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Abstract

Automatic estimation of current dipoles from bio-magnetic data is
still a problematic task. This is due not only to the ill-posedeness of
the inverse problem, but also to two intrinsic difficulties introduced by
the dipolar model: the unknown number of sources, and the non-linear
relationship between the source locations and the data. Recently we
have developed a new Bayesian approach, particle filtering, based on
dynamical tracking of the dipole constellation. Contrary to many
dipole-based methods, particle filtering does not assume stationarity
of the source configuration: the number of dipoles and their positions
are estimated and updated dynamically during the course of the MEG
sequence. We have now developed a Matlab based graphical user inter-
face, which allows non-expert users to do automatic dipole estimation
from MEG data with particle filtering. In the present paper, we de-
scribe the main features of the software and show the analysis of both
a synthetic data set and an experimental dataset.

Introduction

Traditional dipole fitting of MEG evoked fields is a time-consuming
procedure providing subjective results and requiring expert users for
reliable source estimation; however, it is still largely used even for
evaluating MEG inverse methods based on the distributed current
assumption [1, 2] and in any case, proved to be notably effective in
the reconstruction of focal sources [3]. Estimating current dipoles
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from MEG data is in fact a hard task, as it involves solving several
interacting problems such as model order selection (for determining
the number of sources), non-linear optimization (for estimating the
source locations) and linear least-squares fitting (for calculating the
dipole strengths). Most automatic algorithms for dipole estimation
presented so far, and in fact even traditional dipole fitting, work un-
der a couple of important approximations: (1) the number of dipoles is
assumed to be fixed during the whole sequence, presence or absence of
a given source being coded in the strength of the source itself; (2) the
source locations are fixed in time. The second assumption is justified
by physiological arguments, because a neural population hardly moves
within the head. Also the first assumption appears to be reasonable;
however, methods based on these assumptions can hardly discrimi-
nate nearby sources, even if they are not overlapping in time, because
two dipoles placed at close distance will interact and produce spurious
activity. Furthermore, in some cases, particularly when the number
of sources is estimated from the data covariance matrix exploiting
algebraic results [4], temporal correlation can prevent automatic algo-
rithms from correctly recovering the neural sources.

In [5] we have described a source estimation method exploiting
Bayesian Filtering and Random Finite Sets and based on a completely
dynamical model, rejecting the assumptions (1) and (2) previously
mentioned: the number of sources can change during the sequence,
as well as the dipole locations. The number of active dipoles and
their locations are estimated dynamically and updated at each time
sample from the data. The method works by approximating with a
particle filter, i.e. a Sequential Monte Carlo algorithm, the posterior
densities involved in the Bayesian filter. In a couple of publications, we
have discussed possible advantages and limitations of particle filtering
for MEG, showing direct [6] and indirect [5] comparisons with other
available methods.

In the present paper we describe the use of the graphical user
interface (GUI) we have developed for the particle filter, HADES
(Highly Automatic Dipole EStimation). HADES is an open-source,
freely downloadable, Matlab-based software. The purpose of the GUI
is at least twofold: on one hand, we aim at sharing methods and re-
sults with other researchers in the field, who may have the chance to
investigate by themselves the potential and limits of particle filtering;
on the other hand, we aim at reaching a larger audience of neuro-
scientists who may be less curious about the methodological aspects,

2



but more interested in the possible applications.
The paper is organized as follows: in the first section, a non-

technical description of the methodological issues is presented. In
the second section we provide details on the software, including sup-
ported data types, license details and computational aspects. In the
third section, we follow step-by step the analysis of both a synthetic
data set and an experimental dataset, so as to introduce the reader
to the practical use of the interface. In the fourth section, we briefly
summarize the main features of the presented software.

1 Methods

The present section describes the computational algorithm at the ba-
sis of HADES and the way it has been implemented in the software. It
contains three subsections: the first one describes the models adopted
and the input data; the second one describes the particle filter and the
run-time parameters necessary for the filter to run; the third one de-
scribes the estimation procedure and the output provided by HADES.

