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ABSTRACT

The cross-section for bremsstrahlung photon emission in solar flares is in gen-

eral a function of the angle θ between the incoming electron and the outgoing

photon directions. Thus the electron spectrum required to produce a given pho-

ton spectrum is a function of this angle, which is related to the position of the

flare on the solar disk and the direction(s) of the pre-collision electrons relative

to the local solar vertical. We compare mean electron flux spectra for the flare

of August 21, 2002, using cross-sections for parameterized ranges of the angle

θ. Implications for the shape of the mean source electron spectrum, and for the

injected power in nonthermal electrons, are discussed.

Subject headings: Sun: flares, Sun: X-rays

1. Introduction

Piana et al. (2003) have shown how to apply a regularized inversion technique to high-

resolution hard X-ray spectra from solar flares in order to recover knowledge about the

electron flux spectrum in the source. In their analysis they used a solid-angle-averaged form

(Haug 1997) for the bremsstrahlung cross-section Q(ε, E). However, the actual cross-section

Q(ε, E) is in general a function not only of the photon energy ε and electron energy E, but

also of the incoming and outgoing electron directions and of the polarization state of the
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emitted photon (Gluckstern, Hull, & Breit 1953). It is also composed of components due to

both electron-ion and electron-electron bremsstrahlung, although it can be shown that the

latter is quite negligible except at mildly or extremely relativistic energies. Gluckstern &

Hull (1953) have presented expressions for the electron-proton bremsstrahlung cross-section,

integrated over the direction of the outgoing electron and summed over the polarization states

of the emitted photon. The resulting cross-section Q(ε, E; θ), differential in energy and solid

angle of the incoming electron direction, is a function of three variables: the photon energy

ε (keV), the electron energy E (keV), and θ, the angle between the pre-collision electron

velocity vector and the direction of photon emission. Various authors (e.g., Elwert & Haug

1970, 1971; Brown 1972; Haug 1972; Hénoux 1975; Langer & Petrosian 1977; Leach &

Petrosian 1983) have shown how the hard X-ray emission from a prescribed electron source

function varies with viewing direction.

The variation of Q(ε, E; θ) with θ can be very significant, particularly at moderate or

large (∼> 30 keV) electron and photon energies. Furthermore, the variation of Q(ε, E; θ)

with E is significantly different for different θ. For example, for a fixed photon energy ε and

θ∼< 30◦, the cross-section increases monotonically with E. However, for a fixed ε and θ∼> 30◦,
the cross-section initially increases with E but then reaches a maximum and subsequently

decreases with E, roughly like E−1 (the angle-averaged cross-section has a very similar

behavior). Hence the relation between the electron and photon spectra depends critically

on using the correct value (or range of values) for the emission angle θ. For example, in the

July 23, 2002 event analyzed by Piana et al. (2003), the flare is located at a heliocentric

angle ∼ 70◦; a vertically downward electron beam therefore corresponds to a viewing angle

θ ∼ 110◦, for which the cross-section Q(ε, E; θ) differs significantly from the solid-angle-

averaged value which they, and others, have used.

The correct cross-section to use must in practice take into account two important aspects

of the geometrical and physical environment. First, there will in general be a significant

spread in the incoming directions of the electrons, due to spiralling around magnetic field

lines, magnetic mirroring in non-uniform field geometries and directional modification due to

Coulomb collisions and collective (wave-particle) processes (e.g., Kontar 2001; Kontar and

Pecseli 2002). Second, Smith et al. (2003) have shown that the observed redshifts in prompt

gamma-ray line profiles suggest that the guiding magnetic field may be inclined away from

the vertical toward the observer, and a similar inclination in guiding field direction angle

may be appropriate for the bremsstrahlung-producing electron beam (although it should be

noted that the electron and ion accelerations may well operate on fundamentally different

bundles of magnetic field – Hurford et al. 2003; Emslie, Miller, & Brown 2004).

