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Abstract.

We want to investigate ‘spaces’ where paths have a ‘weight’, or ‘cost’, expressing length,
duration, price, energy, etc. The weight function is not assumed to be invariant up to
path-reversion. Thus, ‘weighted algebraic topology’ can be developed as an enriched
version of directed algebraic topology, where illicit paths are penalised with an infinite
cost, and the licit ones are measured. Its algebraic counterpart will be ‘weighted algebraic
structures’, equipped with a sort of directed seminorm.

In the fundamental weighted category of a generalised metric space, introduced here, each
homotopy class of paths has a weight (or seminorm), which is subadditive with respect to
composition. We also study a more general setting, spaces with weighted paths, which has
finer quotients and strong links with noncommutative geometry. Weighted homology of
weighted cubical sets has already been developed in a previous work, with similar results.

Introduction

The recent domain of directed algebraic topology studies ‘directed spaces’ (preordered
topological spaces, locally preordered spaces, cubical sets, etc.) with ‘directed algebraic
structures’ produced by homotopy or homology functors: on the one hand the fundamental
category (with its higher dimensional versions), on the other preordered homology groups.
Its general aim is modelling non-reversible phenomena. See [9, 10, 13] and references
therein.

We want to propose an enrichment of this subject, weighted algebraic topology, re-
placing the truth-valued approach of directed algebraic topology (where a path is licit
or not) with a measure of costs, taking values in the interval [0,∞] of positive real ex-
tended numbers. The general aim is, now, measuring the cost of (possibly non-reversible)
phenomena.

Weighted algebraic topology will study ‘weighted spaces’, like (generalised) metric
spaces, with ‘weighted’ algebraic structures, like the fundamental weighted (or normed)
category, defined here, and the weighted homology groups already developed in [12] for
weighted (or normed) cubical sets.
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Lawvere’s generalised metric spaces [18], endowed with a possibly non-symmetric dis-
tance taking values in [0,∞], are a basic setting where weighted algebraic topology can
be developed (see Section 1). The present theory is essentially based on the standard
generalised metric interval δI, with distance δ(x, y) = y − x, if x ≤ y, and δ(x, y) = ∞
otherwise; and the resulting cylinder functor I(X) = X⊗δI, where the tensor product has
the l1-type metric (Section 2). We define the fundamental weighted category wΠ1(X) of
a generalised metric spaces, and begin its study (Sections 3, 4).

As with various situations in homotopy theory, we have to work with elementary and
extended homotopies, produced by 1-Lipschitz maps (i.e., weak contractions) and Lipschitz
maps, respectively (see Section 2). The first are used to define the main homotopical
constructs, namely cylinder, cone, suspension and - dually - cocylinder, cocone, loop-
object (in the pointed case); and then to obtain the (co)fibration sequence of a map. But
extended homotopies can be concatenated, and are essential to reach the higher order
properties of such sequences. Also, in the fundamental weighted category itself, an arrow
is a class of extended paths, up to extended homotopy with fixed endpoints.

(The reader can think of the following analogy: when studying homotopies of chain
algebras, the multiplicative homotopies are used to define the main constructs, including
the fibration sequence of a morphism; but such homotopies cannot be concatenated,
and we need the ‘extended’ homotopies of the underlying chain complexes to prove the
homotopy equivalence properties of the sequence, cf. [8].)

We also introduce, in Sections 5-6, the more flexible setting of w-spaces, or spaces with
weighted paths, which - like weighted cubical sets in [12] is able to express topological facts
usually investigated with noncommutative geometry and missed by ordinary topology.

We only treat, in Section 7, an example, linked with the well-known irrational rotation
C*-algebras Aϑ (ϑ irrational) classified by Pimsner - Voiculescu [19] and Rieffel [20], also
known as ‘noncommutative tori’. The algebra Aϑ is ‘meant’ to replace the topological
quotient R/Gϑ of the euclidean line modulo the action of the dense additive group Gϑ =
Z + ϑZ, which is trivial (i.e., has the coarse topology). Here, the ‘metric’ analogue
(δR)/Gϑ is trivial as well, with the null distance. But we get an interesting quotient from
the standard w-line wR, which assigns a finite weight w(a) = a(1)−a(0) to each increasing
path a : I → R, and w(a) = ∞ otherwise (5.4). Now, the w-space Wϑ = (wR)/Gϑ has
a non-trivial fundamental weighted monoid (at any point), isomorphic to the additive
monoid G+

ϑ = Gϑ ∩ R+ with the natural weight w(x) = x. We prove in Thms. 7.3,
7.4 that the irrational rotation w-space Wϑ has the same classification up to isometric
isomorphism (resp. Lipschitz isomorphism) as the C*-algebra Aϑ up to isomorphism
(resp. strong Morita equivalence).

1. Generalised metric spaces

We begin with recalling the structure of Lawvere’s generalised metric spaces [18], which
will be used as a first setting for weighted algebraic topology. Among the new points,
notice the standard spaces of 1.5, the reflective symmetric distance (1.6) and the associated
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symmetric topology (1.9).

1.1. Real weights. The basic ingredient is the strict symmetric monoidal closed cate-
gory of extended positive real numbers, introduced by Lawvere [18], which we write w+.
It has objects λ ∈ [0,∞], morphisms λ ≥ µ, and tensor product λ+ µ (with λ+∞ = ∞,
for all λ).

As a complete lattice, this category has all limits and colimits, reduced to products
and sums

product: supλi, terminal object: 0,
sum: infλi, initial object: ∞.

(1)

The internal hom is given by truncated subtraction, written as a difference:

λ+ µ ≥ ν ⇔ λ ≥ hom+(µ, ν) = ν − µ, (ν − µ = 0 ∨ (ν − µ)). (2)

Let v denote the full subcategory of w+ on the objects 0,∞; in this subcategory, the
cartesian product λ ∨ µ coincides with the tensor product λ + µ. Thus, the covariant
embedding of the boolean algebra 2 = ({0, 1},≤) of truth-values (contravariant with
respect to the natural orders)

M : 2 → w, M(0) = ∞, M(1) = 0, (3)

is strict monoidal with respect to the cartesian product and the additive tensor product
as well. Moreover, M has left and right adjoint

P aM a Q, P (λ) = 1 ⇔ λ <∞, Q(λ) = 1 ⇔ λ = 0. (4)

A function w : A → [0,∞] defined on a set equipped with a partial operation a ∗ b,
will be said to be (sub)additive if w(a ∗ b) ≤ w(a) + w(b) whenever a ∗ b is defined; and
strictly additive, or linear, if w(a ∗ b) = w(a) + w(b) (when this makes sense). The main
property being the former, the prefix ‘sub’ will generally be omitted: for instance, an
‘additively weighted’ category has an ‘additive’ weight function on morphisms (3.1), in
the first sense.

Occasionally, we shall also use the same category w = ([0,∞],≥) with the multiplica-
tive structure w•, where the tensor product is λ.µ, and λ.∞ = ∞ for all λ (cf. [14]). Also
here, a multiplicative function is actually submultiplicative.

1.2. Directed metrics. Now, a generalised metric space X, in the sense of Lawvere
[18], called here a directed metric space or δ-metric space, is a set X equipped with a
δ-metric δ : X×X → [0,∞], satisfying the axioms

δ(x, x) = 0, δ(x, y) + δ(y, z) ≥ δ(x, z). (5)

This amounts to a category enriched over the symmetric monoidal closed category w+

considered above, with δ(x, y) = X(x, y) the hom-object in [0,∞]. (If the value ∞ is
forbidden, δ is often called a quasi-pseudo-metric, cf. [15]; but including it has crucial
advantages, e.g. with respect to limits and colimits.)
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δMtr will denote the category of such δ-metric spaces, with (weak) contractions, or
1-Lipschitz maps f : X → Y , satisfying δ(x, x′) ≥ δ(f(x), f(x′)) for all x, x′ ∈ X, also
called δ-maps. Isomorphisms in this category are isometric - and will be called isometric
isomorphisms or 1-Lipschitz isomorphisms when needed. Limits and colimits exist and
are calculated as in Set.

Products have the l∞-type δ-metric (always defined because ∞ is included):∏
Xi : δ(x,y) = sup δi(xi, yi) (x = (xi), y = (yi)). (6)

Equalisers have the restricted δ-metric. Sums have the obvious δ-metric (using ∞ also
in the binary case):∑

Xi : δ((x, i), (y, i)) = δi(x, y) δ((x, i), (y, j)) = ∞ (i 6= j). (7)

Coequalisers have the δ-metric induced on the quotient:

X/R : δ(ξ, η) = infx(
∑
δ(x2j−1, x2j))

(x = (x1, ..., x2p); x1 ∈ ξ; x2j Rx2j+1; x2p ∈ η).
(8)

The term ‘directed’ (used here) refers to the non-symmetric character of δ-metric
spaces. And indeed such an object has a canonical preorder (to be used later, in 1.9)

x ≺∞ y if δ(x, y) <∞ (9)

More formally, a preordered set is the same as a δ-metric space with a truth-valued
metric δ : X×X → v, taking values in {0,∞}; the canonical preorder (9) gives thus the
left adjoint of the embedding of preordered sets into δ-metric spaces (cf. (4)).

The reflected, or opposite, δ-metric space R(X) = Xop has the opposite δ-metric,
δop(x, y) = δ(y, x). A symmetric δ-metric, with δ = δop, is the same as an écart in
Bourbaki [3]. More generally, a δ-metric space is reflexive, or self-dual, if it is isometrically
isomorphic to its opposite (cf. 1.5). The notation X ≤ X ′ means that these δ-metric
spaces have the same underlying set and δX ≤ δX′ , or equivalently that the identity of
the underlying set is a δ-map X ′ → X.

1.3. Lipschitz maps. We will also use the wider category δ∞Mtr of δ-metric spaces and
all Lipschitz maps f : X → Y , i.e. those mappings between the underlying sets for which
the Lipschitz weight ||f || is finite:

||f || = min{λ ∈ [0,∞] | for all x, x′ ∈ X, δ(f(x), f(x′)) ≤ λ.δ(x, x′)}, (10)

also called δ∞-maps. A Lipschitz isomorphism will be an isomorphism of this category.
This category is finitely complete and cocomplete, with the same finite limits and

colimits as δMtr; but note that, now, the δ-metric of a (co)limit is only determined
up to Lipschitz-equivalence. Moreover, δ∞Mtr is multiplicatively weighted [14], with the
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Lipschitz weight: all identities have ||1X || ≤ 1 and composition gives ||gf || ≤ ||f ||.||g||.
This also holds for δMtr, where ||f || ≤ 1.

If X is a δ-metric space and λ ∈ [0,∞[, we will write λX the same set equipped with
the δ-metric λ.δX (where it is assumed that λ.∞ = ∞ for all λ, cf. [14]). Thus, a δ∞-map
f : X → Y with ||f || ≤ λ is the same as a δ-map λX → Y . More generally, as in [18],
one can define λX where λ : [0,∞] → [0,∞] is any increasing mapping with λ(0) = 0 and
λ(µ+ν) ≤ λ(µ)+λ(ν) (a lax monoidal functor w+ → w+). For instance, the square-root
mapping gives the δ-metric space

√
X.

1.4. Tensor product. The category δMtr has a ‘natural’ symmetric monoidal closed
structure (cf. [18], p. 153). The tensor product X⊗Y is the cartesian product of the
underlying set, with the l1-type δ-metric (instead of the l∞-type δ-metric of the categorical
product)

δ((x, y), (x′, y′)) = δ(x, x′) + δ(y, y′); (11)

it solves the usual universal problem, with respect to mappings which are 1-Lipschitz in
each variable.

