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Abstract: We present a Bayesian filtering approach for automatic estimation of dynamical source 

models from magnetoencephalographic data. We apply multi-target Bayesian tracking and the 

theory of Random Finite Sets in an algorithm that recovers the life times, locations and strengths 

of a set of dipolar sources. The reconstructed dipoles are clustered in time and space to associate 

them with sources. We applied this new method to synthetic data sets and show here that it is able 

to estimate the source structure more accurately than either traditional multi-dipole modeling or 

minimum current estimation performed by uninformed human operators. We also show that from 

real somatosensory evoked fields the method reconstructs a source constellation comparable to 

that obtained by multi-dipole modeling. 
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INTRODUCTION 

Magnetoencephalography (MEG) non-invasively measures, with excellent time resolution, 

the weak magnetic fields produced by the currents flowing in active neurons. Reconstructing the 

underlying neural currents from MEG measurements allows localizing the active brain regions 

with reasonable spatial accuracy and enables a variety of applications, both clinical and basic 

research. 

MEG source reconstruction is a difficult task and several methods have been applied to this 

ill-posed inverse problem. The existing methods can be divided into two classes based on the 

mathematical model employed to describe the neural sources: "imaging" methods assume a 

continuous current density, discretized with a dense set of current dipoles, and often result in 

regularization algorithms such as Minimum Norm Estimation (Hämäläinen and Ilmoniemi, 

1994), Minimum Current Estimate (MCE) (Uutela et al., 1999), and various types of 

beamformers (Van Veen et al., 1997; Sekihara et al., 2002); "parametric" methods employ a small 

set of current dipoles, and estimate their positions and magnitudes by non-linear optimization 

techniques (Hämäläinen et al., 1993; Mosher and Leahy, 1999; Uutela et al., 1998; Aine et al., 

2000). 

Both classes suffer from well-known shortcomings; among the "imaging" methods, the L2-

norm estimates tend to be too wide-spread, and beamformers suppress temporally correlated 

sources. Although several automatic algorithms have appeared for the parametric approach, 

manually-assisted dipole fitting is still the most widely used method due to its simplicity.  

Recently, owing to the increase in the available computational power, Bayesian methods 

have become feasible. They cast the problem in a more general setting and estimate the whole 

posterior probability density function (pdf) instead of searching for a single optimal solution. Jun 

et al. (2005) consider the dipole parameter estimation as a Bayesian inference problem and apply 

Markov Chain Monte Carlo methods for sampling the posterior density. Galka et al. (2004) and 
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Long et al. (2006), for EEG and MEG, respectively, consider the inverse problem as a dynamical 

one and apply Kalman filtering to a linear distributed source model. 

In this paper, we consider MEG source estimation as a dynamical Bayesian inverse 

problem, and use a multi-dipole model for the source distribution. Contrary to most multi-dipole 

methods, we allow the number of sources, as well as their positions and orientations, to vary over 

time. Due to the non-linearity of the model, a particle filter (Doucet et al., 2000; Arulampalam et 

al., 2002)  is employed to explore the posterior densities. 

Random Finite Sets (RFSs) (Matheron, 1975; Molchanov, 2005) provide a suitable 

mathematical framework for dealing with a time-varying number of sources in a Bayesian 

setting. RFSs are a generalization of Random Variables (RV), and they do not constrain the 

unknowns to a dimensionality known a priori. In the present study we exploit the theory of RFSs 

to construct a particle filter which solves the MEG inverse problem in a completely general 

manner, allowing a genuinely dynamical model comprising multiple sources. The mathematical 

details of the theory will not be discussed in this paper; see, e.g., Mahler (2003) and Vo et al. 

(2005) for the background. 

