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Abstract

Previously, no general-purpose algorithm was

known for the elliptic curve logarithm problem

that ran in better than exponential time. In this

paper we demonstrate the reduction of the elliptic

curve logarithm problem to the logarithm problem

in the multiplicative group of an extension of the

underlying hit e field. For the class of supersingu-

lar elliptic curves, the reduction takes probabilis-

tic polynomial time, thus providing a probabilis-

tic subexponential time algorithm for the former

problem. The implications of our results to public

key cryptography are discussed.

1 Introduction

The discrete logarithm problem for a general

group G can be stated as follows: Given a 6 G

and ~ c G, find an integer z such that @ = a=,

provided that such an integer exists. The integer

z is called the discrete logarithm of ~ to the base

a. In this paper, we shall consider the case where

G is an elliptic curve group l?, and where a is a

point P C l?.
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In [8] and [12], Koblitz and Miller described how

the group of points on an elliptic curve over a finite

field can be used to construct public key cryptosys-

tems. The security of these cryptosystems is based

upon the presumed intractability of the problem of

computing logarithms in the elliptic curve group.

The best algorithms that are known for solving

this problem, are the exponential square root at-

tacks (for example, see [13]) that apply to any fi-

nite group and have a running time proportional to

the square root of the largest prime factor dividing

the order of the group. k [12], Miller argues that

the index-calculus methods, which produced dra-

matic results in the computation of discrete log-

arithms in (the multiplicative group of) a finite

field (see [3], [13]), do not extend to elliptic curve

groups. Consequently, if the elliptic curve is cho-

sen so that its order is divisible by a large prime

then, even the best attacks take exponential time.

The method we propose in this paper, reduces

the elliptic curve logarithm problem in a curve E

over a finite field Fq to the discrete logarithm prob-

lem in a suitable extension field Fgk of Fg. This is

achieved by establishing an isomorphism between

<F’>, the subgroup of 2? generated by P, and the

subgroup of nth roots of unity in Fqk, where n de-

not es the order of P. The isomorphism is given by

the Weil pairing.

Since the index-calculus methods for comput-

ing logarithms in a finite field have running times

that are subexponential, the reduction is useful for

the purpose of computing elliptic curve logarithms

provided that k is small. This is indeed the case

for special classes of elliptic curves, including the
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curves recommended for implement ation in [12],

[8], [6], [2], and [9]. More precisely, we prove the

foIlowing two results about the reduction.

Theorem 11 If J?3(Fq) is a supersingular

curve, then the reduction of the elliptic curve log-

arithm problem in E(Fq) to the discrete logarithm

problem in Fqk is a probabilistic polynomial time

(in in q) reduction.

Corollary 12 Let P be an element of order

n in a supersingular elliptic curve E(Fg), and let

R = 1P be a point in E(Fq). If q is a prime, or if

q is a pn”me power q = pm, where p is small, then

the new algom”thm can determine 1 in probabilistic

subexponential time.

The remainder of the paper is organized as fol-

lows. In Section 2, we list some of the properties

of elliptic curves that we will use. In Section 3,

we describe the reduction, and in Section 4, we

mention some special curves for which the reduc-

tion is especially useful. Finally, in Section 5, we

discuss some of the implications of our results for

crypt ography.

2 Background on Elliptic

Curves

In this Section, we review some of the theory of

elliptic curves over finite fields which we will use.

For further information, we refer the reader to the

book by Silverman [19].

