One-day workshop on Algebraic Statistics

Geometries of the Gaussian Model

Giovanni Pistone
www.giannidiorestino.it

$\underset{\sim}{\text { pe casrso }}$ Collegio Carlo Alberto

Jan 23, 2017

Abstract

In Information Geometry, it is possible to define a number of different geometrical structures on the full Gaussian model: the Fisher-Rao Riemannian Manifold (S.T. Skovgaard 1981), the Wasserstein Riemannian Manifold (A. Takatsu 2011), the Exponential and Mixture Affine manifolds (G. Pistone \& C. Sempi 1995). We discuss the features of these geometries, including the second order properties (e.g. Hessians), with special emphasis of the Wasserstein case. This turns out to be a special case of a more general set-up introduced in 2001 by R. Otto.

This talk is based on joint work in progress with Luigi Malagò (Rist, Cluj-Napoca, Romania) and Luigi Montrucchio (Collegio Carlo Alberto, Moncalieri, Italy).

- L. T. Skovgaard. A Riemannian geometry of the multivariate normal model. Scand. J. Statist., 11(4):211-223, 1984
- A. Takatsu. Wasserstein geometry of Gaussian measures. Osaka J. Math., 48(4):1005-1026, 2011
- G. Pistone and C. Sempi. An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one. Ann. Statist., 23(5):1543-1561, October 1995
- F. Otto. The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations, 26(1-2):101-174, 2001

Summary

1. Gaussian model
2. Fisher-Rao manifold
3. Exponential manifold
4. Wasserstein manifold
5. Gradient (short!)
6. Covariant derivative (very short!)

Gaussian model

- A random variable Y with values in \mathbb{R}^{d} has distribution $N(\mu, \Sigma)$ if $Z=\left(Z_{1}, \ldots, Z_{d}\right)$ is IID $\mathrm{N}(0,1)$ and $X=\mu+A Z$ with $A \in \mathrm{M}(d)$ and $A A^{*}=\Sigma \in \operatorname{Sym}^{+}(d)$. Notice the state-space definition.
- We can take for example $A=\Sigma^{1 / 2}$ or any $A=\Sigma^{1 / 2} R^{*}$ with $R^{*} R=I$.
- If $X \sim \mathrm{~N}\left(0, \Sigma_{X}\right)$, then $Y=T X \sim \mathrm{~N}\left(0, T \Sigma_{X} T^{*}\right), T \in \mathrm{M}(d)$.
- If $X \sim \mathrm{~N}\left(0, \Sigma_{X}\right)$ and $Y \sim \mathrm{~N}\left(0, \Sigma_{Y}\right)$, then $X=T Y$ with

$$
T=\Sigma_{Y}^{1 / 2}\left(\Sigma_{Y}^{1 / 2} \Sigma_{X} \Sigma_{Y}^{1 / 2}\right)^{-1 / 2} \Sigma_{Y}^{1 / 2}
$$

- If $\Sigma \in \operatorname{Sym}^{++}(d)=\operatorname{Sym}^{+}(d) \cap \mathrm{GI}(d)$ then $\mathrm{N}(0, \Sigma)$ has density

$$
p(\boldsymbol{x} ; \Sigma)=(2 \pi)^{-d / 2} \operatorname{det}(\Sigma)^{-1 / 2} \exp \left(-\frac{1}{2} \boldsymbol{x}^{*} \Sigma^{-1} \boldsymbol{x}\right)
$$

Fisher-Rao manifold I

- The Gaussian model $\mathrm{N}(0, \Sigma), \Sigma \in \operatorname{Sym}^{++}(d)$ is parameterised either by the covariance $\Sigma \in \operatorname{Sym}^{++}(d)$ or by the concentration $C=\Sigma^{-1} \in \operatorname{Sym}^{++}(d)$.
- The vector space of symmetric matrices Sym (d) has the scalar product $(A, B) \mapsto\langle A, B\rangle_{2}=\frac{1}{2} \operatorname{Tr}(A B)$ and $\operatorname{Sym}^{++}(d)$ is an open cone. The \log-likelihood in the concentration C is

$$
\begin{aligned}
\ell(\boldsymbol{x} ; C) & =\log \left((2 \pi)^{-d / 2} \operatorname{det}(C)^{1 / 2} \exp \left(-\frac{1}{2} \boldsymbol{x}^{*} C \boldsymbol{x}\right)\right) \\
& =-\frac{d}{2} \log (2 \pi)+\frac{1}{2} \log \operatorname{det} C-\frac{1}{2} \operatorname{Tr}\left(C \boldsymbol{x} \boldsymbol{x}^{*}\right) \\
& =-\frac{d}{2} \log (2 \pi)+\frac{1}{2} \log \operatorname{det} C-\left\langle C, \boldsymbol{x} \boldsymbol{x}^{*}\right\rangle_{2}
\end{aligned}
$$

- Fisher's score in the direction $V \in \operatorname{Sym}(d)$ is the directional derivative $d(C \mapsto \ell(\boldsymbol{x} ; C))[V]=\left.\frac{d}{d t} \ell(\boldsymbol{x} ; C+t V)\right|_{t=0}$
- J. R. Magnus and H. Neudecker. Matrix differential calculus with applications in statistics and econometrics. Wiley Series in Probability and Statistics. John Wiley \& Sons, Ltd., Chichester, 1999. Revised reprint of the 1988 original, $\S 8.3$

Fisher-Rao manifold II

- As $d\left(C \mapsto \frac{1}{2} \log \operatorname{det} C\right)[V]=\frac{1}{2} \operatorname{Tr}\left(C^{-1} V\right)=\left\langle C^{-1}, V\right\rangle_{2}$, the Fisher's score is

$$
\begin{aligned}
S(\boldsymbol{x} ; C)[V]=d(C & \mapsto \ell(\boldsymbol{x} ; C))[V]= \\
& \left\langle C^{-1}, V\right\rangle_{2}-\left\langle V, \boldsymbol{x} \boldsymbol{x}^{*}\right\rangle_{2}=\left\langle C^{-1}-\boldsymbol{x} \boldsymbol{x}^{*}, V\right\rangle_{2}
\end{aligned}
$$

- Notice that $\mathbb{E}_{\Sigma}\left[C^{-1}-X X^{*}\right]=C^{-1}-\Sigma=0$
- The covariance of the Fisher's score in the directions V and W is equal to minus (the expected value of) the second derivative. As $d\left(C \mapsto C^{-1}\right)[W]=-C^{-1} W C^{-1}$

$$
\begin{aligned}
& \operatorname{Cov}_{C^{-1}}(S(\boldsymbol{x} ; C)[V], S(\boldsymbol{x} ; C)[W])=-d^{2} \ell(\boldsymbol{x} ; C)[V, W]= \\
& \left\langle C^{-1} W C^{-1}, V\right\rangle_{2}=\frac{1}{2} \operatorname{Tr}\left(C^{-1} W C^{-1} V\right)
\end{aligned}
$$

