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Abstract. Electroencephalography (EEG) is a non-invasive imaging modality in

which a primary current density generated by the neural activity in the brain is to be

reconstructed based on external electric potential measurements. This paper focuses

on the finite element method (FEM) from both forward and inverse aspects. The

goal is to establish a clear correspondence between the lowest order Raviart-Thomas

basis functions and dipole sources as well as to show that the adopted FEM approach

is computationally effective. Each basis function is associated with a dipole moment

and a location. Four candidate locations are tested. Numerical experiments cover

two different spherical multilayer head models, four mesh resolutions and two different

forward simulation approaches, one based on FEM and one based on the boundary

element method (BEM) with standard dipoles as sources. The forward simulation

accuracy is examined through column- and matrix-wise relative errors as well as

through performance in inverse dipole localization. A closed-form approximation of

dipole potential was used as the reference forward simulation. The results suggest that

the present approach is comparable or superior to BEM and to the recent FEM based

subtraction approach regarding both accuracy, computation time and accessibility of

implementation.

PACS numbers: 87.19.le, 87.10.Kn, 02.30.Zz

AMS classification scheme numbers: 35Q60, 65M60, 15A29

1. Introduction

Electroencephalography (EEG) [22] is an non-invasive imaging modality in which

a primary current density generated by the neural activity in the brain is to be

reconstructed based on external electric potential measurements. Recovery of the

neural current is an ill-posed inverse problem [15, 25] which can be approached

through regularization methods [12, 19, 24, 25, 28, 33, 31] that deal with the intrinsic

characteristics of the problem and with the very low signal-to-noise ratio of the

input data. As for all the inverse problems, the availability of forward methods

[18, 20, 30, 8, 34] allows the creation of synthetic data, enabling the validation of the
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inverse source methods. In the case of EEG, forward methods play a crucial role,

because the dependence of the measurements on the neural current is only implicit as a

consequence of the complex conductivity structure of the brain.

This paper focuses on the finite element method (FEM) from both forward and

inverse aspects [21, 26]. The advantage of FEM is that it allows accurate modeling of the

conductivity distribution inside the head. This is important, since the highly anisotropic

conductivities of the skull and the brain have a strong effect on the electromagnetic field

outside the head [17, 32]. Modeling the effect of complex anisotropic conductivities

is infeasible through the standard Boundary Element Method (BEM) [3], which

is presently one of the predominant EEG forward simulation methods in practical

applications [22, 2, 9, 16].

The present FEM approach relies on both nodal and Raviart-Thomas elements

[5, 21]. In particular, the goal is to show how and to what extent the lowest

order Raviart-Thomas basis functions can model the dipole sources in computationally

effective fashion. These basis functions are, in general, the simplest ones that have

a square integrable divergence, which is necessary, when FEM is used for computing

the potential field [5, 21]. Further, in contrast to the standard dipoles, which have a

single-point support, finite element basis functions are finitely supported. Even though

the real neural currents are not dipoles, practical applications of EEG are often based

on the assumption of dipole sources, which makes it important to study how well the

present source model corresponds to the standard one. This work associates each lowest

order Raviart-Thomas basis function with a dipole moment and a location. Four ad

hoc candidate locations are introduced and tested numerically. The primary reason

for studying these different candidates is that the Raviart-Thomas element degrees of

freedom are by definition not nodal but facial [5]. And the secondary motivation is

to obtain knowledge on how strongly the forward simulation accuracy depends on the

source location.

The numerical experiments cover two different spherical multilayer head models,

four different mesh resolution levels as well as two different forward simulation

approaches, one based on FEM and one based on BEM with standard dipoles as sources.

The performance of the forward simulations is examined through relative errors and

accuracy in inverse dipole localization [15]. The data used as a reference is computed

using a closed-form approximation of the analytical solution. The results obtained

suggest that the present FEM approach is comparable or even superior to the BEM and

also to the recent and effective FEM based subtraction approach [18, 8] regarding both

accuracy and computation time. Additionally, implementation of the present approach

was found to be accessible due to the sufficiency of low-order numerical integration

methods (quadratures) [5].

This paper is organized as follows. Section 2 describes the forward methods applied

in this study including the EEG forward model and simulation, the present source model

as well as the other applied finite element techniques. Section 3 reports the numerical

experiments with EEG. Finally, section 4 summarizes the results and suggests possible
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directions for the future work.