We apply the multi-dipole particle filter to both simulated and real data. A rather simple 

source constellation underlies the first synthetic data set whereas the next two sets reflect 

complex activation sequences that have been employed in a comparison of traditional dipole 

modeling and Minimum Current Estimate (Stenbacka et al., 2002). Thus, we can directly 

compare the performance of the new algorithm with that of these two other methods. We evaluate 

the performance of the particle filter also by analyzing somatosensory evoked fields recorded in 

one subject. 
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METHODS 

Bayesian filtering for MEG source localization 

In the Bayesian approach to inverse problems (Somersalo and Kaipio, 2004), the unknown 

and the measurements are modeled as Random Variables and the solution is the entire posterior 

probability density function of the unknown, obtained by the Bayes theorem. For dynamical 

inverse problems the sequential application of Bayes theorem, which requires a prior density at 

each time step, is mediated by the use of the Chapman-Kolmogorov equation; the result is a two-

step algorithm known as Bayesian filtering. 

In the MEG application, let tj  and tb  be the realizations of the Random Vectors tJ  and 

tB , the primary current and the magnetic field at time t , respectively. The posterior density 

)|( :1 tt bjπ  at time t , given the prior density )|( 1:1 −tt bjπ , is obtained by the Bayes theorem: 

.   
)|(

)|()|(
=)|(

1:1

1:1

:1

−

−

tt

tttt

tt
bb

bjjb
bj

π
ππ

π       (1) 

where )|( tt jbπ  is the likelihood function, determined by the forward model and the noise 

statistics; the denominator is the normalization constant ttttttt djbjjbbb )|()|(=)|( 1:11:1 −− ∫ πππ . 

The prior density at time 1+t , given the posterior density at time t , is estimated by the 

Chapman-Kolmogorov equation: 

.   )|()|(=)|( :11:11 ttttttt djbjjjbj πππ ++ ∫       (2) 

where )|( 1 tt jj +π  is the transition kernel of the stochastic process underlying the data. Here, it 

reflects general assumptions, such as temporal continuity, on the dynamics of brain sources. 

Equations (1) and (2) hold independently of the source and forward models; indeed, these 

equations have been applied to the MEG inverse problem in rather different frameworks: Long et 

al. (2006) utilized a Kalman filter for a distributed source model; Somersalo et al. (2003), 
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Sorrentino et al. (2007) and Campi et al. (2008) employed particle filters to obtain the parameters 

of a set of current dipoles. 

Bayesian filtering of random finite sets of dipoles 

Our aim is to apply Bayesian filtering for solving the MEG inverse problem in a truly 

dynamical multi-dipole framework, where neural sources may appear, strengthen, move, weaken 

and disappear in the course of time. This approach is conceptually different from that of most 

other source modeling methods which merely represent the data as a collection of sources whose 

amplitudes vary over time. These methods cannot readily estimate, e.g., the number of sources at 

a particular time instant. 

In general, the primary current at time t  is a set of tn  dipoles: 

 );,(=   },....,{= 1

tt
t
n

ttt QRddJ         (3) 

where ),(= k

t

k

t

k

t qrd  is an abbreviated notation for a single dipole at location k

tr  and with 

dipole moment k

tq . Similarly,collections of dipole locations and dipole moments are denoted 

respectively as 

 },,{= 1 t
n

ttt rrR K  and . },,{= 1 t
n

ttt qqQ K       (4) 

To apply Bayesian filtering, we model the primary current as a RFS of dipoles. Like RVs, 

RFSs have probability density functions. Furthermore, the integral of a set function is well-

defined; Equations (1) and (2) of Bayesian filtering extend to RFSs, provided that the integrals 

involved are interpreted as set integrals (Vo et al., 2005). 

We denote tJ  the RFS of dipoles at time t  by tJ , and a realization of tJ  by tJ . The RFS 

tJ  contains a random number tN  of random dipoles: },...,{= 1 t
ttt

N
DDJ , and },...,{= 1 t

n

ttt ddJ . 

The equations of Bayesian filtering now read: 

 
)|(

)|()|(
=)|(

1:1

1:1

:1

−

−

tt

tttt

tt
bb

bJJb
bJ

π
ππ

π        (5) 
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and 

 . )|()|(=)|( :11:11 ttttttt JbJJJbJ δπππ ++ ∫       (6) 

Although these equations appear similar to Eqs (1) and (2), there are differences: here tJ  

are realizations of an RFS, )|( ⋅tJπ  are probability densities of an RFS and the integral in Eqs (5) 

and (6) is a set integral. 

One may question the rationale of using RFSs instead of RVs; for example, Somersalo et al. 