Model assumptions and input data

HADES is based on a dynamical dipolar model of neural activations:
at each time point, each active area is represented as a single current
dipole. There is no prior assumption on the number of active sources,
and there is no limit on the total number of neural sources; however,
for computational reasons we impose an upper bound to the number
of simultaneous active dipoles.

HADES is based on a discretized source space: dipoles can take
only a finite set of pre-defined possible locations. The main advan-
tage of this approximation is that lead fields can thus be used to save
computational time. Furthermore, the source space can be either the
whole brain volume, or else the cortical surface when available; to fur-
ther increase localization accuracy, also an orientation constraint can
be optionally used (although cortical constraints should be managed
carefully, since there are neurophysiological situations where, using
dipole fitting, they may lead to biased or wrong results).

All the source parameters are assumed to be dynamical parame-
ters. The number of sources is a dynamical variable, to be estimated
from the data. Sources are also allowed to move during time, i.e. to
jump between neighboring points of the source space.
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Noise is assumed to have a Gaussian distribution. An estimate of
the noise spatial covariance matrix can be either loaded or calculated;
using such estimate corresponds to a pre-whitening of the data. Alter-
natively one can assume that noise is white Gaussian, and calculate
an estimate of the noise power.

The input data needed to run HADES are therefore the source
space and the corresponding lead field. The neighboring matrix, list-
ing all the neighbours within a user-selected radius, is calculated by
HADES. Optional inputs are the noise covariance matrix and a signal
space projection matrix. See Fig. 1 for a schematic representation.

Particle filter and run-time parameters

The core of HADES is a Random Finite Sets (RFS) particle filter.
Random Finite Sets are a mathematical tool for dealing with an un-
known and varying number of objects [7]. Particle filtering [8] refers to
an algorithm which tries a large number of dipole configurations, also
called particles, choosing these configurations based on probabilistic
criteria. The algorithm is sequential: it begins by analyzing the data
measured at the first time point, t = 1, and proceeds time sample per
time sample. At each time sample t, assume that a set of Np dipole
configurations is available; then the algorithm performs the following
operations

1. assign a weight to each dipole configuration, based on the dif-
ference between the measured data and the exact field produced
by the dipole configuration;

2. use the cloud of weighted dipole configurations to calculate esti-
mates of the number of sources and their parameters;

3. discard particles with low weights, and multiply particles with
high weights, in order to maintain only the most likely dipole
configurations while preserving the total number of particles Np;

4. let each dipole configuration evolve randomly, thus producing
the set of dipole configurations at time t + 1 needed at step 1,
and start again from step 1.

According to the RFS framework, the number of dipoles in each
particle may vary from zero to a maximum; dipole configurations may
undergo loss or birth of dipoles during the temporal evolution at the
fourth step.
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The number Np of particles is the first parameter to set: using a
large Np guarantees in principle better results; the computational time
is linearly increasing with this number, hence a good balance between
stability and computational time has to be sought.

In the weighting procedure at step 1, the prior assumptions on
the noise statistics play an important role, because the expected dif-
ference between the measured data and the exact field should be of
the order of the noise. However, for several reasons the noise esti-
mate can be unsatisfactory in many situations. In this case, one may
want to have a weaker/stronger fit with the data, with respect to that
provided by straightforward noise estimate. Therefore we introduced
the discrepancy parameter as a multiplicative factor for the noise es-
timate. Setting a small value (< 1) for the discrepancy means that
a stronger fit is required; the algorithm will then try to reproduce
finer details in the data, possibly using a larger number of sources
and possibly exhibiting a lower degree of stability and reliability. On
the contrary, setting a large value means that a weaker fit is required,
with the opposite consequence of ending up with a lower number of
stable sources.