2. Forward methods

2.1. Forward model

The EEG forward model associates a given primary current density Jp in the head Ω

with a measurement data vector y containing electric potential values. The data are

obtained using electrodes. The electric potential field u in Ω is of the form E = −∇u

and the total current density is given by J = Jp + Js = Jp − σ∇u, in which σ is the

conductivity distribution of Ω and Js = −σ∇u is called the secondary or the volume

current density. Replacing the total current density into the charge conservation law

∇ · J = 0 and assuming that the current flow out of Ω is zero results into the second

order partial differential equation ∇ · (σ∇u) = ∇ ·Jp in Ω with the Neumann boundary

condition ∂u/∂n = 0 on the boundary ∂Ω. These again yield the weak form [5, 21]
∫

Ω
σ∇u · ∇v dV = −

∫

Ω
(∇ · Jp)v dV, for all v ∈ H1(Ω), (1)

which has a unique solution u ∈ H1(Ω) = {w ∈ L2(Ω) : ∂w/∂xi ∈ L2(Ω), i = 1, 2, 3},

if the potential zero reference level is given, and if the divergence of the primary

current density is square integrable, meaning that Jp ∈ H(div; Ω) = { w ∈ (L2(Ω))3 :

∇ · w ∈ L2(Ω)}. The weak form (1) constitutes the present EEG forward model, i.e.

the dependence of u on Jp, which is linear and defined for all Jp ∈ H(div; Ω).

2.2. Forward simulation

In the numerical simulation of the forward model, the unknown of the inverse problem

is identified with a finite dimensional vector x that is linked with a noiseless data vector

y as given by

y = Lx, (2)

in which L is known as the lead field or the transfer matrix. The discretized versions of

the potential u and of the current density Jp are defined as uT =
∑N

i=1 ziψi and J
p
T

=
∑M

k=1 xk wk, where ψ1, ψ2, . . . , ψN ∈ H1(Ω) and w1,w2, . . . ,wM ∈ H(div; Ω) are

finite element basis functions corresponding to a shape regular finite element mesh T .

Furthermore, it is assumed that the electrodes coincide with the vertices i1, i2, . . . , iL of

the finite element mesh.

The coefficients z1, z2, . . . , zN and x1, x2, . . . , xM define unknown coordinate vectors

z and x, which satisfy the linear system Az = Gx, resulting from the Ritz-Galerkin

discretization [5] of the weak form (1). The entries of A and G are given by

aij =
∫

Ω
σ∇ψi · ∇ψj dV and gik = −

∫

Ω
(∇ · wk)ψi dV. (3)

Additionally, to establish the positive definiteness and thereby the invertibility of the

symmetric matrix A, all the entries on the i1th row and column of A are set to
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zero except ai1,i1 = 1. Following from the equation Az = Gx, the EEG potential

measurements with the eventual potential zero reference level, that is the mean value

of the electrode potentials, can be obtained choosing the lead field matrix as

L = RA−1G, (4)

in which R is a L×N restriction matrix with riℓiℓ+1
= 1 − 1

L
, riℓik = − 1

L
, if ℓ 6= k + 1,

ℓ ≤ L and k ≤ L, and all the other entries are zero. Since the number of rows of L

is usually much lower than the number of columns, it is advantageous [11] to compute

RA−1 row by row, through e.g. an iterative solver, without forming the inverse A−1.

Table 1. The applied spherical multilayer head models, radiuses of the layers as well

as radial and tangential conductivities in different layers.

Layers

Model Quantity Brain CSFa Skull Scalp

(I) Layer radius 0.87 - 0.92 1.00

Radial conductivity 0.33 - 0.0042 0.33

Tangential conductivity 0.33 - 0.0042 0.33

(II) Layer radius 0.78 0.80 0.86 0.92

Radial conductivity 0.33 1.79 0.0042 0.33

Tangential conductivity 0.33 1.79 0.042 0.33

a Cerebrospinal fluid.

Figure 1. A tetrahedral element on the left and a prismatic element on the right.

2.3. Spherical multi-layer head models

As the domain Ω, this work uses spherical multi-layer head models which consist of

layers (compartments) formed by concentric spheres. The innermost layer is spherical

and represents the brain. In each layer, the conductivity distribution σ is constant in

magnitude. The model is called anisotropic, if the conductivity is anisotropic in at least

one of the layers, and otherwise it is called isotropic.

The models used are an isotropic three-layer [34, 1] and an anisotropic four-layer

model [18, 8, 29] denoted by (I) and (II), respectively. The isotropic one is the Ary
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model consisting of a brain, a skull, and a scalp layer. The anisotropic one is similar to

the Stok model including a cerebrospinal fluid (CSF) layer between the brain and the

skull. The only anisotropic layer in (II) is the skull in which the tangential conductivity

compared to the radial one is ten times larger. The radiuses as well as the radial and

tangential conductivities of the different layers of (I) and (II) have been reported in

table 1.

2.4. Finite element mesh

The multilayer structure of Ω is incorporated into the finite element mesh. This work

uses meshes in which the brain layer consists of tetrahedral elements and the thin surface

layers of prisms [26], which provide an efficient way to control the element size in the

radial direction. Both applied element types are illustrated in figure 1. The electric

potential is supported on both the tetrahedral and the prismatic part of the mesh. The

source currents are assumed to exist only in the tetrahedral part, i.e. in the brain layer.