The exponential ZY is the set of 1-Lipschitz maps Y → Z equipped with the δ-metric
of uniform convergence

δ(h, k) = supy δZ(h(y), k(y)) (with y varying in Y ),

= supyy′ (δZ(h(y), k(y′))− δY (y, y′)) (with y, y′ varying in Y ).
(12)

The proof of the adjunction is standard (and can be deduced from the proof of theorem
5.6). The cartesian and tensor product are linked by the inequalities

X×Y ≤ X⊗Y ≤ 2.(X×Y ). (13)

In δ∞Mtr, these products are isomorphic and denote isomorphic functors (in two
variables). But we shall keep distinguishing such objects (and functors): the notation
X×Y (resp. X⊗Y ) still denotes the realisation of the cartesian product given by the
l∞-type (resp. l1-type) δ-metric.

1.5. Standard models. The line R and the standard interval I will have the euclidean
metric |x − y|. Then, Rn and In have the product metric, supi|xi − yi|, while R⊗n and
I⊗n have the tensor product metric,

∑
|xi − yi|.

But we are more interested in the following non-symmetric δ-metrics. The standard
δ-line δR has the δ-metric

δ(x, y) = y − x, if x ≤ y, δ(x, y) = ∞, otherwise; (14)

its associated preorder is the natural order x ≤ y (cf. (9)).
The standard δ-interval δI = δ[0, 1] has the subspace structure of the δ-line. This also

provides the cartesian powers δRn, δIn and the tensor powers δR⊗n, δI⊗n. These δ-metric
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spaces are not symmetric (for n > 0), but reflexive; in particular, the canonical reflecting
isomorphism

r : δI → (δI)op, t 7→ 1− t, (15)

will play a role, in reflecting paths and homotopies (in the opposite space).

The standard δ-circle δS1 will be the coequaliser in δMtr of the following two pairs
of maps (equivalently)

∂−, ∂+ : {∗} ⇒ δI, ∂−(∗) = 0, ∂+(∗) = 1,

id, f : δR ⇒ δR, f(x) = x+ 1.
(16)

Thus, the ‘standard realisation’ of the first coequaliser is the quotient (δI)/∂I, which
identifies the endpoints; δ(x, y) takes values in [0, 1[, and can be viewed as measuring the
length of the ‘counterclockwise arc’ from x to y, with respect to the whole circle. The
structure 2π.δS1 is also of interest (now, arcs are measured with respect to the radius).

More generally, the n-dimensional δ-sphere will be the quotient of the monoidal δ-cube
δI⊗n modulo its (ordinary) boundary ∂In,

δSn = (δIn)/(∂In) (n > 0), (17)

while δS0 = {−1, 1} will be given the discrete δ-metric, infinite out of the diagonal (so
that every mapping from this space to any other be a contraction). All δ-spheres are
reflexive.

1.6. The symmetric case. The full subcategory Mtr of symmetric δ-metric spaces
(1.2) has the same limits and colimits. Actually, it is reflective and coreflective in δMtr.

The coreflector, right adjoint to the embedding, is the well-known symmetrising proce-
dure d(x, x′) = δ(x, x′)∨ δ(x′, x), based on the least symmetric δ-metric d ≥ δ. It will not
be used here, since (for instance) it turns the δ-metric of δR into the codiscrete δ-metric
- infinite out of the diagonal.

But we shall frequently use the reflector !(X, δ) = (X, !δ), based on the greatest
symmetric δ-metric !δ ≤ δ

!δ(x, x′) = infx(
∑

(δ(xj−1, xj) ∧ δ(xj, xj−1)))

(x = (x0, ..., xp), x0 = x, xp = x′),
(18)

which will be called the symmetrised δ-metric (of δ). The associated topology will be
called the symmetric topology of the δ-metric space X, and is the one we are interested
in (see 1.9).

This procedure turns the δ-metric of δR into the euclidean metric. On δRn the
reflector gives a δ-metric !(δRn) with ε-disc as in the second figure below, the convex hull
of [−ε, 0]n ∪ [0, ε]n
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(19)

while on the tensor powers δR⊗n it gives precisely the l∞-metric (!δR)⊗n, with ε-disc as
above, in the third figure. All these δ-metrics are Lipschitz-equivalent, as follows from
the figures above and from the following more general result.

1.7. Proposition. [Symmetrisation and products] Given a finite family of δ-metric
spaces X1, ..., Xn we have the following inequalities (or equalities) for the δ-metrics ob-
tained by symmetrisation, product and tensor product (on the cartesian product of the
underlying sets |X1|×...×|Xn|)∏

(!Xi) ≤ !(
∏

Xi) ≤ !(⊗Xi) =
⊗

(!Xi) ≤ n.
∏

(!Xi), (20)

so that all these δ-metrics are Lipschitz-equivalent and induce the same topology.

Proof. Recall the notation δX(x, x′) = X(x, x′), which comes from viewing a δ-metric
space as an enriched category (1.2). The only non-standard point is the ‘backward’
inequality for the tensor product, proved in (c).

(a) First, to compare
∏

(!Xi) and !(
∏
Xi), note that∏

(!Xi)(x,y) = sup(!Xi)(xi, yi) ≤ supXi(xi, yi) = (
∏

Xi)(x,y); (21)

since
∏

(!Xi) is symmetric, it follows that
∏

(!Xi) ≤ !(
∏
Xi).

(b) The second inequality, !(
∏
Xi) ≤ !(

⊗
Xi), follows from (

∏
Xi) ≤ (

⊗
Xi).

(c) We prove now that !(
⊗

Xi) =
⊗

(!Xi). The δ-metric of the latter is:⊗
(!Xi)(x,y) =

∑
i

(!Xi)(xi, yi) ≤
∑
i

Xi(xi, yi) = (
⊗

Xi)(x,y). (22)

Since
⊗

(!Xi) is symmetric, we have
⊗

(!Xi) ≤ !(
⊗

Xi). The opposite inequality is
more subtle: take a sequence of n+ 1 points zj, which vary from x to y by changing one
coordinate at a time

zj = (y1, ..., yj, xj+1, ..., xn), z0 = x, zn = y (j = 0, ..., n). (23)

and apply the triangular inequality:

!(
⊗

Xi)(x,y) ≤
∑
j

!(
⊗

Xi)(z
j−1, zj). (24)
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Now, zj−1 and zj only differ at the j-th coordinate (xj or yj, respectively); restricting
the domain of the ‘inf’ in the right term above to those sequences in !(

⊗
Xi) where only

the j-th coordinate changes, we get the δ-metric !Xj, and the inequality:∑
j

!(
⊗

Xi)(z
j−1, zj) ≤

∑
j

(!Xj)(xj, yj) =
⊗

(!Xi)(x,y). (25)

(d) Finally, the last inequality in (20) is obvious.

1.8. Definition and Proposition. [The length of paths] Let X be a δ-metric space
and a : I → X a set-theoretical mapping. We define its span sp(a) and its length L(a)
with the following functions, taking values in [0,∞]:

sp(a) = supt δ(a(t0), a(t1)) (t = (t0, t1), 0 ≤ t0 < t1 ≤ 1),

L(a) = supt Lt(a),

Lt(a) =
∑
δ(a(tj−1), a(tj)) (t = (t0, ..., tp), 0 = t0 < t1 < ... < tp = 1).

(26)

These functions satisfy the following properties, where 0x is the constant paths at
(any) point x, a+ b denotes (any) path-concatenation of consecutive paths and ||a|| is the
Lipschitz weight (1.3)

(a) sp(0x) = L(0x) = 0,

(b) sp(a+ b) ≤ sp(a) + sp(b), L(a+ b) = L(a) + L(b),

(c) sp(aρ) ≤ sp(a), L(aρ) ≤ L(a) (for every weakly increasing map ρ : I → I),

(d) sp(aρ) = sp(a), L(aρ) = L(a) (for every increasing homeomorphism ρ : I → I),

(e) sp(a, b) = sp(a) + sp(b), L(a, b) = L(a) + L(b) (for all paths (a, b) : I → X⊗Y ),

(f) sp(a) ≤ L(a) ≤ ||a||,
(g) L is the least function on set-theoretical paths which is strictly additive for concatena-
tion, invariant for reparametrisation on increasing homeomorphisms I → I, and satisfies
L ≥ sp,

(h) sp(f◦a) ≤ ||f ||.sp(a), L(f◦a) ≤ ||f ||.L(a) (for all δ∞-maps f : X → Y ),

(i) for a : I → δR⊗n, we get L(a) = sp(a) =
∑

i(ai(1)− ai(0)) if a is (weakly) increasing,
and L(a) = ∞ otherwise.

Finally, note that the length L(a) can be finite even when a is not Lipschitz: ||a|| = ∞.

Proof. The properties of the span being obvious, we only verify the ones of the length. It
will be useful to note that, if the partition t′ is finer than t, then Lt(a) ≤ Lt′(a), because
of the triangular property of δ-metrics.

Point (a) is obvious. For (b), the inequality L(a + b) ≤ L(a) + L(b) follows easily:
given a partition t for c = a + b, call t′ its refinement by introducing the point t = 1/2
(if missing); thus Lt(c) ≤ Lt′(c) and the latter term can be split into two summands
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≤ L(a) + L(b). For the other inequality, it is sufficient to note that a partition for a and
one for b determine a partition of [0, 2], which can be scaled down to the standard interval.

Point (c) is obvious, since L(aρ) is computed on the partitions of ρ[0, 1] ⊂ [0, 1]; (d)
is a consequence. For (e), the inequality L(a, b) ≤ L(a) + L(b) is obvious, and the other
follows again from the first remark: given a partition for a and one for b, by using a
common refinement for both we get higher values.

Finally, (f) - (h) are plain; (i) is obvious for n = 1, and follows from (e) for higher n.
For the last remark, taking X = δR, the square-root map f : I → R is not Lipschitz but
has a finite length, as any increasing path: L(f) = f(1)− f(0) = 1.

1.9. The associated topology and direction. A δ-metric space X has an obvious
directed topology, generated by the open discs {x | δ(x0, x) < ε}. We will not use this
construct.

Rather, we shall use the symmetric topology, determined as above by the symmetric
δ-metric !δ defined in (18). And we will keep a trace of the ‘directed’ information of
the original δ, in various ways, more or less effective, based on the settings for directed
homotopy used in [9].

The simplest, if rather poor way, is by the associated preorder x ≺∞ y, defined by
δ(x, y) < ∞ (9). We have thus a forgetful functor with values in the category pTop of
preordered spaces and continuous preorder-preserving mappings

p : δMtr → pTop, (δ∞Mtr → pTop), (27)

which preserves finite products (since the symmetrising functor ! : δMtr → Mtr preserves
finite products up to Lipschitz equivalence (1.7), and δ(x, y) <∞ if and only if this holds
on all components.

Thus, p(δRn) = p(δR⊗n) = ↑Rn, the euclidean n-dimensional space with the product
order. Similarly, p(δIn) = p(δI⊗n) = ↑In. But a preorder is a poor way of describing
direction, which does not allow for non-reversible loops. Thus, p(δS1) gets the chaotic
preorder and misses any information of direction.

