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Romanian Institute of Science and Technology
A private no-profit research institute founded in 2009 in
Cluj-Napoca, RO

Currently employs ∼20 researchers

Performs research in
▸ Computational and Experimental Neuroscience
▸ Computational Intelligence
▸ Machine Learning and Optimization
▸ Dynamical Systems

RIST is undergoing a phase of significant and sustained growth
supported by EU and RO structural funds (up to 4M Euro)

15 open positions by end 2017: calls at www.rist.ro
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Outline

▸ The mathematical model of the Perceptron

▸ Training of a Neural Network

▸ The Information Geometry of statistical models

▸ The natural gradient

▸ Current and future lines of research

“One geometry cannot be more true than another; it can only be
more convenient”. Henri Poincaré, Science and Hypothesis, 1902.
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The Mathematical Model of the Perceptron
An artificial Neural Network is a computational model made of
interconnected units, called neurons, which process input data and
generates outputs, similarly to a non linear function

The simplest network is made of a single perceptron which takes as
input a linear combination of the input x = (x1, . . . , xV ) and
generates an output y according to the model

y = ϕ(
V

∑
i=1

wixi + h) ,

where w = (x1, . . . , xN) ∈ RV are the connection weights, and ϕ(t)
is the activation function, defined over R
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Geometrical Interpretation of the Perceptron
Activations functions are usually monotonic and bounded

threshold(t) = 1t≥0 sig(t) =
1

1 + e−t
In case of threshold(t) = 1t≥0, the weight vector is the normal
vector to the decision hyperplane

i.e., a single perceptron can only learn linearly separable datasets
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The Three-Layer Perceptron
Multiple units can be combined to generate complex behaviors

For instance, consider a hidden layer of H units

yk = ϕk

⎛

⎝

H

∑
j=1

vkjϕj (
V

∑
i=1

wjixi)
⎞

⎠
= f(x;θ) ,

where θ = (w1, . . . ,wH ,v1, . . . ,vO) is the vector of parameters
which describes the network
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The Parameter Space and the Functional Space
A multilayer Neural Network defines a non-linear function

y = f(x;θ)

from the space X ∈ RV to Y ∈ RO, parametrized by θ ∈ Θ

Consider the infinite-dimensional functional space S of all functions
from RV to RO, the weights θ define a finite-dimensional manifold
F ∋ f , identified by the topology of the network
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Training of a Neural Network
A Neural Network is a parametric model, where the connection
weights w correspond to the parameters of the model

Learning is achieved by adjusting the parameters to realize the
function between x and y expressed by the training set
(x(1),y(1)), . . . , (x(M),y(M))

Given a loss function ` which measures how different is the
prediction f(x;θ) from the true outcome y, the training can be
performed by minimizing the risk

R(θ) = E [`(y, f(x;θ))]

Since p(x,y) is unknown in general and can only be estimated, the
risk is replaced by the empirical risk of the training set

Rerr(θ) =
1

M

M

∑
i=1

`(y(i), f(x(i);θ))
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A Probabilistic Model for Neural Networks
The training set is usually supposed to be noisy, i.e., to express a
probabilistic relationship

y = f(x;θ) + ε ,

where ε represents some independent random noise

Thus, it becomes natural to define the network as a probabilistic
model which implements a conditional probability density

p(y∣x;θ) = r(y∣f(x;θ))

By assuming a true conditional probability density, when the input
is generated by a probability density q(x), the joint distribution is

p(x,y;θ) = p(y∣x;θ)q(x)
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The Statistical Manifold
The set of all joint probability distributions p(x,y;θ) parametrized
by w identifies a finite-dimensional manifold N in the infinite
dimensional space of integrable densitiesM

The parameters θ act as a coordinate system over N
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Training Neural Networks
The optimum of the empirical risk is usually computed iteratively,
by gradient descent

θt+1 = θt − λ∇Remp(θt)

where λ > 0 is the learning rate, where ∇ denotes the vector of
partial derivatives with respect to θ

Gradient descent can be implemented as batch/mini-batch learning
or as online learning

The gradient may converge to local minima and slow down in
presence of saddle points or plateaux
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Single-Layer Backpropagation
Consider a perceptron, let the loss function be the square loss,

