  aR(t) ∨ aR(y).

(b) ⇒ h).  By 7.9.

(h) ⇒ (i).  Follows from the following formula (easy to check in any category satisfying (A.0, 4))

(4) ker(uQ(p))  =  uM(ker(p)),

and the anti-isomorphism (5.2.1)

     ker              cok

(5) Quo(A) - -= NrmSub(A) - -= Quo(A)

which transforms intersections of quotients into unions of normal subobjects.

(f) ⇒ (e).  Let  e, f ∈ Prj(A).  We actually prove the equivalence of (e) and (f) in any category  A
with a regular involution

(6) (e&f)&g  =  (efe) g (efe)  =  (efe)(ege)(efe)  =  eP(f)&eP(g)  =  eP(f&g)  =  e(fgf)e  =  e&(f&g).

(e) ⇒ (f). Let  e, f ∈ Prj(A')  and take  g = a#a,  again in  Prj(A')

(7) aP(e&f)  =  a(e&f)a#  =  a(g(e&f)g)a#  =  aP(g&(e&f))  =  aP((g&e)&f)  =

=  a (a#a.e.a#a).f.(a#a.e.a#a) a#  =  (aea#)(afa#)(aea#)  =  aP(e) & aP(f). ∆

8.2. Domination. Let  A  be a w-distributive RW-category: as every category provided with a

regular involution and orthodox [0C.2],  A  is provided with a canonical order, or domination,  a ∑ b

on parallel morphisms, characterised by the equivalent conditions

(1) a  =  ab#a,

(2) a  =  aa#.b.a#a,

(3) there exist idempotent endomorphisms  e, f  such that  a  =  fbe,

(4) there exist projections  e, f  such that  a  =  fbe.

This order is coherent with the composition and involution of  A,  and was shown in [G4] to yield

a notion of "induced relations" coherent with the composition. The associated canonical congruence

Φ  of  A  (aΦb  iff  a ∑ b ∑ a)  is the finest congruence of  A  making   A/Φ   an inverse category

[G2].
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8.3. The inverse symmetrisation. Let  E   be a w-distributive w-exact category. By 8.1,

RelW(E)  is a w-distributive RW-category and the composed functor

   SymW             P

(1) E - -= RelW(E) - -= ΘE  =  RelW(E)/Φ

is still an embedding [G6], called the canonical inverse symmetrisation (or Θ-symmetrisation) of  E,

and written

(2) SymΘ: E = ΘE.

Properties of Θ-symmetrisations are studied in [G6] (and in the following two papers of the same

series), in the more general case of W-categories satisfying (0Q) and (0Q*) (8.1j).

We only recall ([G6], 1.16-18) that a functor  F: E = E'  between wd-exact categories has a

(necessarily unique) extension to Θ-symmetrisations if and ondly if it preserves monos, conormal epis

and the intersection of both

(3) ΘF: ΘE = ΘE'.

8.4. Theorem (Exactness and distributivity). (This theorem extends theorems 6.1, 6.3 of [G7] with

a slightly different proof. In [G7], the notions of distributive union and partition in a semilattice are

studied and applied to semilattices of projections in inverse categories.)

Let  E  be a w-distributive w-exact category and  K = ΘE  its canonical inverse symmetrisation.

The short sequence

      m   p

(1) à -= A -= à

is of order two (i.e. pm = 0) if and only if

(2) mm# ∧ p#p  =  0  in  PrjK(A),

while (1) is exact (i.e.,  m ≈ ker(p))  if and only if

(3) 1A  =  mm# ∨ p#p, a partition in  PrjK(A).

A functor  F: E = E'  between w-distributive w-exact categories is w-exact if it is a Θ-functor

(8.3) and for each object  A  of  E  the mapping

(4) PrjΘFA: PrjΘE A = PrjΘE' (Fa), e  ±  ΘF(e),

preserves finite distributive unions (in particular, the null projection  ωA  as union of the empty

family).

Proof.  The first assertion is trivial, since  pm = 0  in  E  if and only if  (p#p)(mm#) = 0  in  K,  if

and only if (2) holds.