A more accurate way of keeping the ‘directed’ information of the original δ is using
d-spaces, i.e. spaces with distinguished paths [9]. We have thus a forgetful functor

d : δMtr → dTop, (δ∞Mtr → dTop), (28)

which equips a δ-metric space X with the associated symmetric topology and the d-
structure where a (continuous) path a : I → X is distinguished if and only if it is L-
feasible, i.e. it has a finite length L(a) (26). The axioms of d-spaces are satisfied (by 1.8):
distinguished paths contain all the constant ones, are closed under concatenation and
partial reparametrisation by weakly increasing maps I → I. And, of course, a Lipschitz
map f : X → Y of δ-metric spaces preserves feasible paths. It will be relevant to note that
this functor takes the tensor (or cartesian) product in δ∞Mtr (or δMtr) to the cartesian
product of d-spaces (where a path is distinguished if and only if its two components are).
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Now, in dTop, d(δS1) = ↑S1 = ↑ I/∂I is the standard directed circle [9], where
path are only allowed to turn in a given direction. But the functor d need not preserve
quotients: for instance, d(δR) = ↑R is the standard directed line, with the increasing
paths as distinguished ones; the quotient d-space ↑R/Gϑ, modulo the action of the
dense subgroup Gϑ = Z + ϑZ (for an irrational number ϑ) is a non-trivial object, with
the homology of the 2-dimensional torus (cf. [12]), while (δR)/Gϑ has a trivial δ-metric,
always zero. A finer notion of ‘weighted space’, studied in Sections 5-7, will be able to
express such phenomena within weighted algebraic topology (not just the directed one).

Note that the forgetful functor dTop → pTop provided by the path-preorder x � x′

(there is a distinguished path from x to x′), applied to a d-space of type dX, gives a
finer preorder than pX, generally more interesting than the latter (two points at a finite
distance may be disconnected, or not linked by a feasible path.)

One could also try an intermediate way of codifying direction, by some notion of local
preorder, as in Krishnan [16]. For instance, one could use a family of preorders, indexed
on the open subsets U of X (always with respect to the symmetric topology)

x ≺U x
′ if (x � x′ in the path-preorder of U, for the induced δ-metric), (29)

so that, if U ⊂ V , x ≺U x
′ implies x ≺V x

′. Thus, in δS1, every proper open arc U gets a
total order (Lipschitz isomorphic to an open interval).

2. Elementary and extended homotopies

The standard δ-interval δI generates a cylinder endofunctor, which yields elementary
homotopies in δMtr, and extended homotopies in δ∞Mtr. We need both, but only the
latter can be concatenated. The letter α denotes an element of the set {0, 1}, written
−,+ in superscripts.

2.1. Elementary and extended paths. Let X be a δ-metric space. An elementary
path (resp. an extended path, or Lipschitz path) in X will be a 1-Lipschitz (resp. a
Lipschitz) map a : δI → X.

Thus, a set-theoretical mapping a : I → X is an elementary path if and only if ||a|| ≤ 1,
for the Lipschitz weight (10)

||a|| = min{λ ∈ [0,∞] | for all t ≤ t′ in [0, 1], δ(a(t), a(t′)) ≤ λ.(t′ − t)}, (30)

and is an extended path if and only if ||a|| < ∞. Elementary paths cannot be concate-
nated, because - loosely speaking - this procedure doubles the velocity, whose least upper
bound is the Lipschitz weight. Recall that the (finite) length L(a) ≤ ||a|| has been defined
in 1.8.

The reflected (elementary or extended) path is obtained in the obvious way

aop = ar : δI → Xop, r(t) = 1− t. (31)
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A reversible extended path is a mapping a : I → X such that both a and aop are
extended paths δI → X. This amounts to a Lipschitz map a : !δI → X, with respect to
the ordinary metric |t− t′| of the euclidean interval.

2.2. Concatenation. Given two consecutive Lipschitz paths a, b : δI → X, with a(1) =
b(0), the usual construction gives a concatenated path

a+ b : δI → X, ||a+ b|| ≤ 2.(||a|| ∨ ||b||), (32)

(which need not be elementary when a and b are). Let us review this fact in a more formal
way. In the category δMtr, pasting two copies of the standard δ-interval, one after the
other, can be realised as δ[0, 2] ⊂ δR, or (isometrically) as 2.δI (with the double δ-metric)

{∗} ∂+
//

∂−

��

δI

k−

��
k−(t) = t/2, k+(t) = (t+ 1)/2.

δI
k+

// 2.δI

(33)

Of course, this is of no help to concatenate elementary paths. Moving to the category
δ∞Mtr, this pushout can be realised as the Lipschitz-isomorphic object δI. This yields
the standard concatenation pushout (the left diagram below, which actually lives in δMtr
but is not a pushout there)

{∗} ∂+
//

∂−
��

δI

k−
��

X
∂+

//

∂−
��

X⊗δI
k−

��

k−(x, t) = (x, t/2),

δI
k+

// δI X⊗δI
k+

// X⊗δI k+(x, t) = (x, (t+ 1)/2).

(34)

This pushout is preserved by any functorX⊗− (yielding the right hand pushout above),
or by X×−. In fact, X⊗− : δMtr → δMtr preserves the pushout (33), as a left adjoint;
and the embedding δMtr → δ∞Mtr preserves finite colimits (1.3).

2.3. The elementary cylinder. The δ-interval δI is an internal lattice in (δMtr,⊗):
its structure consists of two faces (∂−, ∂+), a degeneracy (e), two connections or main
operations (g−, g+) and an interchange (s)

{∗}
∂α

//// δI
e

oo δI
⊗2

gα
oooo s : δI

⊗2 → δI
⊗2 (α = ±) (35)

∂−(∗) = 0, ∂+(∗) = 1,
g−(t, t′) = t ∨ t′, g+(t, t′) = t ∧ t′, s(t, t′) = (t′, t).

As a consequence, the elementary cylinder endofunctor

I : δMtr → δMtr, I(−) = −⊗δI, (36)
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has natural transformations, which will be denoted by the same symbols and names

1
∂α

// // I
e

oo I2
gα

oooo s : I2 → I2 (α = ±) (37)

The functor I, with these transformations, satisfies the axioms of a cubical monad with
interchange [7, 8]:

e∂α = 1, egα = e.Ie (= e.eI) (degeneracy axiom),
gα.Igα = gα.gαI, gα.I∂α = 1 = gα.∂αI (associativity, unit),
gβ.I∂α = ∂αe = gβ.∂αI (absorbency, for α 6= β),
s.s = 1, Ie.s = eI, s.I∂α = ∂αI, gα.s = gα (interchange).

(38)

The cylinder I has a generalised reversion, via the reflection of δ-metric spaces (as
always happens in directed algebraic topology, e.g. for d-spaces [9] and for differential
graded algebras [7])

rX = X⊗r : IRX → RIX, (x, t) 7→ (x, 1− t),
RrR.r = id, Re.r = eR,
r.∂−R = R∂+, r.g−R = Rg+.r2, Rs.r2 = r2.sR.

(39)

where r2 = rI.Ir : (I2R→ IRI → RI2) is the reversion of the double cylinder.
Within δMtr, the cylinder endofunctor I = −⊗δI has a right adjoint, the elementary-

path functor, or elementary cocylinder

P : δMtr → δMtr, P (Y ) = Y δI. (40)

The δ-metric space Y δI is the set of elementary paths δMtr(δI, Y ) with the δ-metric of
uniform convergence (12). The lattice structure of δI in dTop produces - contravariantly
- a dual structure on P (a cubical comonad with interchange [7, 8]).

2.4. Homotopies. An elementary homotopy ϕ : f → g : X → Y is defined as a δ-map
ϕ : IX = X⊗δI → Y whose two faces are f and g, respectively: ∂−(ϕ) = ϕ ◦∂− = f ,
∂+(ϕ) = ϕ◦∂+ = g. In particular, an elementary path is a homotopy between two points,
a : x→ x′ : {∗} → X.

More generally, an extended homotopy, or Lipschitz homotopy, is a Lipschitz map
ϕ : X×δI → Y ; and an extended path is an extended homotopy between two points,
a : x → x′ : {∗} → X. (Note that a Lipschitz map defined on the singleton is always a
δ-map.) An extended homotopy has a Lipschitz weight ||ϕ||, which is ≤ 1 if and only if
ϕ is elementary.

In both cases, the main operations produced by the cylinder functor (for ϕ : f →
g : X → Y ; u : X ′ → X; v : Y → Y ′; ψ : g → h : X → Y ) are:

(a) whisker composition of (elementary or extended) maps and homotopies

v◦ϕ◦u : vfu→ vgu (v◦ϕ◦u = v.ϕ.Iu : IX ′ → Y ′),
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(b) trivial homotopies:

0f : f → f (0f = fe : IX → Y ),

and satisfy obvious axioms for units and associativity:

1◦ϕ◦1 = ϕ, v◦0f ◦u = 0vfu, (v′v)◦ϕ◦(uu′) = v′ ◦(v◦ϕ◦u)◦u′. (41)

This 2-dimensional structure, weaker than a bicategory or a sesquicategory (there is
no vertical composition of 2-cells) is called an h-category in [8] (it is a category enriched
over reflexive graphs, with a suitable monoidal structure).

More precisely, we will write:

(i) δ1Mtr the h-category of δ-metric spaces, with weak contractions and elementary ho-
motopies,

(ii) δ∞Mtr the h-category of δ-metric spaces, with Lipschitz maps and Lipschitz homo-
topies,

(iii) δMtr the intermediate h-category of weak contractions and Lipschitz homotopies
between them.

Actually, δ1Mtr is a bicomplete IP-homotopical category [7]: it has adjoint functors
I a P , with the required structure (a cubical monad and a cubical comonad, respectively),
colimits (preserved by the cylinder) and limits (preserved by the cocylinder). Therefore,
all results of [7] for such a structure apply (as for cochain algebras).

Moreover, in δ∞Mtr (and δMtr) consecutive homotopies can be pasted via the con-
catenation pushout of the cylinder functor (the right-hand diagram in (34)). The concate-
nation ϕ+ ψ of two consecutive homotopies (∂+ϕ = ∂−ψ) is thus computed as usual:

(ϕ+ ψ)(x, t) = ϕ(x, 2t) for 0 ≤ t ≤ 1/2, = ψ(x, 2t− 1) for 1/2 ≤ t ≤ 1. (42)

Reflected homotopies (elementary or extended) live in the opposite ‘spaces’ (as for
paths, in (31))

ϕop : Rg → Rf : RX → RY, ϕop = Rϕ.rX = (I(RX) → R(IX) → RY ). (43)

As always in directed algebraic topology, homotopy equivalence is a complex notion,
which has to be considered not only for ‘spaces’ but also for their algebraic counterpart -
weighted categories. This will be briefly considered in Section 5. A more complete study
for d-spaces can be found in [9].

2.5. Double homotopies and 2-homotopies. Extended homotopies in dimension 2,
based on the second order cylinder I2X = X⊗δI2, can now be treated like for d-spaces,
in [9]. Roughly speaking, they behave as in Top, as long as we work on the standard
square [0, 1]2 with increasing Lipschitz maps. We will only sketch the main points; the
interested reader can look at [9], 2.5 - 2.6.

An extended double homotopy is a map Φ: X⊗δI2 = I2X → Y ; it has four faces
∂α1 (Φ), with α = ± and i = 1, 2. The concatenation of extended double homotopies in
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direction 1 or 2 is defined as usual (under the obvious boundary conditions) and satisfies
a strict middle-four interchange property.

An extended 2-homotopy Φ: ϕ → ψ : f → g : X → Y is a double homotopy whose
faces ∂α1 are degenerate, while the faces ∂α2 are ϕ, ψ (the other choice is equivalent, by
interchange). Such particular double homotopies are closed under concatenations in each
direction (also because 0f + 0f = 0f ). The preorder ϕ �2 ψ (i.e., there is a 2-homotopy
ϕ→ ψ) spans an equivalence relation '2.