` (y(j), f(x(j);θ)) =
1

2
(y(j) − ϕ(

V

∑
i=1

wix
(j)
i ))

2

By evaluating the gradient w.r.t. θ = (w1, . . . ,wV ) we obtain

∇Remp(θt) = −(y(t) − ϕ(
V

∑
i=1

wix
(t)
i ))ϕ′ (

V

∑
i=1

wix
(t)
i )x

In case ϕ(s) = sig(s), then ϕ(s)′ = ∂
∂sϕ(s) = sig(s)(1 − sig(s))

For multilayer networks, a formula for the gradients can be
efficiently obtained by backpropagation, i.e., by the chain rule

(g ○ h)′(s) = g(h(s))′ = g(h(s))′ h′(s)
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Multi-Layer Backpropagation
Let Hl the number of neurons for layer l, with l = 1, . . . , L and
H1 = V and HL = O

The multi-layer backpropagation algorithm becomes
1 . Feedforward pass: computation of h(1), . . . ,h(L)

2 . For the output layer compute, for i = 1, . . . ,O

δ
(L)
i = (h(L) − y)ϕ′

⎛

⎝

HL−1
∑
j=1

w
(L−1)
ij h

(L−1)
j

⎞

⎠

3 . Perform a backward pass for l = L − 1, . . . ,2 and i = 1, . . . ,O

δ
(l)
i =

⎛

⎝

Hl+1
∑
j=1

w
(l)
ij δ

(l+1)
j

⎞

⎠
ϕ′

⎛

⎝

Hl−1
∑
j=1

w
(l−1)
ij h

(l−1)
j

⎞

⎠

4 . Compute ∇
w
(l)
ij

Remp(θt) = h
(l)
j δ
(l+1)
j
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Gradient Descent Over Statistical Models
A natural approach to optimize a function F (θ) ∶ N → R is given
by a naive gradient descent

θt+1 = θt − λ∇Fθ(θt)

▸ ∇ is shorthand for ∂
∂θ

▸ λ > 0 step size

However a series of issues may arise:
▸ dependence on the parameterization
▸ slow convergence over plateaux
▸ (target distribution may not be a critical point)
▸ (gradient may point outside of the domain of Θ)

Many of these issues are consequence of the choice of a Euclidean
geometry forM
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Information Geometry
Euclidean geometry is not the most convenient geometry for
statistical models, as (probably) first remarked by Hotelling (1930)
and Rao (1945)

Information Geometry follows a different geometric approach, given
by the representation of statistical models as Riemannian statistical
manifolds, endowed with the Fisher information metric

Besides the Riemannian one, Information Geometry also studies
other non-Euclidean geometries for statistical models, based on the
notion of dual affine manifolds

The research in Information Geometry has started in the 80’s, with
the pioneer work of Amari (1982,1985), Barndorff-Nielsen (1978),
Cencov (1982), Lauritzen (1987), Pistone and Sempi (1995) and
colleagues
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Standard References
Three monographs by Amari, who is considered the founder of
Information Geometry

▸ S.-I. Amari. Differential-geometrical methods in statistics. Lecture notes
in statistics, Springer-Verlag, Berlin, 1985.

▸ S.-I. Amari and Hiroshi Nagaoka. Methods of Information Geometry.
AMS, Oxford University Press, 2000. Translated from the 1993 Japanese
original by Daishi Harada.

▸ S.-I. Amari. Information Geometry and Its Applications. Springer, 2016.

Other standard references are

▸ M. Murray and J. Rice. Differential geometry and statistics. Monographs
on Statistics and Applied Probability 48. Chapman and Hall, 1993.

▸ R. E. Kass and P. W. Vos. Geometrical Foundations of Asymptotic
Inference. Series in Probability and Statistics, Wiley, 1997.
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Geometry Derived by the KL Divergence
An alternative geometry for a statistical model can be defined by
measuring infinitesimal distances using the Kullback-Leibler
divergence

DKL(p∣∣q) = ∫
Ω
p(x) log

p(x)

q(x)
dx

It can be proved that such choice determines a Riemannian
structure forM, where the Fisher Information matrix plays the role
of metric tensor