- T. W. Anderson. An introduction to multivariate statistical analysis. Wiley Series in Probability and Statistics. Wiley-Interscience [John Wiley \& Sons], Hoboken, NJ, third edition, 2003

Fisher-Rao manifold III

- If we make the same computation with respect to the parameter Σ, because of the special properties of $C \mapsto \Sigma$, we get the same result:

$$
\operatorname{Cov}_{\Sigma}(S(x ; \Sigma)[V], S(x ; \Sigma)[W])=\frac{1}{2} \operatorname{Tr}\left(\Sigma^{-1} W \Sigma^{-1} V\right)
$$

- As $\operatorname{Sym}^{++}(d)$ is an open subset of the Hilbert space $\operatorname{Sym}(d)$, then Sym $^{++}(d)$ is (trivially) a manifold. The velocity $t \mapsto D \Sigma(t)$ of a curve $t \mapsto \Sigma(t)$ is extressed as the ordinary derivative $t \mapsto \Sigma(t)$.
- The tangent space of $\operatorname{Sym}^{++}(d)$ is $\operatorname{Sym}(d)$. In fact, a smooth curve $t \mapsto \Sigma(t) \in \operatorname{Sym}^{++}(d)$ has velocity $\Sigma(t) \in \operatorname{Sym}(d)$, and, given any $\Sigma \in \operatorname{Sym}^{++}(d)$ and $V \in \operatorname{Sym}(d)$, the curve $\Sigma(t)=\Sigma^{1 / 2} \exp \left(t \Sigma^{-1 / 2} V \Sigma^{-1 / 2}\right) \Sigma^{1 / 2}$ has $\Sigma(0)=\Sigma$ and $\dot{\Sigma}(0)=V$.
- Each tangent space $T_{\Sigma} \operatorname{Sym}^{++}(d)=\operatorname{Sym}(d)$ has a scalar product

$$
F_{\Sigma}(U, V)=\frac{1}{2} \operatorname{Tr}\left(\Sigma^{-1} W \Sigma^{-1} V\right), \quad V, W \in T_{\Sigma} \operatorname{Sym}^{++}(d)
$$

- The metric (family of scalar products) $F=\left\{F_{\Sigma} \mid \Sigma \in \operatorname{Sym}^{++}(d)\right\}$ defines the Fisher-Rao Riemannian manifold

Fisher-Rao manifold IV

- In the Fisher-Rao Riemannian manifold $\left(\operatorname{Sym}^{++}(d), F\right)$ the length of the curve $[0,1] \ni t \mapsto \Sigma(t)$ is

$$
\int_{0}^{1} d t \sqrt{F_{\Sigma(t)}(\dot{\Sigma}(t), \dot{\Sigma}(t))}
$$

- The Fisher-Rao distance between Σ_{1} and Σ_{2} is the minimal length of a curve connecting the two points. The value of the distance is

$$
F\left(\Sigma_{1}, \Sigma_{2}\right)=\sqrt{\frac{1}{2} \operatorname{Tr}\left(\log \left(\Sigma_{1}^{-1 / 2} \Sigma_{2} \Sigma_{1}^{-1 / 2}\right) \log \left(\Sigma_{1}^{-1 / 2} \Sigma_{2} \Sigma_{1}^{-1 / 2}\right)\right)}
$$

- The geodesics from Σ_{1} to Σ_{2} is

$$
\gamma: t \mapsto \Sigma_{1}^{1 / 2}\left(\Sigma_{1}^{-1 / 2} \Sigma_{2} \Sigma_{1}^{-1 / 2}\right)^{t} \Sigma_{1}^{1 / 2}
$$

- R. Bhatia. Positive definite matrices. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2007, §6.1

Fisher-Rao manifold V

- The velocity of the geodesics is

$$
\dot{\gamma}: t \mapsto \Sigma_{1}^{1 / 2}\left(\Sigma_{1}^{-1 / 2} \Sigma_{2} \Sigma_{1}^{-1 / 2}\right)^{t} \log \left(\Sigma_{1}^{-1 / 2} \Sigma_{2} \Sigma_{1}^{-1 / 2}\right) \Sigma_{1}^{1 / 2}
$$

From that, one checks that the norm of the velocity is constant and equal to the distance.

- The velocity at $t=0$ is

$$
\dot{\gamma}(0)=\Sigma_{1}^{1 / 2} \log \left(\Sigma_{1}^{-1 / 2} \Sigma_{2} \Sigma_{1}^{-1 / 2}\right) \Sigma_{1}^{1 / 2}
$$

and the equation can be solved for the final point $\Sigma_{2}=\gamma(1)$,

$$
\Sigma_{2}=\Sigma_{1}^{1 / 2} \exp \left(\Sigma_{1}^{-1 / 2} \dot{\gamma}(0) \Sigma_{1}^{-1 / 2}\right) \Sigma_{1}^{1 / 2}
$$

so that the geodesics is expressed in terms of the initial point Σ and the initial velocity V by the Riemannian exponential

$$
\operatorname{Exp}_{\Sigma}(t V)=\Sigma^{1 / 2} \exp \left(\Sigma^{-1 / 2}(t V) \Sigma^{-1 / 2}\right) \Sigma^{1 / 2}
$$

Exponential manifold I

- An affine manifold is defined by an atlas of charts such that all change-of-charts mappings are affine mappings. Exponential families are affine manifolds if one takes as charts the centered log-likelihood.
- We study the full Gaussian model paramerised by the concentration matrix $C=\Sigma^{-1} \in \operatorname{Sym}^{++}(d)$ as an affine manifold.
- The charts in the exponential atlas $\left\{s_{A} \mid A \in \operatorname{Sym}^{++}(d)\right\}$ are the centered log-likelyhoods defined by

$$
\begin{aligned}
s_{A}(C) & =\left(\ell_{C}-\ell_{A}\right)-\mathbb{E}_{A}\left[\ell_{C}-\ell_{A}\right] \\
& =\left\langle A-C, X X^{*}\right\rangle_{2}-\left\langle A-C, A^{-1}\right\rangle_{2}
\end{aligned}
$$

- S. Amari and H. Nagaoka. Methods of information geometry. American Mathematical Society, Providence, RI, 2000. Translated from the 1993 Japanese original by Daishi Harada, Ch. 2-3
- G. Pistone and C. Sempi. An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one. Ann. Statist., 23(5):1543-1561, October 1995
- G. Pistone. Nonparametric information geometry. In F. Nielsen and F. Barbaresco, editors, Geometric science of information, volume 8085 of Lecture Notes in Comput. Sci., pages 5-36. Springer, Heidelberg, 2013. First International Conference, GSI 2013 Paris, France, August 28-30, 2013 Proceedings

Exponential manifold II

- We use the scalar product defined on Sym (d) by $\langle A, B\rangle_{2}=\frac{1}{2} \operatorname{Tr}(A B)$, and write $X \otimes X=X X^{*}$. The chart at A is

$$
\left.s_{A}(C)\right)=\left\langle A-C, X \otimes X-A^{-1}\right\rangle_{2}
$$

- The image of each s_{A} is a set of second order polynomials of the type

$$
\frac{1}{2} \sum_{i, j=1}^{d}\left(a_{i j}-c_{i j}\right)\left(x_{i} x_{j}-a^{i j}\right), \quad A^{-1}=\left[a^{i j}\right]_{i, j=1}^{d},
$$

that is, a second order symmetric polynomial of order 2, without first order terms, with zero expected value at $\mathrm{N}\left(0, A^{-1}\right)$. And viceversa.