The following constructions of 2-dimensional homotopies are crucial tools.

(a) Two ‘horizontally’ consecutive extended homotopies

ϕ : f− → f+ : X → Y, ψ : g− → g+ : Y → Z, (44)

can be composed, to form an extended double homotopy Φ = ψ ◦ϕ (which is elementary
if ϕ and ψ are)

g−f−
g−◦ϕ //

ψ◦f−

��

g−f+

ψ◦f+

��

Φ = ψ◦ϕ = ψ.(ϕ⊗δI) : X⊗δI2 → Z,

ψ◦ϕ ∂α1 (Φ) = ψ.(ϕ∂α⊗δI) = ψ◦fα,

g+f−
g+◦ϕ

// g+f+ ∂α2 (Φ) = ψ.(ϕ⊗∂α) = gα ◦ϕ.

(45)

(Together with the whisker composition, in 2.4, this is a particular instance of the cubical
enrichment produced by the cylinder functor: composing a p-uple homotopy Φ: IpX → Y
with a q-uple one Ψ: IqY → Z gives a (p+ q)-uple homotopy Ψ◦Φ = Ψ.IqΦ.)

(b) Acceleration. For every extended homotopy ϕ : f → g, there are acceleration extended
2-homotopies (cf. [9], 2.6.4)

Θ′ : 0f + ϕ→ ϕ, Θ′′ : ϕ→ ϕ+ 0g, (46)

(but not the other way round: slowing down conflicts with direction).

(c) Folding. A double extended homotopy Φ: A⊗δI2 → X with faces ϕ, ψ, σ, τ (as below)
produces a 2-homotopy Ψ, by pasting Φ with two double homotopies produced by the
connections g± (2.3), denoted with ]

f f
σ //

ϕ

��

h
ψ //

ψ

��

g

] Φ ] Ψ: 0f + σ + ψ → ϕ+ τ + 0g : f → g.

f ϕ
// k τ

// g g

(47)

Together with accelerations, this 2-homotopy Ψ shows that the faces of Φ satisfy
σ + ψ '2 ϕ+ τ .
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2.6. Homotopy constructs. We have now the tools to develop for δ-metric spaces the
homotopy constructs of [10]: (a) homotopy pushouts and pullbacks; (b) mapping cones,
suspension and cofibration sequences; (c) homotopy fibres, loop-objects and fibration
sequences (in the pointed case).

Then, the higher properties of this machinery need concatenation, and can only be
developed in δ∞Mtr. We will not write down these computations here.

3. The fundamental weighted category

The fundamental category of a δ-metric space is defined. Non obvious computations
are based on a van Kampen-type theorem (3.6), similar to R. Brown’s version for the
fundamental groupoid of a space [4] or to our version for a space with distinguished paths
[9].

3.1. Weighted categories. An additively weighted category is a category X where
every morphism a is equipped with a weight, or cost, w(a) ∈ [0,∞], so that two obvious
axioms are satisfied, for identities and composition (written in additive notation):

(w+cat.0) w(0x) = 0, for all objects x of X,

(w+cat.1) w(a+ b) ≤ w(a) + w(b), for all pairs of consecutive arrows a, b.

This is called a normed category in [18, 2]; see the Introduction and [14] for the
present terminology about the additive and multiplicative variants. We will omit the
term ‘additive’ when there is no ambiguity; we also speak of a w+-category, for short. The
weight is said to be linear, or strictly additive, if w(a+b) = w(a)+w(b) for all composites.

A w+-functor f : X → Y , or 1-Lipschitz functor, is a functor between such cate-
gories which satisfies the condition w(f(a)) ≤ w(a), for all morphisms a of X. A w+-
transformation ϕ : f → g is a natural transformation between w-functors. All this forms
the 2-category w+Cat of (small) w+-categories, also written wCat. (Here we do not use
the multiplicative analogue, for which see [14]).

Weighted categories can be viewed as categories enriched over the symmetric monoidal
closed category w+Set of weighted sets (i.e., sets equipped with a mapping w : X → w+,
and maps f : X → Y such that w(f(x)) ≤ w(x), for all x ∈ X), with an ‘additive’ tensor
product [2, 14].

The opposite weighted category Xop is the opposite category with the ‘same’ weight.
Also here (as for δ-metric spaces, in 1.3) we need the wider category w∞Cat of

weighted categories and Lipschitz functors f : X → Y , or w∞-functors, i.e. the func-
tors between weighted categories having a finite Lipschitz weight

||f || = min{λ ∈ [0,∞] | for all a ∈ Mor(X), wY (f(a)) ≤ λ.wX(a)}. (48)

With this weight, the category w∞Cat is multiplicatively weighted (cf. 1.3). This also
holds for wCat, which is the wide subcategory of the functors f such that ||f || ≤ 1.
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3.2. Proposition. [The monoidal closed structure] The category wCat has a symmetric
monoidal closed structure, with tensor product X⊗Y consisting of the cartesian product
of the underlying categories with the l1-type weight on a map (a, b) : (x, y) → (x′, y′):

w⊗(a, b) = w(a) + w(b). (49)

The internal hom ZY is the category of 1-Lipschitz functors h : Y → Z and all natural
transformations ϕ : h→ k between such functors, with the (plainly subadditive) weight:

W (ϕ) = supy wZ(ϕ(y)), (y ∈ ObY ). (50)

Proof. First a 1-Lipschitz functor f : X⊗Y → Z defines a functor g : X → ZY , sending
an object x to the 1-Lipschitz functor

g(x) = f(x,−) : Y → Z, wZ(g(x)(b)) = wZ(f(0x, b)) ≤ w⊗(0x, b) = w(b), (51)

and the X-morphism a : x → x′ to the natural transformation g(a) = f(a,−) : g(x) →
g(x′). The functor g itself is a contraction:

W (g(a)) = supy wZ(g(a)(y)) = supy wZ(f(a, 0y)) ≤ supy w⊗(a, 0y) = w(a). (52)

Conversely, given a 1-Lipschitz functor g : X → ZY , we define the functor f : X⊗Y →
Z in the usual, obvious way, and verify that it is 1-Lipschitz, on a map (a, b) : (x, y) →
(x′, y′)

wZ(f(a, b)) = wZ(g(a)(y) + g(x)(b)) ≤ wZ(g(a)(y)) + wZ(g(x)(b)) ≤ w(a) + w(b), (53)

where the last inequality follows from:

wZ(g(a)(y)) ≤ supy′ wZ(g(a)(y′)) = W (g(a)) ≤ w(a), wZ(g(x)(b)) ≤ w(b). (54)

3.3. Homotopy for weighted categories. This elementary theory is based on the
directed interval 2 = {0 → 1}, an order category on two objects, where the only non-
trivial arrow has weight w(0 → 1) = 1. The obvious faces ∂± : 1 → 2 are defined on the
singleton category 1 = {∗}.

A point x : 1 → X of a small weighted category X is an object of the latter; we will
also write x ∈ X. An extended path a : 2 → X from x to x′ amounts to a feasible arrow
a : x→ x′ of X, with a finite weight w(a); in fact, the latter coincides with the Lipschitz
weight ||a||, as a functor on 2; concatenation of extended paths amounts to composition
in X (strictly associative, with strict identities). Elementary paths amount to arrows with
w(a) ≤ 1, which will also be called 1-morphisms, and cannot be concatenated, generally.

The monoidal closed structure described above (3.2) gives the elementary cylinder
IX = X⊗2 and its right adjoint, the elementary path PY = Y 2, which consists of
the category of 1-morphisms of Y and their arbitrary commutative squares, with weight
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W (b, b′) = w(b) ∨ w(b′). This shows that an elementary homotopy, or elementary natu-
ral transformation, ϕ : f → g : X → Y is the same as a natural transformation between
1-Lipschitz functors, satisfying w(ϕ(x)) ≤ 1 for all x ∈ X. Such homotopies cannot
be concatenated, since their vertical composition is no longer elementary, in general. An
elementary isomorphism of 1-Lipschitz functors will be an elementary natural transforma-
tion having an inverse in the same domain; plainly, this amounts to an invertible natural
transformation such that w(ϕ(x)) ∨ w(ϕ−1(x)) ≤ 1, for all points x.

Let us consider now an arbitrary functor ϕ : |X⊗2| → |Y | between the underlying
categories, and define its reduced weight |ϕ| as follows (writing ϕ(x) = ϕ(x, 0 → 1), for
x ∈ X)

|ϕ| = supxwY (ϕ(x)) = min {λ ∈ [0,∞] | for all x ∈ X, wY (ϕ(x)) ≤ λ}. (55)

Note now that ϕ sends a map (a, id(0)) of X⊗2 to f(a), a map (a, id(1)) to g(a) and
a map (a : x→ x′, 0 → 1) to

b = ϕ(a, 0 → 1) = g(a)◦ϕ(x) = ϕ(x′)◦f(a),

w(b) ≤ w(f(a)) + w(ϕ(x′)) ≤ ||f ||.w(a) + |ϕ| ≤ (||f || ∨ |ϕ|).(w(a) + 1),

w(b) ≤ w(g(a)) + w(ϕ(x)) ≤ ||g||.w(a) + |ϕ| ≤ (||g|| ∨ |ϕ|).(w(a) + 1).

(56)

Therefore, the Lipschitz weight of ϕ as a functor ϕ : |X⊗2| → |Y |, or global weight, is

||ϕ|| = ||f || ∨ ||g|| ∨ |ϕ|. (57)

A Lipschitz homotopy, or Lipschitz natural transformation, ϕ : f → g : X → Y will
be a natural transformation with a finite global weight ||ϕ||, or equivalently a natural
transformation of Lipschitz functors with a finite reduced weight |ϕ|. We will write:

(i) w1Cat the h-category of weighted categories, with 1-Lipschitz functors and elementary
natural transformations,

(ii) w∞Cat the 2-category of weighted categories, with Lipschitz functors and Lipschitz
natural transformations.

3.4. The fundamental weighted category. Let us come back to a δ-metric space
X, and construct its fundamental weighted category, working with extended paths modulo
extended 2-homotopy.

More precisely, an extended double path in X is a w∞-map A : δI2 → X. It is an
instance of a double homotopy (2.5), defined on the point, and the previous results for
double homotopies apply; its four faces are paths in X, between four vertices. A 2-path
is a double path whose faces ∂α1 are degenerate; it is a 2-homotopy A : a ≺2 b : x → x′

between its faces ∂α2 , which have the same endpoints. A 2-homotopy class of paths [a] is
a class of the equivalence relation '2 spanned by the preorder ≺2.

The fundamental weighted category wΠ1(X) of the δ-metric space X has for objects
the points of X; for arrows [a] : x → x′ the 2-homotopy classes of paths from x to x′,
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as defined above. Composition - written additively - is induced by concatenation of
consecutive paths, and identities come from degenerate paths

[a] + [b] = [a+ b], 0x = [e(x)] = [0x]. (58)

The weight is defined as usual in a quotient, starting from the length of extended
paths (1.8)

w(ξ) = infa∈ξ L(a). (59)

This is indeed a category, with the same proof as for d-spaces ([9], Thm. 3.2a),
based on the constructions of 2-dimensional homotopies in 2.5a-c. Moreover, wΠ1(X) is
(sub)additively weighted, as it follows immediately from the properties of L (1.8)

w(0x) = 0, w([a] + [b]) ≤ w[a] + w[b]. (60)

On a δ∞-map f : X → Y , we get a w∞-functor wΠ1(f) : wΠ1(X) → wΠ1(Y )

wΠ1(f)(x) = f(x), wΠ1(f)[a] = f∗[a] = [fa],

w(f∗[a]) ≤ ||f ||.w[a], ||f∗|| ≤ ||f ||. (61)

All this forms a functor wΠ1 : δ∞Mtr → w∞Cat, with values in the category of
(small) additively weighted categories and Lipschitz functors; a functor which restricts
to δMtr → wCat, because of the last inequality above. In particular, wΠ1 preserves
Lipschitz isomorphisms and isometric isomorphisms.