Assume now that  pm = 0.  If  m ≈ ker(p),  then  p#p = 1|(mm#)  in  K = ΘE  and (3) holds

because of 1.11. Conversely, assume (3) and take  h = ker(p) > m

(5) hh#  =  hh# ∧ 1  =  ((hh#)∧(mm#))∨((hh#)∧(p#p))  =  mm# ∨ ωA  =  mm# ;

thus  m ≈ h = ker(p).
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Now, if  F: E = E'  satisfies our conditions, it preserves monos, conormal epis and intersection

of monos; moreover, if (1) is exact in  E  then the partition (3) is transformed by  ΘF  into a partition

of  1FA  in  PrjΘE'(FA);  this means that  Fm ≈ kerE'(Fp). ∆

8.5. Proposition (Subcategories and domination). Let  A  be a w-distributive RW-category.

(a)  If  B  is a sub-RW-category of  A,  the closed sub-RW-category  B '  spanned by  B  (2.6)

contains the same objects as  B  and the morphisms  a ∈ A(B, B')  satisfying the following conditions

(i) aR(XB)  ⊂  XB', aR(XB')  ⊂  XB,

(ii) a ∑ b,  for some  b ∈ B(B, B'),

where  XB = RstB(B)  is the (w-distributive) w-lattice of restrictions of  B  in  B.

Moreover, for all B in B

(1) RstB'(B)  =  RstB (B) = XB,

(2) PrjB'(B)  =  {e ∈ PrjA(B)  |  ne, de ∈ XB}.

(b)  If  ∆  is a subgraph of  A,  the Rst-full (hence closed) sub-RW-category  B  of  A  spanned by  ∆

contains the same objects as  ∆  and the morphisms  a ∈ A(D, D')  satisfying the following condition

(iii) a ∑ b,  for some  b  in the involutive subcategory of  A  spanned by  ∆.

Proof.  We only verify (a), the second part being analogous. Let  B1  be the subcategory of  A
described in our statement.  B1  is clearly an involutive subcategory, closed with respect to

numerators, ω- and Ω-projections, normality (because any projection  e ∈ PrjA(B)  is dominated by

1B);  this also proves that  B1  satisfies properties (1) and (2).

Thus  B' ⊂ B1;  conversely, if  a: B = B'  is in  B1,  by (b)

(3) a  =  (aa#)b(a#a),

for some  b  in  B;  as  B1  satisfies (2),  n(aa#), d(aa#) ∈ XB = RstB(B):  thus  aa#  belongs to  B';

analogously for  a#a,  which proves that  a ∈ B'. ∆

8.6. Q-morphisms. As a consequence,  if F: ∆ =  B  is a graph morphism with values in a w-

distributive RW-category, then  F  is a q-morphism if and only if:

(a)  F  is bijective on the objects,

(b)  F  is Rst-full,

(c)  for every  b  in  B  there is some  b'  in the involutive subcategory of  B  spanned by  F(∆)  such

that  b ∑ b'.

Actually, assume that  F  satisfies (a) and (b) (every q-morphism does) and apply 8.5b to the

subgraph  F(∆)  of  B.

In particular, if  F: A = B  is an RW-functor and  B  is w-distributive, then  F  is a weak quotient

if and only if it satisfies (a), (b) and

(c')  for any  b  in  B  there is some  a  in  A  such that  b ∑ Fa.



47

8.7. Idempotent RW-categories. The RW-category  A  will be said to be idempotent whenever

all its endomorphisms are so.

In such a case, for parallel morphisms  a, b  (by I.2.8)

(1) a = b   ⇔   (c(a) = c(b)   and   i(a) = i(b)),

 ⇔   (def(a) = def(b),  ann(a) = ann(b),  val(a) = val(b),  ind(a) = ind(b)).

Therefore an RW-functor  F: A = B  (where  A  is idempotent) is faithful if and only if it is Prj-

faithful, if and only if it is Rst-faithful.

Every idempotent RW-category is trivially orthodox, i.e. w-distributive (8.1); it is also transfer by

the above remark. Every idempotent Rst-finite RW-category is hom-finite, by 7.5.

Let now  F: A = B  be any RW-functor

(a)  If  F  is a strict quotient and  A  is idempotent, so is  B,

(b)  if  F  is a weak quotient,  A  is idempotent and  B  is w-distributive then  B  too is idempotent,

(c)  if  F  is faithful and  B  is idempotent so is  A.

All these remarks are trivial, except (b) which is a consequence of 8.6: let  b: FA = FA  be some

endomorphism of  B;  then  b ∑ Fa  for some  a ∈ A(A, A),  which is idempotent: thus  a ∑ 1A  and

b ∑ Fa ∑ 1FA  is idempotent too.

