MG.VETTORI E RETTE

DEFINIZIONE **0.1.** Un vettore applicato o segmento orientato dello spazio ordinario è il dato di una coppia ordinata di punti dello spazio, il primo detto punto iniziale o punto di applicazione, il secondo detto punto finale o secondo estremo. Un vettore applicato di estremi A e B è denotato B-A. Se A=B il vettore applicato è quello nullo.

Un vettore applicato B - A individua (ed è individuato da):

- \bullet il punto di applicazione A,
- la direzione (della retta congiungente A eB, detta retta di applicazione del vettore applicato),
- il verso (da A a B lungo la retta di applicazione),
- il modulo (il numero reale, positivo o nullo, che misura la lunghezza del segmento di estremi $A \in B$)¹.

DEFINIZIONE **0.2.** Due vettori applicati B-A e D-C sono equipollenti, in simboli $B-A\equiv D-C$, se hanno gli stessi

- direzione,
- verso,
- modulo².

Nell'insieme dei vettori applicati dello spazio l'equipollenza è una $relazione\ di\ equivalenza^3.$

DEFINIZIONE **0.3.** (1) Un vettore libero, o semplicemente, vettore dello spazio è una classe di equipollenza di vettori applicati.

- (2) Se B-A è un vettore applicato e u è il corrispondente vettore (libero) si scrive $B-A\in u$ o anche, per abuso di notazione, u:=B-A e si legge B-A è un rappresentante di u o anche u è la classe di equipollenza di B-A e, meno bene, ma più brevemente, u=B-A. Il modulo di u, indicato |u|, è il modulo di un rappresentante qualsiasi di u.
- (3) Il vettore libero individuato da un vettore applicato con punto iniziale e secondo estremo coincidenti⁴ è detto *vettore nullo* e denotato 0.

PROPOSIZIONE **0.4.** Dati un vettore applicato B-A e un punto $O \in \Sigma \Longrightarrow \exists !$ vettore applicato $P-O \equiv B-A$.

Proof. Possiamo chiaramente supporre $A \neq B$ e O non appartenente alla retta AB, conduciamo da B la retta \parallel ad AO e da O la retta \parallel ad AB. Detto P il punto comune a queste due rette, $P-O \equiv B-A$.

¹Il vettore nullo è individuato dall'avere modulo nullo, mentre la direzione e il verso sono indeterminati

 $^{^2{\}rm O},$ equivalentemente, il quadrilatero di vertici A,B,C,D è un parallelogramma (inclusi i casi degeneri).

³Ossia è una relazione riflessiva, simmetrica e transitiva.

 $^{^4\}mathrm{E}$ quindi da tutti i vettori applicati con estremi coincidenti, che sono chiaramente equipollenti tra loro!

COROLLARIO **0.5.** Fissato $O \in \Sigma$, la corrispondenza che associa a ogni vettore (libero) u l'unico vettore, della classe di equipollenza u, applicato in O è biunivoca.

Sull'insieme V dei vettori (liberi) di Σ sono definite 'in modo geometrico' le seguenti operazioni:

• addizione: siano $u,v\in V$ con u=B-A e v=D-A e $C\in \Sigma$ il punto del piano individuato da A,B,D tale che ABCD sia un parallelogramma, si pone u+v:=C-A, tale $u+v\in V$ è detto $somma\ di\ u\ e\ v,$

siano $u, v, w \in V$:

i la somma di vettori (liberi) è associativa, ossia, si ha:

u + (v + w) = (u + v) + w e si scrive semplicemente u + v + w;

ii la somma di vettori (liberi) è commutativa, ossia, si ha: u+v=v+u;

iii il vettore nullo 0 soddisfa u + 0 = u = 0 + u;

iv -u := A - B è l'opposto di u infatti si ha u + (-u) = 0;

V è un gruppo abeliano rispetto all'addizione;

- moltiplicazione per scalari:
 - -siano $0\neq u\in V, \lambda\in\mathbb{R}^*,$ il prodotto di ue $\lambda,$ denotato $\lambda u,$ è il vettore con

la stessa direzione di u,

 $|\lambda u| = |\lambda||u|,$

il verso concorde o discorde con u, a seconda che $\lambda > 0$ o $\lambda < 0$;

 $- \text{ se } \lambda = 0 \in \mathbb{R} \text{ oppure } u = 0, \text{ si pone } \lambda u := 0,$

siano $\lambda, \mu \in \mathbb{R}$:

v la moltiplicazione per scalari è omogenea, ossia si ha:

 $(\lambda \mu)u = \lambda(\mu u),$

vi l'addizione tra scalari è distributiva rispetto alla moltiplicazione tra scalari e vettori, ossia si ha:

$$(\lambda + \mu)u = \lambda u + \mu u,$$

vii l'addizione tra vettori è distributiva rispetto alla moltiplicazione tra scalari e vettori, ossia si ha:

$$\lambda(u+v) = \lambda u + \lambda v,$$

viii la moltiplicazione per scalari è unitaria, ossia si ha:

$$1_{\mathbb{R}}u=u$$
;

V con le operazioni di addizione e moltiplicazione per scalari è un $\mathbb{R}\text{-}spazio$ vettoriale.

n.b. Fin qui abbiamo usato solo il concetto di \parallel tra rette e confrontato le lunghezze di segmenti situati su rette \parallel , non abbiamo cioè confrontato segmenti segmenti qualsiasi né misurato l'angolo di due semirette o usato il concetto di \perp .

Notazione **0.6.** Fissato un riferimento cartesiano $\sigma(O; x, y, z)$ (vedi Cor. 0.5.):

- a ogni vettore (libero) u si associa l'unico vettore applicato $P O \in u$,
- a ogni vettore applicato P-O si associano le coordinate cartesiane di P in σ , ciò dà una c.b.u. tra V ed \mathbb{R}^3 , che consente di identificare i due insiemi.

Scrivendo u=(a,b,c) si intende che è stato fissato un riferimento cartesiano $\sigma(O;x,y,z)$ e che, posto P-O=u, si ha P(a,b,c).

Inoltre, uguaglianza e similitudine di triangoli, permettono di tradurre in termini di coordinate le operazioni 'geometriche' di addizione e moltiplicazione per scalari. Piú precisamente, dati

 $u = (a, b, c), v = (a', b', c'), a, b, c, a', b', c', \lambda \in \mathbb{R}$, si ha:

- i) u + v = (a + a', b + b', c + c'),
- ii) $\lambda u = (\lambda a, \lambda b, \lambda c);$

se $A(a_1, a_2, a_3), B(b_1, b_2, b_3)$, si ha:

- iii) $B-A=(b_1-a_1,b_2-a_2,b_3-a_3);$ infine, dato $P\in\Sigma$ con $P-O\equiv B-A,$ (ossia OABP parallelogramma), essendo P-O=(B-O)-(A-O) si ha
- iv) $(x, y, z) = (b_1 a_1, b_2 a_2, b_3 a_3).$

Le operazioni geometriche sui vettori di V si estendono formalmente alle operazioni su \mathbb{R}^n (anche per n > 3).

- DEFINIZIONE **0.7.** (1) Se $u, v \in V$, $\sigma(O; x, y, z)$ è un sistema di coordinate cartesiane su Σ , P O = u, Q O = v e O, P, Q sono allineati, si dice che u e v sono paralleli⁵.
 - (2) Dati $u, v, w \in V$ e un sistema di coordinate cartesiane $\sigma(O; x, y, z)$ su Σ , se, posto P O = u, Q O = v, R O, i punti O, P, Q, R sono complanari, si dice che u, v e w sono complanari.

PROPOSIZIONE **0.8.** Siano $\sigma(O; x, y)$ e $\sigma(O; x, y, z)$ sistemi di coordinate cartesiane ortogonali rispettivamente del piano, e dello spazio.

$$Se \ u = (a, b), A(a_1, a_2), B(b_1, b_2) \Longrightarrow |u| = \sqrt{a^2 + b^2}, |B - A| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2}.$$

$$Se \ u = (a, b, c), A(a_1, a_2, a_3), B(b_1, b_2, b_3) \Longrightarrow |u| = \sqrt{a^2 + b^2 + c^2}, |B - A| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + (b_3 - a_3)^2}.$$

DEFINIZIONE **0.9.** (1) Un versore \grave{e} un vettore di modulo 1;

(2) il versore associato a un vettore v è il versore con egual verso e direzione di v^6 , ossia:

$$\operatorname{vers}(v) := \frac{v}{|v|}, \\ (3) \ se \ u = (a, b) \Longrightarrow \operatorname{vers}(u) = (\frac{a}{\sqrt{a^2 + b^2}}, \frac{b}{\sqrt{a^2 + b^2}}), \\ (4) \ se \ u = (a, b, c) \Longrightarrow \operatorname{vers}(u) = (\frac{a}{\sqrt{a^2 + b^2 + c^2}}), \frac{b}{\sqrt{a^2 + b^2 + c^2}}), \frac{c}{\sqrt{a^2 + b^2 + c^2}}).$$