Let us now generalize the concept of the mean source electron flux spectrum (Brown
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1971; Brown, Emslie, & Kontar 2003) to the case of an anisotropic cross-section and/or

source electron distribution function. The hard X-ray intensity I(ε) observed at distance R

from a source can be written as

I(ε) =
1

4πR2

∫ ∞

E=ε

∫

Ω

∫

V

Q(ε, E; θ) F (E, r, Ω) n(r) dV dΩ dE, (1)

where F (E, r, Ω) is the electron flux differential in electron kinetic energy E, position r

and solid angle of the incoming electron direction Ω, and Q(ε, E; θ) is the cross-section for

bremsstrahlung emission in the direction of the observer. If we define

F̂ (E, Ω) =

∫
F (E, r, Ω) n(r) dV∫

n(r) dV
=

∫
F (E, r, Ω) n(r) dV

n̄V
, (2)

where n̄ = (1/V )
∫

n(r) dV , then Equation (1) may be written as

I(ε) =
n̄V

4πR2

∫ ∞

E=ε

∫

Ω

Q(ε, E; θ) F̂ (E, Ω) dΩ dE. (3)

If F̂ (E, Ω) is isotropic, then we define F (E) ≡ F̂ (E) and let

Q(ε, E) =

∫

Ω

Q(ε, E; θ) dΩ. (4)

Then we can write

I(ε) =
n̄V

4πR2

∫ ∞

E=ε

F (E) Q(ε, E) dE. (5)

This is the expression used by Brown, Emslie, & Kontar (2003) to define the mean source

electron spectrum F (E). It should be noted that Equation (5) also applies in the (somewhat

hypothetical) case where Q(ε, E; θ) is independent of θ, with Q ≡ Q and

F (E) =

∫

Ω

F̂ (E, Ω) dΩ. (6)

In the physically realistic case, however, neither Q(ε, E; θ) nor F̂ (E, Ω) is isotropic and

Equation (3) cannot be uniquely inverted to obtain F̂ (E, Ω) from observations of I(ε). To

do this we would need bivariate stereo data on dI(ε, Ω)/dΩ. To make progress, therefore,

requires some further assumptions on the form of F̂ (E, Ω). In this paper we restrict ourselves

to the simplest assumption, namely that F̂ (E, Ω) is separable in E and Ω, i.e.,
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F̂ (E, Ω) = F (E)
h(Ω)∫

Ω
h(Ω) dΩ

. (7)

With such an assumption, Equation (3) may be written

I(ε) =
n̄V

4πR2

∫ ∞

E=ε

F (E) dE

[∫
Ω

Q(ε, E; θ) h(Ω) dΩ∫
Ω

h(Ω) dΩ

]
. (8)

If we then define

Q(ε, E) =

∫
Ω

Q(ε, E; θ) h(Ω) dΩ∫
Ω

h(Ω) dΩ
, (9)

then Equation (8) is formally identical to Equation (5) and can be solved for any adopted

form of h(Ω) once Q(ε, E) is evaluated using Equation (9). Note that in practice – e.g.,

in a collisional thick target – the E and Ω dependencies of F̂ (E, Ω) are not separable and

further vary along the electron paths. To deal with that situation more properly requires

explicit modeling of the electron propagation - i.e., of electron scattering and energy losses;

in general this can probably only be done by forward modeling. Nevertheless, the results of

our separable inversion formulation will provide a better starting point than the assumption

of isotropy used hitherto.

In §2 we review the form of the bremsstrahlung cross-section and in §3 we present the

data to be used for the analysis. In §4 we present results for incoming electrons traveling

both in a single direction and over a range of directions; these results are discussed in §5. In

§6 we present our conclusions.