2.5. Nodal basis functions

The potential distribution is discretized using nodal (Lagrangian) basis functions [5, 26]

for both the tetrahedral and the prism elements. The nodal basis function ψi obtains

the value one in the i:th vertex of the finite element mesh and vanishes in all the

other vertices. As a result, the value of the uT at the i:th vertex coincides with the

i:th degree of freedom zi of uT . The basis function restricted to one element can be

obtained requiring that its value equals one in precisely one of the element vertices. In

the tetrahedral case, the resulting polynomial is linear, and in the prism case, it is of

second order, but linear on both the parallel triangular faces of the element and also in

the normal direction of those faces. The nodal basis functions are piecewise continuous

and form a subspace of H1(Ω). The support of ψi, i.e. the set on which ψi differs from

zero, is formed by the union of all the elements that include the ith vertex.

Figure 2. Three visualizations of a lowest order Raviart-Thomas basis function

supported on two tetrahedral elements.

2.6. Lowest order Raviart-Thomas basis functions

The lowest order Raviart-Thomas [5, 21] basis function wk is supported on two adjacent

tetrahedral elements that share the kth face of the finite element mesh (figure 2). When
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restricted to one of the supporting tetrahedrons, the basis function is the position vector

field transferred and scaled, i.e. of the form

g(r) = c(r − r̂), (5)

where c is a scaling constant and r̂ denotes the position of the vertex opposite to the kth

face. The divergence and the curl of g are given by ∇·g = 3c and ∇×g = 0, respectively.

The normal component of wk vanishes on all the tetrahedron faces except the kth one,

on which it is continuous. The scaling of wk in each tetrahedron is chosen so that the

norm of the normal component over the k:th face is one and thus continuous. As a

result, the divergence of wk is square integrable, i.e. wk ∈ H(div; Ω). Additionally, this

means that the k:th degree of freedom xk of J
p
T

coincides with the normal component

of J
p
T

on the k:th face.

Figure 3. On the left: The candidate locations (A), (B), (C), and (D) corresponding

to the illustrated lowest order Raviart-Thomas basis function. On the right: A two-

dimensional visualization of a lowest order Raviart-Thomas source (arrows) and of the

supports of the two nodal basis functions (two shades of grey) corresponding to the

vertices 4 and 5 that communicate the effect of the source to the nodal basis.

2.7. Dipole model based on the lowest order Raviart-Thomas basis functions

When used as a source current for an electric field, a single basis function wk is dipole-

like, meaning that the electromagnetic field far enough from the source is similar to that

of a dipole. A mathematical dipole is supported only at one point and identified by the

pair (q, r), in which q is the dipole moment indicating the direction and strength and

r is the location. To enable comparison of wk to a dipole, wk is given a dipole moment

qk and a location rk. The vector qk is defined as the integral

qk =
∫

Ω
wk dxdydz (6)

and the location is formed as a weighted average rk = (
∑5

ℓ=1 αℓr
(ℓ)
k )(

∑5
ℓ=1 αℓ)

−1 of the

vertex position vectors r
(1)
k , r

(2)
k , . . . , r

(5)
k indexed according to figure 3. Four candidate

locations (A), (B), (C), and (D), defined in table 2, are tested. The primary motivation

for studying these ad hoc candidates is that the Raviart-Thomas element degrees of

freedom are by definition not nodal but facial [5]; There is no single point that would a

priori be the natural choice. And the secondary motivation is to obtain knowledge on

how strongly the forward simulation accuracy depends on the source location.
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Table 2. The candidates (A), (B), (C), and (D) tested as the source location.

Location α1 α2 α3 α4 α5

(A) 1/3 1/3 1/3 0 0

(B) 1/5 1/5 1/5 1/5 1/5

(C) 1/9 1/9 1/9 1/3 1/3

(D) 0 0 0 1/2 1/2

Location (A) is the centroid of the face associated with the degree of freedom. (D)

is the center of the line segment between r
(4)
k and r

(5)
k and interesting, since the effect of

each vector valued source function wk on the potential field is communicated through

the scalar valued nodal basis functions corresponding to r
(4)
k and r

(5)
k (see Appendix).

Location (B) coincides with the center of mass of the convex hull defined by the vectors

r
(1)
k , r

(2)
k , . . . , r

(5)
k . Both (B) and (C) lie on the line segment between (A) and (D). And

the weight given to r
(4)
k and r

(5)
k increases from (A) to (D).

2.8. Boundary element method (BEM)

BEM [3] is currently one of the most popular methods in EEG forward simulation

[22, 2, 9, 16]. It relies on surface meshes and elements instead of volume ones. One of

the great advantages of BEM is that it allows the use of truly pointlike dipoles as the

source currents. In contrast to FEM, modeling the effect of strongly inhomogenous or

anisotropic conductivity distributions with BEM can be difficult or impossible.

In BEM, the boundary of the domain Ω as well as each interface between two

different conductivity values needs to be discretized. The head models (I) and (II)

can be discretized generating a surface mesh on the outer boundary of each layer. In

this work, BEM meshes consist of triangular finite element mesh surfaces. The applied

surface elements are linear, and the BEM forward simulation is provided by the MNE

software package [14] for EEG/MEG computations.