8.8. Pre-idempotent w-exact categories.  We say that the (component- wise) w-exact category

E  is pre-idempotent when  A = RelW(E)  is idempotent. Other equivalent conditions are:

(a)  for all parallel monos  s, t: H = A  in  A,  t#s = 1H

(b)  for every commutative diagram of  E

p   m

  H -0 à ≠=   A

/ |!   n' /
(1) / à /// |ò   m' /

  H -0 à ≠=   A
q   n

if  (n', m')  is the pullback of  (m, n),  then  pn'  and  qm'  are the same conormal epi.

Indeed, (a) is trivially equivalent to the idempotence of  A.  In order to prove the equivalence of (a)

and (b), consider the parallel monorelations

(2) s  =  mp#: H = A, t  =  nq#: H = A;

form the pullback in (1) and let

(3) u  =  pn', v  =  qm'.

Since

(4) ts#  =  q(n#m)p#  =  (qm')(n#'p#)  =  vu#,
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if  u = v  is a conormal epi of  E,  ts# = 1H;  conversely if  ts# = 1  then the proper morphisms  u, v

are epi in  A,  hence conormal epis of  E  and  u = 1Hu = vu#u ≥ v  implies  u = v.

8.9. Universal distributive and idempotent categories. In order to present embedding

theorems in the distributive or idempotent cases, we recall (in (a), (b), (c)) or introduce (in (d), (e),

(f)) the following categories.

(a)  The distributive exact category  I  of (small) sets and partial bijections (I.6.1) and its distributive

RE-categories of relations,  Rel(I).

(b)  The distributive exact category  J = Mle(I) = Dle(I)  (I.6.2); its objects are semitopological spaces,

i.e. sets equipped with a lattice of closed  subsets, while a map  u: S =  T  is a partial

homeomorphism, from some open subspace  S0  of  S  (a complement of a closed subset, provided

with the induced structure) to some closed subspace  T0  of  T.

(c)  The pre-idempotent exact category  I0  of sets and common parts, or partial identities (I.6.4), and

its idempotent RE-category of relations,  Rel(I0).

(d)  The w-distributive w-exact category of w-spaces and partial w-homeomorphisms

(1) Jw  =  wMe(I)  =  wDe(I).

According to 7.7, an object, or w-space, is a set  S  provided with a (necessarily w-distributive)

sub-w-lattice  X  of  SubI(S) = P(S)  (see 11.6; note that the normality relation ≤ of  X  is generally

finer than the order relation ⊂  induced by  P(S));  as in (b), the elements of  X  are called closed

subsets of  S.  A morphism (or partial w-homeomorphism)  u: S = T  is a homeomorphism of w-

spaces  u0: S0 = T0  from some open subspace  S0 = S\S'  of  S  (a complement of a closed normal

subset  S'≤S,  provided with the induced structure) to some closed subspace  T0  of  T.

We also introduce the w-distributive RW-category

(2) Lw  =  Rel(Jw)  =  wMe(RelJ)  =  wDe(RelJ).

(e) The pre-idempotent w-exact category

(3) J0
w  =  wMe(J0)  =  wDe(J0),

whose morphisms  L: S = T  are given by common subspaces  L  of  S  and  T,  where  L = S\S'

(with  S'≤S)  is  closed in  T.  It determines the idempotent RW-category

(4) L0
w  =   Rel(J0

w)   =   wMe(RelI0)   =   wDe(RelI0).

(f) Last we consider the hom-finite (and Sub-finite or Rst-finite) full subcategories determined by

finite sets or finite w-spaces:  If,  I0
f,  Jwf,  Lwf,  J0

wf,  L0
wf.

8 . 1 0 . Concrete representations for w-distributive w-exact categories.  Extending [G9],

§ 4.8, by means of these results one proves that every w-distributive w-exact category  E  (resp.

every w-distributive RW-category  A)  has w-exact (resp. RW-) spectrum functors

(1) SpcE: E = I, (resp.  SpcA: A = RelI)

(2) SpcE#: E = Jw, (resp.  SpcA#: A = Lw)
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the second being Sub-full and ≤-closed (resp. Rst-full); these functors are embeddings when  E  is

transfer.