(2003), Sorrentino et al. (2007) and Campi et al. (2008) modeled the multi-dipole problem with 

RVs. However, the representation of physical source constellations with RVs is not unique: for 

example, the state formed by the two dipoles 1d  and 2d  has two representative vectors 

DD×∈),( 21 dd  and DD×∈),( 12 dd , where D is the single-dipole space. As a consequence, the 

posterior density is permutation-invariant and (artificially) multi-modal: it will peak at ),( 21 dd  

and at ),( 12 dd . This bi-modality would prevent us from using standard estimators such as the 

conditional mean (which would give erroneous estimates) or the Maximum A Posteriori (which 

would not be unique). This permutation symmetry disappears with RFSs, where each 

constellation has a unique representative set },{},{ 1221 dddd ≡ , since order of the elements is 

not relevant in a set. Furthermore, as shown later, a suitable estimator is available for RFSs. 

Belief measures 

The actual application of Bayesian filtering requires knowledge of three probability density 

functions: the very first prior density to initialize the algorithm, the likelihood function, and the 

transition kernel of Eqs (5) and (6). In the case of RFSs, the explicit form of the multi-target 

probability density function is often complicated; instead, it is preferable to use belief measures 

(Molchanov, 2005). The belief measure of a RFS is fully determined by a finite set of probability 

densities one defined on the single-dipole space D , another on the double-dipole space DD× , 
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and so on. Since we assume that no more than maxn  dipoles can be active simultaneously, maxn  

probability measures are enough to define the belief measure. Therefore, in our approach, the 

belief measures for the prior density, the likelihood function, and the transition kernel are 

computed starting from the more familiar densities over vector spaces. Now we introduce the 

three pdfs used in the algorithm. 

Initial prior density 

Since we have no a priori knowledge of the number of sources, we give a uniform 

distribution to the marginal probability maxmax1 ,...,1,0  ),1(1/=)|=(| nknkJP =+ , where || 1J  is 

the number of dipoles in the set 1J  and maxn  is the maximum allowed number of simultaneous 

sources. Since we assume that simultaneous dipoles are independent, it is sufficient to define the 

prior density for a single dipole. For the locations 1r  we use a uniform distribution in the brain 

volume, and for the dipole moments 1q  we use a zero-mean Gaussian distribution ),0( qN σ , 

where the standard deviation qσ  is of the order of magnitude of the expected sources. 

Likelihood function 

Since the dimension of the measurement vector is fixed, the data sequence can be modeled 

with Random Vectors tB . The forward operator, denoted as )(⋅F , depends on the properties of the 

volume conductor. Additive noise tM  is included in the model: 

 . )(= ttt F MB +J          (7) 

Assuming a zero-mean Gaussian noise, the likelihood function is 

),)(( noiseσtt JFbN − where noiseσ  is the standard deviation of the noise. Such a noise model is an 

approximation; the statistical distribution of MEG noise is generally not known. 
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Transition kernel 

The transition kernel in Eq (7) produces a prior density, and it is therefore a priori information 

inserted in the model: using a non-specific model can be interpreted as inserting less-informative 

priors. Therefore, we adopt a simple model for the dynamics of the sources; at each time point (i) 

a new dipolar source may appear with probability newp  and distribution )( 1new +tdπ , (ii) an 

existing dipole may disappear with probability disp , or (iii) the existing dipole may survive, with 

probability dis1 p− , and evolve according to a single-dipole evolution model )|( 1 tt dd +π . All 

these events are assumed to be independent. In terms of RFSs, the model equation is: 

 11 )(= ++ ∪ ttt BJSJ         (8) 

where 1+tB  is the RFS of the new dipoles, and )( tJS  is the RFS of the survived and evolved 

dipoles. 