- For each $A \in \operatorname{Sym}^{++}(d)$ the vector space of such polynomials is the model space for the affine manifold in the chart s_{A}. Such a space is an expression of the tangent space at A if the velocity $D C(0)$ of the curve $t \mapsto C(t), C(0)=A$, is computed as

$$
D C(0)=\left.\frac{d}{d t} S_{C(0)}(C(t))\right|_{t=0}=\left\langle\dot{C}(0), C^{-1}(0)-X \otimes X\right\rangle_{2}
$$

Exponential manifold III

- Define the score space at A to be the vector space generated by the image of s_{A}, namely

$$
S_{A} \operatorname{Sym}^{++}(d)=\left\{\left\langle V, \boldsymbol{x} \otimes \boldsymbol{x}-A^{-1}\right\rangle_{2} \mid V \in \operatorname{Sym}(d)\right\}
$$

- The image of the chart s_{A} in this vector space is characterised by a $V=A-C, C \in \operatorname{Sym}^{++}(d)$.
- Each score space is a fiber of the score bundle $S \operatorname{Sym}^{++}(d)$.
- On each fiber $S_{A} \operatorname{Sym}^{++}(d)$ we have the scalar product induced by $L^{2}\left(\mathrm{~N}\left(0, A^{-1}\right)\right.$, namely the Fisher information operator,

$$
\begin{aligned}
\mathbb{E}_{A^{-1}}[V(X) W(X)] & =\mathbb{E}_{A^{-1}}\left[\left\langle V, X \otimes X-A^{-1}\right\rangle_{2}\left\langle W, X \otimes X-A^{-1}\right\rangle_{2}\right] \\
& =F_{A}(V, W)
\end{aligned}
$$

- The change-of-chart $s_{B} \circ s_{A}^{-1}: S_{A} \operatorname{Sym}^{++}(d) \rightarrow S_{B} \operatorname{Sym}^{++}(d)$ is affine with linear part

$$
{ }^{e} \mathbb{U}_{A}^{B}:\left\langle V, X \otimes X-A^{-1}\right\rangle_{2} \mapsto\left\langle V, X \otimes X-B^{-1}\right\rangle_{2}
$$

Exponential manifold IV

- Note that the exponential transport ${ }^{e} \mathbb{U}_{A}^{B}$ is the identity on the parameter V and it coincides with the centering of a random variable.
- The mixture transport is the dual ${ }^{m} \mathbb{U}_{B}^{A}=\left({ }^{e} \mathbb{U}_{A}^{B}\right)^{*}$, hence for each $W \in \operatorname{Sym}(d)$,

$$
F_{B}\left({ }^{e} \mathbb{U}_{A}^{B} V, W\right)=F_{A}\left(V,{ }^{m} \mathbb{U}_{B}^{A} W\right)
$$

- We have

$$
\begin{aligned}
&{ }^{m} \mathbb{U}_{B}^{A}\left\langle W, X \otimes X-B^{-1}\right\rangle_{2}= \\
&\left\langle A B^{-1} W B^{-1} A, X \otimes X-A^{-1}\right\rangle_{2}= \\
&\left\langle B^{-1} W B^{-1},(A X) \otimes(A X)-A^{-1}\right\rangle_{2}
\end{aligned}
$$

W-manifold: Gini's dissimilarity

- Given $\Sigma_{1}, \Sigma_{2} \in \operatorname{Sym}^{++}(d)$, define

$$
\Gamma\left(\Sigma_{1}, \Sigma_{2}\right)=\left\{\Sigma \in \operatorname{Sym}^{++}(2 d) \left\lvert\, \Sigma=\left[\begin{array}{cc}
\Sigma_{1} & \Sigma_{1,2} \\
\Sigma_{2,1} & \Sigma_{2}
\end{array}\right]\right.\right\}
$$

- Given $(X, Y) \sim N_{2 d}(0, \Sigma)$,

$$
\Sigma \in \Gamma\left(\Sigma_{1}, \Sigma_{2}\right) \quad \Leftrightarrow \quad X \sim \mathrm{~N}\left(0, \Sigma_{1}\right) \wedge Y \sim \mathrm{~N}\left(0, \Sigma_{2}\right)
$$

- We look for the index of dissimilarity defined by

$$
W\left(\Sigma_{1}, \Sigma_{2}\right)=\inf _{\Sigma \in \Gamma\left(\Sigma_{1}, \Sigma_{2}\right)} \mathbb{E}_{\Sigma}\left[\|X-Y\|^{2}\right]
$$

- Notice that

$$
\mathbb{E}_{\Sigma}\left[\|X-Y\|^{2}\right]=\operatorname{Tr}\left(\Sigma_{1}\right)+\operatorname{Tr}\left(\Sigma_{2}\right)-2 \operatorname{Tr}\left(\Sigma_{12}\right)
$$

W-manifold: An equivalent problem

- If $\Sigma_{1}, \Sigma_{2} \in \operatorname{Sym}^{++}(d)$, then

$$
\left[\begin{array}{ll}
\Sigma_{1} & K \\
K^{*} & \Sigma_{2}
\end{array}\right] \in \operatorname{Sym}^{+}(2 d) \Longleftrightarrow \Sigma_{1}-K^{*} \Sigma_{2}^{-1} K \in \operatorname{Sym}^{+}(d)
$$

- We can consider the problem

$$
\begin{aligned}
& \gamma=\min _{K}-2 \operatorname{Tr}(K) \\
& \Sigma_{1}-K^{*} \Sigma_{2}^{-1} K \in \text { Sym }^{+}(d)
\end{aligned}
$$

- A feasible K is such that the Shur complement is zero:

$$
\Sigma_{1}-K^{*} \Sigma_{2}^{-1} K
$$

The unique symmetric solution is

$$
K=\Sigma_{1}^{1 / 2}\left(\Sigma_{1}^{1 / 2} \Sigma_{2}^{-1} \Sigma_{1}^{1 / 2}\right)^{-1 / 2} \Sigma_{1}^{1 / 2}
$$