Analogously, by extending [G9], 4.9, we get that every small wd-exact category  E  (resp. every

small w-distributive RW-category  A)  has extended spectrum w-exact (resp. RW-) embeddings

(3) SpcE^: E = I, (resp.  SpcA^: A = RelI)

(4) SpcE#^: E = Jw, (resp.  SpcA#^: A = Lw)

the second being Sub-full and ≤-closed (resp. Rst-full). These embeddings take values in  I f  (resp.

Rel(If),  Lwf)  when  E  is finite.

Finally, by extending [G9], § 5.7, we have that every pre-idempotent w-exact category  E  has a

w-exact embedding in  I0  and a closed Sub-full one in  J0
w,  while every idempotent RW-category  A

has an RW-embedding in  RelI0  and a Rst-full one in  L0
w = Rel(J0

w).

9. R
−−−−
W-categories and 

−−−−
w-exact categories

We consider here the lattice property determined by 
−
wm-lattices (11.4). The corresponding 

−
w-exact

categories are characterised by the stability of normal subobjects with respect to intersection.

9.1. Definition.  The RW-category  A  will be said to be 
−
w-latticed, or an R

−
W-category, when all

its restriction-sets  Rst(A)  are 
−
wm-lattices (11.4), i.e. satisfy a stronger variant of (wl.2)

(
−
wl.2) if  y ≤ x  and  t ≤ z  then  yt ≤ xz.

As a consequence, the set  Nrm(Rst(A))  of normal restrictions of the object  A  is a sub-
−
w-lattice

of  Rst(A)  and a modular lattice in its own right. Notice, however, that aR-mappings do not preserve

normal restrictions, generally: there is no functor  NrmRst: A = Mlr.

9.2. Proposition.  R
−
W-categories are also characterised by the following axiom, to be added to

(RW.0-3):

(RW.4) each projection set  PrjA(A)  is a ∧-semilattice with respect to ≤.

Proof. Actually, if  A  is 
−
w-latticed and  e = x/y,  f = z/t  are projections of  A,  by (RW3.b)

(1) (x∧z)/(y∧t)  =  e∧f.

Conversely, for  y ≤ x  and  t ≤ z  in  RstA(A),  consider  e = x/y,  f = z/t  and  e∧f = u/v.  Again

by (RW.3b),  u ≤ x ∧ z  and  v ≤ y ∧ t;  moreover

(2) x∧z  ≤  e∧f  =  u/v,

(3) (y∧t)/(y∧t)  ≤  e∧f  =  u/v,

which proves that  x∧z ≤ u  and  y∧t ≤ v.

Thus  x∧z = u = n(e∧f),  y∧t = v = d(e∧f)  and the latter is normal in the former. ∆
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9.3. The 2-category R
−
W.  Let  R

−
W  be the full sub-2-category of  RW  of R

−
W-categories; it is

strictly 2-complete. Given an RW-functor (in the original  RW)

(1) H: C = D,

it is easy to see that

(a)  if  H  is a strict quotient and  C  is R
−
W, so is  D,

(b)  if  H  is a closed, Rst-faithful functor and  D is R
−
W, so is  C.

It follows that both the ordinary and the canonical factorisation (Section 3) of an R
−
W-functor  F: A

= B  have "central" category in  R
−
W,  i.e. live entirely there.

A sub-R
−
W-category  A0  of  A  is a sub-RW-category which is 

−
w-latticed; equivalently, by 9.2, it

has to be stable for intersection of parallel projections with respect to ≤.

9.4. The projection complete case. A projection complete RW-category  A  is 
−
w-latticed if and

only if its restriction-sets  Rst(A)  satisfy the following condition, generally weaker than (
−
wl.2)

(a) if  x, y ≤ 1  then  xy ≤ 1.

Actually, if (a) holds and  y ≤ x,  t ≤ z  in  Rst(A),  split the restriction  xz

   m   m

(1) A ´é  M ≠=   A xz  =  mm#,

and consider in  Rst(M)

(2) y0  =  mR(y)  =  mP(y), t0  =  mR(t)  =  mP(t).

Since

(3) mR(x)  ≥  mR(xz)  =  mRmR(1)  =  1M,

we have  y0 ≤ mR(x) = 1M.  Analogously  t0 ≤ mR(z) = 1M,  and  y0 t0 ≤ 1M.  Now

(4) mR(y0)  =  mRmR(y)  =  (y ∧ xz) ∨ ω  =  yz,

(5) mR(y0 t0)  =  mR(mR(t) ∧ y0)  =  (t ∧ mR(y0)) ∨ mR(ω)  =  t ∧ yz  =  yt,

and  yt ≤ mR(1M) = mm# = xz.