Assuming that dipoles evolve independently, it can be shown that the probabilities newp  

and disp  together with the single-dipole evolution model )|( 1 tt dd +π  and the density )( 1new +tdπ  

fully determine the belief measure and therefore the transition kernel in Eq. (6). The densities we 

use in the applications: 

• the density )( 1new +tdπ  of the new dipoles ),(= 111 +++ ttt qrd  is uniform for the location and 

Gaussian for the dipole moment, i.e. the same as the initial prior density; 

• the probability for a dipole to disappear at time 1+t  is tnp 1/2=dis , where || tt Jn = ; 

• the single-dipole evolution model is a random walk constrained within the brain volume; 

the transition kernel )|( 1 tt dd +π  for a single dipole is characterized by Gaussian densities 

),(=)|( 11 rtttt rrNrr γπ −++  and ),(=)|( 11 qtttt qqNqq γπ −++              where the variances 

1=rγ  cm and 2=qγ  nAm. 
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Multi-dipole particle filter 

Since the MEG forward problem is non-linear with respect to dipole position, Eqs (5) and (6) can 

be solved only numerically. Here we apply a sequential Monte Carlo technique known as particle 

filtering (Doucet et al., 2000; Arulampalam et al., 2002), where a sample set (“particles”) 

distributed according to the posterior density is obtained at each time step by discretizing Eqs (5) 

and (6), and introducing a resampling step which reduces the number of unlikely sample points. 

The general scheme of the particle filter we apply is as follows: 

• Initialization: Draw a sample pi

iJ 1,...,=1}{  distributed according to the density )( 1Jπ . Each 

sample point iJ1 , or "particle", is a set of dipoles. Particles are sampled from a RFS 

distribution, and therefore different particles may contain a different number of dipoles.  

• Observation: Apply the Bayes theorem, i.e. compute the forward solution for each particle 

i

tJ  and its normalized weight (likelihood) )|()(1/= i

tt

i

t Jbkw π  with i

t

p

i
wk ∑ 1=

= . The set 

of weighted particles },{ i

t

i

t wJ  is an approximation of the posterior density at time t ; 

• Resampling: Randomly select p  particles from the set pi

i

tJ 1,...,=}{  in such a way that the 

probability of extracting i

tJ  is equal to its likelihood i

tw . The set of uniformly weighted 

particles }
~

{ i

tJ  is a new approximation of the posterior density at time t ; 

• Evolution: Let each particle i

tJ
~
 evolve according to the transition kernel by drawing a 

new particle i

tJ 1+  from each )
~

|( 1

i

tt JJ +π . Each surviving dipole of each particle evolves 

according to the single-dipole transition kernel described earlier. New dipoles may 

appear. The set of uniformly weighted particles }{ 1

i

tJ +  is an approximation of the prior 

density at time 1+t . 
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Source estimates 

The posterior density of the current dipole set contains all the available information on the 

source constellation, but it is difficult to visualize as a whole; instead, different estimates can be 

computed in order to extract the relevant information. 

The posterior density carries information on the number of sources: the marginal 

distribution 

 , )|(=)|=(| :1
)(

ttt
k

t JbJkJP δπ∫D        (9) 

where )(kD  is the set of finite subsets with k  dipoles, provides a time-varying estimate of the 

number of active sources 

 )|=(|argmax=ˆ kJPn tt .        (10) 

For estimating the source parameters we use the RFS-analogue of the first moment of a RV: 

the Probability Hypothesis Density ( PHD ). Here, PHD  is a function in the single-dipole space 

D , its integral over region R  provides an estimate of the number of dipoles in R , and the peaks 

of PHD  can be used as estimates of the active dipoles. In a particle filter 

 . )(=)(
1=














−∑∑

∈

t
i
t
Jd

i

t

p

i

t ddwdPHD δ        (11) 

The problem of estimating the source parameters is thus transformed to the problem of 

finding the local maxima of the PHD , which, in our case, is relatively easy since the number of 

peaks to be found is already given by the model selection (Eq. 10). 