W-manifold: Linear programming I

- Write $\boldsymbol{E}=\operatorname{Sym}(2 d)$ and $\boldsymbol{F}=\operatorname{Sym}(d) \times \operatorname{Sym}(d) ; P_{1}=\left[\begin{array}{ll}I_{d} & 0_{d}\end{array}\right]$, and $P_{2}=\left[\begin{array}{ll}0_{d} & I_{d}\end{array}\right]$ and define the marginalization operator as

$$
A: E \ni \Sigma \mapsto\left(P_{1} \Sigma P_{1}^{*}, P_{2} \Sigma P_{2}^{*}\right) \in F
$$

- We have

$$
\begin{aligned}
& \mathbb{E}_{\Sigma}[\langle X, Y\rangle]=\mathbb{E}_{\Sigma}\left[\sum_{i=1}^{d} X_{i} Y_{i}\right]=\sum_{i=1}^{d}\left(\Sigma_{12}\right)_{i i}=\operatorname{Tr}\left(\Sigma_{12}\right)= \\
& \operatorname{Tr}\left(P_{1} \Sigma P_{2}^{*}\right)=\operatorname{Tr}\left(\frac{1}{2}\left(P_{2}^{*} P_{1}+P_{1}^{*} P_{2}\right) \Sigma\right)=\left\langle\Sigma, P_{2}^{*} P_{1}+P_{1}^{*} P_{2}\right\rangle_{E}
\end{aligned}
$$

- The problem becomes the canonical probelm

$$
\begin{aligned}
& \gamma=\inf _{\Sigma \in E}\left\langle\Sigma,-\left(P_{2}^{*} P_{1}+P_{1}^{*} P_{2}\right)\right\rangle_{E} \\
& A(\Sigma)=\left(\Sigma_{1}, \Sigma_{2}\right) \\
& \Sigma \geq_{\text {Sym }^{+}(2 d)} 0
\end{aligned}
$$

- The canonical problem is feasible: take $\Sigma=\operatorname{diag}\left(\Sigma_{1}, \Sigma_{2}\right)$.

W-manifold: Linear programming II

- The adjoint $A^{*}: \boldsymbol{F} \rightarrow \boldsymbol{E}$ is defined by

$$
\left\langle A^{*}\left(F_{1}, F_{2}\right), C\right\rangle_{E}=\left\langle\left(F_{1}, F_{2}\right), A(C)\right\rangle_{\boldsymbol{F}}
$$

- We have

$$
\begin{aligned}
\left\langle\left(F_{1}, F_{2}\right), A(C)\right\rangle_{\boldsymbol{F}} & =\frac{1}{2} \operatorname{Tr}\left(F_{1} P_{1} C P_{1}^{*}\right)+\frac{1}{2} \operatorname{Tr}\left(F_{2} P_{2} C P_{2}^{*}\right) \\
& =\frac{1}{2} \operatorname{Tr}\left(\left(P_{1}^{*} F_{1} P_{1}+P_{2}^{*} F_{2} P_{2}\right) C\right) \\
& =\left\langle P_{1}^{*} F_{1} P_{1}+P_{2}^{*} F_{2} P_{2}, C\right\rangle_{\boldsymbol{E}}
\end{aligned}
$$

hence

$$
A^{*}\left(F_{1}, F_{2}\right)=P_{1}^{*} F_{1} P_{1}+P_{2}^{*} F_{2} P_{2}=\operatorname{diag}\left(F_{1}, F_{2}\right)
$$

- The dual problem is

$$
\left.\begin{array}{l}
\beta=\sup _{\left(F_{1}, F_{2}\right) \in \boldsymbol{F}}\left\langle\left(\Sigma_{1}, \Sigma_{2}\right),\left(F_{1}, F_{2}\right)\right\rangle_{\boldsymbol{F}} \\
A^{*}\left(F_{1}, F_{2}\right) \leq \operatorname{sym}^{+}(2 d)
\end{array}\right)\left(P_{2}^{*} P_{1}+P_{1}^{*} P_{2}\right)
$$

W-manifold: Value of the dissimilarity

- The dual problem is

$$
\begin{aligned}
& \beta=\sup _{\left(F_{1}, F_{2}\right) \in \boldsymbol{F}}\left(\operatorname{Tr}\left(\Sigma_{1} F_{1}\right)+\operatorname{Tr}\left(\Sigma_{2} F_{2}\right)\right) \\
& {\left[\begin{array}{cc}
\left(-F_{1}\right) & I \\
I & \left(-F_{2}\right)
\end{array}\right] \in \operatorname{Sym}^{+}(2 d)}
\end{aligned}
$$

- It holds $\gamma=\beta$
- The optimal value is

$$
W\left(\Sigma_{1}, \Sigma_{2}\right)^{2}=\operatorname{Tr}\left(\Sigma_{1}\right)+\operatorname{Tr}\left(\Sigma_{2}\right)-2 \operatorname{Tr}\left(\left(\Sigma_{1}^{1 / 2} \Sigma_{2} \Sigma_{1}^{1 / 2}\right)^{1 / 2}\right)
$$

- D. C. Dowson and B. V. Landau. The Fréchet distance between multivariate normal distributions. J. Multivariate Anal., 12(3):450-455, 1982
- C. R. Givens and R. M. Shortt. A class of Wasserstein metrics for probability distributions. Michigan Math. J., 31(2):231-240, 1984

Wasserstein Riemannian manifold I

- $\ln \mathrm{M}(d)=\mathbb{R}^{d \times d}$ with scalar product

$$
\begin{aligned}
& (A, B) \mapsto\langle A, B\rangle_{2}= \\
& \quad \frac{1}{2} \operatorname{Tr}\left(A B^{*}\right)=\frac{1}{2} \operatorname{Tr}\left(B^{*} A\right)=\frac{1}{2} \operatorname{Tr}\left(B A^{*}\right)=\frac{1}{2} \operatorname{Tr}\left(A^{*} B\right)
\end{aligned}
$$

the symmetric matrices $\operatorname{Sym}(d)$ i.e., $A^{*}=A$, form a vector subspace whose orthogonal complement is the space of antisymmetric matrices i.e., $A^{*}=-A$.

