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1. Introduction

Magnetoencephalography (MEG) [8] is a powerful tool for brain functional studies which

measures non-invasively the magnetic field outside the head with outstanding temporal

resolution (about 1 ms). The neurophysiological aim of MEG experiments is to recover

the dynamical behavior of the neural electrical currents which are responsible of the

measured field [9]. From a mathematical viewpoint the formation of the biomagnetic

signal induced by spontaneous or stimulus-induced current density distributions is

described by the Biot-Savart equation [14], which is a linear integral equation of the

first kind. The Biot-Savart linear operator mapping the current density onto the

magnetic field is compact [2] and has a non-trivial kernel [11]. Therefore the problem

of restoring the current density from measurements of the magnetic field is a linear ill-

posed inverse problem. This problem can be addressed, for example, by beamforming

procedures which apply linear spatial filters on the MEG series [21, 15]; or by standard

regularization methods, whereby a numerically stable current density distribution is

determined by solving a Tikhonov-like minimum problem [7, 20]. Beamformers are

particularly useful in extracting on-going, even notably weak brain activity in a certain

location in the brain, but have difficulties in reconstructing temporally correlated

sources. The main advantages of Tikhonov-like methods are a great generality of the

applicability conditions and, in the case of L2 penalty terms, a notable computational

effectiveness. However regularized reconstructions often present a significant drawback:

the support of the restored distributions is in fact typically too widespread with respect

to physiology and even the sparsity enhancement guaranteed by the use of L1 penalty

terms in the Tikhonov functional results insufficient [20].

Physiological information on the current density distribution can be easily coded

by using parametric models for representing the neural sources: the most utilized one in

the MEG community consists in approximating the neural current distribution with a

small set of point-like currents, named current dipoles [8]. This approach leads to a non-

linear parameter identification problem which can be addressed by optimization methods

like Multiple SIgnal Classification (MUSIC) [12] or by Bayesian filtering approaches

[16]. In the Bayesian setting [10], both the data and the unknown are modeled as

random variables and the goal is to construct the posterior probability density function

for the unknown variable, conditioned on the realization of the data random variable.

The key equation of this framework, which allows constructing the posterior density, is

Bayes theorem where prior information are combined with the information coming from

the data. Bayesian filtering is a framework for facing dynamical problems, where the

unknown and the data form two stochastic processes and the transition kernel of the

unknown stochastic process is assumed to be known. For linear models and Gaussian

densities, Bayesian filtering reduces to the computation of the Kalman filter [10], where

the mean value and the covariance matrix are sequentially updated in time. However,

more generally, the numerical implementation of Bayesian filtering requires the use of

numerical integration techniques provided by the so-called particle filters [1] which are
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essentially a class of sequential Monte Carlo methods where the support points, called

particles, evolve with time according to the transition kernel of the unknown process.

The use of particle filters for the solution of the MEG inverse problem has been

introduced in [16] in the case of simulated data while in [17] it has been generalized

to a more realistic framework and applied to experimental time series recorded during

auditory external stimulation and in [13] it has been compared to other reconstruction

algorithms. However, in these implementations, the application of particle filtering to

complex neurophysiological experiments is limited by a notable computational effort

which rapidly becomes unaffordable when many time points must be analyzed and

several simultaneous point sources are evoked by the stimulus. The aim of the present

paper is to introduce a mathematical procedure which notably reduces this numerical

heaviness by exploiting a specific mathematical feature of the MEG inverse problem.

In fact, the parametric model which describes the spatio-temporal behavior of the

biomagnetic field is non-linear with respect to the position of the point sources but

linear with respect to their amplitude. In this situation a rather straightforward analysis

of variance shows that a particle filter algorithm computing the posterior probability

density function associated to the source position is much more accurate than the

particle filter computing the probability density function associated to the whole current

density. On the basis of this result, we apply a computational procedure, named Rao-

Blackwellization [3], where a particle filter approximates the probability density function

associated with the source position while mean and variance of the source amplitude are

optimally determined by means of set of Kalman filters. The result is a more efficient

code, which reconstructs the source dipoles more rapidly than a standard particle filter,

with a better accuracy and a better use of the computational resources at disposal.