Finally, a δ∞-homotopy ϕ : f → g : X → Y yields a Lipschitz natural transformation

ϕ∗ : f∗ → g∗ : wΠ1(X) → wΠ1(Y ),

w(ϕ∗(x)) = w[ϕ(x)] ≤ ||ϕ||, ||ϕ∗|| ≤ ||ϕ||, (62)

so that wΠ1 : δ∞Mtr → w∞Cat is actually a morphism of h-categories, as well as its
restriction δ1Mtr → w1Cat to the 1-Lipschitz case.

The fundamental weighted category of X is linked to the fundamental groupoid of the
underlying space UX, by the obvious comparison functor

wΠ1(X) → Π1(UX), x 7→ x, [a] 7→ [a]. (63)

3.5. Geodesics. In a δ-metric space X, we say that an extended path a : x → x′ is a
homotopic geodesic if it realises the weight of its class, L(a) = w[a], which amounts to
saying that L(a) ≤ L(a′) for all extended paths a′ '2 a.

We say that the space X is geodetically simple if every arrow ξ : x → x′ of its fun-
damental weighted category wΠ1(X) has some representative a which realises its weight:
L(a) = w(ξ); the path a is then a homotopic geodesic.

We say that X is 1-simple if its fundamental category wΠ1(X) is a preorder: all hom
sets have at most one arrow.

The δ-metric spaces δRn, δR⊗n are geodetically simple and 1-simple; all their convex
subspaces are also (cf. [9], 3.4a). The pierced plane (!δR)2\{0} is not geodetically simple,
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nor 1-simple. The δ-metric circle δS1 is geodetically simple and not 1-simple; the higher
spheres are 1-simple and not geodetically simple, as antipodal points have infinitely many
geodesics between them.

Being geodetically simple is somehow related with completeness of the δ-metric, as it
appears from these examples. Actually, a non-complete space, like δ]0, 1[⊂ δR can be
geodetically simple; but it is also true that all its extended paths x → x′ (between two
given points) stay in the compact subspace δ[x, x′].

3.6. Theorem. [Pasting Theorem - ‘Seifert - van Kampen’ for fundamental weighted
categories] Let X be a δ-metric space; X1, X2 two subspaces and X0 = X1 ∩X2.

If X = int(X1)∪ int(X2), the following diagram of weighted categories and contracting
functors (induced by inclusions) is a pushout in wCat

wΠ1X0
u1 //

u2
��

wΠ1X1

v1
��

wΠ1X2 v2
// wΠ1X

(64)

Proof. As in [9], Thm.3.6.

3.7. Homotopy monoids. The fundamental weighted monoid wπ1(X, x) of the δ-metric
space X at the point x is the (additively) weighted monoid of endoarrows x → x in
wΠ1(X). It forms a functor from the (obvious) category δMtr∗ of pointed δ-metric spaces,
to the category of additively weighted monoids ([14], 2.1)

wπ1 : δMtr∗ → w+Mon, wπ1(X, x) = wΠ1(X)(x, x). (65)

This functor is strictly homotopy invariant: a pointed homotopy ϕ : f → g : (X, x) →
(Y, y) has, by definition, a trivial path at the base-point (ϕ(x) = 0y), whence the naturality
square of every endomap a : x→ x of X gives f∗[a] = g∗[a]

f(x)
f∗[a]//

[ϕ(x)]
��

f(x)

[ϕ(x)]
��

g(x)
g∗[a]

// g(x)

(66)

4. Minimal models

This is a brief exposition of how the minimal models developed in [13] for the fundamental
category of a d-space can be enriched, in the present weighted setting. Some knowledge
of the main definitions and results of [13] would be useful.
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4.1. The fundamental weighted category of a square annulus. Let us begin
with an elementary example, enriching with a δ-metric the ‘square annulus’ examined in
the Introduction of [13], as an ordered topological space.

Let us start from the δ-metric space δI
⊗2

, with

δ(x,y) = (x1 − y1) + (x2 − y2) if x1 ≤ y1, x2 ≤ y2,

= ∞, otherwise,
(67)

whose underlying ordered topological space (27) is the ordered topological square ↑[0, 1]2,
with euclidean topology and product order.

Taking out the open square ]1/3, 2/3[2 (marked with a cross), we get the square annulus
X ⊂ δI

⊗2
, with the induced δ-metric

X L L′

× ×
x

x′

•

•

//

OO

(68)

Its extended paths are thus the Lipschitz order-preserving maps δ[0, 1] → X defined on
the standard δ-interval, and move ‘rightward and upward’ (in the weak sense). Extended
homotopies of such paths are Lipschitz order-preserving maps ↑[0, 1]2 → X.

As a consequence of the ‘van Kampen’ theorem recalled above (using the subspaces
L,L′), the fundamental weighted category C = wΠ1(X) is the same as for the underlying
ordered topological space: it has some arrow x → x′ provided that x ≤ x′ and both
points are in L or L′ (the closed subspaces represented above). Precisely, there are two
arrows when x ≤ p = (1/3, 1/3) and x′ ≥ q = (2/3, 2/3) (as in the second figure above),
and one otherwise. The weight of an arrow can always be realised as the length of some
representative: X is geodetically simple (3.5).

Thus, the weighted category C is ‘essentially represented’ by the full weighted subcat-
egory E on four vertices 0, p, q, 1 (the central cell does not commute), where each of the
four generating arrows has weight 2/3, and the weight of E is linear (strictly additive on
composition)
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The situation can be analysed as follows, in E:

- the action begins at 0, from where we move to the point p, with weight 2/3,
- p is an (effective) future branching point, where we have to choose between two paths,
each of them of weight 2/3, which join at q, an (effective) past branching point,
- from where we can only move to 1, again with weight 2/3, where the process ends.

(Definitions and properties of regular and branching points can be found in [13], 5.3).
Recall that E is not equivalent to C, as a category, since C is already a skeleton, in the

ordinary sense. In order to make precise how E can ‘model’ the category C, we proved
in [13] (and will recall below) that E is both future equivalent and past equivalent to C,
and actually it is the ‘join’ of a minimal ‘future model’ with a minimal ‘past model’ of
the latter. All this can now be enriched with weights.

4.2. Future equivalence of weighted categories. The notion of future equiva-
lence - a symmetric version of an adjunction, with two units - can be easily transferred
from Cat ([13], 2.1) to the 2-category w∞Cat, since it makes sense in any 2-category.

Thus, a future equivalence (f, g;ϕ, ψ) between the weighted categories C,D will con-
sists of a pair of Lipschitz functors and a pair of Lipschitz natural transformations, the
units, satisfying two coherence conditions:

f : C � D : g ϕ : 1C → gf, ψ : 1D → fg, (70)

fϕ = ψf : f → fgf, ϕg = gψ : g → gfg (coherence), (71)

and will be said to be elementary, or 1-Lipschitz, if both functors and both natural
transformations are.

Future equivalences compose (as in [13]), and yield an equivalence relation of weighted
categories; the elementary ones do not. Dually, past equivalences have counits, in the
opposite direction.

In particular, an elementary future retract i : C0 ⊂ C will be a full weighted subcate-
gory having a reflector p a i which is 1-Lipschitz, has a 1-Lipschitz unit η : 1C → ip and a
trivial counit pi = 1. The coherence conditions of the adjunction (ηi = 1i, pη = 1p) show
that the fourtuple (i, p; 1, η) is an elementary future equivalence.

A (weighted) pf-presentation (extending [13], 4.2) of the weighted category C will be
a diagram consisting of an elementary past retract P and an elementary future retract
F of C (which are thus a full coreflective and a full reflective weighted subcategory,
respectively) with elementary adjunctions i− a p− and p+ a i+

P
i− //

C
p+ //

p−
oo F

i+
oo (72)

ε : i−p− → 1C (p−i− = 1, p−ε = 1, εi− = 1),

η : 1C → i+p+ (p+i+ = 1, p+η = 1, ηi+ = 1).
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4.3. Spectra. Coming back to the square annulus X (4.1), the weighted category C =
wΠ1(X) has a least full reflective weighted subcategory F , which is future equivalent to
C and minimal as such. Its objects form the future spectrum sp+(C) = {p, 1} [13]; also
the full weighted subcategory F = Sp+(C) on these objects is called a future (weighted)
spectrum of C
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Dually, we have the least full coreflective weighted subcategory P = Sp−(C), on the
past spectrum sp−(C) = {0, q}.

Together, they form a (weighted) pf-presentation of C (72), called the spectral pf-
presentation. Moreover the (weighted) pf-spectrum E = Sp(C) is the full weighted sub-
category of C on the set of objects sp(C) = sp−(C) ∪ sp+(C) ([13], 7.6). E is a strongly
minimal injective model of the category C ([13], Thm. 8.4).

5. Spaces with weighted paths

We introduce a second setting for weighted algebraic topology, which is more complicated
than δ-metric spaces but has finer quotients, as we shall see in the last section. The links
between the two settings are developed in Section 6.

5.1. Main definitions. A w-space X, or space with weighted paths, will be a topological
space together with a weight function w : XI → [0,∞], or cost function (also written wX)
defined on the set of its (continuous) paths, and satisfying three axioms concerning the
constant paths 0x, the path-concatenation a+b of consecutive paths and strictly increasing
reparametrisation (by a strictly increasing continuous map ρ : I → I)

(wsp.0) w(0x) = 0, for all points x of X,

(wsp.1) w(a+ b) ≤ w(a) + w(b), for all pairs of consecutive paths a, b.

(wsp.2) w(aρ) ≤ w(a), for all paths a and all ρ : I → I as above.

It is easy to see that the last condition, in the presence of the others, is equivalent to
asking w(aρ) ≤ w(a), for all paths a and all increasing continuous maps ρ : I → I which
are constant on a finite number of subintervals. It is also equivalent to the conjunction of
the following two conditions:

(wsp.1′) w(a) ∨ w(b) ≤ w(a+ b), for consecutive paths a, b.

(wsp.2′) w(aρ) = w(a), for an increasing homeomorphism ρ : I → I.
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We shall say that a path is free, feasible or unfeasible when, respectively, its cost is 0,
finite or∞.A w-space will be said to be linear, or strictly additive, if w(a+b) = w(a)+w(b);
see 5.4 for examples. We shall see in Section 6 that linear w-spaces form a coreflective
subcategory. Note that we are not asking that the weight function be continuous with
respect to the compact-open topology of XI; in most examples, this will only be true if
we restrict w to the feasible paths (or - equivalently - if we topologise [0,∞] letting ∞ be
everywhere dense, which might be interesting).

If X,Y are w-spaces, a w-map f : X → Y , or map of w-spaces, or 1-Lipschitz map will
be a continuous mapping which decreases costs: w(f◦a) ≤ w(a), for all (continuous) paths
a of X. More generally, a Lipschitz map, orw∞-map f : X → Y is a continuous mapping
which admits a finite Lipschitz constant λ ∈ [0,∞[, in the sense that w(f ◦a) ≤ λ.w(a),
for all continuous paths a in X.