Let E(Fg) be an elliptic curve over Fq, the finite

field on q elements. Let q = pm, where p is the

characteristic of Fq. If p is greater than 3, then

E(Fq) is the set of all solutions in Fq x Fq to an

affine equation

y2=z3+az+b, (1)

with a, b 6 Fq, 4a3 + 27b2 # O, together with an

additive identity element 0, called the point at

infinity. Ifp = 2, then an affine equation for E(Fq)

is

92 + aay = x3 + a4x + a6, (2)

with aa, a4, ae c Fq, as # O, if the curve has j-

invariant equal to O, and

y2 + ~y = ~3 + az~2 + a6, (3)

with az, ae G F*, aS # O, if the curve has j-

invariant not equal to O. There is a natural ad-

dition defined on the points of E(Fq) that is given

by the “tangent and chord method”, and involves

a few arithmetic operations in Fq. Under this d-
dition, the points of E(Fq) form an abelian group

of rank 1 or 2. By Hasse’s Theorem, the order of

the group is q + 1 – t,where It/ < 2~. The type

of the group is (nl, n2), where n2 Inl, and further-

more n2 Iq – 1. The next result determines whether

or not an elliptic curve of a certain order exists.

Lemma 1 ([18], 4.2) There ezists an elliptic

curve of order q + 1 – t over Fq if and only if

one of the following conditions holds:

(i) t $0 (mod p) and t2 ~ 4q.

(ii)

(ii)

m is odd and one of the following holds:

(1) t = o.
(2) t2 = 2q andp = 2.

(3) t2 = 3q andp = 3.

m is even and one of the following holds:

(1) t’ = 4q,

(2) t2 = q andp$ 1 (mod 3).

(3)t=Oandp#l (mod4). I

Let #E(Fq) = q + 1 – t denote the order of a

curve. 13(Fq) is said to be supersingular if p di-

vides t. From the preceding result, we can de-

duce that E(Fq) is supersingular if and only if

t2 = O, q, 2q, 3q, or 4q. The following result gives

the group structure of the supersingular curves.

Zn denotes the cyclic group on n elements.

Lemma 2 ([18], 4.8) Let #E(Fq) = q + 1 – t.

(i) If t2 = q, 2q, or 3q, then E(Fq) is cyclic.

(ii) If t2 = 4q, then either E(Fq) ~ Z~_l (II Zfi-l

or E(Fq) = ~fi+l @ ~fi+l, depending on whether

t=2&ort= –2/ij respectively.

(iii) If t = O and q # 3 (mod 4), then E(F,) is

cyclic. If t = O and q s 3 (mod 4), then either

E(Fq) is cyclic, or E(Fq) % Zfq+l]/2 @ Zz. ■

The curve E can also be viewed as an elliptic

curve over any extension field K of F*; E(Fq)

is a subgroup of E(K). The Weil Conjecture

enables one to compute #E(Fqk ) from #E(Fg)

as follows. Let t = q + 1 – #E(Fq). Then

#.E(F,, ) = qk + 1 – CYk– @, where a, @ are com-

plex rnunbers determined from the factorization of

1 – K!’+ qT2 = (1 – cdl’)(1 – PT).
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An n-torsion point F’ is a point satisfying nP =

O. Let E(l?g)[n] denote the subgroup of n-torsion

points in E(F’), where n + 0. We wi~ write E[~l
for l?(~)[n], where Fq denotes the algebraic CIO-

sure of l’q. If n and q are relatively prime, then

E[n] ~ zn@z~. Ifn = P“, then either 11~] ~ {O}

if E is supersingular, or else ~b] ~ ~Pe if ~ is

non-supersingular.

The following result provides necessary and suf-

ficient conditions for E(.F’g) to contain ~ of the

n-t orsion points in E(~). For defition of the

terms in condition (iii), see [18].

Lemma 3 ([18], 3.7) If gcd(n, q) = 1, then

E[n] c E(FQ) if and only if the following three

co-nditions hold:

(i) n’ I #E(Fq)

(ii)nlq-1

(iii) Eithe~ ~ ~ Z or 8 (~) C EndF,(E). ■

Let n be a positive integer relatively prime to q.

The Weil pairing is a function

en : E[n] x E[n] + ~.

For a definition of the Weil pairing, see the Ap-

pendix. We list some usefid properties of the Weil

pairing.