The plan of the paper is as follows. In Section 2 we briefly describe the mathematical

model for the MEG inverse problem. Section 3 introduces the Bayesian filtering

approach together with standard particle and Kalman filters. In Section 4 the Rao-

Blackwell method is discussed for the MEG inverse problem and in Section 5 applied

to both simulated and real biomagnetic time series. Finally Section 6 contains our

conclusion and a brief description of the main work-in-progress.

2. The MEG inverse problem

In the quasi-static approximation [14], a current density j(r) inside a volume Ω produces

a magnetic field given by the Biot-Savart equation:

b(r, t) =
µ0

4π

∫

Ω
j(r′, t)× r − r′

|r − r′|3dr′ (1)

where µ0 is the magnetic permittivity of vacuum and can be considered constant in

the volume Ω too. When equation (1) refers to the generation of magnetic fields from

the brain, the current density j is usually split in two terms: the ”primary” current

jp, of neural origin, and the ”volume” current jv = σE, arising because of the non-

zero conductivity of the human brain. In the MEG inverse problem, one is interested
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in recovering jp from the measured field produced by both jp and jv. In general, the

presence of volume currents imply that the forward computation must be performed by

means of numerical approximations such as Boundary Element or the Finite Element

methods. In order to simplify the computation, one can assume that:

• the primary current is a sum of Nd point-like currents, named ”current dipoles”:

jp(r, t) =
Nd∑

i=1

qi(t)δ(r− ri(t)) (2)

each one parameterized by six parameters at a fixed time point: three parameters

for the position ri and three for the dipole moment qi;

• the head volume Ω is a sphere of constant conductivity σ (whose explicit value is

not necessary for the computation). This approximation leads to reliable results

for activations not in the frontal lobe, i.e. in cortical regions where the brain is

closer to a spherical shape. This assumption can be relaxed if some boundary

or finite element method is applied for solving equation (1) [6]. Anyway, what

discussed in the following and, in particular, what is concerned with the particle

and Rao-Blackwellized particle filtering methods still hold also in this more general

setting.

Given the two previous assumptions, an analytic formula is available which accounts for

the contribution of both the primary and the volume current ([14]):

b(r, t) =
Nd∑

i=1

µ0

4πf2
i (t)

(fi(t)qi(t) × ri(t) − qi(t) × ri(t) · r ∇fi(t)) (3)

with fi(t) = ai(t)(rai(t) + r2 − ri(t) · r), ai(t) = r − ri(t), ai(t) = |ai(t)|, r = |r|.
Equation (3) defines the parameter identification problem we want to solve, i.e. to

dynamically reconstruct ri(t) and qi(t) from measurements of b(r, t). We observe that

the problem is clearly non-linear, as the dipole positions are among the unknowns; at

the same time, the dependence of b on the dipole moments qi is linear. In the following,

we will denote by bk the (noisy) spatial sampling of the magnetic field at time tk, and

by jk (omitting the p superscript) the primary current at time tk.

3. Bayesian filtering

In the Bayesian approach to inverse problems [10], all the quantities of interest

are modeled as Random Vectors; here we briefly recall the basics of Bayesian filtering,

which is a powerful framework for solving dynamical inverse problems. The time-varying

unknown is modeled as a stochastic process, {Xk}T
k=1, and the sequence y1, ..., yT of

measurements is considered as a realization of the data stochastic process {Yk}T
k=1. We

assume that the data and the unknown are related by the following model:

Yk = Gk(Xk, Nk) (4)
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where the random variables Nk account for the presence of noise and Gk is a known,

possibly non-linear function of its arguments for each time step k. We further assume

that the stochastic process {Xk}T
k=1 evolves according to the following model:

Xk+1 = Fk(Xk,∆Xk) (5)

where ∆Xk is the process noise and Fk is a known, possibly non-linear function of its

arguments for each time step k.