2.9. Closed-form approximation of the analytical solution

When a spherical multi-layer head model is used, the analytical potential of a dipole

(q, r) on the electrodes can be approximated in a closed form through the formula

uj(q, r) ≈
K

∑

ℓ=1

u
(s)
j (λℓq, µℓr), (7)

in which uj(q, r) is the potential of the jth electrode and u
(s)
j (q, r) is the corresponding

single-layer sphere potential that has a relatively simple closed-form expression presented

e.g. in [34]. The approximation (7) can be shown to converge rapidly towards the exact

analytical solution as the number of terms K grows [34]. The multipliers λ1, λ2, . . . , λK

and µ1, µ2, . . . , µK are so-called Berg parameters [4] that can be computed through a
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numerical optimization procedure. This work uses (7) to construct the reference forward

simulation for the numerical experiments.

Figure 4. Visualization of the 102 measurement point locations (left) and the

cross-section of the finite element mesh corresponding to head model (I) (center)

and (II) (right). Both meshes were generated by first constructing the brain layer

using tetrahedral elements and after that adding the relatively thin prismatic layers to

cover the brain. The color shows the relative value of the radial conductivity in each

visualized tetrahedron.

Table 3. The finite element meshes and the corresponding function bases as numbers:

mesh and resolution level number and the number of elements, tetrahedra, prisms,

outer faces, as well as of nodal and Raviart-Thomas basis functions.

Boundary

Model Resolution Elements Prisms facesa Nodalb R-Tc

(I) 1 221221 84357 136864 85287 163450

(I) 2 155904 59392 96512 60131 115072

(I) 3 127360 62464 64896 44191 122432

(I) 4 31552 7424 24128 13839 13920

(II) 1 231749 84357 147392 90553 163450

(II) 2 163328 59392 103936 63845 115072

(II) 3 132352 62464 69888 46689 122432

(II) 4 33408 7424 25984 14769 13920

a The number of faces on the outer boundary of the mesh.
b The number of nodal basis functions which coincides with the number of nodes.
c The number of Raviart-Thomas basis functions.

3. Numerical experiments

In the numerical experiments, the performance of the present FEM approach (4) with

the lowest order Raviart-Thomas basis functions as dipole sources was tested within the

head models (I) and (II). Additionally, the BEM solver of the MNE software package was

tested in the case of the isotropic model (I). The closed-form approach (7) was used as

the reference forward simulation method. The number of terms K in (7) was chosen to
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Table 4. The Berg parameters µ1, µ2, . . . , µ10 and λ1, λ2, . . . , λ10 used in the

computation of the numerical closed-form approximation of the analytic solution.

Model (I) Model (II)

ℓ Berg λℓ Berg µℓ Berg λℓ Berg µℓ

1 0.51346275 0.10663283 0.11989703 0.60731855

2 −0.45889827 0.098806681 0.18083646 0.44203404

3 0.062551069 0.32614976 0.0077327407 0.75566590

4 0.22554434 0.21740585 0.080699975 0.25268809

5 0.10838624 0.28368475 −0.018145067 0.0028600870

6 −0.31251690 0.19849838 0.079971766 0.74589779

7 0.23561751 0.52983366 −0.036228989 0.076998525

8 0.079372931 0.87488245 0.032252683 0.027354754

9 0.049310282 0.99979295 0.035003541 0.24186295

10 0.15808930 0.72895122 0.051230976 0.84980359

Table 5. The implemented FEM and BEM forward simulation tests.

Computation time

Mesh Dipole

Test Model Method resolution location 32-bit (s) 64-bit (s)

(i) (I) FEM 1 (A)–(D) 822 353

(ii) (I) FEM 2 (A)–(D) 547 234

(iii) (I) FEM 3 (A)–(D) 382 164

(iv) (I) FEM 4 (A)–(D) 87 40

(v) (II) FEM 1 (A)–(D) 912 385

(vi) (II) FEM 2 (A)–(D) 583 264

(vii) (II) FEM 3 (A)–(D) 403 174

(viii) (II) FEM 4 (A)–(D) 97 43

(ix) (I) BEM 1 (surface) Authentic 5400 -

(x) (I) BEM 2 (surface) Authentic 1800 -

(xi) (I) BEM 3 (surface) Authentic 600 -

(xii) (I) BEM 4 (surface) Authentic 120 -

be 10. The Berg parameters µ1, µ2, . . . , µ10 and λ1, λ2, . . . , λ10 (table 4) were computed

as explained in [34] and the resulting relative error variances [34] were 5.15 · 10−14 and

7.48 · 10−15 for the head models (I) and (II), respectively.

The number of mesh resolutions tested was four. On each resolution level, the same

tetrahedron structure was used for both models (I) and (II) (figure 4). The prism size in

each layer was constant in the radial direction and independent of the resolution level.