9 . 5 .  
−
W-exact categories. Say 

−
w-exact any w-exact category  E  satisfying the following

properties, equivalent by 9.4 and the W-symmetrisation theorem III (5.5):

(a)  RelW(E)  is an R
−
W-category,

(b)  all w-lattices  SubE(A)  are 
−
w-lattices,

(c)  intersection of normal subobjects is normal.

Of course the W-symmetrisation theorem and its consequences have thus a 
−
W-version.

9.6. The 
−
w-expansion. Every RW-category  A  has an associated 

−
w-expansion  (7.5-6)  

−
wMeA,

satisfying the universal problem determined by the full subcategory  
−
wMlr  of  wMlr,  determined by
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−
wm-lattices. Similarly we have a 

−
wd-expansion  

−
wDeA  determined by 

−
wd-lattices. If  A  is projection

complete, so are these expansions (by the last point in 7.5).

Analogously for w-exact categories.

9.7. The universal distributive and idempotent RW-categories. The exact categories  I

and  I0  (8.10), being normal, are also 
−
w-latticed. They produce

(a)  the w-distributive 
−
w-exact  category,

(1) J
−w  =  

−
wMeI  =  

−
wDeI,

of 
−
w-spaces and partial open-closed 

−
w-homeomorphisms, having a description similar to  Jw  in 8.9d,

together with the w-distributive R
−
W-category

(2) L
−w =  RelJ

−w  =  
−
wMe(RelI)  =  

−
wDe(RelI);

(b)  the pre-idempotent 
−
w-exact  category

(3) J0
−w  =  

−
wMe(I0)  =  

−
wDe(I0),

of 
−
w-spaces and open-closed common parts  (see 8.10d), together with the idempotent RW-category

(4) L0
w`  =  Rel(J0

w`)  =  
−
wMe(RelI0)  =  

−
wDe(RelI0).

The embeddings considered in 8.10 have analogous ones here for R
−
W-categories and 

−
w-exact

categories.

10. The dual and selfdual cases

We consider here briefly the dual case of RW0-categories and w*-exact categories. The selfdual case,
of course, leads to RE-categories and Puppe-exact categories.

10.1. Order duality.  For an RO-category  A = (A, #, ≤)  we are interested in its order opposite

RO-category

(1) A0  =  (A, #, ≥).

(Owing to its 2-categorical structure, given by the order ≤,  A  has three "opposite" RO-categories;

but the other two,  A* = (A*, #*, ≤)  and  A0* = (A*, #*, ≥)  are  less interesting since the former is

RO-isomorphic to  A  and the latter to  A0,  via  a ± a#.)

The order duality turns restrictions into corestrictions, proper morphisms into coproper

morphisms and ω-projections into Ω-projections; moreover there is a natural isomorphism

(2) (PrpA)* = Prp(A0),    u ± u#,

showing that the order duality of RO-categories corresponds to the usual duality of categories, via the

2-functor  Prp: RO = CAT.



52

10.2. RW0-categories.  Accordingly, we say that the triple  A = (A, #, ≤)  is an RW 0-category if

A0 = (A, #, ≥)  is an RW-category.

In other words  A  is to satisfy the selfdual axioms (RW.0, 2) and

(RW0.1)  for every projection  e  there exists exactly one corestriction  n0e  (the conumerator of  e)

such that  e < n0e ≥ e;  the corestriction  d0e = n0(eΩe) < n0e  will be called the codenominator of  e;

(RW0.3) for all parallel projections  e, f

(a) e < f   ⇔   (n0e < n0f  and  d0e > d0f),

(b) e ≥ f   ⇔   (n0e < n0f  and  d0e < d0f).

The order duality takes conumerators and codenominators of  A   into numerators and

denominators of  A0.  Note that  n0e  coincides with the c-denominator recalled in 1.1.

10.3. Corestrictions and conormality. For each object  A  in the RW0-category  A  the set

Crs(A)  of its corestrictions will be mainly ordered by < (opposite to ≤).

If  x, y ∈ Crs(A)  we say that  y ≤0 x  (y  is conormal in  x)  whenever there exists a (unique)

projection  e  of  A  such that  y = d0e  and  x = n0e  (iff  y ≤ x  in  A0);  we write  e = x/y.