The natural framework for applying Bayesian filtering is the one of Markov

processes. The Markovian nature of the two stochastic processes {Xk}T
k=1 and {Yk}T

k=1

is synthesized by the equations

π(xk|x1:k−1) = π(xk|xk−1) , (6)

π(yk|x1:k) = π(yk|xk) , (7)

and

π(xk+1|xk, y1:k) = π(xk+1|xk) , (8)

where we use the notation x1:k = {x1, x2, ..., xk}; equation (6) states that the process

X is a (first order) Markov process, equation (7) states that the process Y is a Markov

process with respect to the history of X and equation (8) states that the unknown

does not depend on the measurements, if conditioned on its own history. If equations

(6)-(8) are satisfied, Bayesian filtering provides optimal solutions for the model (4)-(5).

We point out that the dynamics and interplay of cortical signals are certainly more

complicated and cannot be reduced to first order Markov processes (the investigation

of more realistic and sophisticated models for the dynamics of cortical signals is still

an open issue of great neuroscientific significance which is far from the aims of the

present paper). However Bayesian filtering provides optimal solutions even in the case

of higher order Markov processes [16] and, for more complicated models, it gives reliable

approximations to the model equations.

The Bayesian filtering algorithm is the sequential application of the two following

equations:

π(xk|y1:k) =
π(yk|xk)π(xk|y1:k−1)

π(yk|y1:k−1)
(9)

π(xk+1|y1:k) =
∫

π(xk+1|xk)π(xk|y1:k)dxk (10)

where π(yk|y1:k−1) =
∫

π(yk|xk)π(xk|y1:k−1)dxk. Equation (9) is the well known Bayes

theorem for conditional probability, and it computes the posterior (filtering) density

π(xk|y1:k) as the product of the prior density π(xk|y1:k−1) and the likelihood function

π(yk|xk) divided by the normalization constant π(yk|y1:k−1); equation (10) is the well-

known Chapman-Kolmogorov equation, which allows computing the next prior density

exploiting knowledge of the transition kernel π(xk+1|xk). Given the density of the initial

state π(x1) and appropriate models for the likelihood and the transition kernel, the two

previous equations sequentially compute the Bayesian solution for all the time samples.
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3.1. Kalman filter

The framework of Bayesian filtering is quite general, in the sense that no assumptions

are made on the shape of the probability densities, nor on the linearity of the model

or of the state evolution. In this subsection we consider the class of linear Gaussian

problems, i.e., the problems where the model equations are

Yk = Gk · Xk + Nk (11)

Xk+1 = Fk · Xk + ∆Xk (12)

where Gk, Fk are known matrices and X0, Nk and ∆Xk are independent with Gaussian

distributions. In this case, it can be proved [10] that all the prior and posterior densities

are Gaussian; the application of equations (9), (10) only involves updating the mean and

the covariance matrix of these Gaussian densities and analytic formulas are available:

if we denote by x̄k|k−1 and Γk|k−1 the mean and the covariance of the prior density, and

by x̄k|k and Γk|k the mean and the covariance of the posterior density, the recursive

application of the following equations provide the solution of the Bayesian filtering:

x̄k|k = x̄k|k−1 + Kk(yk − Gkx̄k|k−1) (13)

Γk|k = (1 − KkGk)Γk|k−1 (14)

x̄k+1|k = Fkx̄k|k (15)

Γk+1|k = FkΓk|kF
T
k + Ψk (16)

Kk = Γk|k−1G
T
k (GkΓk|k−1G

T
k + Σk)

−1 , (17)

where Ψk is the covariance matrix associated to ∆Xk and Σk is the covariance matrix

associated to Nk. The previous set of equations is known as Kalman filter and provides

the analytic computation of the Bayesian filtering equations when the restrictive

assumptions are fulfilled. Clearly, in this case no algorithm can do better than the

Kalman filter.