Source Estimates and Output

The estimation procedure in HADES goes through three main steps.
The first two steps are performed at every sampled time point of an
MEG sequence (step 2 in the previous subsection), and produce time-
varying estimates of the dipole parameters: first, the algorithm obtains
an estimate N̂t of the number of dipoles, and then calculates estimates
of the actual parameters (location and dipole moment) for N̂t dipoles.
These dynamical estimates, however, do not identify individual neural
sources in time, because there is no straightforward relationship be-
tween dipoles estimated and different time points. Given the collection
of all dipoles estimated at all time points, a third step is then applied,
which binds together dipoles estimated at different time points but
possibly representing the same neural source. This clustering can be
performed in two different configurations: either dipoles are grouped
based only on their location, or else dipoles are grouped based both
on location and orientation. The final number of clusters is estimated
automatically with a recursive procedure, which starts from the user-
defined maximum number of clusters, and decreases this number un-
til all the estimated clusters are significantly different. Once dipoles
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have been assigned to different clusters, likely corresponding to dif-
ferent neural sources, it makes sense to compute the average location
of all dipoles belonging to each cluster; this average location can be
considered as an estimate of the neural source location, and the cor-
responding source waveform can also be calculated.

The output of HADES consists in the dynamical estimates of the
number of sources and of the source parameters, plus a global picture
obtained from the clustering. Referring to Figure 4 as a typical result
of a data analysis performed with HADES, the user can view:

1. the dynamical model order estimate (panel (a)), i.e. the pos-
terior probability that the data have been produced by 1,2,3,...
dipoles as a function of time; the cumulative distribution for the
number of sources is visualized as an area, with different colors
representing the probabilities of different models;

2. the dynamical estimates of the source locations (panel (b)); while
in this figure all the dipoles estimated in the whole sequence are
superimposed, the user can in fact choose to visualize only the
dipoles estimated in a selected time window;

3. the clustered dipole location estimates, with the corresponding
amplitude waveforms (panel (c)); since these waveforms are cal-
culated for dynamical source locations, they exhibit a certain
level of discontinuity in correspondence of jumps of the source
location;

4. the average source location of each cluster (panel (d)), with the
corresponding amplitude waveform which is now continuous.

While the localization panels show the three standard views of the
brain, figures contain in fact 3-dimensional information and the user
can rotate the view.

2 Software details

HADES is a Matlab-based graphical user interface, which needs Mat-
lab to run. It has been written and tested under Matlab version 7.9.0,
hence full compatibility is not guaranteed under earlier versions.

Input data can be provided in standard Matlab .mat format and in
plain ascii format; the Neuromag .fif format is supported through the
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Figure 1: The input-output scheme of HADES: on top, the main window
where the user can load input data (blue) and set the parameters (green);
an asterisk indicates mandatory input data. The particle filter algorithm is
presented as a black box giving two outputs (the model selection function and
the estimated dipoles); the clustering algorithm assign individual dipoles to
clusters, and computes the average location and the waveform of each cluster.
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set of functions contained in the MNE [9] Matlab toolbox 1. More de-
tails on the format of input data can be found in the HADES manual,
available at http://hades.dima.unige.it.

Results can be exported in different format, for visualization in
other toolboxes. At the moment, HADES features the following export
options:

• a .stc file which contains the sequence of estimated dipoles in
time, and can be visualized as a movie in MNE; furthermore,
the very first time sample of the exported file contains the su-
perposition of all the estimated dipoles, to get the overall picture
of the estimated neural activity;

• a .mat file which contains the sequence of estimated dipoles in
time, and can be visualized as a movie in BrainStorm 2; again,
the very first time sample of the exported file contains the super-
position of all the estimated dipoles, to get the overall picture of
the estimated neural activity;

• a .w file which contains the location of all dipoles estimated at
all time points, and can be visualized in FreeSurfer 3 [10, 11].

HADES is not bound to a specific hardware for MEG: all the
hardware-dependent components are in fact contained in the input
data (lead field, source space and measurements). In principle, HADES
may be applied to EEG data as well; experimental validation with
electroencephalographic measurements is in progress.

The computational cost of the algorithm increases linearly with (i)
the number of analyzed time samples and (ii) the number of parti-
cles. For running with 10,000 particles on a standard PC (CPU Intel
Core2 Quad 2.83 GHz, RAM 4 GB) the algorithm takes on average
0.8 seconds per time sample.