(i) ldentit~ For all F’ E E[n], e~(P, P) = 1.

(ii) Alternation For all PI, F’2 E E[n],

en(F’l, P’) = en(l%, Pl)–l.

(iii) l?zlineatit~ For all R, P2, l’3 c E[n], ett(~l +

P2, I’3) = e~(pl, P3) e~(f’2, ~3), and e~(R, l’2 +

P3) = en(Pl, P2)en(Pl, $’3).

(iv) Non-degeneracy If PI < E[n], and if

en(P1, P2) = 1 for all 1% E -E[n], then l’1 = O.

(v) E E[nl Q E(Fqk), then %(pl, l%) C l’qk, for

all Pl,l” < E[n].

Miller has developed an efficient probabilistic

polynomial-time algorithm for computing the Weil

pairing [11]. By a probabilistic polynomial algo-

rithm, we mean a randomized algorithm whose

expected running time is bounded by a polyno-

mial in the size of the input. By a probabilistic

sub exponential algorithm with input z, we mean a

randomized algorithm with expected running time

L[a, z], where O < a <1 and

For a brief description of Miller’s algorithm, see

the Appendix. An implementation of the algo-

rithm in MAC SYMA, is given in [7].

The following result from [7] provides a method

for partitioning the elements of an elliptic curve

E(Fq) into the cosets of < P>, the subgroup of

E(Fq) generated by a point ~ of maxim~ order.

Lemma 4 Let E(Fq) be an elliptic curve with

gTOUp structure (nl, n’), and let P be an element

of maximum orde~ nl. Then for all P1, P2 E

E(Fg), P1 and Pz are in the same coset of <P>

if and only if e~l (P, PI) = e~l(p, P2). ■

The next result is similar to, and has a similar

proof, as Lemma 4. For completeness, we include

it here.

Lemma 5 Let E(Fg) be an elliptic curve such

that E[n] ~ E(Fq), and where n is a positive inte-

gev copm”me to q. Let P c E[n] be a point of order

n. Then for all P1, P2 E E[n], PI and P2 are in

the same coizet of <P> within E[n] if and only if

en(P, PI) = en(P, Pz).

Proof. If P1 = Pz + kP, then clearly

en(P, PI) = en(P, Pz)en(P, P)k

= en(P, Pz).

Conversely, suppose that P1 and p’ me in different

cosets of < P > within E[n]. Then we can write

P1 – P’ = alP + a’Q, where (P, Q) is a generating

pair for E[n] ~ Z. @ Z., and where a2Q # O.

If blP + b2Q is any point in E[n], then

en(a2Q, hp + hQ) = e~(a2Q, p)ble~(Q, Q)a2b2

= en(P, azQ)-bl.

If e~(P, a’Q ) = 1 then by the non-degeneracy

property of en, we have that a2Q = O, a con-

tradiction. Thus en(P, a2Q ) # 1. Finally,

en(P, PI) = en(P, P2)en(P, P)”l en(P, a2Q)

# en(P, P’). ■

For the algorithms that follow, it is essential

that we are able to pick points P uniformly and

randomly on an elliptic curve E (F.q ) in probabilis-

tic polynomial time. This can be accomplished
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as follows. We fist randomly choose an element

Z1 c Fq. If q is the z-coordinate of some point

in E(Fq), then we can find yl such that (m, VI) c

E(F~) by solving a root finding problem in I?q.

There are various techniques for finding the roots

of a polynomial over Fq in probabilistic polyno-

mial time; for example, see [1] if q is a prime, and

[15] if q is a prime or a prime power. We then set

P = (zl, yl) or (zl, –yl) if the curve has equation

(1) (respectively, P = (izl, yl) or (21, Y1 +~3), and

~ = (ZI, YI) or (CI, V1 + z1) if the curve has equa-

tion (2) or (3)). From Hasse’s theorem, the proba-

bility that al is the z-coordinate of some point in

E(Fq) is at least 1/2 – 11~. Note that with the

method just described the probability of picking a

point of order 2 is twice the probability of picking

any other point, however there are at most three

points of order 2.