3.2. Particle filters

For non-linear problems or non-Gaussian densities, the computation of equations

(9),(10) requires the use of numerical approximation techniques. In the case of mildly

non-linear problems, one can use a local linearization of the model equations; the

resulting algorithm is known as Extended Kalman Filter. When such a local linearization

is not feasible, it is possible to use Monte Carlo approximation methods: in Monte Carlo

integration, a density π(x) is represented by a set of weighted points, where the points

xl and the weights wl are determined by the density itself in such a way that for any

integrable function f the following holds:

N∑

l=1

wlf(xl)
N→∞−→

∫
f(x)π(x)dx , (18)
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which can also be interpreted as the approximation of the density

π(x) '
N∑

l=1

wlδ(x− xl) . (19)

In particular, if one is able to obtain N independent, identically distributed (i.i.d.)

random samples from π(x) itself, then the law of large numbers guarantees that

N∑

l=1

1

N
f(xl)

N→∞−→
∫

f(x)π(x)dx . (20)

When sampling directly from the density π(x) is not possible, one can use an

importance sampling strategy which consists in drawing N points xl
q according to a

so-called proposal, or importance, density q(x); the proposal density is required to be

non-zero where the density π(x) is non-zero, and to be easy to sample from. Then the

non-uniform weights

wl = w(xl
q) =

π(xl
q)

q(xl
q)

(21)

are assigned to these points and the convergence (18) is still guaranteed by the law of

large numbers.

Particle filters [1] are a class of algorithms which adopt a sequential importance

sampling strategy for systematically solving the Bayesian filtering problem (9),(10): at

each time sample, N particles xl
k are drawn from a proposal density q(xk|y1:k−1), and

the corresponding weights

wl
k =

π(xl
k|y1:k)

q(xl
k|y1:k−1)

(22)

are computed. In the simplest case, one can use the prior density π(xk|y1:k−1) as proposal

density. With this choice, the Bayes theorem (9) implies that the computation of the

weights reduces to the computation of the likelihood function: in fact, the weights are

always determined up to a normalizing constant, and the denominator of equation (9)

needs not to be computed; furthermore, the importance density itself can be evaluated

through the use of the Chapman-Kolmogorov equation. Therefore the main steps of the

most widely used particle filter, which is known as Sampling Importance Resampling

(SIR) filter or bootstrap filter are:

(Step 0) initialization: set an initial prior density which is easy to sample from,

π(x1|∅), and draw N particles; then for k = 1, . . .

(Step 1) filtering: apply Bayes theorem through the importance sampling procedure:

assign the importance weights wl
k = π(yk|xl

k) to get the following approximation of

the filtering density:

π(xk|y1:k) '
N∑

l=1

wl
kδ(xk − xl

k) (23)
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(Step 2) resampling: after the filtering step, and depending on the width of the

likelihood function and of the prior density, it may happen that most particles get a

negligible weight; therefore the approximated filtering density
∑N

l=1 wl
kδ(xk − xl

k) is

randomly sampled in order to obtain the new approximation
∑N

l=1(1/N)δ(xk − x̃l
k):

the set {x̃l
k}N

l=1 of the new particles is a subset of {xl
k}N

l=1, where particles xl
k

corresponding to large weights wl
k are drawn many times.

(Step 3) prediction: replace π(xk|y1:k) in the Chapman-Kolmogorov equation (10)

with
∑N

l=1(1/N)δ(xk − x̃l
k) to obtain

π(xk+1|y1:k) '
1

N

N∑

l=1

π(xk+1|x̃l
k) (24)

and extract N new particles from this new prior. Technically, in our implementation

this is done by extracting one random point from each π(xk+1|x̃l
k). Another

possibility, leading to comparable results, would be to extract independent samples

from the whole mixture.

Remark 3.1. The resampling step introduces correlation among the particles, so that

convergence results, which are straightforward for the importance sampling, become

here more problematic but still hold under some additional assumption [4].

Remark 3.2. Once the posterior density has been sampled by the filter, the solution

can be estimated in different ways. In this paper we will use particle and weights to

compute the conditional mean of the solution.