HADES 4 is a free but copyrighted software, distributed under the
terms of the GNU General Public Licence as published by the Free
Software Foundation (either version 2, or at your option any later
version).

1http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE
2http://neuroimage.usc.edu/brainstorm
3http://surfer.nmr.mgh.harvard.edu/
4http://hades.dima.unige.it
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3 Results

In this section we present two examples of source modeling performed
using HADES. First we use synthetic data so that the ground truth is
known; the sample data analyzed here are contained in the HADES
package for further analysis and testing. Then we analyze an experi-
mental data set corresponding to stimulation of left and right thumb.

3.1 Synthetic data

Data (see Fig. 2) are produced by six sources: Table 1 summarizes
locations and peak latencies of the sources, while Figure 3 shows both
source locations and dynamics. Sources 2 and 3 have the same latency,
but a different duration; sources 4 and 5 have exactly the same wave-
form, i.e. they are time-correlated; sources 1 and 6 are in the same
location. The source points do not belong to the source space which is
used by the inverse algorithm. MEG sensors correspond to the Neu-
romag Vectorview system which features 102 locations and 3 channels
per location, one magnetometer and 2 planar gradiometers, for 306
channels. Here we employ only the 204 planar gradiometers. White
Gaussian noise is added: the noise standard deviation is 3fT/cm; the

SNR at the peak of the strongest source, calculated as 10 log10
|D|2
|N |2 ,

where D is the data matrix, N is the noise matrix and | · | the Frobe-
nius norm, is about 10 dB. The superposition of all signals is shown
in Figure 2.

We first load the source space and the lead field from the popup
window. Then we load the measurements: we set the starting time
point (-100 ms), the sampling frequency (1,000 Hz) and the length of
the pre-stimulus interval (from -100 to 0 ms) for estimation of the noise
variance. The source space is formed by 13026 points with a regular
spacing of 0.5 cm in the brain volume, and no cortical constraints are
used.

3.1.1 Single run

We set the number of particles to 10,000 and the discrepancy param-
eter to 1 and run the particle filter.

The results are shown in Figure 4. Two of the 6 sources producing
the data are missing: in fact, they are the two sources 1 and 6 in
the same location, which are also the ones producing the smallest
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Figure 2: Synthetic data produced by the six sources described in Table 1
and Figure 3; only the signals from the gradiometers are shown.

Source n x [cm] y [cm] z [cm] t [ms] fT/cm

1 (red) -1.37 -5.43 7.34 20 51
2 (blue) 3.74 4.54 5.66 40 57
3 (green) -2.04 3.73 9.56 40 130

4 (magenta) 2.96 2.11 9.42 110 100
5 (cyan) -3.43 -2.71 4.07 110 110
6 (yellow) -1.37 -5.43 7.34 220 51

Table 1: Parameters of the six sources used to simulate the data: source
location, peak latency and measured signal at the peak. Colors refer to
Figure 3.
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Figure 3: Location and dynamics of the 6 sources: the waveform of the cyan
source is not visible as it is overridden by the time-correlated magenta source;
the location of the yellow source is not visible as it is the same as the red
source.
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signal at the sensor level. The initial number of clusters was set to
4, due to both visual inspection of reconstructed dipoles (panel (b))
and evidence from the model selection (panel (a)), which indicates a
two-dipole model in two separate temporal windows.

Considering all the reconstructed dipoles at all time points, the
average distance between the dipoles and the corresponding sources is
1.1 cm, with a standard deviation of 0.8 cm; the maximum distance is
3.3 cm, the minimum distance 0.24 cm. Despite this large maximum
error, the mean dipoles of the clusters (panel (d)) appear to be good
approximations of the true sources (cfr Fig. 3), featuring distances of
0.3 cm, 0.4 cm, 0.9 cm and 1.35 cm from the true sources. This is ex-
plained as the estimated dipoles being quite symmetrically distributed
around the true sources.