Finally, for future reference, we state the follow-

ing results.

Lemma 6 Let G be a group and a 6 G. Let n =

~$_l pifli be the prime factom”zation of n. Then a

ha; order n if and only if

(i) cP = 1, and

(ii) &Pi # 1 for each i, 1 ~ i ~ k. ■

Lemma 7 Let G be an abelian group of type

(en, en). If elements {CYi} are selected uniformly

and randomly from G, then the elements {ccq)

are uniformly distributed about the elements of the

subgwup of G of type (n, n). H

3 The Reduction

Let E(F~) be an elliptic curve over the finite

field Fq, with group structure Znl @ ?&z, where

n2 Inl. Given the defining equation for E (Fq), we

can compute #E(F~) in polynomial time by us-

ing Schoof’s algorithm [17]. Also, we can deter-

mine nl and nz in probabilistic polynomial time

by an algorithm due to Miller [11], given the in-

teger factorization of gcd(#E(F*), q – 1). We fur-

ther assume that gcd(#E(Fq), q) = 1; it follows

that E[nl] ~ Znl @ Ztal.

Let F’ c E(l$) be a point of order n, where n

divides nl, and let R c J?2(Fg). We assume that

n is known. The elliptic curve logarithm problem

is the following: Given P and R, determine the

unique integer 1, 0 S Z < n – 1, such that R = 1P,

provided that such an integer exists.

Since e.(~, P) = 1, we deduce from Lemma 4

that lte<~>i fandordyifnlt =0 and

en(P, 1?) = 1, conditions which can be checked in

probabilistic polynomial time. Henceforth, we will

assume that R c <P>.

We first describe an algorithm for obtaining par-

tial information about 1 by solving a discrete log-

arithm problem in the field F’ itself, in the case

that P has maximum order.

Algorithm 1

Input: An element P c E(Fq) of maximum order

nl, and R= 1P.

Output: An integer 1’ s 1 (mod n’), where n! is a

divisor of nz.

(i) Pick a random point T E E(Fq).

(ii) Compute a = e., (P, 2’) and L3 = en, (R, 2’).

(iii) Compute 1’, discrete logarithm of ~ to the

base a in Fq.

Theorem 8 Algorithm 1 correctly computes 1’ s 1

(mod n’), where n’ is some divisor of n2.

Proof. Let n’ denote the order of a; n’ divides n2

because of the following reasons. Let G E E(Fq)

be an element of order n2 such that the pair of

points (P, G) generates E(Fq), and let 2’ = CIP +

C2G. Then

ana = enl (P, T)’”a

= enl (P, P)cln2 enl (P, c2n2G)

= en, (P, O)

= 1.

Now, since

b= en, (R, 2’) = en, (Zpj~)
= en, (P, T)z = al

= cX1’,

we can then determine 1’ by computing the discrete

logarithm of ~ to the base a in F’g. ■

Since there are nz cosets of <P> within 13(F’),

we deduce from Lemma 4 that the probability that

n’ = n2 is ~(nz )/nz. If n2 is small however, then

this method does not provide us with any signifi-

cant information about 1. In the remainder of this
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Section, we describe a technique for computing 1

modulo n.

Let k be the smallest positive integer such that

E[n] G E(Fqh ); it is clear that such an integer k

exists.

Theorem 9 There ezids Q G E[n], such that

en(P, Q) is a primitive nth root of unity.

Proof. Let Q < E[n]. Then, by the bilinearity of

the Weil pairing, we have that

en(P, Q)” = e.(P, nQ)

= en(P, O)

= 1.

Thus en(.P, Q ) c pfi, where p. denotes the sub-

group of the nth roots of unity in Fqk.