4. Rao-Blackwellization

Let us now formulate the MEG inverse problem within the Bayesian filtering

framework. The unknown is represented by the time-discrete stochastic process {Jk}T
k=1,

where each random variable Jk is the pair of random variable Rk, denoting the source

position, and Qk, denoting the source amplitude. The data is represented by the time-

discrete stochastic process {Bk}T
k=1 and each realization bk is the measured biomagnetic

field at time tk. From the Biot-Savart equation (1) the model for the stochastic processes

in the case of a single source (the generalization to multiple sources is straightforward)

is given by

Bk = G(Rk)Qk + Nk , (25)

where, at a given sensor location r outside the skull,

G(Rk) =
µ0

4πf2
Rk × (fe(r) −∇f · e(r)r) (26)
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is obtained from (3) using the canonical recursive properties of the inner and outer

products in IR3; here, e(r) represents the unit vector orthogonal to the sensor surface.

We assume that the evolution of the system is described by equations

Rk+1 = Rk + ∆Rk , (27)

Qk+1 = Qk + ∆Qk , (28)

where ∆Rk and ∆Qk are assumed to be Gaussian. Under Markovian assumptions

analogous to (6)-(8), Bayesian filtering can be applied to track the stochastic process

{Jk}N
k=1, where the posterior probability density function can be computed by applying

a standard SIR particle filter. We point out that describing the temporal dynamics in

the brain by means of a random walk as in (27) means that a small amount of a priori

information on the temporal evolution is introduced in the model. In fact, utilizing more

realistic transition kernels would correspond to introducing more featured, less general

priors (see Equation (10)).

We remark in equation (25) that the dependence of the measured variable Bk on

the dipole amplitude Qk is linear. Therefore, if Nk and ∆Qk are Gaussian variables,

even Qk is Gaussian and its moments can be analytically determined by applying a

Kalman filter. In terms of probability density functions, the factorization

π(jk|b1:k) = π(qk|rk,b1:k)π(rk|b1:k) (29)

holds and the Gaussian function π(qk|rk,b1:k) is analytically computed by using the set

of equations (13)-(17). Furthermore, under the Markovian properties

π(rk|r1:k−1) = π(rk|rk−1) , (30)

π(bk|r1:k) = π(bk|rk) (31)

and

π(rk+1|rk,b1:k) = π(rk+1|rk) (32)

concerned with the stochastic process {Rk}, a new SIR particle filter allows the

computation of the posterior π(rk|b1:k) within the usual Bayesian filtering framework.

However, in this case, the measurements are no longer independent when conditioned

on the particles:

Theorem 4.1. If Q0, Nk and ∆Qk are Gaussian variables, Nk has zero mean and

π(rk|b1:k−1) is used as proposal density for the importance sampling of π(rk|b1:k), then

the weights of the corresponding SIR particle filter are

wl
Rk

=
π(bk|rl

k,b1:k−1)

π(bk|b1:k−1)
; (33)

π(bk|rk,b1:k−1) is a Gaussian function with mean value

bl
k = G(rl

k)E(Qk|rl
k,b1:k−1) (34)
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and covariance

Cl
k = G(rl

k)Γ
l
kG(rl

k)
T + Σk , (35)

where

Γl
k = E((Qk − ql

k)(Qk − ql
k)

T |rl
k,b1:k−1) =

=
∫

(qk − ql
k)(qk − ql

k)
>π(qk|rl

k,b1:k−1)dqk (36)

and

ql
k = E(Qk|rl

k,b1:k−1) =
∫

qkπ(qk|rl
k,b1:k−1)dqk . (37)

Proof. Model (25) implies

Bk|rl
k,b1:k−1 = G(rl

k) · Qk|rl
k,b1:k−1 + Nk|rl

k,b1:k−1 =

= G(rl
k) · Qk|rl

k,b1:k−1 + Nk . (38)

Therefore Bk|rl
k,b1:k−1 is the sum of two Gaussian random variables and is a Gaussian

variable itself. Formulas (34)-(37) come by a straightforward computation from the

definition of mean value and covariance.