The direction of steepest ascent ∆θ in a Euclidean space for Fθ

can then be evaluated by minimizing Fθ(θ +∆θ) with ∥∆θ∥ = 1

Amari replaces this contraint with the KL divergence

arg min
∆θ

Fθ(θ +∆θ)

s.t. DKL(pθ ∣∣pθ+∆θ) = ε
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Example: The Gaussian Distribution
ε−ball of constant KL divergence, ε = 0.02
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Amari’s Natural Gradient (1998) 1/2
By taking the second-order Taylor approximation of the KL
divergence in θ we get

DKL(pθ ∣∣pθ+∆θ) = Eθ[log pθ] −Eθ[log pθ+∆θ]

≈ Eθ[log pθ] −Eθ[log pθ] −Eθ[∇ log pθ]
T∆θ+

−
1

2
∆θTEθ [∇

2 log pθ]∆θ

=
1

2
∆θTI(θ)∆θ,

where Iθ(θ) is the Fisher Information matrix

Iθ(θ) = −Eθ [∇
2 log pθ+∆θ]

= Eθ [∇ log p(θ)∇ log p(θ)T]
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Amari’s Natural Gradient (1998) 2/2
We proceed by taking the first-order approximation of Fθ(θ +∆θ)

arg min
∆θ

Fθ(θ) +∇Fθ(θ)
T∆θ

s.t.
1

2
∆θTIθ(θ)∆θ = ε

We apply the Lagrangian method, and solve for ∆θ

∇∆θ (Fθ(θ) +∇Fθ(θ)
T∆θ − λ

1

2
∆θTIθ(θ)∆θ) = 0

∇Fθ(θ) − λIθ(θ)∆θ = 0

∆θ = λIθ(θ)
−1
∇Fθ(θ)

Such derivations lead to the natural gradient (Amari, 1998)

∇̃Fθ(θ) = Iθ(θ)
−1
∇Fθ(θ)
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Training Neural Networks by Natural Gradient
Neural Networks can be traing by natural gradient

θt+1 = θt − λI(θt)
−1
∇Remp(θt)

where λ > 0 is the learning rate, ∇ denotes the vector of partial
derivatives with respect to θ and I is the Fisher Information matrix

Natural gradient has better convergence properties and is less likely
to get stuck in plateaux

However, natural gradient requires to solve a linear system at each
iteration, which poses computational issues for large networks

The research on natural gradient is mainly focused on finding
efficient approximations for the Fisher Information matrix
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Experimental Results 1/2

Park, Amari, and Fukumizu (2000). IRIS flower classification
dataset, 150 training points.
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Experimental Results 1/2

Pascanu and Bengio (2014). Curves dataset, 6 layers deep auto
encoders. 20k training samples 784 dimensions.
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Natural Gradient in Machine Learning
Natural gradient (Amari, 1998) methods are becoming constantly
popular in machine learning, e.g.,

▸ Training of Neural Networks (Amari, 1997) and recently Deep
Learning (Ollivier et. al., 2014; Pascanu and Bengio, 2014;
Desjardins et. al., 2014; Martens et. al., 2015; Ollivier, 2015)

▸ Reinforcement learning and Markov Decision Processes
(Kakade, 2001; Peters and Schaal, 2008)

▸ Stochastic Relaxation and Evolutionary Optimization (i.e.,
black-box derivative-free methods)
(Wiestra et. al., 2008-14; Malagò et. al., 2011; Ollivier et. al.,
2011; Akimoto et. al., 2012)

▸ Bayesian variational inference (Honkela et. al., 2008)
▸ Bayesian optimization
▸ and many others
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Take Home Message and Current Research

▸ The geometry of statistical models is much richer than one
could expect

▸ The theory is beautiful and the number of possible applications
of natural gradient methods is large in machine learning

▸ Natural gradient shows superior performance compared to the
vanilla gradient

▸ The efficient computation of the natural gradient is probably
the biggest issue, unless some special cases

▸ Currently a lot of research is focused on approximations and
decompositions for large dimensional settings

▸ An emerging line of research is the design of second-order
methods in for the optimization over statistical manifolds
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Open Postdoc Positions at RIST
RIST has multiple positions inq Information Geometry, Riemannian
Optimization and Deep Learning, funded by a 4-years EU starting
grant “DeepRiemann - Riemannian Optimization Methods for Deep
Learning”

I will be happy to meet you soon in Cluj-Napoca ;-)