There are n cosets of <P> within E[n], and by

Lemma 5 we deduce that as Q varies among the

represent atives of these n cosets, em(P, Q) varies

among all of the elements of pn. The result now

follows. ■

Let Q c E[n] such that en(P, Q ) is a primitive

nth root of unity. The next result is easy to prove.

Theorem 10 Let f : < P > * P. be defined

by f : R w en(R, Q). Then f is a group isomor-

phism. H

We can now describe the method for reducing

the elliptic curve logarithm problem to the discrete

logarithm problem in a finite field.

Algorithm 2

Input: An element P E E(Fq) of order n, and

R G<P>.

Output: An integer 1 such that R = 1P.

(i) Determine the smallest integer k such that

E[n] S E(Fqk).

(ii) Find Q ~ E[n] such that a = em(P, Q) has
order n.

(iii) Compute @ = e~(li, Q).

(iv) Compute 1, the discrete logarithm of @ to the

base a in F“k.

Note that the output of Algorithm 2 is correct

since

P = e~(Jp, Q)

= en(.p, Q)J
—— a’.

Remarks

The reduction described in this section takes ex-

ponential time (in in q) in general, as k is exponen-

tially large in general. Algorithm 2 is incomplete

as we have not provided methods for determining

k, and for finding the point Q.

plish this in the next section for

elliptic curves.

We shall accom-

the supersingular

4 Supersingular Curves

In this Section, we prove that the reduction of

Section 3 takes probabilistic polynomial time for

supersingular curves, resulting in a probabilistic

subexponential time algorithm for computing el-

liptic curve logarithms in these curves.

Let E(F~) be a supersingular elliptic curve of or-

der q+l–t over F*, and let q = pm. By Lemmas 1

and 2, E falls into one of the following classes of

curves.

(I) t = O and E(F,) ~ Z,.

(11) t = O ~d E(F,) ~ Z(,+i)/Z @ ~2 (ad q = 3

(mod 4)).

(III) t2 = q (and m is even).

(IV) t2= 2q (and p = 2 and m is odd).

(V) t2 = 3q (and p = 3 and m is odd).

(VI) t2 = 4q (and m is even).

Let P be a point of order n in E(Fq). Since

nl I (q+l–t), andp [ t, we have gcd(nl, q) = 1. By

applying the Weil conjecture and using Lemma 2,

one can easily determine the smallest positive in-

teger k such that E[nl] S E(Fqk ), and hence

E[n] C ~(Fqk ). For convenience, we summarize

the relevant information in Table 1. Note that

for each class of curves, the structure of E(Fq&)

is of the form Ztil @ Zax, for appropriate c. We

now proceed to give a detailed description of the

reduction.

Algorithm 3

Input: An element P of order n in a supersingular

curve E(Fq), and R ~<P>.

Output: An integer 1 such that R = iP.

(i) Determine k and c from Table 1.

(ii) Pick a random point Q’ c E(Fqk) and set Q =

(cnl/n)Q’.

(iii) Compute a = e.(~, Q) and ~ = e.(l?, Q).

(iv) Compute the discrete logarithm 1’ of @ to the
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Class of t Group nl k Type of c

curve structure E(F~k)

I o cyclic Q+l 2 (~+1,9+1) 1

II o 2 (f7+l, ~+l) 2

III *& cyclic q+ l+@ /3 (. fi+ l..,
. —

I IV I *./2a I Cvclic la + 1 T d2a 14
I 1 .- 1 . 1 -.!”* I— —

Iv
I . izs&

Table 1:

base a in Fqk.

(v) Check whether VP = R. If

k6

1

Some information about supersingular curves

this is so, then

1 = 1’ and we are done. Otherwise, the order of a

must be less than n, so go to (ii).

Note that by Lemma 7, Q is a random point in

E[n]. Note also that the probability that the field

element a has order n is #(n)/n. This follows

from Lemma 5 and the facts that there are ~(n)

elements of order n in Fqk, and there are n cosets

of <P> within E[n].