⊕

Remark 4.2. In the previous theorem the rather obvious notation Qk|rl
k,b1:k−1 denotes

the stochastic variable representing the dipole amplitude at time step k conditioned on

the realizations rl
k and b1:k−1 (an analogous meaning holds for the other conditioned

variables in the theorem). Therefore E(Qk|rl
k,b1:k−1) and Γl

k are the mean value and

variance provided by the Kalman filter.

In the present context, Rao-Blackwellization is the procedure that consists in assessing

the posterior distribution π(jk|b1:k) as the product of the estimates of π(qk|rk,b1:k) times

π(rk|b1:k) where π(qk|rk,b1:k) is optimally determined by applying a set of Kalman

filters and π(rk|b1:k) is sampled by means of a particle filter. When applicable, a

Rao-Blackwellized particle filter should be preferred to a standard particle filter for

essentially three computational reasons. First, the Kalman filter optimally computes

π(qk|rk,b1:k) without the need of any sampling. Second, if M is the number of active

sources, a particle filter for π(rk|b1:k) samples particles in IR3M while a particle for

π(jk|b1:k) samples particles in IR6M. Third, as proved in the following theorem, the

variance of the weights in the particle filter for π(rk|b1:k) is smaller than the variance

of the weights in the particle filter for π(jk|b1:k), i.e. the sampling of π(rk|b1:k) is more

efficient. In the following theorem, we use the notation Eπ(x)(f(x)) :=
∫

f(x)π(x)dx

and varπ(x)(f(x)) :=
∫
(f(x) − Eπ(x)(f(x)))2π(x)dx, with the obvious generalization to

random vectors.
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Theorem 4.3.[5] Given the two random variables

w(Jk) =
π(Jk|b1:k)

π(Jk|b1:k−1)
(39)

and

w(Rk) =
π(Rk|b1:k)

π(Rk|b1:k−1)
, (40)

then

varπ(jk|b1:k−1)(w(Jk)) ≥ varπ(rk|b1:k−1)(w(Rk)) . (41)

Proof. We first observe that

w(Rk) = Eπ(qk |rk,b1:k−1)(w(Jk)) . (42)

Therefore

varπ(rk|b1:k−1)(w(Rk)) = Eπ(rk |b1:k−1)(Eπ(qk |rk ,b1:k−1)(w(Jk))
2) −

−(Eπ(rk |b1:k−1)(Eπ(qk |rk ,b1:k−1)(w(Jk))))
2 =

= Eπ(rk |b1:k−1)(Eπ(qk |rk ,b1:k−1)(w(Jk))
2) − (Eπ(jk |b1:k−1)(w(Jk)))

2 . (43)

Now we subtract (43) to

varπ(jk|b1:k−1)(w(Jk)) = Eπ(jk |b1:k−1)(w(Jk)
2) − (Eπ(jk |b1:k−1)(w(Jk)))

2 (44)

and obtain

varπ(jk|b1:k−1)(w(Jk)) − varπ(rk|b1:k−1)(w(Rk)) =

= Eπ(rk |b1:k−1)(varπ(qk |rk ,b1:k−1)(w(Jk))) , (45)

where the term at the right hand side is positive.

⊕
Starting from the previous theoretical considerations the Rao-Blackwellized particle

filter algorithm we have implemented consists of the following steps:

(Step 0) initialization: set an initial prior density which is easy to sample from,

π(r1|∅), and draw N particles; then, for k = 1, . . .

(Step 1) filtering - Kalman filter: for each particle rl
k update the mean and the

covariance of the linear variable Qk by means of equations (13), (14) and (17).

(Step 2) filtering - particle filter: apply Bayes theorem through the importance

sampling procedure: assign the importance weights wl
k = π(bk|rl

k,b1:k−1) to get

the approximation of the filtering density

(Step 3) resampling: the usual resampling step for SIR particle filtering.

(Step 4) prediction - Kalman filter: for each particle rl
k update the mean and the

covariance of the linear variable Qk by means of equations (15) and (16).