3.1.2 Tuning the parameters

As described in the previous section, tuning the discrepancy parameter
corresponds to requiring higher/lower fit with the data. We run again
the particle filter with 10,000 particles, first setting the discrepancy
to 0.7 (higher fit required) and then to 2 (lower fit). The results are
shown in Fig. 5 and 6, respectively. With the lower discrepancy, the
algorithm recovers also the two weaker sources, Source 1 and 6. The
Figure has been obtained by clustering the dipoles in 5 groups. With
the higher discrepancy, the algorithm looses track of Sources 1, 2, 5
and 6.

Average distances between reconstructed dipoles and true sources
are in the same range as for the unitary discrepancy.

3.2 Experimental data

MEG data were provided courtesy of Dr Sabine Meunier (La Salpetriere
Hospital, Paris), as made available for download on BrainStorm’s web
site. The data were recorded on a CTF machine (151 axial gradiome-
ters) at La Salpetriere Hospital, Paris. The protocol comprised shuf-
fled electrical stimulation of the fingers from both hands; the analyzed
data are averaged responses (400 trials) for the stimulation of the right
thumb (R) and of the left thumb (L) (see Figure 7). The lead field ma-
trix was exported using the BrainStorm software, as well as the source
space; the source space consists of 15,010 source points distributed
along the cortical surface. A distance of 1 centimeter was selected for
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Figure 4: Results obtained with 10,000 particles and discrepancy 1. (a): dy-
namical model selection function. (b): superposition of all estimated dipoles
at all time points. (c): clustered dipoles and corresponding waveforms. (d):
average dipoles of the clusters in (c). Estimated dipoles show an expected
spread around the true sources (cfr Fig 3). From panel (b) it is evident that
sources 1 and 6, i.e. the ones producing the weakest field, are not recov-
ered. The model selection function indicates neural activity beginning at 10
ms (when the maximum probability switches from the zero-dipoles model to
the one-dipole model) and lasting until about 145 ms; in two time windows
(30-55 ms and 105-130 ms), a two-dipole model is selected.
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Figure 5: Results obtained with 10,000 particles and discrepancy 0.7. The
model selection indicates now a one-dipole model in a short time window
around 220 ms, corresponding to Source 6. In fact, both sources 1 and 6
are now recovered correctly; the clustering procedure binds them in a single
source, because they are exactly in the same location. The model selec-
tion also indicates that the two-dipoles model is now selected for larger time
windows with respect to the previous case with unit discrepancy; moreover,
around 30 ms the three-dipoles model appears to have a non-negligible prob-
ability, even though it does not exceed the 50%.
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Figure 6: Results obtained with 10,000 particles and discrepancy 2. With
this large value for the discrepancy parameter, the model selection in panel
(b) exhibits lower probability for larger models, the two-dipoles model has
non-negligible posterior probability but is never the mode of the distribution.
The set of estimated dipoles is now smaller and contains only two activations,
corresponding to Source 3 and 4, i.e. the two dipoles producing the strongest
field.

15



−50 0 50 100 150 200 250
−150

−100

−50

0

50

100

150

time [ms]

m
ag

ne
tic

 fi
el

d 
[fT

/c
m

]

Figure 7: Averaged magnetic field for the stimulation of the left thumb.

calculation of the neighboring matrix. Both data sets were analyzed
using 10,000 particles and the discrepancy parameter set to 1; the ori-
entation constraint was not used, although available. Results for the
left and right thumb stimulation experiment are described in Figure 8
and 9 respectively. With the left data, reasonable source localization
is obtained with the first run, with the standard discrepancy value.
With the right data on the contrary the standard parameter value
provided reasonable localization in correspondence with the peak of
activation, plus some other dipoles at later time points scattered in
apparently less likely locations. Cleaner reconstructions can be ob-
tained increasing the discrepancy parameter (see Fig. 9 (c) and (d)).

4 Discussion and conclusions

HADES is a Matlab based, freely downloadable software for dynamical
estimation of current dipoles from MEG data. It is distributed under
the GPL and has a simple graphical user interface, which allows non-
expert users to do dipole modeling automatically.