1. Prodotto scalare

LEMMA 1.1. Siano $u = (a_1, a_2), v = (b_1, b_2) \in \mathbb{R}^2 \setminus \{0_{\mathbb{R}^2}\}, si ha:$

$$u \perp v \iff a_1b_1 + a_2b_2 = 0.$$

Proof. Siano A - O = u, C - A = v, C - O = u + v, sappiamo che $u + v = (a_1 + b_1, a_2 + b_2)$, pertanto:

$$|u+v|^2$$
 = $(a_1+b_1)^2 + (a_2+b_2)^2 = a_1^2 + b_1^2 + 2a_1b_1 + a_2^2 + b_2^2 + 2a_2b_2 =$
= $|u|^2 + |v|^2 + 2(a_1b_1 + a_2b_2).$

Ossia, per il triangolo OAC vale il teorema di Pitagora (OAC è retto in A i.e. $u \perp v$), $\iff |u+v|^2 = |u|^2 + |v|^2 \iff (a_1b_1 + a_2b_2) = 0$

⁵In simboli si scrive $u \parallel v$.

 $^{^6{\}rm Chiaramente}$ la definizione è fatta su un rappresentante qualsiasi!

OSSERVAZIONE **1.2.** Si prova in modo simile che se $u = (a_1, a_2, a_3), v = (b_1, b_2, b_3) \in \mathbb{R}^3 \setminus \{0_{\mathbb{R}^3}\}$, si ha: $u \perp v \iff a_1b_1 + a_2b_2 + a_3b_3 = 0$.

DEFINIZIONE **1.3.** Il prodotto scalare di $u = (u_1, \ldots, u_n), v = (v_1, \ldots, v_n) \in \mathbb{R}^n$, indicato u.v, è lo scalare

$$\sum_{i=1}^{n} a_i b_i = a_1 b_1 + \ldots + a_n b_n.$$

PROPOSIZIONE **1.4.** Per ogni $u, v, w \in \mathbb{R}^n$, $\lambda, \mu \in \mathbb{R}$ si ha:

- (1) u.v = v.u simmetria,
- (2) $(\lambda u + \mu v).w = \lambda(u.w) + \mu(v.w)$ linearità
- (3) $u.u = |u|^2 \ge 0$, $u.u = 0 \iff u = 0$ positività.

Proof. Tutte le implicazioni seguono facilmente dalla definizione.

2. Prodotto vettore

DEFINIZIONE **2.1.** Dati $u = (a_1, a_2, a_3), v = (b_1, b_2, b_3) \in V$, il prodotto vettoriale di $u \in v$ (denotato $u \times v$ è il vettore:

$$(a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1).$$

OSSERVAZIONE **2.2.** Dati $u = (a_1, a_2, a_3), v = (v_1, v_2, v_3) \in V$, le coordinate di $u \times v$ sono i minori, presi a segni alterni, ottenuti cancellando -ordinatamente- le colonne della matrice⁷

$$\left(\begin{array}{ccc} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{array}\right).$$

Lemma 2.3. Il vettore $u \times v$ è ortogonale sia a u che a v.

Proof. Le matrici

$$\left(\begin{array}{ccc} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ a_1 & a_2 & a_3 \end{array}\right), \left(\begin{array}{ccc} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \end{array}\right)$$

hanno entrambe determinante nullo avendo due righe uguali. Posto $u \times v = (\alpha_1, \alpha_2, \alpha_3)$ e sviluppando entrambi rispetto alla terza riga otteniamo

$$a_1\alpha_1 + a_2\alpha_2 + a_3\alpha_3 = 0, b_1\alpha_1 + b_2\alpha_2 + b_3\alpha_3 = 0$$

OSSERVAZIONE **2.4.** Il prodotto vettoriale non è associativo, infatti, dati $u, v, w \in V$, si ha:

$$u \times (v \times w) \neq (u \times v) \times w$$

come dimostra il seguente esempio.