- We recall that for $A, B \in \mathrm{M}(d)$ we have the vectorized form

$$
\begin{aligned}
\langle A, B\rangle_{2} & =\frac{1}{2} \operatorname{vec}(A)^{*} \operatorname{vec}(B) \\
\operatorname{vec}(A B) & =(I \otimes A) \operatorname{vec}(B)=(B \otimes I) \operatorname{vec}(A)
\end{aligned}
$$

- J. R. Magnus and H. Neudecker. Matrix differential calculus with applications in statistics and econometrics. Wiley Series in Probability and Statistics. John Wiley \& Sons, Ltd., Chichester, 1999. Revised reprint of the 1988 original, $\S 2.4$

Wasserstein Riemannian manifold II

- The set $\operatorname{Sym}^{++}(d) \subset \operatorname{Sym}(d)$ of positive definite matrices is an open convex cone.
- As a sub-manifold of Sym d its tangent bundle is

$$
T \operatorname{Sym}^{++}(d)=\left\{(V, Z) \mid V \in \operatorname{Sym}^{++}(d), Z \in \operatorname{Sym}(d)\right\} .
$$

- The immersion $\mathrm{Sym}^{++}(d) \rightarrow$ Sym (d) induces on each tangent space $T_{C} \mathrm{Sym}^{++}(d)$ the (trivial) metric.

$$
(C, H, K) \mapsto\langle H, K\rangle_{C}=\langle H, K\rangle_{2}, \quad H, K \in \operatorname{Sym}(d)
$$

- We are going to use a different contruction as in the example

$$
\left.f: \mathbb{R}^{2} \backslash(0,0) \ni(x, y) \mapsto x^{2}+y^{2} \in\right] 0,+\infty[
$$

Wasserstein Riemannian manifold III

- Let $f: H \rightarrow \mathcal{N}$ be a smooth surjection of from Hilbert space H onto a manifold \mathcal{N}. Assume that for each $A \in H$ the tangent mapping at $A, d f(A): H \rightarrow T_{f(A)} \mathcal{N}$, is surjective.
- In such a case, for each $C \in \mathcal{N}$, the fiber $f^{-1}(C)$ is a submanifold.
- Given a point $A \in f^{-1}(C)$, a vector $U \in H$ is vertical if it is tangent to the manifold $f^{-1}(A)$. Each such a tangent vector U is the velocity at $t=0$ of some smooth curve $t \mapsto \gamma(t)$ with $\gamma(0)=A$ and $\dot{\gamma}(0)=U$. Precisely, from $f(\gamma(t))=C$ for all t we derive the characterisation of vertical vectors. We have $d_{A} f(A)=0$ i.e., the tangent space at A is $T_{A} f^{-1}(f(A))=\operatorname{Ker}(d f(A))$. Consider the orthogonal space to the tangent space $T_{A} f^{-1}(f(A))$. Such a space is called the space of horizontal vectors.

$$
\mathcal{H}_{A}=\operatorname{Ker}(d f(A))^{\perp}=\operatorname{Im}\left(d f(A)^{*}\right) .
$$

- The notion of submersion is discussed in M. P. do Carmo. Riemannian geometry. Mathematics: Theory \& Applications. Birkhäuser Boston Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty, Ch. 8, Ex. 8-10, or S. Lang. Differential and Riemannian manifolds, volume 160 of Graduate Texts in Mathematics. Springer-Verlag, New York, third edition, 1995, §II. 2

Wasserstein Riemannian manifold IV

- The general linear group $\mathrm{GI}(d)$ is an open subset of $M(d)$, which is an Hilbert space of dimension $d \times d$ with the scalar product

$$
\langle X, Y\rangle_{2}=\frac{1}{2} \operatorname{Tr}\left(Y^{*} X\right)
$$

- The mapping

$$
\sigma: \mathrm{GI}(d) \subset \mathrm{M}(d) \rightarrow \operatorname{Sym}^{++}(d) \subset \mathrm{M}(d)
$$

defined by

$$
A \mapsto \sigma(A)=A A^{*}
$$

has an obvious meaning for Gaussian distributions: it is the computation of the covariance matrix $\Sigma=A A^{*}$ of the random vector $X=A Z$ when $Z \sim \mathrm{~N}(0, I)$.

- As the mapping σ is not 1 -to- 1 we cannot use A as a parameter. The choice $A=\Sigma^{1 / 2}$ does not lead to the metric we want.

Wasserstein Riemannian manifold V

- We say that the submersion f is Riemannian if for all A the linear map $d f(A): \mathcal{H}_{A} \rightarrow T_{C} \mathcal{N}$ is an isometry i.e.,

$$
U, V \in \mathcal{H}_{A} \Rightarrow\left\langle d_{U} f(A), d_{V} f(A)\right\rangle_{f(A)}=\langle U, V\rangle_{H} .
$$

- As a linear isometry is 1 -to- 1 we can write

$$
\left.\begin{array}{rl}
X, Y \in & T_{C} \mathcal{N} \Rightarrow\langle X, Y\rangle_{C}= \\
& \left\langle\left. d f\left(f^{-1}(C)\right)\right|_{\mathcal{H}_{f-1}(C)-1}\right.
\end{array} X,\left.d f\left(f^{-1}(C)\right)\right|_{\mathcal{H}_{f-1}(C)-1} Y\right\rangle_{H} .
$$

- A Riemannian submersion preserves the length of curves. Let $[0,1] \ni t \mapsto \gamma(t)$ be a smooth curve in H and consider its image $[0,1] \ni t \mapsto f(\gamma(t))$. The velocity of the image is $t \mapsto d f(\gamma(t))[\dot{\gamma}(t)]$ and its length is

$$
\int_{0}^{1} d t\langle d f(\gamma(t))[\dot{\gamma}(t)], d f(\gamma(t))[\dot{\gamma}(t)]\rangle_{f(\gamma(t))}^{1 / 2}=\int_{0}^{1} d t\|\dot{\gamma}(t)\|_{H}
$$

Wasserstein Riemannian manifold VI

- The us derive the Wasserstein Riemannian metric by letting the mapping $A \mapsto A A^{*}, A$ invertible matrix, to be a Riemannian submersion.
- For each $A \in \mathrm{GI}(d)$ the matrix $\Sigma=A A^{*}$ belongs in $\operatorname{Sym}^{++}(d)$ and, viceversa, each element of $\operatorname{Sym}^{++}(d)$ has such a presentation.
- The mapping $\sigma: \mathrm{GI}(d) \rightarrow \operatorname{Sym}^{++}(d)$ given by $\sigma(A)=A A^{*}$ has derivative at A in the direction $X \in \mathrm{M}(d)$ given by

$$
d_{X} \sigma(A)=X A^{*}+A X^{*}
$$

- In vectorized form, we can write

$$
d_{X} \sigma(A)=X A^{*}+A X^{*}=\operatorname{bind}\left((A \otimes I) \operatorname{vec}(X)+(I \otimes A) \operatorname{vec}\left(X^{*}\right)\right)
$$

where bind is the inverse of vec.