To further reduce the computational complexity, we compute )( trPHD  instead of 

)( tdPHD . Therefore, the estimate of the dipole positions is 

 ))((arg=}ˆ,...,ˆ{=ˆ ˆ1

t
t
n

ttt rPHDpeaksrrR  (12) 

and the corresponding dipole moments are computed by standard least-squares techniques. 
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Implementation 

Source-point grid 

The computational cost of the algorithm is largely determined by the observation step 

which involves computing the MEG forward solution for each dipole of each particle at each time 

step. The large number of particles (about 100,000) may render the algorithm impractical even 

when resorting to the spherical conductor and its analytic forward solution. In order to reduce the 

computational cost, we constrain particles to a grid enclosing the brain volume, and pre-compute 

the lead field for each grid point. The grid is a 20 cm cube with 125,000 points in a 4 mm 

uniform lattice, requiring 375,000 forward solutions (the three orthogonal directions for each 

point). Employing 100,000 particles without the grid, assuming 2 simultaneous dipoles on 

average, and a typical 500-sample analysis window results in 100,000,000 forward solutions to 

compute; the cost thus reduces by a factor of 300, which makes the algorithm usable. On a 

standard PC (2 GHz CPU, 2 GB RAM), the time for analyzing a single time point with 100,000 

constrained particles is about 1 s. 

Such a reduction in computational cost could not be obtained by Rao-Blackwellization, 

which exploits the linear dependence of the measurements and the dipole moment (Campi et al., 

2008). In Rao-Blackwellization, a covariance matrix has to be computed by inversion at each 

time step for each particle. Although statistical efficiency increases so that much fewer particles 

are needed to reach a given accuracy, the cost of the matrix inversions is still higher than that of 

the non-linear particle filter we use in this study. 

Clustering 

The multi-dipole particle filter provides dynamical estimates of the active dipoles. The 

estimated source locations at time t , }ˆ,...,ˆ{
ˆ1 t
n

tt dd may be slightly different from those at time 

1−t , }ˆ,...,ˆ{ 1
ˆ

1

1

1
−

−−
t
n

tt dd  , and even the number of sources tn̂  may change. Thus, no particular dipole 
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is continuously bound to a given neural source and it is not possible to readily provide the 

amplitude waveform for each source. 

To overcome this problem, we search for clusters within the set of all estimated dipoles 

}ˆ,...,ˆ,...,ˆ,...,ˆ{
ˆ11

ˆ

1

1

1
T
n

TT

n
dddd , each cluster representing a neural source. The clustering is performed 

in a 6-dimensional space: 3 dimensions for the location, 2 for the orientation, and one for time t  

when the source dipole was present. This temporal parameter ensures continuity of the source 

waveforms. We apply k-means (Spath, 1980) clustering algorithm, however, it requires the 

number of clusters specified a priori. Since the total number of neural sources active during the 

analysis epoch is unknown, we apply the following iterative procedure: 

    1.  overestimate the number of possible sources s ; 

    2.  cluster the dipoles in s  clusters with k-means; 

    3.  test each pair of clusters by the Wilcoxon test (Weerahandi, 1995) for statistical 

difference; if two or more clusters are not significantly different, decrement s and go to step 2; 

otherwise, stop. 
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RESULTS 

We applied the multi-dipole particle filter to synthetic and real MEG recordings. We 

employed 3 different synthetic data sets: Simulation 1 comprises three spatially distinct but 

temporally correlated sources; Simulations 2 and 3 present more challenging situations with 

multiple sources mimicking the activations evoked by a complex visual stimulus. 

First we show the estimates obtained by a single run of the particle filter. Then we use 

Simulation 2 and 3 to investigate the robustness and statistical reliability of the algorithm by 

performing multiple runs. We also apply the particle filter to somatosensory evoked fields 

recorded in one subject. 

100,000 particles were utilized in all tests. 

Simulation 1 

Three dipolar sources comprised the first simulation. The 200-sample data set embedded 

two occipital dipoles with the same, gamma-function-like time course that peaked at the 20th 

sample, and a temporal dipole peaking at the 50th sample; the distance between the two occipital 

sources was 7 cm, and the temporal source was 10 cm from the nearest occipital source. A 

spherical conductor model was employed in the simulation, and Gaussian noise was added for a 

final SNR of about 10 dB. 