ESEMPIO **2.5.** Se
$$u=(1,0,0), v=(1,0,0), w=(0,1,0),$$
 si ha: $u\times v=0_{\mathbb{R}^3},\ v\times w=(0,0,1)$ $u\times (v\times w)=(0,-1,0),\ (u\times v)\times w=0_{\mathbb{R}^3}.$

Proposizione **2.6.** Dati $u, v, w \in V, \lambda \in \mathbb{R}$, si ha:

(1)
$$u \times v = -v \times u$$
 (anticommutatività),

 $^{^{7}}$ Le cui righe sono le componenti di $u \in v$.

- (2) $u \times (v + w) = u \times v + u \times w$ (distributività),
- (3) $(\lambda u) \times v = \lambda(u \times v)$ (omogeneità⁸).

PROPOSIZIONE **2.7.** Dati $u = (a_1, a_2, a_3), v = (b_1, b_2, b_3) \in V$, si ha:

- $(1) \ |u \times v|^2 = |u|^2 |v|^2 (u.v)^2 \quad \text{ (identità di Lagrange (1736-1813))},$
- $(2) \ u \times v = 0_{\mathbb{R}^3} \iff u \parallel v.$

Proof. Si ha $|u \times v|^2 = (a_2b_3 - a_3b_2)^2 + (a_3b_1 - a_1b_3)^2 + (a_1b_2 - a_2b_1)^2$, e $|u|^2|v|^2 - (u.v)^2 = (a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) - (a_1b_1 + a_2b_2 + a_3b_3)^2$ e quindi (1). Per (3), se u = (0,0,0) chiaramente $u \times v$ è nullo, possiamo dunque supporre u nonnullo e, per esempio $a_1 \neq 0$, da $a_3b_1 - a_1b_3 = 0 = a_1b_2 - a_2b_1$ ricaviamo $b_2 = \frac{a_2b_1}{a_1}$ e $b_3 = \frac{a_3b_1}{a_1}$ ossia $v = (b_1, \frac{a_2b_1}{a_1}, \frac{a_3b_1}{a_1}) = \frac{b_1}{a_1}(a_1, a_2, a_3)$.

OSSERVAZIONE 2.8. Si poteva anche definire geometricamente il prodotto vettoriale deducendone poi le proprietà formali, ma sarebbe stato più difficile.

3. Prodotto misto

DEFINIZIONE **3.1.** Dati $u, v, w \in V$, il prodotto scalare di u col prodotto vettore $v \times w$ è detto prodotto misto di u, v, w.

OSSERVAZIONE **3.2.** Dalle Def. 1.3 e 2.1, se $u = (a_1, a_2, a_3), v = (b_1, b_2, b_3), w = (c_1, c_2, c_3)$, si ha che:

$$u.v \times w = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Esercizio **3.3.** Dati $u, v, w \in V$,

- 1. Provare che $u.v \times w = w.u \times v = v.w \times u$,
- 2. Determinare tutti gli altri prodotti misti dei tre vettori e indicarne il valore.
- 3. Se u,v e w sono complanari, essendo $v\times w$ ortogonale a entrambi i fattori lo è anche a $u\Longrightarrow u.v\times w=0_{\mathbb{R}}$, viceversa l'annullarsi del numero reale $u.v\times w$ è condizione sufficiente alla complanarità di u,v e w.

4. Ancora sui sistemi di riferimento

- NOTAZIONE **4.1.** Dati u_1, u_2 vettori non allineati del piano, $\sigma(u_1, u_2)$ denota il sistema di coordinate cartesiane che ha vers (u_1) , vers (u_2) come versori rispettivamente degli assi $x \in y$.
 - Dati u_1, u_2, u_3 vettori non complanari dello spazio, $\sigma(u_1, u_2, u_3)$ denota il sistema di coordinate cartesiane con $\text{vers}(u_1), \text{vers}(u_2), \text{vers}(u_3)$ come versori rispettivamente degli assi $x, y \in z$.

OSSERVAZIONE **4.2.** Risulta $\sigma(u_1, u_2) \neq \sigma(u_2, u_1)$; si può provare per esempio che $\sigma(u_1, u_2, u_3) \neq \sigma(u_2, u_1, u_3)$, ma $\sigma(u_1, u_2, u_3) = \sigma(u_2, u_3, u_1)$.

DEFINIZIONE **4.3.** (1) Un riferimento $\sigma(u_1, u_2, u_3)$ è orientato positivamente se un osservatore orientato come u_3 vede percorrere l'angolo $\widehat{u_1u_2}$ da u_1 a u_2 in senso antiorario (altrimenti, $\sigma(u_1, u_2, u_3)$ è orientato negativamente).