Wasserstein Riemannian manifold VII

- Let us discuss the problem of defining a metric such as σ is a Riemannian submersion. The mapping σ : $\mathrm{Gl}(d)$ is onto $\mathrm{Sym}^{++}(d)$, which is an open subset of Sym (d), precisely the interior of the cone $\mathrm{Sym}^{+}(d)$. The vector space Sym (d) is a sub-vector space of $\mathrm{M}(d)$ with dimension $\frac{1}{2} d(d+1)$ that inherits the Hilbert structure of the super-space.
- Consider the matrix A as a point in the fiber manifold $\sigma^{-1}\left(A A^{*}\right)$. The derivative of σ at A in the direction $X \in \mathrm{M}(d)$ is the symmetric matrix:

$$
d \sigma(A)[X]=X A^{*}+A X^{*} \in \operatorname{Sym}(m)
$$

- The linear mapping $X \mapsto X A^{*}+A X^{*}$ is surjective, because for each $W \in \operatorname{Sym}(d)$ we can define $X=\frac{1}{2} W\left(A^{*}\right)^{-1}$ to satisfy the equation $X A^{*}+A X^{*}=W$ is true. hence, the fiber $\sigma^{-1}\left(A A^{*}\right)$ is a submanifold of $\mathrm{GI}(d)$.
- Let us compute the splitting od $\mathrm{M}(d)$ into the kernel of $d \sigma(A)$ and the horizontal vectors,

$$
\mathrm{M}(d)=\operatorname{Ker}(d \sigma(A)) \oplus \mathcal{H}_{A}
$$

Wasserstein Riemannian manifold VIII

- As the vector space tangent to $\sigma^{-1}\left(A A^{*}\right)$ at A is the kernel of the derivative at A :

$$
\begin{aligned}
& T_{A} \sigma^{-1}\left(A A^{*}\right)=\operatorname{Ker}(d(A \mapsto \sigma(A))[X])= \\
& \left\{X \in \mathrm{M}(d) \mid X A^{*}+A X^{*}=0\right\}=\left\{X \in \mathrm{M}(d) \mid\left(A X^{*}\right)^{*}=-A X^{*}\right\}
\end{aligned}
$$

it consists of all matrices A such that $A X^{*}$ is anti-symmetric.

- A matrix W is horizontal at A if, and only if for each vertical $X \in T_{A} \sigma^{-1}\left(A A^{*}\right)$ we have

$$
\begin{aligned}
& 0=\langle W, X\rangle_{2}=\frac{1}{2} \operatorname{Tr}(\left.X^{*} W\right)=\frac{1}{2} \operatorname{Tr}\left(A X^{*} W A^{-1}\right)= \\
& \frac{1}{2} \operatorname{Tr}\left(\left(X A^{*}\right)^{*}\left(W A^{-1}\right)\right)=\left\langle W A^{-1}, X A^{*}\right\rangle_{2}
\end{aligned}
$$

or, equivalently, for each X such that $X A^{*}$ is anti-symmetric.

- In conclusion, the vector space of horizontal vectors is

$$
\mathcal{H}_{A}=\left(T_{A} \sigma^{-1}\left(A A^{*}\right)\right)^{\perp}=\left\{W \in \mathrm{M}(d) \mid W A^{-1} \in \operatorname{Sym}(d)\right\}
$$

Wasserstein Riemannian manifold IX

- Let $X \in \mathrm{M}(d)$ and consider the decomposition of $X=X_{V}+X_{H}$ with X_{V} vertical at A and X_{H} horizontal at A. Then $d \sigma(A)[X]=d \sigma(A)\left[X_{H}\right]$ and the restriction of the derivative $d \sigma(A)$ to the vector space \mathcal{H}_{A} of horizontal vectors at A is 1-to-1 onto the tangent space of $\mathrm{Sym}^{++}(d)$ at $A A^{*}$, that is Sym (d).
- In such a restriction we have for each $W \in \mathcal{H}_{A}$

$$
\begin{aligned}
& U=d \sigma(A)[W]=W A^{*}+A W^{*}=W A^{-1} A A^{*}+A\left(W A^{-1} A\right)^{*} \\
& =\left(W A^{-1}\right) A A^{*}+A A^{*}\left(W A^{-1}\right)^{*}=\left(W A^{-1}\right) A A^{*}+A A^{*}\left(W A^{-1}\right),
\end{aligned}
$$

so that the inverse mapping of the restriction is given by

$$
W=\left(\left.d \sigma(A)\right|_{\mathcal{H}_{A}}\right)^{-1}(U)=L\left(U ; A A^{*}\right) A
$$

where $L=L(U ; C)$ is the solution of the Liapunov equation

$$
V=L C+C L, \quad V, L \in \operatorname{Sym}(d), C \in \operatorname{Sym}^{++}(d) .
$$

Wasserstein Riemannian manifold X

- The integral form solution is

$$
L(V ; C)=\int_{0}^{\infty} d t \mathrm{e}^{-t C} V \mathrm{e}^{-t C}
$$

- In vectorized form the Liapunov equation is

$$
\operatorname{vec}(V)=(C \otimes I+I \otimes C) \operatorname{vec}(L)
$$

hence the solution is

$$
L(V ; C)=\operatorname{bind}\left((C \otimes I+I \otimes C)^{-1} \operatorname{vec}(V)\right)
$$

- A solution based on the spectral decomposition $C=U \wedge U^{*}$, $\Lambda=\operatorname{diag}\left(\lambda_{j}: j=1, \ldots, d\right)$ and $U * U=I$. The solution in the U basis is

$$
\left(U^{*} L U\right)=\left[\frac{1}{\lambda_{i}+\lambda_{j}}\right]_{i, j=1}^{d} \circ\left(U^{*} V U\right)
$$

- R. Bhatia. Positive definite matrices. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2007, Ex. 1.2.10.

Wasserstein Riemannian manifold XI

- The mapping

$$
\sigma: \mathcal{H}_{A} \ni B \mapsto B B^{*} \in \operatorname{Sym}^{++}(d), \quad A A^{*}=\Sigma \in \operatorname{Sym}^{++}(d)
$$

is actually globally invertible. For each $C \in \operatorname{Sym}^{++}(d)$, the solution of
$C=B B^{*}=\left(B A^{-1} A\right)\left(B A^{-1} A\right)^{*}=\left(B A^{-1}\right) \Sigma\left(B A^{-1}\right)^{*},\left(B A^{-1}\right) \in \operatorname{Sym}(d)$,
is the solution of a Riccati equation,

$$
\left.B=C^{1 / 2}\left(C^{1 / 2} \Sigma C^{1 / 2}\right)^{-1 / 2}\right) C^{1 / 2} A .
$$

- Let us push-forward the scalar product on \mathcal{H}_{A} to $T_{A A^{*}} \operatorname{Sym}^{++}(d)$ as

$$
\begin{aligned}
& W_{A A^{*}}(U, V)=\left\langle\left(\left.d \sigma(A)\right|_{\mathcal{H}_{A}}\right)^{-1}(U),\left(\left.d \sigma(A)\right|_{\mathcal{H}_{A}}\right)^{-1}(V)\right\rangle_{2}= \\
&\left\langle L\left(U ; A A^{*}\right) A, L\left(V ; A A^{*}\right) A\right\rangle_{2}= \frac{1}{2} \operatorname{Tr}\left(A^{*} L\left(V ; A A^{*}\right) L\left(U ; A A^{*}\right) A\right)= \\
& \frac{1}{2} \operatorname{Tr}\left(L\left(V ; A A^{*}\right) A A^{*} L\left(U ; A A^{*}\right)\right),
\end{aligned}
$$

which depends on $A A^{*}$ only.