(Step 5) prediction - particle filter: the usual prediction step for SIR particle

filtering.
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5. Numerical applications

A preliminary comparison between the computational costs of a particle filter (PF

in this section) and a Rao-Blackwellized particle filter (RBPF in this section) should

account for the following two issues: first, RBPF samples π(rk|b1:k) instead of π(jk|b1:k),

which implies that the computational time for the sampling procedure is essentially

halved. Second, in RBPF, a not-negligible contribution to the overall computational

cost comes from the execution of the Kalman filter. In order to actually assess the real

gain provided by Rao-Blackwellization we consider some applications involving both real

and simulated data realized with a high performances desktop PC.

Simulated data are computed by inserting a current dipole distribution into

equation (3) and by affecting the resulting magnetic time series with Gaussian noise of

notable intensity, so that the signal-to-noise ratio is close to the one of typical averaged

biomagnetic data in MEG real experiments. Both the prior pdf and the transition kernel

are chosen to be Gaussian distribution.

As a first synthetic case, in Figure 1 we apply the two filters in a very easy

two-dimensional situation, where the magnetic field in Fig. 1(a) is produced by the

current dipole with time behavior in Fig. 1(b). Figures 1(c) and (d) show the particle

distributions at the time point highlighted in Fig. 1(b). In both reconstructions we

used N = 100 particles: in this situation PF provides its reconstruction at each time

point in 1.75 s while for RBPF the time for a single time sample increases up to 2.15 s.

However the Rao-Blackwellized algorithm correctly recovers the source already at the

second time point, when the particle distribution provided by the particle filter is still

far from correctly localizing the source. This implies that 100 particles are certainly

insufficient for PF to provide an accurate reconstruction of the source dipole.

To better show this difference in accuracy performances, we consider a more realistic

experiment where, in a three-dimensional geometry, two current dipoles located in

completely different positions in the brain are characterized by overlapping amplitudes.

These amplitudes are represented in Figure 2(a) while the original location of the

dipoles is in Figure 2(b). Figures 2(c) and (d) present the conditional mean at different

time points: the reconstruction in (c) has been obtained with the particle filter code

employing N = 50000 particles while Rao-Blackwellization allows one to obtain the

better result in (d) with a notably reduced number of input particles (N = 1000).

Figures 2(e) and (f) show the reconstructions of the amplitudes provided by PF and

RBPF. We notice that PF provides the whole reconstruction in 6000 s per time sample

while for RBPF the computational time is 154.5 s per time sample. Furthermore, in

Table 1, we describe more quantitatively the reliability of these reconstructions providing

the reconstruction error on the position (given as the distance in cm between the true

and restored dipoles’ positions averaged over the time interval and over ten runs of the

algorithm), the reconstruction error on the orientation (given as the difference in rad

between the true and restored dipoles’ orientations averaged over the time interval and

over ten runs of the algorithm) and the reconstruction error on the amplitude (given as
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Figure 1. The magnetic field (a) produced by the dipole with amplitude in (b). The
particle filter approximation of the posterior density reconstructed with PF (c) and
RBPF (d) at the second time point.

position (cm) orientation (rad) amplitude

Dipole A PF 0.8 0.064 15.0%

Dipole A RBPF 0.45 0.051 8.8%

Dipole B PF 1.13 0.16 31.0%

Dipole B RBPF 0.81 0.15 18.1 %

Table 1. Averaged reconstruction errors on the position (in cm) and on the orientation
(in rad) and averaged root mean squares errors for the amplitude reconstruction given
by PF (with 50000 particles) and RBPF (with 1000 particles) in the case of Figure 2.

the root mean square error averaged over ten runs of the algorithm). The Table shows

that RBPF is always more accurate than PF.