We have thus the category wTop of w-spaces and w-maps, embedded in the category
w∞Top of w-spaces and w∞-maps. Again, we distinguish between isometric isomorphisms
(of wTop) and Lipschitz isomorphisms (of w∞Top).

The forgetful functor U : wTop → Top has left and right adjoints D a U a C, where
the discrete weight of DX is the highest possible one, with w(a) = 0 on the constant
paths and ∞ on all the others, while the natural, codiscrete weight of CX is the lowest
possible one, where all paths have a null cost. Except if otherwise stated, when viewing
a topological space as a weighted one we will use the embedding C : Top → wTop, where
all paths are free.

Note now that the weight function of the w-space X acts on the continuous mappings
a : I → UX, with values in the underlying topological space; we shall go on writing down,
pedantically, such occurrences of U . (Viewing these paths as w-maps DI → X would
also be correct, but confusing.) Also here, reversing paths by the involution r : I → I,
r(t) = 1 − t, gives the reflected, or opposite, w-space, forming a (covariant) involutive
endofunctor

R : wTop → wTop, R(X) = Xop, wop(a) = w(ar). (74)

A w-space is symmetric if it is invariant under reflection. It is reflexive, or self-dual,
if it is isometrically isomorphic to its reflection (cf. 5.4). The notation X ≤ X ′ will
mean that these w-spaces have the same underlying topological space and wX ≤ wX′ ;
equivalently, the identity of the underlying space is a w-map X ′ → X.

5.2. The weight of a map. A continuous mapping f : UX → UY between w-spaces
takes paths of UX into paths of UY , and inherits thus two weights from the category of
weighted sets, the additive weight ([14], 1.5.3):

|f |0 = supa (w(f ◦a)− w(a))
= min{λ ∈ [0,∞] | for all a, w(f ◦a) ≤ λ+ w(a)} (a ∈ Top(I, UX)),

(75)

and the multiplicative weight, or Lipschitz weight ([14], 1.6.3):

||f || = |f |1 = supa (w(f ◦a)/w(a)) = min{λ | for all paths a, w(f ◦a) ≤ λ.w(a)}. (76)
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The first distinguishes w-maps with the condition |f |0 = 0. But here we shall only
use the second, written as ||f ||, which distinguishes w-maps with the condition ||f || ≤ 1,
and w∞-maps with the condition ||f || < ∞. With this weight, wTop and w∞Top are
multiplicatively weighted categories [14]: all identities have ||1X || ≤ 1 and composition
gives ||gf || ≤ ||f ||.||g||.

If X is a w-space and λ ∈ [0,∞[, we write λX the same topological space equipped
with the weight λ.wX . A w∞-map f : X → Y with ||f || ≤ λ is the same as a w-map
λX → Y .

5.3. Limits. The category wTop has all limits and colimits, computed as in Top and
equipped with a suitable w-structure.

Thus, for a product
∏
Xi, a path a : I → U(ΠXi) of components ai : I → UXi has

weight w(ai) = supw(ai). For a sum
∑
Xi, a path a : I → U(

∑
Xi) lives in one compo-

nent UXi and inherits the weight from the latter.
Given a pair of parallel w-maps f, g : X → Y , the equaliser is the topological one,

with the restricted weight function. The coequaliser is the topological coequaliser Y/R,
with the induced weight

w(c) = inf (
∑

wY (bi)) (c : I → (UY )/R), (77)

the inf being taken on all finite families (b1, ..., bn) of paths in UY such that their projec-
tions on the quotient, pbi : I → (UY )/R, are consecutive, and give c = ((pb1)+ ...+(pbn))ρ
(by n-ary concatenation and reparametrisation with an increasing homeomorphism I →
I). Of course, if there are no such families, w(c) = inf(∅) = ∞.

The only non-trivial points are verifying that this weight-function satisfies the axioms
(wsp.1, 1′) of 5.1. Take c = c′ + c′′ : I → Y/R. First, every pair of decompositions of c′, c′′

c′ = (pb′1 + ...+ pb′m)ρ′, c′′ = (pb′′1 + ...+ pb′′n)ρ
′′, (78)

gives a decomposition c = (pb′1 + ...+ pb′′n)ρ; therefore

(wY (b′1) + ...+ wY (b′m)) + (wY (b′′1) + ...+ wY (pb′′n)) ≥ w(c), (79)

and w(c′) + w(c′′) ≥ w(c). Second, given a decomposition c = (pb1 + ... + pbn)ρ, we
can always assume that n = 2k (possibly inserting a constant path, without modifying∑
wY (bi)). Then

(pb1 + ...+ pbk) + (pbk+1 + ...+ pb2k) = cρ−1 = (c′ρ′) + (c′′ρ′′),

c′ρ′ = pb1 + ...+ pbk,

w(c′) ≤ wY (b1) + ...+ wY (bk) ≤ wY (b1) + ...+ wY (b2k),

(80)

(for suitable reparametrisations ρ′, ρ′′). It follows that w(c′) ≤ w(c), and similarly for c′′.
Linear w-spaces are not closed under (even binary) products, as we see below. But

they are closed under subspaces (plainly), all colimits (by adjointness) and tensor product
(5.5).
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The category w∞Top has finite limits and colimits, which can be constructed as above.
Even if, now, they are only determined up to Lipschitz isomorphism, we shall keep the
previous constructions as privileged ones. Thus, when we write X×Y in w∞Top, we still
mean that its weight is the l1-weight, with w(a, b) = w(a)+w(b); isomorphic constructions
will have different names (cf. 5.5). It is easy to verify that: ||f×g|| ≤ ||f || ∨ ||g||.

5.4. Standard models. The standard weighted real line, or w-line wR, is the euclidean
line with the following weight on all paths a : I → R, equivalently defined by its span or
length in δR (1.8)

w(a) = sp(a) = L(a); (81)

thus, w(a) is finite if and only if a is a (weakly) increasing path, and then w(a) =
a(1) − a(0). (General links between δ-metric spaces and w-spaces will be studied in the
next section.)

Its cartesian power in wTop, the n-dimensional standard w-space wRn has w(a) =
supi (ai(1)− ai(0)) for all increasing paths a : I → Rn (with respect to the product order,
x ≤ x′ if and only if xi ≤ x′i, for all i). Plainly, wR is linear while the higher dimensional
wRn are not.

The standard w-interval wI has the subspace structure of the w-line; the standard
w-cube wIn is its n-th power, and a subspace of wRn. These w-spaces are not symmetric
(for n > 0), but reflexive; in particular, the canonical reflecting isomorphism

r : wI → (wI)op, t 7→ 1− t, (82)

will be used to reflect paths and homotopies. The standard weighted circle wS1 will be
the coequaliser in wTop of the following two pairs of maps (equivalently)

∂−, ∂+ : {∗} ⇒ wI, ∂−(∗) = 0, ∂+(∗) = 1, (83)

id, f : wR ⇒ wR, f(x) = x+ 1. (84)

Thus, the ‘standard realisation’ of the first coequaliser is the quotient (wI)/∂I, which
identifies the endpoints; a feasible path turns around the circle in a precise direction,
and its weight measures the length of the path with respect to the length of the circle:
w(a) = L(a) in δS1. The Lipschitz-isomorphic structure 2π.wS1 is also of interest. Both
are linear.

More generally, the weighted n-dimensional sphere will be the quotient of the weighted
cube wIn modulo its (ordinary) boundary ∂In, while wS0 has the discrete topology and
the unique w-structure

wSn = (wIn)/(∂In) (n > 0), wS0 = S0 = {−1, 1}. (85)

All directed spheres are reflexive. Again, wS1 is linear while the higher spheres are
not.
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5.5. Tensor product. The tensor product X⊗Y of two w-spaces (similar to the tensor
product in w+) will be the cartesian product of the underlying topological spaces, with
an l1-type weight (instead of the l∞-one, pertaining to the cartesian product)

w⊗(a, b) = wX(a) + wY (b), (86)

where (a, b) : I → UX×UY denotes the path of components a : I → UX, b : I → UY .
Plainly, this defines a symmetric monoidal structure on wTop, with identity the singleton
w-space {∗}.

Linear w-spaces are closed under tensor product. In particular, all tensor powers
(wR)⊗n, (wI)⊗n and (wS1)⊗n are linear. The following theorem shows that all of them
are exponentiable with respect to the tensor product; in particular, the tensor power
(wI)⊗n, which is what is relevant for homotopy.

This tensor product extends to w∞Top, with ||f ⊗g|| ≤ ||f || ∨ ||g||. Even if here
the tensor product is isomorphic to the cartesian one, we will keep these two constructs
distinct.

5.6. Theorem. [Exponentiable w-spaces] Let Y be a linear w-space with a locally com-
pact Hausdorff topology. Then Y is ⊗ -exponentiable in wTop; for every w-space Z, the
internal hom

ZY = wTop(Y, Z) ⊂ Top(UY, UZ), (87)

is the set of w-maps, with the compact-open topology restricted from (UZ)UY and the
following w-structure. A path c : I → U(ZY ) ⊂ (UZ)UY has weight

W (c) = supb (wZ(ev◦(c, b))− wY (b)) (for b : I → UY ), (88)

where λ− µ is the truncated difference in w+. The evaluation mapping

ev : ZY ⊗Y → Z, (89)

is the restriction of the topological one; it is a w-map, the counit of the adjunction.

Proof. (Note. The same proof, conveniently simplified, shows that δMtr is monoidal
closed.)

We defer to the end the technical part showing that W is indeed a w-structure. First,
the evaluation mapping (89) satisfies the inequality w⊗(c, b) ≥ wZ(ev ◦(c, b)), because of
the adjunction in w+:

W (c) ≥ wZ(ev◦(c, b))− wY (b) (for all b : I → UY ),

w⊗(c, b) = W (c) + wY (b) ≥ wZ(ev◦(c, b)).
(90)

Second, the pair (ZY , ev : ZY ⊗Y → Z) is a universal arrow from the functor −⊗Y
to the object Z: given a w-space X and a w-map f : X⊗Y → Z, we have to prove that
there is precisely one w-map g : X → ZY such that f factors as:

ev◦(g⊗Y ) : X⊗Y → ZY ⊗Y → Z. (91)
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Indeed, since Y is exponentiable in Top, there exists precisely one continuous mapping
g : UX → (UZ)UY such that f = ev◦(g×UY ), and it will be sufficient to prove the following
two facts.
(a) Im(g) ⊂ ZY . For x ∈ X, we must prove that g(x) : Y → Z is a w-map. And indeed,
for every path b : I → UY

w(g(x)◦b) = w(f ◦(0x, b) ≤ w⊗(0x, b) = wX(0x) + wY (b) = wY (b). (92)

(b) The mapping g is a w-map X → ZY . And indeed, for every path a : I → UA

W (g◦a) = supb (wZ(ev◦(ga, b))− wY (b)) = supb (wZ(f ◦(a, b))− wY (b))
≤ supb (w⊗(a, b)− wY (b)) = wX(a).