2. Form of the Cross-Section

The form of the angle-dependent electron-ion bremsstrahlung cross-section Q(ε, E; θ)

has been given by Gluckstern & Hull (1953) and Koch & Motz (1959; formula 2BN) and

is reproduced in Appendix A. (Forms of the cross-section for each polarization state have

also been given by Bai & Ramaty [1978]. These expressions correct a typographical error

in Gluckstern & Hull [1953] which does not, however, appear in the expression for the

polarization-summed cross-section.) Expressions for the solid-angle-averaged cross-section

Q(ε, E) have also been given by Koch & Motz (1959; formula 3BN); this cross-section is here

denoted by Q4π. We verified the correct normalization ( 1
4π

∫
Q(ε, E; θ) sin θ dθ dφ = Q4π)

through numerical integration for a variety of values of ε and E.
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As is shown in the Appendix (see Figure 7), for electron energies E À ε, the form of

q(ε, E; θ) is a decreasing function of θ: there is a preference for photons to be emitted in the

direction of the incoming electron. However, at electron energies comparable to the photon

energy there must of necessity be a substantial scattering angle between the incoming and

outgoing electrons, and hence the photons tend to be emitted preferentially at a significant

angle relative to the incoming electron velocity. Hence, at electron energies E∼> ε, the cross-

section peaks not in the forward direction but rather at a modest angle (30 − 40)◦ (see

Figure 7).

3. Data

We selected the event of August 21, 2002 (00:39:04-00:39:48 UT) for our analysis. This

event selection was based on two factors. First, in an effort to reduce the complexity of the

problem, we sought to analyze individual impulsive “spikes” within an event, on the grounds

that it is more likely that each such time interval corresponds to a single injection event, with

a corresponding single geometry throughout the burst. For the August 21 event there was

indeed a clear identification of impulsive “spikes” in the flare light curve. Second, the count

rates in that event were sufficiently low that pulse pileup in the RHESSI detectors (Smith

et al. 2002) was not a significant factor. (The somewhat mysterious “dip” in the F (E)

spectrum obtained by Piana et al. [2003] for the July 23, 2002 [∼ 0030 UT] event occurs

at an energy that is particularly susceptible to pulse pileup issues in very large events; the

effect of pulse pileup on the conversion from count to photon spectra is not yet completely

understood.)

The location of the flare on the solar disk is x = 696′′, y = −248′′, which corresponds to

a heliocentric angle of ∼ 50◦. Figure 1 shows the light curves at different photon energies and

the choice of time interval (00:39:04-00:39:48 UT) for subsequent analysis; Figure 2 shows

the photon spectrum for that time interval. This spectrum was obtained by processing the

RHESSI count spectrum through the SPEX software on the Solar Software tree, and is

robust in the count/photon energy range considered.

4. Determination of F (E) as a Function of Viewing Angle

Piana et al. (2003) and Kontar et al. (2004) have discussed how Equation (5) can

be solved for an optimal reconstruction of F (E) for a given observed spectrum I(ε) and

cross-section Q(ε, E); it should be noted that the Equation (5) is of Volterra (rather than
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Fig. 1.— Light curves for the August 21, 2002 event. The two vertical dashed lines show

the time interval (01:39:04 - 01:39:48 UT) selected for analysis. The energy bands shown are

3–12 keV (solid), 12–25 keV (dotted), 25–50 keV (dashed) and 50–299 keV (dot-dashed).
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Fredholm) form and hence has a degree of ill-posedness that is small enough for manageable

error control in the recovered F (E) solution. The form of F (E) can be used to establish a

wide variety of physically significant features of the flare, such as the differential emission

measure ξ(T ) under a thermal interpretation of the electron distribution, or the injected

electron flux under a non-thermal thick-target interpretation (Brown & Emslie 1988). It is

therefore important to determine the extent to which these physically significant functions

depend on the viewing angle θ.

It is important to realize that electrons in general have a finite pitch angle to the

guiding magnetic field lines about which they spiral, so that the incoming electrons have

a wide range of directions. The details of the electron pitch angle distribution depend on

a number of physical effects. Collisions with ambient electrons and protons broaden the

angular distribution about the original injected direction, with the mean pitch angle (Brown

1972) and breadth (Leach & Petrosian 1981) of the distribution increasing with depth in

the target. Interaction with plasma waves, notably whistlers (e.g., Stepanov & Tsap 2002)

may rapidly isotropize an electron beam and create a “fan” distribution with significant

momentum perpendicular to the guiding magnetic field.