10.4. W*-exact categories.  We say that the category  E  is w*-exact if its opposite category  E*

is w-exact; in particular the canonical factorisation in  E  is by epimorphisms and normal monos. A

classical example is the category of pointed sets.

10.5. The weak adjunction. It is now straightforward to introduce the 2-complete 2-category

RW0  of RW0-categories, the 2-category  WE*  of w*-exact categories and dualise the equivalence

and weak-adjunction relations considered in Section 5.

10.6. Transfer of corestrictions. Every RW0-category  A  has a transfer RW0-functor

(1) CrsA  =  (RstA0)0: A = wMlr0  =  (wMlr, #, ≥),

assigning to each object  A  the wm-lattice  (CrsA(A), <, ≤0)  and to each morphism  a: A' = A"  the

wm-relation

(2) CrsA(a)  =  (aC, aC),

aC: Crs(A') = Crs(A"), x ± n0(axa#),

aC: Crs(A") = Crs(A'), y ± n0(a#xa).

Note that  a ≤ b  gives  Crs(a) ≥ Crs(b).

10.7. Transfer of quotients.  Analogously every w*-exact category has a transfer w*-exact

functor (preserving epis, their intersections and short exact sequences)

(1) Quo: E = wMlc*.
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To every E-object  A,  we associate the wm-lattice of its quotients  (Quo(A), <, ≤*),  where  y ≤*

x  (y  is conormal in  x)  means that there is a conormal epi  p  such that  px = y;  and to every

morphism  u: A' = A"  we associate the co-connection  (uQ, uQ),  with  uQ – uQ

(2) Quo (u)  =  (uQ, uQ),

(3) uQ: Quo(A') = Quo(A") (constructed by push-out),

(4) uQ: Quo(A") = Quo(A') (constructed by canonical factorisation),

satisfying

(5) uQ  and  uQ  preserve < and ≤*;  moreover  uQ(1) = 1  and  uQ(0) = 0,

(6) uQuQ(x)  =  x ∧ uQ(1), for all  x ∈ Quo(A'),

(7) uQuQ(y)  =  y ∨ uQ(0), for all  y ∈ Quo(A").

10.8. The self-dual case. Finally, the following conditions on a RO-category  A  are equivalent:

(a)  A  is an RE-category,

(b)  A  is both an RW and an RW0-category,

(c)  A  is a normal RW-category,

(d)  A  is a conormal RW0-category (i.e., every corestriction  x ∈ CrsA  is conormal in  1A,  for all

objects  A).

Actually (a) is equivalent to (c) by 1.8, and to (d) by order duality; thus (a) implies (b), and the

converse is trivial since (RE.1) is the conjunction of (RW.1) and (RW0.1).

Analogously the following conditions on the category  E  are equivalent:

(a')  E  is exact,

(b')  E  is both w-exact and w*-exact,

(c')  E  is w-exact and normal (i.e., every subobject is normal),

(d')  E  is w*-exact and conormal (i.e., every quotient is conormal).

11. Appendix: w-lattices and homomorphisms

We introduce here the w-lattices and their homomorphisms.

11.1. Definition. A w-lattice (or weak lattice, or normolattice) is a triple  X = (X, ≤, ≤)  such that

(for all  x, y, z, t ∈ X)

(wl.0) (X, ≤)  is a meet-semilattice with 0 and 1;

(wl.1) ≤  is a binary relation on  X  (called normality);  0 ≤ 1;   x ≤ x;   x ≤ y  ⇒  x ≤ y;

(wl.2) if  x ≤ y  then  x∧z ≤ y∧z;

(wl.3) if  x ≤ t  and  y ≤ t,  then  x∨y  exists;

(wl.4) if  x ≤ t  and  y ≤ z ≤ t,  then  x∨y ≤ x∨z.
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Note that  X,  generally, is not a lattice; also when it is, the only structural joins (used below to

define homomorphisms) are the ≤-joins considered in (wl.3). The elements  x ≤ 1  will be said to be

normal; they form an ordered subset  Nrm(X),  which is a join-semilattice; note that the induced

normality relation coincides with ≤, by (wl.2).

11.2. Weak modularity and distributivity. A w-lattice  X  is said to be w-modular, or a wm-

lattice if it satisfies the following axioms:

(wm.1)  if  y ≤ z,  x ≤ t,  y ≤ t,   then (x∨y)∧z  =  (x∧z)∨y,

(wm.2)  if  x ≤ z,  x ≤ t,  y ≤ t,   then (x∨y)∧z  =  x∨(y∧z).