The results are shown in Fig. 1. The top panel displays the marginal probability for the 

number of dipoles: each colored region represents the probability of a specific model. The other 

three panels show the original and reconstructed waveforms. The localization errors (averaged 

over the samples where the source is estimated to exist) are 5 and 4 mm for the two occipital 

sources and 3 mm for the temporal one. Part of the localization error is attributable to the 4-mm 

spacing of the source-point grid. The algorithm is able to reconstruct the three source waveforms 

except for the very low-SNR tails. 
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Simulations 2 and 3 

We utilized synthetic data from a previous study (Stenbacka et al., 2002) designed to 

evaluate and compare traditional multi-dipole modeling to MCE when performed by human 

operators unaware of the source structure of the data. Re-using the data enabled a direct 

comparison of the particle filter to these other methods. 

Stenbacka and colleagues employed four simulations of increasing complexity. Here we 

present the results from the two most complex data sets (Simulation 3 and Simulation 4 in 

Stenbacka et al. (2002), hereafter referred to as Simulation 2 and 3, respectively) with a variable 

number of temporally overlapping sources within a volume comparable to a lobe of the brain. 

Both data sets are crafted to approximate hypothetical neural responses to a complex visual 

stimulus. Table I summarizes the locations, orientations and peak latencies of the ten sources; six 

of them appeared in both Simulation 2 and 3, and the remaining four only in Simulation 3. The 

temporal waveforms of the sources are shown in Figures 2 and 3. 

Realistically-shaped boundary element model of the brain was applied in the MEG forward 

calculation. Brain noise from a MEG experiment where the subject was silently resting was 

added to the simulated responses for a realistic signal-to-noise ratio. For details, see Stenbacka et 

al. (2002). 

We evaluated the reconstructed sources using the same criteria as Stenbacka and 

colleagues; they regarded a source correctly estimated if its location was within 2 cm from the 

true source and its peak latency was within half the duration of the true source (Simulation 2), or 

within 10 ms from the peak of the true source or half of the time interval between the half 

maxima of the true source (Simulation 3). 

The particle filter was able to reconstruct all of the 6 sources in Simulation 2. The average 

localization error was 9 mm. The estimated time courses (Fig. 2) never overlapped, i.e., at each 

time point the algorithm recovered just a single dipole since the true overlapping sources were 
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within few millimeters from each other and thus a single dipole explained the measured field 

sufficiently well. The differing orientations of the sources enabled the algorithm to cluster them 

in 6 groups. 

From Simulation 3 the particle filter was able to reconstruct 6 of the 10 sources (Fig. 3) 

with average localization error of 8 mm. The estimated source classified as 2V  accounted for the 

activity of 1V  and 3V , whereas sources 4V  and LV5  were missed. The other 5 sources were 

correctly recovered. The apparently worse performance of the algorithm with respect to 

Simulation 2 is due to the different temporal behavior of the sources: 1V  and 2V  are shorter-

lived and 3V  is much weaker compared with Simulation 2. 

Robustness and reliability 

The particle filter requires a priori information: the initial prior density, the transition 

kernel and the likelihood function. The most relevant parameter is noiseσ  in the likelihood 

function; it tunes the sensitivity of the algorithm. Furthermore, the algorithm relies on random 

extraction of samples from probability densities and therefore different runs, even with the same 

parameters, may yield different results. To investigate the statistical reliability and the robustness 

of the algorithm with respect to the parameter noiseσ , we performed 10 runs for each of 5 different 

values of noiseσ  using the data of Simulations 2 and 3. Figure 4 shows the results; with both 

simulations the average number of recovered sources has a peak at noiseσ  = 4;  with higher 

values noiseσ , the algorithm considers only stronger sources ; at lower noiseσ , also weak sources 

are recovered but the algorithm is less stable and the localization error increases. Tuning noiseσ  

impacts also the variability across runs, which reaches a minimum around the same value 

4=noiseσ . Finally, the number of false positives decreases quickly for increasing values of noiseσ : 

for too low values the algorithm tries to model also noise. As a result, the ratio between the 

number of correctly recovered sources and the number of false positives peaks clearly in 
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Simulation 2 and has a less pronounced but still visible peak in Simulation 3, both at 4=noiseσ ; 

see Fig. 4. 

Since noiseσ  should reflect the noise level, it can be estimated from, e.g., the pre-stimulus 

baselines. Interestingly, the standard deviation of the baseline period is 4.3 in Simulations 2 and 

3, i.e., very close to the optimal 4=noiseσ . 