As discussed in the Introduction, a complete investigation of the form of the pitch

angle distribution of the incoming electrons is beyond the scope of this paper. We therefore

make the assumption that at all energies the target-averaged incoming electron velocities are

uniformly distributed over solid angle within a cone of half-angle α centered on a direction

that makes an angle θ0 relative to the direction of photon emission, i.e. (with β as the polar

angle relative to the axis of the cone)

h(Ω) =

{
1 β ≤ α

0 otherwise.
(10)

With this form of h(Ω) the average cross-section Q(ε, E) (Equation [9]) is

Q(ε, E; θ0, α) =
1

2π(1− cos α)

∫ 2π

φ=0

∫ α

β=0

Q(ε, E; θ) sin β dβ dφ, (11)

where θ is the angle between the observer and an elementary electron beam oriented at polar

coordinates (β, φ) relative to the axis of the cone, viz.

cos θ = cos θ0 cos β + sin θ0 sin β cos φ. (12)

We then perform the inversion of Equation (5) using the appropriate form of Q(ε, E; θ0, α)

with Z2 = 1.44. The photon spectral data I(ε) were taken over the range 9-222 keV (be-
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low 9 keV there is a substantial contribution to the observed spectrum from line emission

not dealt with with the free-free cross-section Q[ε, E], and above the upper limit data noise

and background subtraction made some inferred photon rates negative). We constructed

regularized forms of F θ0,α(E) for mean angles θ0 over the range from 0◦ (photon emission

parallel to the direction of the incoming electron) to 180◦ (photon emission in the antipar-

allel direction). For vertically-downward directed electron beams, values of θ0 ∼ 180◦ are

appropriate for disk-center events, and values θ0 ∼ 90◦ are appropriate for events near the

limb. A variety of α values (10◦, 30◦, 60◦, 90◦ and 180◦) were used; we found that the results

for values of α < 10◦ were indistinguishable from the results for α = 10◦. Note also that

the last of these (α = 180◦) corresponds to an integration over the entire sphere, i.e., to the

angle-averaged cross-section Q4π. A “confidence strip” of F θ0,α(E) forms based on different

realizations of the (noisy) data was produced for each photon spectrum I(ε) and the mean

of this confidence strip was used for further analysis.

The August 21 flare was located at a heliocentric angle of approximately 50◦. If we

assume that the mean direction of the incoming electrons was vertically downward at this lo-

cation, then the corresponding value of θ0 is 130◦. Figure 3 shows the reconstructed F θ0,α(E)

corresponding to θ0 = 130◦ and various values of α, including α = 180◦, corresponding to

the solid-angle-averaged cross-section.

It should be recognized that the assumption of a vertical mean incoming electron direc-

tion, and so the choice of θ0 = 130◦ is not rigorously justified. For comparison, therefore,

Figure 4 shows the same results for values of θ0 ranging from 0◦ to 180◦ in 45◦ steps.

5. Discussion

We begin by discussing the forms of F θ0,α(E) for a prescribed θ0, namely the nominal

130◦ value of Figure 3, corresponding to a cone of electrons with a vertically downward axis

of symmetry.

A value α = 0 corresponds to all the emission concentrated at θ = θ0. However, for

nonzero α, we now have emission spread over a range of θ from θo−α to θo + α. Because of

the asymmetric form of the emission polar diagram at high electron energies (Figure 7), the

enhanced emission in the θo − α direction more than compensates for the decrease emission

in the θo + α direction, so that fewer total electrons are required to produce a given photon

flux than for the unidirectional (α = 0) case. Figure 3 shows that the magnitude of the

reconstructed F θ0,α(E) does indeed depend quite strongly on the range of incoming electron

directions α, especially at high electron energies E (at 500 keV, the required electron flux
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Fig. 2.— Photon spectra for the time interval (01:39:04 – 01:39:48 UT) indicated in Figure 1.