The number of the prismatic layers was chosen so that the relative prism size for (I)

and (II) was similar and that the thinnest layer (CSF) contained more than one prism
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Table 6. The relative error REL in the forward simulation tests (i)–(viii) with the

dipole locations (A)–(D).

Dipole location

Test (A) (B) (C) (D)

(i) 0.0250 0.0158 0.0109 0.00948

(ii) 0.0416 0.0282 0.0216 0.0204

(iii) 0.0353 0.0251 0.0200 0.0181

(iv) 0.0791 0.0546 0.0451 0.0503

(v) 0.0163 0.00987 0.00594 0.00372

(vi) 0.0265 0.0167 0.0108 0.00715

(vii) 0.0225 0.0149 0.0105 0.00796

(viii) 0.0551 0.0359 0.0253 0.0213

Table 7. The maximum of dipole localization error LEk and the percentage of the

correctly localized dipoles for which LEk = AEk = 0.

Dipole location

(A) (B) (C) (D)

LEk Zerosb LEk Zerosb LEk Zerosb LEk Zerosb

Test max.a (%) max.a (%) max.a (%) max.a (%)

(i) 0.0527 69.116 0.0461 69.102 0.0256 69.136 0 100

(ii) 0.138 57.167 0.114 59.146 0.0596 59.365 0.0553 99.991

(iii) 0.135 56.946 0.115 58.709 0.0934 58.911 0.0735 99.981

(iv) 0.249 65.208 0.179 67.730 0.100 67.989 0.118 99.986

(v) 0.0527 69.300 0.0461 69.290 0.0256 69.378 0 100

(vi) 0.120 57.861 0.0956 59.315 0.0248 59.413 0 100

(vii) 0.121 57.272 0.103 58.660 0.0870 58.893 0.0659 99.997

(viii) 0.223 65.108 0.160 67.392 0.0481 67.486 0 100

a Maximum of the localization error LEk, i = 1, 2, . . . ,M .
b Percentage of zeros of LEk, i = 1, 2, . . . ,M .

layer to avoid forward simulation errors due to the discontinuity of the conductivity in

the radial direction [5].

In each computed lead field matrix L = (l1, l2, . . . , lM), the columns were normalized

so that lk corresponded to the data of the dipole source (qk, rk) with ‖qk‖2 = 1 for

k = 1, 2, . . . ,M . The number of rows and columns in the lead field matrix coincided

with the number of the measurement points and of the dipole sources, respectively.

The former one was 102 in each test (figure 4). The latter one was determined by the
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(i), (A), radial (i), (B), radial (i), (C), radial (i), (D), radial

(i), (A), tangential (i), (B), tangential (i), (C), tangential (i), (D), tangential

(v), (A), radial (v), (B), radial (v), (C), radial (v), (D), radial

(v), (A), tangential (v), (B), tangential (v), (C), tangential (v), (D), tangential

Figure 5. The relative error REk in the forward simulation tests (i) and (v) plotted

against the distance (9) and visualized on a logarithmic scale separately for basically

radially and tangentially directed sources, as well as for the dipole location candidates

(A)–(D). The line showing the tendency corresponds to the least squares fit on a

logarithmic scale and the color of each point shows the eccentricity of the corresponding

dipole.

number of the Raviart-Thomas basis functions in the case of FEM (table 3), whereas in

the BEM forward simulation, it was constantly 21624.

3.1. FEM forward simulation

The forward simulation tests performed are reported in table 5. The tests (i)–(viii)

concerned the FEM with different dipole candidate locations, mesh resolutions and

head models. The accuracy of L was measured in terms of the column- and matrix-wise
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Table 8. The maximum of the angular error AEk (degrees) in the forward simulation

tests (i)–(viii) with the dipole locations (A)–(D).

Dipole location

Test (A) (B) (C) (D)

(i) 1.85 0.00000191 0.00000191 0

(ii) 7.56 4.70 1.90 2.62

(iii) 6.60 6.60 6.16 6.41

(iv) 8.10 4.88 3.38 12.85

(v) 1.85 0.00000191 0.00000191 0

(vi) 4.71 2.23 0.00000191 0

(vii) 5.91 3.03 0.0808 0.000349

(viii) 6.06 2.72 0.00000171 0

Table 9. The maximal eccentrity of basically radially and tangentially oriented

dipole sources with the different finite element mesh resolutions and dipole candidate

locations.

Dipole location

Orientation Test Resolution (A) (B) (C) (D)

Radial (i),(v) 1 0.989 0.984 0.981 0.978

Tangential (i),(v) 1 0.991 0.994 0.996 0.999

Radial (ii),(vi) 2 0.960 0.952 0.946 0.940

Tangential (ii),(vi) 2 0.960 0.976 0.986 0.999

Radial (iii),(vii) 3 0.982 0.978 0.975 0.973

Tangential (iii),(vii) 3 0.985 0.990 0.994 0.999

Radial (iv),(viii) 4 0.919 0.903 0.892 0.878

Tangential (iv),(viii) 4 0.920 0.950 0.971 0.997

Table 10. The relative error REL in the forward simulation tests (ix)–(xii) with the

different values of the maximal dipole eccentricity.