Wasserstein Riemannian manifold XII

- We can take $A=\Sigma^{1 / 2}$ and see that, in such a case, $W \in \mathcal{H}_{A}$, that is $W A^{-1}=W \Sigma^{1 / 2} \in \operatorname{Sym}(d)$ and, so that

$$
\begin{align*}
U_{i} & =L\left(U_{i} ; \Sigma\right) \Sigma+\Sigma L\left(U_{i} ; \Sigma\right), \quad i=1,2, \tag{1}\\
W_{\Sigma}\left(U_{1}, U_{2}\right) & =\frac{1}{2} \operatorname{Tr}\left(L\left(U_{2} ; \Sigma\right) \Sigma L\left(U_{1} ; \Sigma\right)\right) . \tag{2}
\end{align*}
$$

- Consider the mapping $U \mapsto L(U ; \Sigma) \Sigma^{1 / 2}$. It maps the scalar product w_{Σ} to $\langle\cdot, \cdot\rangle_{2}$:

$$
w_{\Sigma}\left(U_{1}, U_{2}\right)=\left\langle L\left(U_{1} ; \Sigma\right) \Sigma^{1 / 2}, L\left(U_{2} ; \Sigma\right) \Sigma^{1 / 2}\right\rangle_{2}
$$

Wasserstein Riemannian manifold XIII

- Let us construct now a Wasserstein geodesics connecting two matrices $\Sigma_{0}, \Sigma_{1} \in \operatorname{Sym}^{++}(d)$. Define the symmetric matrix

$$
T=\Sigma_{1}^{1 / 2}\left(\Sigma_{1}^{1 / 2} \Sigma_{0} \Sigma_{1}^{1 / 2}\right)^{-1 / 2} \Sigma_{1}^{1 / 2}
$$

The matrix T is the unique solution in $\mathrm{Sym}^{+}(d)$ of the Riccati equation $T \Sigma_{0} T=\Sigma_{1}$.

- We define a curve in $\operatorname{Sym}^{++}(d)$ connecting Σ_{0} and Σ_{1} as follows. First we define

$$
A_{0}=\Sigma_{0}^{1 / 2}, A_{1}=(T-I) \Sigma_{0}^{1 / 2}
$$

so that $A_{0}, A_{1} \in \mathcal{H}_{\Sigma_{0}^{1 / 2}}$ because $A_{0}\left(\Sigma_{0}^{1 / 2}\right)^{-1}=I \in \operatorname{Sym}(d)$ and $A_{1}\left(\Sigma_{0}^{1 / 2}\right)^{-1}=T-I \in \operatorname{Sym}(d)$. It follows that the the strait line from A_{0} to A_{1} belongs to the vector space of horizontal vectors at $\Sigma_{0}^{1 / 2}$,

$$
[0,1] \ni t \mapsto A(t)=A_{0}+t A_{1} \in \mathcal{H}_{\Sigma_{0}^{1 / 2}}, \quad t \in \mathbb{R}
$$

and it is a geodesics in $M(d)$.

- As a consequence, $t \mapsto \Sigma(t)=A(t) A^{*}(t)$ is a geodesics in the Wasserstein metric connecting Σ_{0} to Σ_{1}.

Wasserstein Riemannian manifold XIV

- In conclusion, the curve
$t \mapsto \Sigma(t)=A(t) A(t)^{*}=(I+t(T-I)) \Sigma_{0}(I+t(T-I)) \in \operatorname{Sym}^{++}(d)$
connects $\Sigma_{0}=\Sigma(0)$ to $\Sigma_{1}=\Sigma(1)$ and has minimal length.
- Let us compute the length of the the geodesic $t \mapsto A(t), t \in[0,1]$, which is equal to the Wasserstein distance of Σ_{0} and Σ_{1}. We have

$$
\begin{gathered}
\|\dot{A}(t)\|_{2}=\sqrt{\frac{1}{2} \operatorname{Tr}\left(\dot{A}(t)(\dot{A}(t))^{*}\right)}=\sqrt{\frac{1}{2} \operatorname{Tr}\left((T-I) \Sigma_{0}(T-I)\right)}= \\
\sqrt{\frac{1}{2}\left(\operatorname{Tr}\left(\Sigma_{0}\right)+\operatorname{Tr}\left(\Sigma_{1}\right)-\operatorname{Tr}\left(T \Sigma_{0}\right)-\operatorname{Tr}\left(\Sigma_{0} T\right)\right)}= \\
\sqrt{\frac{1}{2}\left(\operatorname{Tr}\left(\Sigma_{0}\right)+\operatorname{Tr}\left(\Sigma_{1}\right)-\operatorname{Tr}\left(\left(\Sigma_{1}^{1 / 2} \Sigma_{0} \Sigma_{1}^{1 / 2}\right)^{1 / 2}\right)\right)} .
\end{gathered}
$$

Wasserstein Riemannian manifold XV

- Let us compute the velocity of the geodesics $t \mapsto \Sigma(t)$:

$$
\frac{d}{d t} \Sigma(t)=(T-I) \Sigma_{0}+\Sigma_{0}(T-I)+2 t(T-I) \Sigma_{0}(T-I)
$$

in particular

$$
\dot{\Sigma}(0)=(T-I) \Sigma_{0}+\Sigma_{0}(T-I)
$$

- Recall that the linear map $\operatorname{Sym}(d) \ni A \mapsto A \Sigma_{0}+\Sigma_{0} A \in \operatorname{Sym}(d)$ is injective, hence surjective, and that we denote by $L\left(\cdot ; \Sigma_{0}\right)$ the inverse map. From the first Eq. above, we have $T-I=L\left(\dot{\Sigma}(0) ; \Sigma_{0}\right)$, and hence

$$
\begin{aligned}
\Sigma(t) & =\Sigma_{0}+t\left((T-I) \Sigma_{0}+\Sigma_{0}(T-I)\right)+t^{2}(T-I) \Sigma_{0}(T-I) \\
& =\Sigma(0)+t \dot{\Sigma}(0)+t^{2} L(\dot{\Sigma}(0) ; \Sigma(0)) \Sigma(0) L(\dot{\Sigma}(0) ; \Sigma(0))
\end{aligned}
$$

- Given $V \in \operatorname{Sym}(d)$ and $C \in \operatorname{Sym}^{++}(d)$ we define the Riemannian exponential to be

$$
\operatorname{Exp}_{C}(V)=C+V+L(V ; C) C L(V ; C)
$$

so that the geodesics is $\Sigma(t)=\operatorname{Exp}_{\Sigma(0)}(t \dot{\Sigma}(0))$.