Fig. 3.— F θ0,α(E) for θ0 = 130◦ and the values of α (spread in incoming electron directions)

shown. The dashed curve (labeled α = 180◦) is the spectrum obtained using the angle-

averaged cross-section Q4π.
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Fig. 4.— As for Figure 3, but for values of θ0 = 0◦, 45◦, 90◦, 135◦ and 180◦. The curves have

the same significance as in Figure 3, with the uppermost solid curves corresponding to the

lowest values of α.
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is less by a factor of ∼ 4). Since this effect becomes more important with increasing energy

(Figure 3), the reconstructed F θ0,α(E) also becomes steeper with increasing α. Recognizing

that the extreme maximum case α = 180◦ corresponds to the angle-averaged cross-section

used in previous papers (e.g., Piana et al. 2003), we see that the use of a cross-section that

more realistically reflects the range of incoming electron velocity vectors always flattens the

high-energy part of the inferred electron spectrum relative to that found using the angle-

averaged cross-section Q4π. For values of α∼< 10◦, the effect “saturates,” i.e., there is little

to distinguish between values of α in the range 0 ≤ α ≤ 10◦.

Next we discuss the variation of F θ0,α(E) with mean viewing angle θ0. For θ0 = 180◦

(Figure 4), corresponding to vertically-downward electrons in a disk center flare, the re-

covered flux F θ0,α(E) for modest values of α is, at high energies, significantly (an order of

magnitude or so) greater than the value of F θ0,180◦(E), i.e., to use of the angle-averaged

cross-section Q4π. This is because of the very low values of the normalized cross-section

q(ε, E; θ) appropriate to this viewing angle (Figure 7), and hence the inefficiency of photon

production in such a direction. Such large fluxes may introduce issues of beam stability.

Conversely, for θ0 = 90◦ (corresponding to vertically-downward electrons in a limb flare;

see Figure 4), the enhancement over the angle-averaged (α = 180◦) case is less pronounced;

indeed the recovered spectra are remarkably similar to that derived using the angle-averaged

cross-section, particularly at energies ∼> 30 keV.

Values of θ0 < 90◦ correspond to the case where the mean velocity of the electrons has

a component toward the observer, and therefore away from the Sun. In general, θ0 values

in this first quadrant lead (Figure 4) to a decreased value of F θ0,α(E) relative to the angle-

averaged result F θ0,180◦(E), because of the preferential tendency for photons to be emitted

in the forward hemisphere (relative to the incoming electron velocity – Figure 7) and hence

the smaller number of electrons needed. However, at very low values of θ0∼< 30◦, the required

F θ0,α(E) is, for low energies, greater than both the θ0 = 45◦ case and the angle-averaged case

(dashed line); this is a consequence of the angular behavior of q(ε, E, θ) (in particular the

low value near θ = 0) shown in Figure 7 and noted at the end of §2. The greatest deviations

between the correct spectrum and that deduced using the angle-averaged cross section are

thus achieved for θ0 ' 45◦ (correct spectrum steeper) and for θ0 ' 180◦ (correct spectrum

flatter).

Figure 5 shows the variation of the local spectral index δE as a function of E, for the

θ0 = 130◦ spectra of Figure 3. Compared to the results for the isotropic case (α = 180◦), the

spectral indices for the anisotropic electron distributions are substantially smaller (flatter

spectrum) at low energies (∼ 40∼< 200 keV), and larger (steeper spectrum) at high energies

(∼> 200 keV). In all cases the value of δE increases with decreasing energy below ∼ 50 keV,
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indicative of the transition to a softer, more thermal, spectrum. At low energies ∼< 25 keV,

the value of δE changes to a form that increases with E, indicative of the general steepening

trend associated with thermal spectra.

6. Conclusions

In determining the mean source electron population F (E) responsible for a given hard

X-ray spectrum, it is very important to use a bremsstrahlung cross-section Q that accu-

rately represents the geometric relationship between the source and the observer. Although

the correct range of viewing angles (relative to the incoming electron direction[s]) requires

modeling of the electron transport beyond the scope of the present paper, we have shown

through a parametric analysis that use of an angle-averaged cross-section can lead to signif-

icant differences in F (E), especially at electron energies ∼> 50 keV.