⁸Si ha cosí: $(-u) \times v = -u \times v = v \times u$.

- (2) Un riferimento $\sigma(u_1, u_2)$ è orientato positivamente rispetto a un vettore u_3 non giacente sul piano di u_1 e u_2 , se il riferimento $\sigma(u_1, u_2, u_3)$ è orientato positivamente.
- (3) Due sistemi di coordinate cartesiane del piano (o dello spazio) si dicono concordi se hanno lo stesso tipo di orientazione⁹.
- (4) Se $\sigma(O; x, y)$ e $\sigma(O; x, y, z)$ sono sistemi di coordinate cartesiane ortogonali orientati positivamente, i rispettivi versori degli assi sono spesso indicati¹⁰ \overrightarrow{i} , \overrightarrow{j} e \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} ¹¹.

Consideriamo sia il piano che lo spazio dotati di sistema di coordinate cartesiane ortogonali orientato positivamente (se si parla di prodotto vettore di vettori del piano, questo sarà il piano xy e il vettore (a,b) dovrà quindi essere pensato come (a,b,0)).

5. Allineamento e complanarità

Teorema **5.1.** Dati tre punti A, B, P nel piano o nello spazio le seguenti condizioni sono equivalenti:

- (1) A, B, P sono allineati,
- (2) $(P-A) \times (B-A) = 0$, $se \ A \neq B \Longrightarrow 1$. $e \ 2$. sono anche equivalenti a
- (3) (P-A) = t(B-A) per qualche $t \in \mathbb{R}$.

Proof. Se A=B chiaramente vale sia 1. che 2., 1. \Longrightarrow 3. sia $A\neq B$, assumiamo sulla retta AB il punto A come origine delle coordinate e il punto B come punto di ascissa 1, \Longrightarrow il punto P^{12} ha per ascissa qualche $t\in \mathbb{R}$ ossia, (P-A)=t(B-A); 1. \Longrightarrow 2. in particolare l'ipotesi A,B,P allineati $\Longrightarrow P-A\parallel B-A$; 2. \Longrightarrow 1. abbiamo già osservato che il prodotto vettore di due vettori è nullo \iff essi sono \parallel ; 3. \Longrightarrow 2. segue dalla Def. 2.1.

COROLLARIO **5.2.** Dati nel piano, un punto P_0 e un vettore (libero) u, la retta r per P_0 e \perp a u è il luogo dei punti P tali che $u.(P-P_0)=0$.

Proof. Sia
$$P_1 \in r$$
, si ha $P \in r \iff (P - P_0) \times (P_1 - P_0) = 0 \iff (P - P_0) \parallel (P_1 - P_0)$, essendo $P_1 - P_0 \perp u$ si ha $u \cdot (P - P_0) = 0$.

Teorema 5.3. Dati quattro punti A, B, C, P nello spazio, le seguenti condizioni sono equivalenti:

- (1) A, B, C, P sono complanari,
- (2) $(P-A).(B-A) \times (C-A) = 0$, se A, B, C non sono allineati è anche equivalente
- (3) (P-A) = s(B-A) + t(C-A) per qualche $s, t \in \mathbb{R}$.

Proof. Se A,B,C sono allineati $\Longrightarrow A,B,C,P$ sono complanari $\forall P$ e vale anche $(P-A).(B-A)\times(C-A)=0$, in quanto $(B-A)\times(C-A)=0$, possiamo quindi supporre che A,B,C non siano allineati. Per provare $1.\Longrightarrow 3.$, dotiamo il piano

⁹La relazione di essere concordi è una relazione di equivalenza nell'insieme dei sistemi di coordinate cartesiane del piano (o dello spazio).

¹⁰Specialmente dai fisici.

¹¹Spesso omettendo le frecce.

 $^{^{12}}$ Appartenente alla retta AB!

ABC del sistema di coordinate che ha il punto A come origine delle coordinate, la retta AB come asse delle x e la retta AC come asse delle y, in modo che B(1,0) e $C(0,1) \Longrightarrow \forall P \in ABC$ ha per coordinate una coppia $(s,t) \in \mathbb{R}^2$ ossia, (P-A) = s(B-A) + t(C-A); $3. \Longrightarrow 2$. sappiamo già che il determinante di una matrice con una riga combinazione lineare delle altre è nullo; $2. \Longrightarrow 1$. sappiamo già che se tre vettori hanno prodotto misto nullo sono complanari.