Maximal dipole eccentricity

Test 0.997 0.986 0.979 0.969

(ix) 0.253 0.0312 0.0115 0.00472

(x) 0.277 0.0624 0.0522 0.0484

(xi) 0.341 0.108 0.0867 0.0796

(xii) 0.492 0.170 0.120 0.0946

relative errors

REk =
‖lk − lREF

k ‖2

‖lREF

k ‖2

and REL =

√

√

√

√

∑M
k=1 ‖lk − lREF

k ‖2
2

∑M
k=1 ‖l

REF

k ‖2
2

, (8)
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(i), (D), radial (v), (D), radial (ix), radial

(i), (D), tangential (v), (D), tangential (ix), tangential

Figure 6. The relative error REk plotted against the dipole eccentricity in the FEM

tests (i) and (v) with the dipole location (D) as well as in the BEM test (ix) with the

maximal eccentricity of 0.997.

with lREF

k denoting the kth column of the reference matrix LREF computed through (7)

with the same set of dipole moment and location pairs as in computation of L. The

column-wise REk was examined regarding its dependence on the distance

dk = ‖r
(D)
k − r

(A)
k ‖2 (9)

as well as on the dipole eccentricity, i.e. on the distance from the domain center divided

by the radius of the brain layer. The matrix-wise REL was used to measure the overall

accuracy. In inverse dipole localization, the Raviart-Thomas source that best reproduces

the dipole potential (7) was sought for each source location in the discretation. The

accuracy of the fit was explored by finding the maximal localization and angular errors

LEk = ‖rjk
− rk‖2 and AEk = | arccos(qjk

· qk)|, (10)

in which jk = arg minj ‖lj−lREF

k ‖2 is the index corresponding to the maximum likelihood

[15]. Additionally, the maximal source eccentricity corresponding to the candidate

locations (A)–(D) was computed.

3.1.1. Results The results are reported in tables 6–9 and figure 5. Table 6 shows that

the dipole location (D) gives the best results of the candidates (A)–(D) in terms of the

relative error REL. The largest relative error values were obtained with (A), for which

REL was approximately from two to tree times as large as for (D). Figure 5 shows that

with (A), (B) or (C) as the dipole location, REk plotted against the distance (9) has an

increasing tendency, which is indicated by the slope of the least squares regression line.

Moreover, the slope decreases when the dipole location is moved from (A) towards (D).

Regarding the inverse dipole fitting experiments, tables 7 and 8 document the

maximum of the localization and angular error LEk and AEk together with the

percentage of correctly localized dipoles, for which both errors are zero. According

to these, the percentage of correctly localized dipoles was the highest, at least 99.98 %,



Forward simulation and inverse dipole localization for electroencephalography 14

with the location (D) in each test. Additionally, the lowest value for the maximum of

LEk and AEk was obtained with (D) in most of the tests.

The maximal source eccentricity corresponding to the candidate locations (A)–(D)

is documented for both basically radially and tangentially oriented sources in table 9

showing that the highest source eccentricity applied in each of the tests (i)–(viii) was

0.997 or higher. In general, moving the dipole location from (A) towards (D) reduced

the maximal eccentricity of the basically radial sources and increased the one of the

basically tangential sources, respectively.

3.2. BEM forward simulation

The BEM forward simulation was used in the tests (ix)–(xii) (table 5), which were

performed using the head model (I), authentic dipole sources, and different maximum

limits for the eccentricity. The maximal eccentricities were 0.997, 0.986, 0.979, and

0.969. The relative errors REk and REL were computed, and the dependence REk on

the eccentricity was studied. The results obtained through BEM were compared to the

FEM ones.

3.2.1. Results The results are documented in table 10 and figure 6. Table 10 shows

that in the case of the BEM forward simulation, the relative REL error grows rapidly

when the maximal dipole eccentricity is increased. With the maximal eccentricity of

0.997 the values are very large and with 0.969 relatively small when compared to the

values in table 6 obtained in the case of FEM. The further comparison between FEM

and BEM displayed in figure 6 reveals that REk corresponding to BEM peaks near the

surface of the brain layer and is again relatively small close to the domain center.

3.3. Numerical implementation and computation times

A PC equipped with a 2.2GHz dual-core processor and 4GB of RAM was used to

compute the numerical experiments. The FEM forward simulation was tested both in

a 32-bit and a 64-bit operating system and software environment. The BEM tests were

carried out only in the former case. Implementation of the FEM was done through

the MATLAB environment [10] using the method of preconditioned conjugate gradients

(PCG) with the incomplete Cholesky preconditioner [5, 11] to produce the lead field

matrix (4) as described in section 2.2. The residual norm value 10−6 was used as the

PCG stopping criterion (tolerance). The applied MATLAB versions were 7.0 32-bit

and 7.10 64-bit. And the MNE software’s [14] implementation of the BEM was used to

obtain the BEM lead field matrix.