Figure 3 contains another quantitative assessment of the differences between the

performances of the two algorithms. In the first row we analyze the biomagnetic data
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Figure 2. Amplitudes (a) and positions (b) of the original dipoles. Conditional mean
of the posterior density obtained with PF (c) and RBPF (d) at different time points.
Reconstructed amplitudes obtained with PF (e) and RBPF (f). PF utilizes N = 50000
particles while for RBPF N = 1000.
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Figure 3. Reconstruction of the dipole A in Figure 2(a): position error (a), orientation
error (b) and reconstructed amplitude (c) obtained using 100 particles for both the
algorithms. The same objects (respectively (d), (e) and (f)) with 100 particles for
RBPF and 1000 for PF.

produced by a single dipole (dipole A in the example of Figure 2) with PF and the RBPF

with the same number N = 100 of input particles and in Figures 3(a) and (b) compute

the reconstruction error on the position and on the orientation. In Figure 3(c) we

also superimpose the theoretical amplitude on the amplitudes reconstructed by the two

algorithms. These plots show that in the case of a very small number of particles Rao-

Blackwellization allows a notable improvement of the reconstruction accuracy. Figures

3(d), (e) and (f) contain the same information as in (a), (b) and (c) respectively, but

this time with N = 1000 particles in the case of the particle filter algorithm. These

results show that Rao-Blackwellization allows a reduction of 90% in the number of input

particles without deteriorating the reconstruction accuracy.

Finally, in Figure 4 we compare the performances of the two algorithms in the case

of a real data set recorded with a 306-channel whole-head neuromagnetometer (Elekta

Neuromag Oy, Helsinki, Finland), which employs 102 sensor elements, each comprising

one magnetometer and two planar gradiometers. Measurements were filtered in the

range 0.1 170 Hz and sampled at 600 Hz. Prior to the actual recording, four small

indicator coils attached to the scalp at locations known with respect to anatomical

landmarks were energized and the elicited magnetic fields recorded to localize the head

with respect to the MEG sensors and thus to allow subsequent co-registration of the

MEG with anatomical MR-images. Epochs with exceedingly large (b > 3pT=cm)

MEG signal excursions were rejected, and about 100 artifact-free trials of each stimulus

category were collected and averaged on-line in windows [-100, 500] ms with respect

to the stimulus onset. Residual environmental magnetic interference was subsequently
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(a) (b)

Figure 4. A real experiment with visual stimulation: (a) the measured magnetic field
at the peak time point; (b) coregistration on a Magnetic Resonance high resolution
axial view of the sources reconstructed by PF and RBPF. The two reconstructed
dipoles coincide but PF (triangle) employees N = 50000 particles while RBPF (circle)
utilizes only N = 1000 particles.

removed from the averages using the signal-space separation method [19]. We considered

a visual external stimulation. Figure 4(a) shows the magnetic field at the peak time

point while Figure 4(b) shows an axial view of the reconstructions provided by PF and

RBPF: the two reconstructions are essentially the same but again PF utilizes N = 50000

particles to obtain a stable dipole while for RBPF N = 1000 are surely enough.

6. Conclusions and open problems

In this paper we have discussed the effectiveness of a Rao-Blackwellized particle

filter in reconstructing neural sources from biomagnetic MEG data. We have shown that

this approach is advantageous with respect to a standard SIR particle filter, inasmuch

as it provides accurate reconstructions with a significantly lower computational effort.

The typical neurophysiological conditions, particularly in the case of visual stimuli (see,

for example, [18]) involve the activation of complex neural constellations and require

the analysis of relatively long time series. We think that a systematic application of

a Bayesian filtering approach for the analysis of MEG data would be favored by the

use of Rao-Blackwellization, and, in order to validate this conjecture, we are currently

planning to systematically apply our RBPF to many real data sets acquired during

visual stimulations of different degrees of complexity.

Finally, from a more computational viewpoint, we are working at a further reduction

of the numerical heaviness of the analysis by introducing a computational grid where

computing the Rao-Blackwellized filter.
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[20] Uutela K, Hämäläinen M and Somersalo E 1999 Visualization of Magnetoencephalographic data
using minimum current estimates NeuroImage 10 173-180

[21] Van Veen B D, van Drongelen W, Yuchtman, M and Suzuki A 1997 Localization of brain electrical
activity via linearly constrained minimum variance spatial filtering IEEE Trans. Biom. Eng. 44
867-880