COROLLARIO **5.4.** Dati nello spazio un punto P_0 e un vettore (libero) u, il piano π per P_0 e \perp a u è il luogo dei punti P tali che u. $(P - P_0) = 0$.

Proof. Siano P_0, P_1, P_2 tre punti non allineati del piano $\pi, P \in \pi \iff (P - P_0).(P_1 - P_0) \times (P_2 - P_0) = 0 \iff (P - P_0) \perp (P_1 - P_0) \times (P_2 - P_0)$ ossia $(P - P_0) \perp u \implies u.(P - P_0) = 0$.

6. La retta nel piano

Se $A \neq B$ sono due punti distinti del piano ed r è la retta che li congiunge, dal Teor. 5.1 si ricavano le equazioni di r. Precisamente, per un punto P del piano si ha $P \in r \iff$:

(1)
$$P - A = t(B - A) \text{ per qualche } t \in \mathbb{R},$$

$$(P-A) \times (B-A) = 0,$$

6.1. **Equazioni.** Posto $A(a_1, a_2), B(b_1, b_2), P(x, y)$ ed $(l_1, l_2) := (b_1 - a_1, b_2 - a_2),$ l'eguaglianza vettoriale di (1) può essere tradotta in eguaglianza delle componenti dei vettori (liberi) corrispondenti:

(3)
$$\begin{cases} x = a_1 + l_1 t \\ y = a_2 + l_2 t \quad t \in \mathbb{R}, (l_1, l_2) \neq (0, 0). \end{cases}$$

- (1) è detta rappresentazione parametrica vettoriale della retta r
- (3) è detta rappresentazione parametrica scalare della retta r, evidenziando le coordinate del punto generico di r, (3) può essere scritta nella forma compatta:

$$r: (a_1 + l_1t, a_2 + l_2t), t \in \mathbb{R}.$$

L'eguaglianza vettoriale di (2) può essere tradotta in

$$(4) \qquad \rho\left(\left(\begin{array}{ccc} X-a_1 & Y-a_1 & 0 \\ l_1 & l_2 & 0 \end{array}\right)\right)=1 \quad \text{ossia} \quad \left|\begin{array}{ccc} X-a_1 & Y-a_1 \\ l_1 & l_2 \end{array}\right|=0$$

notiamo che (4) è un'equazione lineare nelle incognite X e Y, cioè del tipo:

(5)
$$aX + bY + c = 0 \quad (a, b) \neq (0, 0)$$

- (2) è detta rappresentazione cartesiana vettoriale della retta r
- (5) è detta rappresentazione cartesiana scalare della retta r, o semplicemente, equazione di r.

TEOREMA **6.1.** Nel piano ogni retta r ha rappresentazione parametrica scalare (3) e rappresentazione cartesiana scalare (5). Viceversa, ogni scrittura (3) e ogni equazione (5) rappresentano una retta.

Proof. La (3) rappresenta la retta passante per $A(a_1, a_2), B(a_1 + l_1, a_2 + l_2)^{13}$; sia (x_0, y_0) una soluzione di (5), ossia:

$$(\bullet) a(X - x_0) + b(Y - y_0) = 0,$$

posto $u=(a,b), P_0(x_0,y_0), P(x,y), (\bullet)$ può essere riscritta nella forma: $u.(P-P_0)=0^{14}$.

DEFINIZIONE **6.2.** Dati una retta r e due suoi punti distinti A e B, i vettori (liberi) associati a B-A ed A-B sono detti vettori direzionali di r, mentre i loro versori sono detti versori direzionali di r.

- OSSERVAZIONE **6.3.** (1) Se r è data da (3) \Longrightarrow un suo vettore direzionale è (l_1, l_2) , se è data da (5) \Longrightarrow un suo vettore direzionale è (-b, a).
 - (2) Una retta r è determinata univocamente da un suo punto $A(a_1,a_2)$ e da un suo vettore direzionale (l_1,l_2) .

Nel caso $l_1 l_2 \neq 0$, un'equazione di r è:

(6)
$$\frac{X - a_1}{l_1} = \frac{Y - a_2}{l_2}$$

- n.b. (6) può essere considerata anche se $l_1l_2 = 0$, convenendo che se un denominatore è nullo sia nullo il corrispondente numeratore¹⁵.
- (3) A ogni retta r sono associati due versori direzionali tra loro opposti, fissarne uno equivale a fissare un verso su r.