Somatosensory responses 

We applied the particle filter to somatosensory evoked fields (SEF) measured in one 

healthy human. The recordings were performed after informed consent and had a prior approval 

by the local ethics committee. 

The SEFs were acquired with a 306-channel MEG device (Elekta Neuromag Oy, Helsinki, 

Finland) comprising 204 planar gradiometers and 102 magnetometers in a helmet-shaped array. 

The left median nerve at wrist was electrically stimulated at the motor threshold with an 

interstimulus interval randomly varying between 7.0 and 9.0 s. The MEG signals were filtered to 

0.1–200 Hz and sampled at 600 Hz. Trials with EOG or MEG exceeding Vµ 150  or 3 pT/cm, 

respectively, were excluded and 84 clean trials were averaged. To reduce external interference, 

signal-space separation method (Taulu et al., 2004) was applied to the average. 

A 3D digitizer and four head position indicator coils were employed to determine the 

position of the subject's head within the MEG helmet with respect to anatomical MRIs obtained 

with a 3-Tesla MRI device (General Electric Inc., Milwaukee, USA). 

The SEFs (see e.g. Hari and Forss, 1999) were modeled with multiple dipoles whose 

anatomical locations were verified to be plausible: the N20m and P35m responses at 21 and 38 

ms, respectively, localized in the assumed hand area of the S1 cortex contralateral to the 

stimulation, bilateral responses peaking around 90 ms in the S2 cortices, and a response at around 

125 ms in the contralateral posterior parietal cortex (PPC). The N20m and P35m sources were 
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only about 6 mm apart and had antiparallel orientations. To avoid spurious interaction, the N20m 

dipole was omitted from the multi-dipole model. The goodness-of-fit of the four-dipole model 

with respect to the data from all 306 channels ranged from 77 to 97% at the response peaks. This 

model served as the reference for evaluating the models obtained by the particle filter. 

The particle filter was able to recover 3 of the 4 sources found by dipole modeling (see Fig. 

5) and missed the source in the contralateral S2 cortex (S2c) probably due to its relatively weak 

field pattern compared with the other sources. The 3 reconstructed sources satisfied the spatial 

criterion of Simulation 3 (the average location was within 2 cm from the reference location). 

Figure 6 presents the source amplitude waveforms estimated by both methods. The particle filter 

clearly separates the activations of the different sources whereas the time courses given by the 

multi-dipole model suffer from leakage of residual activity and noise thus showing a non-zero 

dipole moment throughout the analysis period. Interestingly, the particle filter reconstructs two 

sources, separated in time and by orientation, for the ipsilateral S2 cortex. The two peaks of 

opposite polarity in the dipole waveform (S2i in Fig. 6) likely reflect these two sources. 
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DISCUSSION 

The particle filter described in this study represents a notable improvement with respect to 

the previous implementations (Somersalo et al., 2003; Sorrentino et al., 2007). The more 

sophisticated mathematical framework allowed a coherent description of the problem in terms of 

time-varying sets of dipoles, and provided a suitable estimator for multi-dipole states. The 

algorithm was able to localize a time-varying number of dipoles with no prior knowledge on their 

number. The use of a source-point grid made the algorithm fast enough to be practically usable. 

The localization accuracy in time and space was investigated by testing the particle filter 

against two challenging data sets which were previously analyzed by Stenbacka et al. (2002) with 

dipole models and MCE. From the first data set (Simulation 2 in this study) the particle filter 

correctly localized 6 out of 6 sources, with an average localization error of 8 mm, thus 

outperforming dipole modeling done by uninformed users, who recovered on average 2.4 sources 

with dipole modeling and 3.2 with MCE. In the second data set (Simulation 3) the particle filter 

correctly localized 6 out of 10 sources, with an average localization error of 9 mm. Uninformed 

users obtained similar results, recovering on average 5.4 sources with dipole modeling and 6.0 

sources with MCE, with average localization error of 7.2 mm in both cases. Since the particle 

filter allows the sources to move and turn during the analysis epoch, the clustering step, which 

exploits both position and orientation, is able to distinguish sources that dipole modeling 