Different mean source electron spectra F (E) correspond to different requirements on

the electron injection spectrum F0(E0). Specifically, for collisional energy losses in a cold

(but fully ionized) target, F0(E0) is related to F (E) by (Brown & MacKinnon 1985; Emslie

2003)

F0(E0) = −K nV

A

d

dE

[
F (E)

E

]
, (13)

where A is the injection area (cm2) and K = 2πe4Λ, e being the electronic charge and Λ the

Coulomb logarithm. The injected power P ∗ (ergs s−1 above reference energy E∗) is therefore

P ∗ = A

∫ ∞

E∗
E0 F0(E0) dE0 = KnV

[
F (E∗) +

∫ ∞

E∗

F (E)

E
dE

]
, (14)

where we have used integration by parts in the last equality. Figure 6 shows the variation of

the P30 (i.e, P ∗ with E∗ = 30 keV) required to produce the hard X-ray spectrum of Figure 2

as a function of the mean viewing angle θ0 for various values of the cone half-angle α. In

general, as θ0 increases, the electrons become less efficient at radiating toward the observer

(see Figure 7) and so the required P30 increases. However, as the spread in beam directions α

increases, the value of P30 relaxes back to the angle-averaged value. This trend is reversed at

very low (∼< 30◦) values of both θ0 and α: the required power is slightly greater than for the

angle-averaged cross-section. As discussed in §5, this is because at low energies, the cross-

section peaks at an angle substantially different from zero (see Figure 7). As can be seen

from the first panel in Figure 4, the mean source electron flux for (θ0 = 0, α = 0) is greater
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Fig. 5.— Spectral index variation for θo = 130◦ and values of α indicated.

Fig. 6.— Injected power P30 as a function of θo for various values of α.
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than the angle-averaged result for energies E∼< 50 keV, and electrons in the (30 − 50) keV

range dominate the contribution to the total injected power.

In summary, the use of the correct, direction-dependent cross-section can yield recov-

ered mean source electron spectra of significantly different shape, and corresponding in-

jected powers with a significantly different total injected energy, than the results using the

usual angle-averaged (e.g., Haug 1997) cross-section. Recognizing that the total hard X-ray

production also includes a contribution from the (angle-dependent) contribution from sec-

ondary (photospherically backscattered) photons (Tomblin 1972; Santangelo, Horstman, &

Horstman-Moretti 1973; Langer & Petrosian 1977; Bai & Ramaty 1978), in future works we

plan to incorporate an empirical treatment of this effect (e.g., Alexander & Brown 2002) as

a correction to the angle-dependent cross-sections used.

This work was supported by NASA’s Office of Space Science through Grant NAG5-

207745, by a PPARC Grant, and by a collaboration grant from the Royal Society. We thank

Dr. Gordon Holman for his critical review of the manuscript, which led to the sharpening
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A. Form of the Angle-Dependent Bremsstrahlung Cross-Section

The cross-section Q(ε, E; θ) used in this work has been presented by Gluckstern & Hull

(1953) and Koch & Motz (1959). Here we reprint this result in our notation (and in units of

cm2 keV−1 sr−1), and we also present a polar diagram of the angular dependence for various

electron and photon energies, in order to make some of the discussions in the paper more

comprehensible.