3.3.1. Results The computation times have been included in table 5. Examination

of the 32-bit results reveals that FEM provided the shorter computation time on all

resolution levels. The difference is the most obvious when the number of elements is

large; On the two finest resolution levels 1 and 2, the FEM required less than one sixth
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and one third of the time taken by the BEM, respectively. Furthermore, MATLAB 7.10,

64-bit computed each FEM lead field matrix in less than one half of the time spent by

MATLAB 7.0 32-bit.

4. Discussion

This study concerned the finite element method (FEM) applied to EEG from both

forward and inverse aspects. A dipole source model based on lowest-order Raviart-

Thomas basis functions [5, 21] was both defined and numerically evaluated. Each lowest

order Raviart-Thomas basis function wk was associated with a dipole (qk, rk) defining

the dipole moment as the volume integral of wk and the location as a weighted average

position of the vertices corresponding to wk. Four ad hoc candidates (A)–(D) (table

2) were tested as the location. Two spherical multi-layer head models were used: an

isotropic three-layer (I) [1, 34] and an anisotropic four-layer model (II) [29, 8]. Both

models were examined using four different mesh resolutions. The forward simulation

accuracy was studied through the relative errors REk and REL (8), and the accuracy

in inverse dipole localization was examined by finding the maxima of the localization

and angular errors LEk and AEk (10). The reference forward simulation was obtained

through the closed-form approach (7) [34].

The choice for the source location was found to be critical for the accuracy of the

FEM forward simulation. The results concerning the tests (i)–(viii) suggest that (D)

as the dipole location leads to the most accurate results in terms of REL. The largest

error values were obtained with (A), for which REL was approximately from two to tree

times as large as for (D). Moreover, the distance between (A) and (D) seems to have

the smallest effect on REk, when the dipole location is the latter one.

The inverse dipole localization results also support the superiority of (D), as the

maxima of LEk and AEk were in general lower with it than with the other candidates.

With (D), the percentage of correctly localized dipoles (LEk = AEk = 0) was over

99.98 % in each test (i)–(viii) showing that accuracy provided by the lowest order

Raviart-Thomas sources is sufficient regarding the EEG inverse problem. The maximum

likelihood approach used in this study is extensively utilized for solving inverse problems

in many different applications [15].

The definition (6) of the dipole moment can be seen as a rather straightforward one;

an integrated current density is associated with a point current. Based on the numerical

results, it seems to provide a robust simulation of the dipole direction and strength. It

also seems that defining the dipole location as some integral of the basis function would

not lead to as accurate results as (D). Namely, the three other candidate locations can be

seen to better represent an integrated location, as they give more weight to the vertices,

in which the basis function differs from zero (figure 3).

Despite the encouraging results obtained with (D), it is vital to stress that (D)

is not claimed to be optimal as a source location. For example in test (iv), the best

accuracy corresponds to (C) instead of (D). Finding the generally optimal location
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would, however, obviously be very difficult because the location is to be determined by

a single Raviart-Thomas element and, at the same time, the surrounding finite element

mesh can, in principle, be arbitrary.

In addition to FEM, the BEM provided by the MNE software package [14] was

used in forward simulation. The relative error REL for BEM was found to be strongly

dependent on the maximal dipole eccentricity as compared to the case of FEM. The

maximal eccentricity of 0.997 resulted in all of the BEM tests (ix)–(xii) into a larger

REL than in any of the FEM tests (i)–(viii) (tables 6 and 9). Furthermore, REk plotted

against the dipole eccentricity shows, that of the present FEM and BEM forward

simulations, the latter one can be considerably less accurate near the surface of the

brain layer and again more precise close to the domain center.

The results regarding the computation times suggest that FEM is, within the

present experimental arrangement, substantially faster than BEM. This supports the

computational effectiveness of the present approach and is also in good agreement with

what is generally known about BEM and FEM; The BEM system matrix has only few

zero matrix entries, and therefore, the time required for solving a linear system increases

very rapidly as the system size grows. The FEM system matrix, in contrast, has a large

number of zeros, which enables fast approximative solution through iterative methods.

The reduced accuracy of BEM with extremely eccentric sources is obviously caused

by the singularity of the BEM integrals [3, 23], which leads the error in numerical

integration to increase rapidly, when the dipole is brought into the vicinity of a surface

mesh. Due to the singularity, the performance of BEM can be enhanced using high-order

quadratures [23]. However, it is important to point out that in the practical applications

extremely eccentric sources can typically be excluded as irrelevant: e.g. according to [1],

most sources can be expected to be located between the eccentricities 0.6 and 0.9.

In the present FEM approach, the integrals that need to be computed are of the

form (3) and (6). In the tetrahedral part of the mesh, a first order quadrature provides

exact integration because the basis functions are all linear. In the prismatic part, a

product formula combining triangular and one-dimensional first order quadratures can

be used to provide exact integration results [26]. Consequently, high order quadratures

are not needed in the implementation making it easily accessible. This contrasts to BEM

and also to some FEM based forward simulations, e.g. the recent subtraction approach

[18, 8], in which increasing the quadrature order improves the performance, because the

source function for FEM is not polynomial.