It is said to be w-distributive, or a wd-lattice, if it satisfies the stronger axioms:

(wd.1)  if  x ≤ t,  y ≤ t,   then (x∨y)∧z  =  (x∧z)∨(y∧z),

(wd.2)  if  x ≤ t,  y ≤ t,  z ≤ t,   then x∨(y∧z)  =  (x∨y)∧(x∨z).

To deduce (wm.2) from (wd.2), take  z' = z∧t ≤ t.

11.3. Normal w-lattices.  Say that a w-lattice  X  is normal when every element is so, i.e.  X =

Nrm(X):  then  (X, ≤)  is a lattice and ≤ coincides with ≤. Conversely every lattice  X  determines a

normal w-lattice  W(X) = (X, ≤, ≤).  The modular and distributive cases proceed in the same way.

11.4. 
−
w-lattices. The subset  Nrm(X)  of the w-lattice  X  is not meet-stable, generally. For

instance, consider the following wd-lattice (the trivial normality relations are understood:  0 ≤ x ≤ x,

for all elements  x)

(1) 0 < a∧b <
a
b < 1, 0 ≤ a∧b ≤

a
b ≤ 1,

where  x∧y  is not normal. We say that  X  is a 
−
w-lattice if it satisfies the following condition, stronger

than (wl.2)

(
−
wl.2) y ≤ x  and  t ≤ z   .⇒.   y∧t ≤ x∧z.

Analogously we consider 
−
wm-lattices and 

−
wd-lattices. If  X  is a 

−
w- (resp. 

−
wm-, 

−
wd-) lattice then

Nrm(X)  is a lattice (resp. a modular, distributive one).

11.5. Homomorphisms. A homomorphism of w-lattices  h: X =  X'  has to preserve 0, 1,

(binary) intersection, the normality relation ≤ and ≤-unions.

Thus we have the (ordered) category wLth of (small) w-lattices and homomorphisms. Its

isomorphisms are the bijective mappings preserving and reflecting the relations ≤ and ≤. The category

wLth  is clearly complete, with limits preserved by the forgetful functor into  Set.

The functor  W: Lth = wLth,  defined on the objects in 11.3, embeds the category of lattices and

homomorphisms as a subcategory of  wLth.

In the same way the full subcategories  wMlh  and  wDlh  of  wLth  given by wm- and wd-

lattices respectively contain, as a full reflective subcategory, the categories  Mlh  and  Dlh  of

modular and distributive lattices.
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11.6. Sub-w-lattices. The monos of the categories  wLth,  wMlh  and  wDlh  are their injective

homomorphisms, in the usual set-theoretic sense. This follows from the existence of the free object on

one generator  x,  which in all three cases is

(1) {0, x, 1}, 0 < x < 1,    0 ≤ 0 ≤ 1 ≤ 1.

Therefore we define a sub-w-lattice of  X  to be a subset  X0  provided with the induced order ≤

and some relation ≤0 so that, for all  x, y, z, t ∈ X0

(a) 0,  1,  x∧y  ∈  X0,

(b) 0 ≤0 1, x ≤0 x, y ≤0 x   ⇒   y ≤  x,

(c) x ≤0 y   ⇒   x∧z ≤0 y∧z,

(d) x ≤0 t   and   y ≤ t   .⇒.   x∨y ∈ Y0,

(e) x ≤0 t   and   y ≤0 z ≤ t   .⇒.   x∨y ≤0 x∨z.

Then  X0 = (X0, ≤, ≤0)  is a w-lattice, w-modular or w-distributive if  X  is so, and the embedding

X0 = X  is a monomorphism of  wLth.  However, if  X  is a 
−
w-lattice or is normal (i.e., a lattice),

X0  need not be so.

11.7. Closed homomorphisms. A homomorphism of w-lattices  h: X = X'  is said to be closed

(or ≤-closed) whenever

(1) if  x, x' ∈ X  and  h(x) ≤ h(x')  in  Y,  then there exist  a ≤ a'  in  X  such that  h(a) = h(x)  and

h(a') = h(x').

A sub-w-lattice  X0  of  X  is said to be closed in  X  if its embedding is so; in other words, if its

normality relation is induced by the one of  X,  or - equivalently - if it is a regular subobject (an

equaliser).
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