We now proceed to prove the main result of this

Section.

Proof of Theorem 11. We assume that a

basis of the field Fg over its prime field is explicitly

given. To do arithmetic in F’k, we need to find

an irreducible polynomial ~(z) of degree k over

Fq. This can be done in probabilistic polynomial

time, for example by the method given in [15] (the

method in [15] is described for prime fields, but is

also applicable when q is a prime power). We then

have F’. = Fq[Z]/Ij, where lf denotes the ideal

generated by ~(z). Note that the constant poly-

nomials in Fq[z] form a subfield isomorphic to Fq.

The point Q’ can be chosen in probabilistic poly-

nomial time since Q’ E E(F’k) and k ~ 6, and

then Q can be determined in polynomial time.

The elements a and ~ can be computed in prob-

abilistic polynomial time by Miller’s algorithm.

Since

—<61nlnn
+;)

(see [16]), the expected number of iterations be-

fore we find a Q such that e.(P, Q) has order n is

O (/n in n). Finally, observe that 2’P = R can be

tested in polynomial time, and that n = O(q). ■

Note that the discrete logarithm problem in Fqk

that we solve in (iv) has a base element a of order

n, where n < qk – 1. The probabilistic subexpo-

nential algorithms of [3], [4] and [5] for computing

discrete logarithms in a finite field require that the

base element be primitive. Using these algorithms,

we obtain the proof of Corollary 12.

Proof of Corollary 12. The problem of find-

ing the logarithm of J3 to the base a in F~k can

be solved in probabilistic subexponential time as

follows. We first obtain the integer factorization

of qk – 1 in probabilistic subexponential time us-

ing one of the many techniques available for int e-

ger factorization (for example [20] for a practical

algorithm with a heuristic running time analysis,

and [14] for an algorithm with a rigorous running

time analysis). Observe that we apriori have the

following partial factorization of qk – 1:

(I), (11) q’ -1 = (q+ l)(q - 1).

(m)q3-l =(q-l)(q+l -@(q+ l+@.

(Iv) q’-l = (q-l) (q+l)(q+l-~)(q+ l+~).

(v)g’-l =(q-l)(q+l)(q+ l-@)(q+l+

l/w(!?2 + !2 + 1).

We then select random elements 7 in F’k, until 7

has order qk – 1; the expected number of trials is

(qk – l)/#(qk – 1) which is O(ln in q) since k s 6.
The order of 7 can be checked in polynomial time

using Lemma 6. By solving two discrete logarithm

problems in Fqk, we find the unique integers s and

t,o<s, t<qk– 1, such that a = 78 and ~ = 7t.

Since ~ = aZ’, we obtain the congruence st’ = t

(mod qk – 1). Let w = gcd(s, qk – 1), and let

v=(q~– 1)/w be the order of a. Then 1’ =

(s/w) -l(~/w) (mod v).

The logarithms in FQ. can be computed in prob-
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abilistic subexponential time in /n qk (and conse-

quently also subexponential in in q) using, for ex-

ample, the algorithm in [4] if q is prime and k = 1,

[5] if q is prime and k >1, or [3] if q is the proper

power of a small prime. ■

In solving the elliptic curve logarithm problem

in practice, one would first factor n. Using this

factorization, we can easily check the order of a.

Thus to fmd Q, we repeatedly choose random

points in 13[n] until a has order n. This avoids

the possibility of having to solve several discrete
logarithm problems before 1’ is in fact equal to

1. Note however that this modified reduction is

different from the reduction described in Algo-

rithm 3, and in particular is no longer a proba-

bilistic polynomial time reduction to the discrete

logarithm problem in a finite field.

The dominant step of the algorithm as modified

in the previous paragraph is the final stage of com-

puting discrete logarithms in Fq&. The expected

running time of the algorithm is thus L[l/2, qk] if

q is a prime, and L[l/3, qk] if q is the power of a

small prime.