The particle filter HADES is based on [5], tracks in time the pos-
terior density for the dipole constellation; statistical estimators are
used to provide dynamical estimates of the number of sources and

16



0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [ms]

m
od

el
 o

rd
er

 p
ro

ba
bi

lit
y

 

 

zero dipole
one dipole
two dipole
three dipole
four dipole
five dipole

(a) (b)

0 50 100 150
0

5

10

time [ms]

so
ur

ce
 w

av
ef

or
m

s 
[n

A
m

]

0 50 100 150
0

5

10

time [ms]

so
ur

ce
 w

av
ef

or
m

s 
[n

A
m

]

(c) (d)

Figure 8: Left thumb stimulation; results obtained with 10,000 particles and
discrepancy 1. The model selection in panel (a) indicates activity in a first
time window beginning around 40 milliseconds after the stimulus and lasting
until 100 ms, and in a second time window between 115 and 140 ms. All
estimated dipoles are in the right hemisphere, located around the somatosen-
sory cortex. Clustering does not seem to add significant information to the
estimated sources: the blue cluster is smaller and lasts few milliseconds.
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Figure 9: Right thumb stimulation. First row: results obtained with 10,000
particles and discrepancy 1. Panel (a) shows the clustered reconstructions:
most dipoles are located in the left hemisphere in proximity of the somatosen-
sory cortex; however some reconstructions fall in the right hemisphere and
are rather unstable. Arguing from such instability that the noise estimate
was slightly too tight, we increased the discrepancy parameter to 1.5 to get
the cleaner results of the second row.
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of the source parameters. The main innovative feature of HADES,
with respect to the available dipole estimation methods, is related to
the underlying dynamical model: dipoles are not constrained to have
a fixed position, nor to be active for the whole time sequence. In-
stead, the number of sources and all source parameters are estimated
at each sampled time point; in particular, HADES provides a dynam-
ical model selection function, which indicates at each time point the
probability that the data have been produced by 1,2,..., N dipoles.
To obtain stable source estimates and continuous source waveforms,
clustering procedures are implemented which bind dipoles represent-
ing the same source at different time points. Due to the generality
of the underlying model, HADES can recover correlated sources, and
discriminate nearby dipoles with different orientations. On the other
hand, the particle filter is more computationally demanding with re-
spect to other estimation methods, and semi-analytic solutions [12]
to Bayesian filtering feature better statistical properties but higher
computational requirements.

The performances of HADES were illustrated with a set of syn-
thetic data produced by a complicated source configuration, as well
as with a set of experimental data. Synthetic data were particularly
useful to illustrate how the discrepancy parameter plays an important
role in selecting larger/smaller number of sources. The same con-
clusion can be drawn also from the experimental data set, with the
further consideration that in real situations the peculiar structure of
neural noise is more likely to produce spurious activity.

The visualization of the results is limited to a very simple 3d plot of
the source space with the estimated sources superimposed. However,
the results can be exported for visualization in other toolboxes where
superimposition onto high resolution MRI slices or inflated surfaces
are possible. Export options to MNE, Freesurfer and BrainStorm are
supported at the moment. Forthcoming releases of the toolbox may
feature better built-in visualization tools.

HADES has been thought as a highly specialized toolbox for dipole
estimation. As such, it does not mean to replace other toolboxes, but
possibly to integrate with them to provide a different perspective on
a data set. For this reason, no tools for multi-subject analysis are
under development at the moment, although HADES reconstructed
dipoles are saved in the .mat file of the results and can be utilized for
statistical analysis by means of external toolboxes.

More in general, the toolbox is at his very first stage, and the de-
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velopment of the method will likely add more features to the toolbox.
Possible future methodological developments include:

• investigating strategies to remove spurious activations produced
by neural noise;

• providing an estimate of the localization accuracy for each source,
based on the spread of the underlying posterior density;

• modeling the neural sources as non-dipolar currents, such as
multi-polar sources or cortical patches.

All future developments will head towards automation and reliability
of source estimation from MEG/EEG data.
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