(93)

Finally, we verify the axioms for the hom-weight W . First, the constant path 0h : I →
ZY at some w-map h : Y → Z gives

W (0h) = supb (wZ(ev◦(0h, b))− wY (b)) = supb (wZ(hb)− wY (b)) = 0. (94)

Second, to prove (wsp.1), let c = c′ + c′′ be a concatenation of paths in U(ZY ). We
can always rewrite a path b : I → UY as the concatenation b = b′ + b′′ of its two halves,
so that, using the assumption that Y is linear and letting (b′, b′′) be an arbitrary pair of
consecutive paths in UY :

W (c′ + c′′) = supb [wZ(ev◦(c′ + c′′, b))− wY (b)]

= supb′b′′ [wZ(ev◦(c′ + c′′, b′ + b′′))− wY (b′ + b′′)]

= supb′b′′ [wZ((ev◦(c′, b′)) + (ev◦(c′′, b′′)))− wY (b′)− wY (b′′)]

≤ supb′b′′ [(wZ(ev◦(c′, b′))− wY (b′) + wZ(ev◦(c′′, b′′))− wY (b′′)]

≤ W (c′) +W (c′′),

(95)

since the last term amounts to the previous sup for arbitrary paths b′, b′′ in Y . (Note. For
δ-metric spaces, one would use the fact that every ‘path’ (y, y′) : 2 → Y can be rewritten
as a trivial ‘concatenation’ (y, y′) + (y′, y′), with d(y, y′) = d(y, y′) + d(y′, y′).)

Now, for (wsp.1′), we can make our least upper bound smaller by restriction to those
paths b : I → Y which are constant on [1/2, 1], so that b = b′ + b′′, with an arbitrary b′

and b′′ constant at the terminal of b′:

W (c′ + c′′) ≥ supb′ (wZ((ev◦(c′, b′)) + (ev◦(c′′, b′′)))− wY (b′ + b′′))

≥ supb′ (wZ(ev◦(c′, b′))− wY (b′)) = W (c′).
(96)

where, again, we have used the linear property of Y : w(b) = w(b′) + w(b′′) = w(b′).
Last, for (wsp.2′), given an increasing homeomorphism ρ : I → I, every path b′ in UY

can be rewritten as bρ, with b = b′ρ−1, so that:

W (cρ) = supb (wZ(ev◦(cρ, bρ))− wY (bρ)) = supb (wZ(ev◦(c, b)◦ρ)− wY (bρ))

= W (c).
(97)
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5.7. Elementary and extended paths. Let X be a w-space. An elementary path
(resp. an extended path, or Lipschitz path) in X will be a 1-Lipschitz (resp. a Lipschitz)
map a : wI → X.

Thus, a continuous mapping a : I → X is an elementary path if and only if ||a|| ≤ 1,
for the Lipschitz weight ||a|| (76), defined as

min{λ ∈ [0,∞] | for all increasing maps ρ : I → I, w(aρ) ≤ λ.(ρ(1)− ρ(0))}. (98)

and is an extended path if and only if ||a|| < ∞. Again, elementary paths cannot be
concatenated.

The reflected (elementary or extended) path is obtained in the obvious way

aop = ar : wI → Xop, r(t) = 1− t, (99)

A reversible extended path is a mapping a : I → X such that both a and aop are extended
paths wI → X.

In the category wTop, pasting two copies of the standard weighted interval, one after
the other, can be realised as w[0, 2] ⊂ wR (or as 2.wI, cf. 5.2), which is of no help to
concatenate paths parametrised on wI, in wTop. But in w∞Top this pasting can be
realised as wI (Lipschitz-isomorphic to w[0, 2]) by the standard concatenation pushout

{∗} ∂+
//

∂−

��

wI

k−

��
k−(t) = t/2, k+(t) = (t+ 1)/2.

wI
k+

// wI

(100)

(Again, the diagram above is still in wTop, but is a pushout only in w∞Top.) Now, given
two consecutive Lipschitz paths a, b : wI → X, with a(1) = b(0), we get a concatenated
path

a+ b : wI → X, ||a+ b|| ≤ 2.(||a||+ ||b||), (101)

as follows from the following proposition (or using the pushout 2.wI, in wTop).
We can now treat homotopies as for δ-metric spaces, in Section 2, distinguishing the

h-categories w1Top ⊂ wTop ⊂ w∞Top, where the intermediated h-category wTop has 1-
Lipschitz maps and Lipschitz homotopies. And define the fundamental weighted category
of a w-space as in Section 3. In particular, concatenation is based on the following result.

5.8. Proposition. For every w-space X, the functor X×− : w∞Top → w∞Top preserves
the standard concatenation pushout (100). Moreover, if a map f : X×wI → Y comes from
the pasting of two ‘consecutive’ maps f0, f1 : X×wI → Y , we have the following upper
bound for its Lipschitz weight:

||f || ≤ 2.(||f0||+ ||f1||) (f0 = f ◦(X×k−), f1 = f ◦(X×k+)). (102)

Equivalently, one can use the Lipschitz-isomorphic functor X⊗− .
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Proof. In Top, the preservation holds because the subspaces UX× [0, 1/2] and UX×
[1/2, 1] form a finite closed covering of UX×I, so that each mapping defined on the latter
and continuous on such closed parts is continuous.

Consider then a (topological) map f : UX×I → UY coming from the pasting of two
maps f0, f1 on the topological pushout UX×I

f(x, t) = f0(x, 2t), for 0 ≤ t ≤ 1/2, f(x, t) = f1(x, 2t− 1), for 1/2 ≤ t ≤ 1. (103)

Let now (a, ρ) : I → UX×I be any feasible path; in particular, ρ : I → I is an increasing
map. If the image of ρ is contained in the first half of I, then f ◦(a, ρ) = f0(a, 2ρ) and

w(f ◦(a, ρ)) ≤ ||f0||.(w(a) ∨ 2w(ρ)) ≤ 2.||f0||.w(a, ρ). (104)

Similarly for the second half. Otherwise, since ρ is increasing, we have ρ(t1) = 1/2 at
some interior point t1 ∈]0, 1[; and we can assume that t1 = 1/2 (up to precomposing with
an increasing homeomorphism σ : I → I, which does not modify the weight of paths, by
(wsp.2′)). Now, the path f◦(a, ρ) : I → UY is the concatenation of two paths ci : wI → UY
which factor through the Lipschitz maps fi

c0(t) = f ◦(a(t/2), ρ(t/2)) = f0 ◦(a(t/2), 2ρ(t/2)),

c1(t) = f ◦(a((t+ 1)/2), ρ((t+ 1)/2)) = f1 ◦(a((t+ 1)/2), 2ρ((t+ 1)/2)− 1).
(105)

and finally we can conclude that f is Lipschitz, with the upper bound (102)

w(f ◦(a, ρ)) ≤ w(c0) + w(c1) ≤ (||f0||+ ||f1||).(w(a) ∨ 2w(ρ))
≤ 2.(||f0||+ ||f1||).w(a, ρ).

(106)

6. Linear and metrizable w-spaces

The span and length function of a δ-metric space X, defined in 1.8, allow us to construct
the w-spaces spX (6.2) and LX; the latter is linear (6.3).

6.1. Linear w-spaces. First, we want to observe that linear w-spaces form a full sub-
category Lw∞Top of w∞Top, which has a coreflector L, right adjoint to the embedding
U

U : Lw∞Top � w∞Top : L (U a L). (107)

In fact, for a w-space X, there is a linearised w-space L(X) on the same underlying
topological space, endowed with the least linear weight L ≥ w

L(a) = supt

∑
j w(a(tj−1, tj)) (0 = t0 < t1 < ... < tp = 1),

a(tj−1, tj)(t) = a((1− t).tj−1 + t.tj) (0 ≤ t ≤ 1).
(108)

Note that we have written a(tj−1, tj) : I → X the restriction of the path a to the
interval [tj−1, tj], reparametrised on the standard interval.
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Thus L(X) ≥ X, and L(X) = X if and only if the w-space X is linear. These relations
form, respectively, the counit UL→ 1 and the unit LU = 1 of the adjunction.

All this restricts to contractions, giving a full coreflective subcategory LwTop of wTop.
Therefore, linear w-spaces are closed under colimits in wTop.

6.2. Span-metrizable w-spaces. Now, let us construct an adjunction

δ : w∞Top � δ∞Mtr : sp (δ a sp). (109)

First, the functor

δ : w∞Top → δ∞Mtr, ||δf || ≤ ||f ||, (δ : wTop → δMtr), (110)

sends a w-space X to the δ-metric space δX, consisting of the same set with

δ(x, x′) = infaw(a), (111)

where a : δI → X varies in the set of extended paths in X, from x to x′. The δ-metric
spaces obtained in this way from a w-space will be said to be geodetic. Plainly, if f : X →
X ′ is a w∞-map, δf = f : δX → δX ′ is continuous and satisfies the inequality of (110),
whence it is a δ∞-map (and 1-Lipschitz if f is).

Second, the functor

sp : δ∞Mtr → w∞Top, ||spf || ≤ ||f ||, (sp : δMtr → wTop), (112)

has essentially been constructed in Section 1. For a δ-metric space Y , we let spY be the
same set equipped with the symmetric topology (1.6) and with the weight-function sp
defined in (26)

sp(a) = suptδ(a(t0), a(t1)) (0 ≤ t0 < t1 ≤ 1), (113)

which has already been seen to satisfy the axioms of w-spaces (1.8).
The w-spaces obtained in this way will be said to be span-metrizable. On maps, we

take again the same underlying mapping.
These two functors form an idempotent adjunction δ a sp, which restricts to a (co-

variant) Galois connection whenever we fix the underlying set: in fact, both functors do
not change the latter, while unit and counit reduce to inequalities

X ≥ sp(δX), δ(spY ) ≥ Y, (114)

where X is a w-space and Y a δ-metric space. (For idempotent adjunctions, see [1] Section
6 and [17] Lemma 4.3.)

The adjunction gives an equivalence between the full subcategories of:

(a) span-metrizable w-spaces, characterised by the condition X = sp(δX), or equivalently
by the condition X = spY for a suitable δ-metric structure Y (on the same set),
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(b) geodetic δ-metric spaces, characterised by the condition Y = δ(spY ), or equivalently
by the condition Y = δX for some weighted structure X on the associated topological
space.

Restricting to 1-Lipschitz maps, span-metrizable w-spaces form a reflective subcat-
egory of wTop, closed under limits, while geodetic δ-metric spaces form a coreflective
subcategory of δMtr, closed under colimits.

In the standard examples of 5.4, the standard w-line is span-metrizable, wR = sp(δR)
and the standard δ-line is geodetic, δ(wR) = δR. Similarly, in higher dimension, wRn =
sp(δRn) and δ(wRn) = δRn; this also holds for the standard interval and its powers.

The standard δ-circle δS1 = δ(wS1) is geodetic, while the circle S1 with the euclidean
metric of R2 is not, since δ(spS1) has the obvious geodetic distance, which is bigger. The
standard w-circle wS1 is not span-metrizable, since the weight (i.e. length) of its feasible
paths has no finite upper bound, while the δ-metric of δS1 = δ(wS1) cannot exceed 1.

6.3. The length adjunction. The span-adjunction (109) and the adjunction of linear
w-spaces (107) give a composed adjunction, idempotent again

δ : Lw∞Top � δ∞Mtr : L (δ a L). (115)

Now, δ is the restriction of the functor (110), and equips a linear w-space X with the
geodetic δ-metric δ(x, x′) = infaw(a). On the other hand, L = L ◦sp takes a δ-metric
space Y to the same set equipped with the symmetric topology (1.6) and with the (linear)
weight-function L which we have already defined in 1.8

L(a) = supt

∑
δ(a(tj−1), a(tj)) (0 = t0 < t1 < ... < tp = 1). (116)

Also here, maps are left ‘unchanged’ and ||δf || ≤ ||f ||, ||Lf || ≤ ||f ||, so that the
adjunction restricts to contractions.