We conclude that for the supersingular curves,

the elliptic curve discrete logarithm problem is

more tractable than previously believed. Among

these special elliptic curves are the following:

(A) y’+ g = z’ + b over F2_, m odd (class I).

(B) y’ = z’ – az over F,, where p > 3 is a

prime, a is a quadratic non-residue in FP, and p s 3

(mod 4) (class I).

(C) yz = z’ – az over FP, where p >3 is a prime,

a is a quadratic residue in FP, and p s 3 (mod 4)

(class II).

(D) y’ = X3+ b over F,, where p >3 is a prime,

and p s 2 (mod 3) (class I).

We will discuss these curves fi.rrther in the next

section.

5 Cryptographic Implications

In order to implement the Diffie-Helhnan and El

Garnal protocols [8], one would like a cyclic group

which is relatively easy to exponentiate in, and

one for which the discrete logarithm problem is

intractable.

Elliptic curve cryptosystems have the potential

to be implemented efficiently with relatively small

block size, and high security. (This was, of course,

the motivation for studying such systems.) With

current schemes, such as RSA and discrete expo-

nentiation in a finite field, block sizes in excess of

500 bits (and preferably 1,000 bits) are necessary

for adequate security. The results of the preceding

section demonstrate that some care must be exer-

cised in selecting an elliptic curve over a finite field.

This is not unlike the situation with RSA where

the prime numbers must be judiciously chosen. It

is now clear that the curve

y’+y=z’

over F2rn is no more secure than using the cyclic

group of non-zero elements in F2Z~. Since it ap-

pears that the cost of computations on the curve

is higher than the cost of computations in F2Z-,

such a curve is inferior for cryptographic purposes

to other existing systems. Similar statements are

valid for the classes of curves (B), (C) and (D) of

Section 4.

The curve y’+ y = Z3 over F2* was first consid-

ered for the implementation of elliptic curve cryp-

tosystems by Koblitz [8]. In [2], the authors sug-

gested the particular values m = 61 and m = 127.

Since the discrete logarithm problem in the fields

~2122 and Fz2.4 are very tractable using the index-

calculus methods, these curves are clearly inade-

quate for cryptographic purposes. The particular

values m = 191 and m = 251 were suggested in [9].

These curves should also be avoided by the com-

ments made in the previous paragraph. The class

of curves (B) and (C) were suggested by Miller

[12]. Finally, the class of curves (D) was suggested

in [2] for the implementation of elliptic curve cryp-

tosystems, and by Kaliski [6] for the implementa-

tion of secure pseudorandom number generators.

The following

El

and

E2 :

Cyclic curves over

:y’+y= z’+

y2+y = 23+2

Fz~ (m odd)

z

+1

are much more attractive since they are easily im-

plementable (see [9]), and give a security level

that is apparently equivalent to the multiplicative

grOUP Of F24?n (k = 4).
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It should be noted that although the super-

singular curves over F2_ have received the most

attention to date, this does not mean that the

more general class of curves is unattractive. Some

work has been done on the implementation of non-

supersingular curves over F2m and curves over Fg,

g odd, and this will be reported in [10].
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Appendix (Weil Pairing)

We give a brief introduction to the theory of di-

visors, define the Weil pairing, and outline Miller’s

algorithm for computing the Weil pairing. For a

more thorough treatment of this subject, we refer

to [19] and [11].

Let K = .Fq and let ~ denote its algebraic clo-

sure. Let E be an elliptic curve defined over K.

If L is any field containing K, then E(L) denotes

the set of points on the curve whose coordinates

are both in L. We will write E for .E(~).

A divisor D is a formal sum of points in l?,

D = zP@ rip(p), where np C Z, and np = O
for all but finitely many P c E. The degree of D

is the integer ~ np. The divisors of degree O form

an additive group, denoted Do. The support of D

is the set {P I np # O}.