Gradient I

- We have 3 manifold structures on Sym ${ }^{++}(d)$; Fisher-Rao Riemannian manifold, Exponential affine manifold, Wasserstein Riemannian manifold. In each case we have a definition of velocity $D \gamma(t)$ of a curve $t \mapsto \gamma(t) \in \operatorname{Sym}^{++}(d)$ and a scalar product on each of the tangent space $T_{A} \operatorname{Sym}^{++}(d), A \in \operatorname{Sym}^{++}(d)$.
- In both the Fisher-Rao and Wasserstein manifold each tangent space is identified with the Hilbert space Sym (d). In the Exponential case, each tangent space is a sub-vector space od codimension 1 of an Hilbert space. Let us denote by \mathcal{T} the vector space containing all tangent spaces.
- A smooth mapping X : $\mathrm{Sym}^{++}(d) \rightarrow \mathcal{T}$ such that $f(A) \in T_{A} \operatorname{Sym}^{++}(d), A \in \operatorname{Sym}^{++}(d)$, is a section or vector field or estimating function.
- Given a vector field X, consider the differential equation

$$
D \gamma(t)=X(\gamma(t)), \quad \gamma(0)=A
$$

This defines the flow of X.

Gradient II

- Let $f: \mathrm{Sym}^{++}(d) \rightarrow \mathbb{R}$ be a smooth function. For each smooth curve $t \mapsto \gamma(t)$ the real runction $t \mapsto f(\Sigma(t))$ is differentiable. The natural gradient is the vector field $\operatorname{grad} f$ such that for all smooth function f and all smooth curve γ we have

$$
\frac{d}{d t} f(\gamma(t))=\left\langle\operatorname{grad} f(\gamma(t), D \gamma(t)\rangle_{\gamma(t)}\right.
$$

- Given $A \in \operatorname{Sym}^{++}(d)$ and $V \in T_{A} \operatorname{Sym}^{++}(d)$ let γ be a smooth curve such that $\gamma(0)=A$ and $D \gamma(0)=V$. Then

$$
\langle\operatorname{grad} f(A), V\rangle_{A}=\left.\frac{d}{d t} f(\gamma(t))\right|_{t=0}
$$

- The gradient flow of f is the flow of $\operatorname{grad} f$. Each trajectory is a solution of

$$
D \gamma(t)=\operatorname{grad} f(\gamma(t))
$$

Gradient III

- In both Fisher-Rao and Wasserstein the velocity is the ordinary derivative, $D \gamma(t)=\dot{\gamma}(t)$, hence

$$
\frac{d}{d t} f(\gamma(t))=d f(\gamma(t))[\dot{\gamma}(t)]=\left\langle\nabla_{2} f(\gamma(t)), \dot{\gamma}(t)\right\rangle_{2}
$$

where ∇_{2} is the gradient with respect to the scalar product $\langle\cdot, \cdot\rangle_{2}$.

- We can express the Fisher metric with the 2-metric:

$$
\begin{aligned}
& \left\langle\nabla_{2} f(\gamma(t)), D \gamma(t)\right\rangle_{2}=\frac{1}{2} \operatorname{Tr}\left(\nabla_{2} f(\gamma(t)) D \gamma(t)\right) \\
& \frac{1}{2} \operatorname{Tr}\left(\gamma(t)^{-1} \gamma(t) \nabla_{2} f(\gamma(t)) \gamma(t) \gamma(t)^{-1} D \gamma(t)\right)= \\
& \quad F_{\gamma(t)}\left(\gamma(t) \nabla_{2} f(\gamma(t)) \gamma(t), D \gamma(t)\right)
\end{aligned}
$$

In this case

$$
\operatorname{grad} f(\Sigma)=\Sigma \nabla_{2} f(\Sigma) \Sigma
$$

Covariant derivative I

- Given two smooth vector fields X and Y the covariant derivative is a vector field $D_{X} Y$ which has the properties of a derivation of Y in direction of X. The manifold structure does not define uniquely a covariant derivative.
- When $Y=\operatorname{grad} f$, then we define the Hessian as Hess $_{X} f=D_{X} \operatorname{grad} F$.
- When $Y(\gamma(t))=D \gamma(t)$, then $D_{D \gamma(t)} Y(\gamma(t))$ is the accelleration of the curve γ. By identifying curves with 0 accelleration, we can compute relevant Taylor formulæ.
- In the case of both the Fisher-Rao and the Wasserstein Riemannian structure, it is natural to use the Levi-Civita covariant derivative which has the property "derivative of the product":

$$
\begin{aligned}
& \frac{d}{d t}\langle Y(\gamma(t)), Z(\gamma(t))\rangle_{\gamma(t)}= \\
& \quad\left\langle D_{\dot{\gamma}(t)} Y(\gamma(t)), Z(\gamma(t))\right\rangle_{\gamma(t)}+\left\langle Y(\gamma(t)), D_{\dot{\gamma}(t)} Z(\gamma(t))\right\rangle_{\gamma(t)}
\end{aligned}
$$

- Levi-Civita connections are computed explicitely from derivation of the left-end side.

Covariant derivative II

- In the case of the Exponential manifold, it is more appropriate to use a different approach, using the transports ${ }^{e} \mathbb{U}_{A}^{B},{ }^{m} \mathbb{U}_{A}^{B}$, $A, B \in \mathrm{Sym}^{++}(d)$.
- The velocity at $t+h, D \gamma(t+h)$ of the curve γ belongs to $S_{\gamma(t+h)} \mathrm{Sym}^{++}(d) \neq S_{\gamma(t)} \mathrm{Sym}^{++}(d)$, so we define the accelleration to be

$$
\lim _{h \rightarrow 0} h^{-1}\left({ }^{e} \mathbb{U}_{\gamma(t+h)}^{\gamma(t)} D \gamma(t+h)-D \gamma(t)\right)
$$

or

$$
\lim _{h \rightarrow 0} h^{-1}\left({ }^{m} \mathbb{U}_{\gamma(t+h)}^{\gamma(t)} D \gamma(t+h)-D \gamma(t)\right)
$$

- M. P. do Carmo. Riemannian geometry. Mathematics: Theory \& Applications. Birkhäuser Boston Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty, Ch. 2. In this book, covariant derivatives are named affine connections.
- G. Pistone. Nonparametric information geometry. In F. Nielsen and F. Barbaresco, editors, Geometric science of information, volume 8085 of Lecture Notes in Comput. Sci., pages 5-36. Springer, Heidelberg, 2013. First International Conference, GSI 2013 Paris, France, August 28-30, 2013 Proceedings
- L. Malagò and G. Pistone. Second-order optimization over the multivariate gaussian distribution. In F. Barbaresco and F. Nielsen, editors, Geometric Science of Information, volume 9389 of LNCS, pages 349-358. Springer, 2015