7. RETTE E PIANI NELLO SPAZIO

Se $A(a_1, a_2, a_3)$, $B(b_1, b_2, b_3)$, $C(c_1, c_2, c_3)$ sono tre punti non allineati e π è il piano che li contiene, $(l_1, l_2, l_3) := (b_1 - a_1, b_2 - a_2, b_3 - a_3)$, $(m_1, m_2, m_3) := (c_1 - a_1, c_2 - a_2, c_3 - a_3)$, dal Teor. 5.3 si ricavano le equazioni di π Precisamente, per un punto P(x, y, z) dello spazio si ha $P \in \pi \iff$:

(7)
$$P - A = s(B - A) + t(C - A) \text{ per qualche } t \in \mathbb{R},$$

(8)
$$(P-A).(B-A) \times (C-A) = 0,$$

l'eguaglianza vettoriale di (7) può essere tradotta in eguaglianza delle componenti dei vettori (liberi) corrispondenti:

(9)
$$\begin{cases} x = a_1 + l_1 s + m_1 t \\ y = a_2 + l_2 s + m_2 t \\ z = a_3 + l_3 s + m_3 s, t \quad t \in \mathbb{R}, (l_1, l_2, l_3) \times (m_1, m_2, m_3) \neq (0, 0, 0). \end{cases}$$

- (7) è detta rappresentazione parametrica vettoriale del piano π
- (3) è detta rappresentazione parametrica scalare del piano π .

 $^{^{13}}$ Rispettivamente corrispondenti ai valori 0 e 1 del parametro t in (3).

 $^{^{14}\}mathrm{Che}$ sappiamo essere la retta per $P_0 \perp$ a u,vedi Cor. 5.2.

 $^{^{15}}$ In particolare, se $l_1=0$ un'equazione di r è $X-a_1=0,$ se $l_2=0$ un'equazione di r è $Y-a_2=0.$

L'eguaglianza vettoriale di (8) può essere tradotta in

$$\rho\left(\begin{pmatrix} X - a_1 & Y - a_2 & Z - a_3 \\ l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{pmatrix}\right) < 3 \text{ ossia} \quad \begin{vmatrix} X - a_1 & Y - a_1 & Z - a_3 \\ l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{vmatrix} = 0$$

notiamo che (4) è un'equazione lineare nelle incognite X,Y,Z cioè del tipo:

(11)
$$aX + bY + cZ + d = 0 \quad (a, b, c) \neq (0, 0, 0)$$

- (2) è detta rappresentazione cartesiana vettoriale del piano π
- (5) è detta rappresentazione cartesiana scalare del piano π o semplicemente, equazione di π .

Infine, dati due punti distinti $A(a_1, a_2, a_3)$ e $B(b_1, b_2, b_3)$ dello spazio, con (l_1, l_2, l_3) := $(b_1 - a_1, b_2 - a_2, b_3 - a_3)$, come nel caso piano otteniamo

(12)
$$\begin{cases} x = a_1 + l_1 t \\ y = a_2 + l_2 t \\ z + a_3 + l_3 t \quad t \in \mathbb{R}, (l_1, l_2, l_3) \neq (0, 0, 0). \end{cases}$$

(12) è detta rappresentazione parametrica della retta r

Eliminando il parametro t da(12) si ottengono due equazioni lineari indipendenti nelle variabili X, Y, Z che esprimono la retta come intersezione di due piani.

ESEMPIO **7.1.** Dati A(1,1,0), B(0,2,1) scrivere le equazioni cartesiane della retta r che li congiunge e del piano π che la contiene e passa per l'origine delle coordinate. Si ha (B-A)=(1,-1,-1). Da (P-A)=t(B-A) otteniamo la rappresentazione parametrica di

$$r: \begin{cases} x - 1 = t \\ y - 1 = -t \\ z = -t \end{cases}$$

e quindi quella cartesiana

$$r: \begin{cases} x + z - 1 = 0 \\ y - z - 1 = 0 \end{cases}.$$

Il piano cercato ha equazione:

$$\left| \begin{array}{cccc} X - 0 & Y - 0 & Z - 0 \\ 1 & 1 & 0 \\ 0 & 2 & 1 \end{array} \right| = 0 \quad \text{ossia} \quad X - Y + 2Z = 0$$