If E is defined by the equation ~(z, y) = O, ~ c

K[z, y], then the function jield K(E) of E over K

is the field of fractions of the ring lCIZ, y] /If. Sim-

ilarly, ~(l?) is the field of fractions of T[a, Y]/It.

Let ~ be a non-zero function in F(E), i.e. ~ E

~(11)’. For each P c E, deiine vp(f) to be n >0

or –n <0 if ~ has a zero or a pole of order n at P,

respectively. We associate the divisor ~ oP(f)(P)

to /, and denote it by (f). One can verify that

(~) ~ Do. A divisor D = ~ nP(P) is said to be

principat if D = (f) for some f c ~(l?)’. One

can also verify that D is principal if and only if

~nP=Oand~nPP=O.

Let Dz denote the set of all principal divisors.

Then Dz forms a subgroup of Do. If .DI, Dz c Do,

we write D1 w D2 if D1 – D2 E D1. For each

D G Do there exists a unique point P 6 E such

that D w (P) – (0).

If D = ~ nP(P) is a divisor and f E ~(11)’

such that D and (~) have disjoint supports, then

we define f(D) = ~pc~ f(P)nP.

Now, let m be an integer coprime to q and

let P,Q e E[m]. Let A, B ~ Do such that

A~(P)–(0) and.B~(Q)-(0), and Aand

B have disjoint supports. Let fA, f~ G F(E) be

such that (~A ) = mA and (~~) = rnB. Then the

Weil pairing em(~, Q ) is

fA(B)
em(P, Q) = —.

fB(A)

Let DI, D2 c Do with D1 = (Pi) – (0) + (fI),

D2 = (Pz) – (0) + (fZ), where P1, Pz G E and

~1, fz c F(E). Then DI + Dz = (P,) - (0)+

(fl fzfs), where P3 = P1 + P2, and f3 = Z/v, where

1 is the equation of the line through PI and P2, and

v is the equation of the vertical line through P3.

If D = ~ nP(P) is a principal divisor, then we

can find f c ~(1.3) such that D = (f) by first

writing D = ~ np((P) - (0)), and then repeat-

edly using the method of the previous paragraph

to compute ‘each term of the summation. Notice

that if P 6 E(K) for eaeh P in the support of

D, then ~ c E(.E), and all intermediate compu-

tations take place in K. The problem with this

method is that the bivariate rational function ~

may itself be of exponential size, relative to the

size of the input D. Hence instead of writing ~—
explicitly, i.e. writing down all of the non-zero co-

efficients and the corresponding monomials of f,

we represent ~ by a straight-line program. The

straight-line program will be of polynomial size,

and j can be evaluated at points P in polynomial

time (provided that f(P) is defined). As a result

of the method of this construction, the straight-

line program representing ~ may be undefined on

at most all points of the supports of the divisors

occurring in the intermediate steps.

To find fA and fB to compute e~(p, Q), we

pick random points T, U e E(K). Let A =

(P + T) - (T), B = (Q + U) – (U). We then

compute straight-line programs for fA and fB by

the method described above. Finally, we compute

tA(Q + u)f~(~)
em(P, Q) =

fl?(p + ~) fA(u)”

Let 1 = al, az, ....at = m be a fixed addition

chain for m, where t s log2 m. The value em (P, Q )

will be computed successfully provided that P + T
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and T are distinct from ai U and ai(U + Q), and

also Q + U and U are distinct from a~T and

ai(p + T), for each i, 1 ~ i ~ t. The number of

pairs of points (2’, U) which do not satisfy the con-

ditions above is at most 8tJV, where N = #l?(K).

Hence the probability that a randomly selected

pair of points (T, U) does not satisfy the conditions

is 8t/N. Thus if m = 0(N), then the probabil-

ityy that e~(.P, Q) is not computed successfully is

negligible. If the computation fails, then we pick

a new pair of random points T, U ~ E(K) and

repeat.
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