unavoidably lumps together. This difference likely explains why the particle filter outperformed 

the other methods in Simulation 2. In Simulation 3, the results by the particle filter are 

comparable to those obtained by uninformed users with either dipole modeling or MCE; 

however, the particle filter algorithm operated automatically while the other two methods 

required subjective decisions on what to consider a true source. . Furthermore, the localization 

error of the particle filter is partly attributable to the 4-mm spacing of the source-point grid and 

could thus be improved by employing a denser grid. From somatosensory evoked fields, 
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previously analyzed by an informed human using multi-dipole modeling, the particle filter was 

able to reconstruct 3 out of the 4 sources found by the human operator, only missing the weak 

contralateral S2 response. The particle filter properly localized the sources also in time, avoiding 

contamination effects and cross-talk between the dipoles. 

In this study we tested the particle filter under very general conditions, with as little a priori 

information as possible. However, such information is available and can be readily exploited. For 

example, the source space could be constrained to the cortical surface as the bulk of MEG 

responses are assumed to originate in the cortex. In addition, the noise covariance matrix could be 

estimated from the pre-stimulus intervals to further reduce the effect of non-white noise. The 

evolution model could also be replaced with a more realistic one. Optimal usage of the available 

prior information should be addressed in future work. 

In conclusion, the algorithm presented here is a step towards an automatic MEG source 

modeling method which not only estimates source current distributions but provides a discrete set 

of significantly active sources for each time instant. Traditional multi-dipole modeling and 

minimum norm approaches require substantial post-processing to reach qualitatively comparable 

results. The multi-dipole particle filter we described directly provides instantaneous, time-varying 

estimates of the number of sources and of the dipole parameters. 
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TABLES 

 

 

 

 

TABLE I. Sources in Simulations 2 and 3 

Area Location / mm 

(x, y, z) 

Orientation 

(x, y, z) 

Sim 2 

tpeak / ms 

Sim 3 

tpeak / ms 

V1 (11.1, –53.4, 49.8) 
(

2

1
, 0, 

2

1
) 

70 60 

V2 (13.6, –60.2, 55.9) (1, 0, 0) 90 80 

V3 (17.3, –59.4, 59.8) (0, 0, 1) 110 100 

V3 a  (22.3, –54.8, 64.6) 
(–

2

1
, 0, –

2

1
) 

130 120 

V4 (23.1, –47.3, 35.8) 
(–

2

1
, 0, 

2

1
) 

150 220 

V5 R  (43.6, –36.8, 44.4) 
(–

2

1
, –

2

1
, 0) 

170 160 

V5 L  (–33.7, –48.5, 48.1) 
(

2

1
, –

2

1
, 0) 

- 190 

POS (3.0, –40.0, 83.0) 
(0, 

2

1
, 

2

1
) 

- 200 

STS L  (52.0, 0, 48.0) (0, 0, –1) - 280 

STS R  (–52.0, –4.0, 48.0) (0, 0, –1) - 220 

V1–V5 refer to the visual cortices, POS to parieto-occpital sulcus, and STS to superior 

temporal sulcus; Locations and orientations in “head coordinates” (x from left to right 

preauricular point; y towards nasion and perpendicular to x; z normal to the xy-plane). 
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FIGURE LEGENDS 

Figure  1. Simulation 1. The marginal probability for the number of dipoles plotted as a function 

of time (top). The original and reconstructed source waveforms (other panels). 

Figure  2. Simulation 2. Time courses of the true (blue dashed lines) and estimated (red solid 

lines) sources. 

Figure  3. Simulation 3. Time courses of the original (blue dashed lines) and estimated (red solid 

lines) sources. 

Figure  4. Simulations 2 and 3. The average number of correctly estimated sources and the ratio 

of them and false positives. 
*

noiseσ  is the pre-stimulus baseline variance. 

Figure  5. Source reconstruction of somatosensory evoked fields. Axial (a) and coronal (b) views 

of the source models obtained by the particle filter (red squares) and dipole modeling (blue 

circles). 

Figure  6. Somatosensory evoked fields: Time courses estimated by the particle filter (red solid 

lines) and multi-dipole model (blue dashed lines). 
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