Formally, the cross-section Q(ε, E; θ) for electron-ion bremsstrahlung, differential in

photon energy ε, electron energy E, and the angle θ between the incoming electron and the

emitted photon (but integrated over the direction of the emergent electron and summed over

the polarization states of the emitted photon) is

Q(ε, E; θ) = Z2 α

2

r2
0

mec2

(
1

ε̃

)√
(Ẽ − ε̃)2 − 1
√

Ẽ2 − 1
×

×
{

8
2Ẽ2 + 1

(Ẽ2 − 1)∆4
sin2 θ − 2

5Ẽ2 + 2Ẽ(Ẽ − ε̃) + 3

(Ẽ2 − 1)∆2
−
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Fig. 7.— Polar diagram of the bremsstrahlung cross-section for E = 100 keV and photon

energies ε = 30 keV (solid line), ε = 50 keV (dotted line), and ε = 80 keV (dashed line);

the radial coordinate is proportional to the size of the cross-section and the angle from the

x-axis corresponds to the angle between the incoming electron direction and the line to the

observer. Note that at energies E À ε the cross-section peaks at θ = 0, while for E ' ε the

cross-section peaks at θ ' (30− 40)◦.
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− 2
Ẽ2 − ε̃2 − 1

T 2∆2
+ 4

Ẽ − ε̃

(Ẽ2 − 1)∆
+

+
L√

([Ẽ − ε̃]2 − 1)(Ẽ2 − 1)

[[
4Ẽ (3ε̃− [Ẽ2 − 1][Ẽ − ε̃])

(Ẽ2 − 1) ∆4
sin2 θ +

+
4Ẽ2(Ẽ2 + [Ẽ − ε̃]2)− 2(7Ẽ2 − 3Ẽ[Ẽ − ε̃] + [Ẽ − ε̃]2) + 2

(Ẽ2 − 1)∆2
+

+ 2 ε̃
Ẽ2 + Ẽ(Ẽ − ε̃)− 1

(Ẽ2 − 1)∆

]]
+

+
γT

T
√

(Ẽ − ε̃)2 − 1

[ 4

∆2
− 6ε̃

∆
− 2ε̃ (Ẽ2 − ε̃2 − 1)

T 2∆

]
−

− 4γ

∆
√

(Ẽ − ε̃)2 − 1

}
× β(1− e−2πZα/β)

β′(1− e−2πZα/β′)
, (A1)

where Z is the atomic number of the ion, α ' 1/137 is the fine structure constant, r0 '
2.8 × 10−13 cm is the classical electron radius, mec

2 ' 511 keV is the electron rest energy,

and

Ẽ = 1 +
E

mec2
; ε̃ =

ε

mec2
; β =

√
1− 1

Ẽ2
; β′ =

√
1− 1

(Ẽ − ε̃)2
, (A2)

∆ = Ẽ −
√

Ẽ2 − 1 cos θ, (A3)

T = (Ẽ2 − 1 + ε̃2 − 2ε̃
√

Ẽ2 − 1 cos θ)1/2, (A4)

L = ln


Ẽ(Ẽ − ε̃)− 1 +

√
(Ẽ2 − 1)([Ẽ − ε̃]2 − 1)

Ẽ(Ẽ − ε̃)− 1−
√

(Ẽ2 − 1)([Ẽ − ε̃]2 − 1)


 , (A5)

γT = ln


T +

√
(Ẽ − ε̃)2 − 1

T −
√

(Ẽ − ε̃)2 − 1


 , (A6)

and
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γ = ln


(Ẽ − ε̃) +

√
(Ẽ − ε̃)2 − 1

(Ẽ − ε̃)−
√

(Ẽ − ε̃)2 − 1


 . (A7)

The last factor in Equation (A1) (involving the velocity β [in units of the speed of light c]) is

the Elwert (1939) Coulomb correction and does not appear in the expressions in Gluckstern

& Hull (1953). This correction is sufficiently accurate (to within a few percent) except at

electron energies above ∼ 100 keV and approaching the “high-frequency limit” ε → E; in

such regimes more elaborate expressions are appropriate. For more details, see Koch & Motz

(1959).

It should be noted that the expression (A1) is indeterminate at ε = E; in practice this

can be handled in numerical computation by setting E slightly higher than ε.

Figure 7 shows the angular dependency of the cross-section given by Equation (A1). The

strong beaming of emission in direction of the incoming electron (θ = 0) at high energies,

and the peak near θ = 30◦ at lower energies, are evident.
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