6.4. Length-metrizable w-spaces. Also the length adjunction (115) becomes a (co-
variant) Galois connection whenever we fix the underlying set: unit and counit reduce to
inequalities

X ≥ L(δX), δ(LY ) ≥ Y, (117)

where X is a linear w-space and Y a δ-metric space.
The adjunction gives thus an equivalence between the full subcategories of:

(a) length-metrizable w-spaces, characterised by the condition X = L(δX), or equivalently
by the condition X = LY for some δ-metric structure Y on the same set (all such w-spaces
are linear),

(b) linearly geodetic δ-metric spaces, characterised by the condition Y = δ(LY ), or Y =
δX for some linear weight X on the associated topological space.

Thus, a linearly geodetic δ-metric space is geodetic; the converse need not be true. For
instance, the δ-metric subspace Y ⊂ δR2 consisting of the union of the axes is geodetic,
but not linearly so: the points y = (−1, 0) and y′ = (0, 1) have δ(y, y′) = 1 but all feasible
paths a in Y , from y to y′, have length L(a) = 2.
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The two notions of ‘metrizability’ of w-spaces are not comparable. Indeed, the w-line
wR is metrizable in both senses. The w-plane wR2 is span-metrizable and not linear,
hence not length-metrizable. The standard w-circle wS1 (5.4) is only length-metrizable.
Finally, in 7.2, we will show that the irrational rotation w-space Wϑ has a trivial δ-metric
on δWϑ (always zero), whence it is neither span- nor length-metrizable.

6.5. Directed spaces. Finally, we have a forgetful functor

d : w∞Top → dTop, (118)

which sends a w-space to the same topological space, equipped with the distinguished
paths obtained from the feasible ones, by reparametrisation along weakly increasing maps
I → I.

Composing L : δ∞Mtr → Lw∞Top with the latter, we get the forgetful functor
δ∞Mtr → dTop already considered in 1.9, which distinguishes the L-feasible paths of
a δ-metric space - already closed under increasing reparametrisation.

7. Weighted noncommutative tori and their classification

The irrational rotation w-space Wϑ (7.1) has classifications similar to the irrational rota-
tion C*-algebras Aϑ. Analogous results have been obtained in [12] for ‘normed’ cubical
sets and their ‘normed’ homology - an earlier occurrence of weighted algebraic topology;
cubical sets give weaker results, without the metric aspects (cf. [11]). Throughout this
section ϑ is an irrational number.

7.1. Irrational rotation w-spaces. Let us begin recalling some well-known ‘non-
commutative spaces’.

First, take the line R and its (dense) additive subgroup Gϑ = Z + ϑZ, acting on the
former by translations. In Top, the orbit space R/Gϑ is trivial: an uncountable set with
the coarse topology. In δMtr, the quotient δR/Gϑ is trivial as well: an uncountable set
with the null distance.

In noncommutative geometry, this set is ‘interpreted’ as the (noncommutative) C*-
algebra Aϑ, generated by two unitary elements u, v under the relation vu = exp(2πiϑ).uv,
and called the irrational rotation algebra associated with ϑ, or also a noncommutative
torus [5, 6, 20, 19]. Both its complex K-theory groups are two-dimensional.

A relevant achievement of K-theory [19, 20] classifies these algebras, by proving that
K0(Aϑ) ∼= Z + ϑZ as an ordered subgroup of R; moreover, the traces of the projections
of Aϑ form the set Gϑ ∩ [0, 1]. It follows that Aϑ and Aϑ′ are isomorphic if and only
if ϑ′ ∈ Z ± ϑ ([20], Thm. 2) and strongly Morita equivalent if and only if ϑ and ϑ′

are equivalent modulo the fractional action (on the irrationals) of the group GL(2,Z) of
invertible integral 2×2 matrices ([20], Thm. 4)(

a b
c d

)
.t = (at+ b)/(ct+ d) (a, b, c, d ∈ Z; ad− bc = ±1), (119)
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(or the action of the projective general linear group PGL(2,Z) on the projective line).
Since the group GL(2,Z) is generated by the matrices

R =

(
0 1
1 0

)
, T =

(
1 1
0 1

)
(120)

the orbit of ϑ is its closure {ϑ}RT under the transformations R(t) = t−1 and T±1(t) = t±1
(on R \Q).

We show now how one can obtain similar results with the w-space naturally arising
from the action of Gϑ on the w-line: the point is to replace a topologically-trivial orbit
space R/G with the corresponding quotient of the standard w-line wR, by a procedure
analogous to the one followed in [11, 12] for cubical sets or weighted cubical sets.

We are thus lead to consider the irrational rotation w-space

Wϑ = (wR)/Gϑ, (121)

whose feasible paths reduce to the projection of the feasible paths of wR, as we prove now.
It will be useful to use the following standard weight on the additive groups R and Gϑ

w(x) = δ(0, x), (122)

i.e. w(x) = x when x ≥ 0, w(x) = ∞ otherwise. And the (restricted) standard weight
w(x) = x on the additive monoids R+ and G+

ϑ = Gϑ ∩ R+ formed by the elements of
finite weight.

7.2. Theorem. (a) The fundamental weighted monoid of Wϑ at each point x ∈ R/Gϑ is
isometrically isomorphic to the additive weighted monoid G+

ϑ , via the weight function

w : wπ1(Wϑ, x) → [0,∞[, Im(w) = G+
ϑ . (123)

(b) Choosing a representative x ∈ R of x, for every feasible path a : wI → Wϑ starting at x
there is precisely one increasing path a : wI → R which lifts it and starts at x. Moreover,
the weight of a in Wϑ coincides with the weight of a, w(a) = a(1)− a(0) = a(1)− x.

(c) The w-space Wϑ is linear; the associated metric space δWϑ (110) is codiscrete, with
δ(x, y) always zero, so that Wϑ is neither span- nor length-metrizable.

Proof. We begin with proving (b). Take a feasible path a : wI → Wϑ starting at x, and
choose a representative x ∈ R of the latter. There exists then some finite family a1, ..., ap
of feasible (i.e., increasing) paths in wR such that the projections aj are consecutive and
give a = a1 + ... + ap; further, w(a) is the greatest lower bound of

∑
w(aj) (for such

families).
Now, up to Gϑ-translations, we may assume that a1 starts at x and all aj are con-

secutive (without changing their weight and the concatenation of projections). Thus
a = a1 + ... + ap projects to a with w(a) =

∑
w(aj), since wR is linear. It follows that

w(a) is the greatest lower bound of w(a), where a varies among the paths in R which
start at x and lift a.
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But there is only one path which satisfies these conditions. Indeed, if also b does, the
image of the continuous mapping a− b : I → R must be contained in Gϑ, which is totally
disconnected; thus a − b is constant, and a(0) = x = b(0) gives a = b. It follows that
w(a) = w(a), where a is the unique path in R which starts at x and lifts a.

For (c), we have proved above that Wϑ is linear. The other assertions are obvious,
taking into account the characterisations of span- and length-metrizable w-spaces, in 6.2
and 6.4.

For (a), let us consider the weight function (123). First, we show that its image is G+
ϑ .

For a loop a, we have w(a) = w(a) where the (increasing) lifting a starts at x and ends
at some x′ ≥ x, which also projects to x; thus w(a) = x′ − x ∈ G+

ϑ . On the other hand,
if g ∈ G+

ϑ , any increasing path a : x→ x+ g projects to a loop at x, whose weight is g.
Finally, we must prove that the weight function is injective. Let a, b be two loops

at x with the same weight g ∈ G+
ϑ , and let a, b be their lifting starting at x; they have

again the same weight g, which means that they end at the same point x′ = x+ g. Then,
the increasing path c = a ∨ b : I → R also goes from x to x′; since a ≤ c, the affine
interpolation from a to c is an extended 2-homotopy a ≺2 c (3.4); similarly, b ≺2 c and
a '2 b, which projects to [a] = [b].

7.3. Theorem. [Theorem A (Isometric classification)] The w-spaces wR/Gϑ and wR/Gϑ′

are isometrically isomorphic if and only if G+
ϑ = G+

ϑ′ (as subsets of R), if and only if
Gϑ = Gϑ′, if and only if ϑ′ ∈ Z± ϑ.

Proof. If our w-spaces are isometrically isomorphic, also their fundamental weighted
monoids (independently of the base point) are: G+

ϑ
∼= G+

ϑ′ (isometrically). Since the
values of the weight w : G+

ϑ → R form the set G+
ϑ , it follows that G+

ϑ = G+
ϑ′ , which

implies that Gϑ (the additive subgroup of R generated by G+
ϑ ) coincides with Gϑ′ . If

this is the case, then ϑ = a + bϑ′ and ϑ′ = c + dϑ for suitable integers a, b, c, d; whence
ϑ = a + bc + bdϑ and d = ±1, so that ϑ′ = c ± ϑ. Finally, if ϑ′ ∈ Z± ϑ, then Gϑ = Gϑ′

and wR/Gϑ = wR/Gϑ′ .

7.4. Theorem. [Theorem B (Lipschitz classification)] The w-spaces wR/Gϑ and wR/Gϑ′

are Lipschitz isomorphic if and only if the equivalent conditions of the following Lemma
hold.

Proof. One implication follows from Theorem 7.2: if our w-spaces are Lipschitz iso-
morphic, also their fundamental weighted monoids G+

ϑ and G+
ϑ′ are, by the functorial

properties of wΠ1 (3.4). For the converse, let ϑ′ belong to the closure {ϑ}RT ; it suffices
to consider the cases ϑ′ ∈ ϑ + Z and ϑ′ = ϑ−1. In the first case, Gϑ and Gϑ′ coincide, as
well as their action on wR; in the second, the Lipschitz isomorphism of w-spaces

f : wR → wR, f(t) = |ϑ|.t, (124)

restricts to an isomorphism f ′ : Gϑ → Gϑ′ , obviously consistent with the actions (f(t+g) =
f(t) + f ′(g)), and induces a Lipschitz isomorphism wR/Gϑ → wR/Gϑ′ .
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7.5. Lemma. Let ϑ, ϑ′ be irrationals. The following conditions are equivalent:

(a) the weighted groups Gϑ and Gϑ′ are Lipschitz isomorphic,

(b) the weighted monoids G+
ϑ and G+

ϑ′ are Lipschitz isomorphic,

(c) Gϑ and Gϑ′ are isomorphic as ordered groups (with respect to the total orders induced
by R),

(d) ϑ and ϑ′ are conjugate under the action of GL(2,Z) (7.1),

(e) ϑ′ belongs to the closure {ϑ}RT of {ϑ} under the mappings R(t) = t−1 and T±1(t) =
t± 1.

Proof. The equivalence of the last three conditions is well-known, within the classifi-
cation of the C*-algebras Aϑ up to strong Morita equivalence. It is also proved in [11],
Lemma 4.7.

Further, (a) implies (b), because G+
ϑ is the monoid of elements of Gϑ having a fi-

nite weight. And (b) implies (c), because Gϑ is the group canonically associated to the
cancellative monoid G+

ϑ , ordered with the latter as a positive cone.
Finally, to prove that (e) implies (a), let ϑ′ belong to the closure {ϑ}RT ; again, it

suffices to consider the cases ϑ′ ∈ ϑ + Z and ϑ′ = ϑ−1. In the first, Gϑ = Gϑ′ ; in the
second, the Lipschitz isomorphism of weighted spaces f : wR → wR considered above
(124) restricts to a Lipschitz isomorphism of weighted abelian groups Gϑ → Gϑ′ .
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