Moreover, the present forward simulation appears to be also very accurate as

compared to the subtraction approach, which is studied in [18, 8] via the same head

model (II) as used in this study. The test (v) corresponding to the head model (II), and

the mesh of 231 749 elements yielded the matrix-wise relative error REL equals 0.00327

with location (D) (table 6). Again, in the most accurate case presented in [8], the number

of elements is 2 165 281, and the column-wise relative error varies between 0.002–0.006

([8], Fig. 5 on page 1062) suggesting that the corresponding matrix-wise REL would

satisfy 0.002 ≤ REL ≤ 0.006, since always mink REk ≤ REL ≤ maxk REk. In the case
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of 1 712 360 elements ([8], Fig. 5 on page 1062), a similar argument results into estimate

0.008 ≤ REL ≤ 0.017. Hence, it appears that the approach presented in this study

can achieve a given level of accuracy with fewer elements than what is required by the

subtraction approach. Fewer elements would again probably mean shorter computation

times, since matrices needed in computation of the lead field matrix would be smaller.

Finally, based on the encouraging results of this study, an interesting topic for

the future work would be, for example, to directly compare, within a single study, the

performance of the present approach to other FEM based forward simulations, e.g. in

the spirit of [18] in which the subtraction approach is compared to Saint-Venant and

partial integration approaches. Other interesting topics for future studies with Raviart-

Thomas sources would be extended sources, e.g. multipoles [20] and dipole clusters, as

well as the applications of [6, 7, 27].

5. Conclusions

This study concerned the finite element method (FEM) applied to EEG. A source

model, in which a lowest-order Raviart-Thomas basis function was associated with a

dipole moment and location, was both defined and numerically evaluated. Four ad hoc

candidates were tested as the dipole location. Regarding the EEG inverse problem,

the results of the numerical experiments verified a clear correspondence to the actual

dipoles from both forward and inverse apects. As for the forward part, the matrix-wise

relative errors as small as 0.00948 and 0.00372 were obtained for the two tested head

models. And as for the inverse part, 99.98 % of the lowest-order Raviart-Thomas sources

were correctly positioned in each dipole localization experiment with location (D). The

accuracy of FEM was found to be substantially better for extremely eccentric sources

than that of BEM due to errors related to numerical computation of the singular BEM

integrals. Thus, the present FEM approach is advantageous as the integrals are low

order polynomials and exact numerical integration is feasible with simple quadratures.

Based on the numerical results it also seems that the accuracy of the present approach

is comparable or even superior to the FEM based subtraction approach. Moreover, the

present approach seems to be advantageous also regarding the computation time. An

interesting topic for the future work would be to directly compare the performance of the

present approach to other FEM forward simulation schemes, to study extended sources

instead of dipoles, as well as to use the Raviart-Thomas sources in EEG applications.
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Appendix. Entries of the matrix G

This appendix shows that the matrix G given by gik = −
∫

Ω(∇ · wk) dV has exactly

two nonzero entries in each column, when wk is a lowest order Raviart-Thomas basis

function and ψi is a linear nodal basis function. It is assumed that the vertices associated

with wk are numbered as in figure 2. The tetrahedron pair (1,2,3,4) and (1,2,3,5) in

figure 2 is denoted by T1 and T2 and the face (1,2,3) by F .

The restriction of wk to each tetrahedron is of the form (5), meaning that the normal

component of wk is nonzero only on F of all the faces and that the Gauss’ divergence

theorem can be written as Φk =
∫

F wk · n dS = (−1)ℓ
∫

Tℓ
∇ · wk dV for ℓ = 1, 2. The

piecewise linearity of wk implies that ∇ · wk is constant on each tetrahedron, which

combined with the divergence theorem gives ∇ · wk|Tℓ
= (−1)ℓΦk/Vℓ with ℓ = 1, 2 and

Vℓ denoting the volume of the Tℓ.

If ψ is a general linear nodal basis function supported on tetrahedron T , if A is

the area of the face on which ψ vanishes and h is the corresponding tetrahedron height,

the volume of T is given by V = Ah/3 and
∫

T ψ dV =
∫ h
0 Az

3/h3 dz = Ah/4 = 3V /4.

Consequently, denoting by ψ1, ψ2, . . . , ψ5 the linear nodal basis functions associated

with the vertices 1, 2, . . . , 5, respectively, the matrix entries gik = −
∫

Ω(∇ · wk)ψi dV =

−(∇ · wk)
∫

Ω ψi dV satisfy gik = (3/4)ΦkV1/V1 − (3/4)ΦkV2/V2 = 0, for i = 1, 2, 3, and

g4k = −g5k = (3/4)Φk. Hence, the only nonzero entries in kth column are g4k and g5k.
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