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Abstract

In Information Geometry, it is possible to define a number of
different geometrical structures on the full Gaussian model: the
Fisher-Rao Riemannian Manifold (S.T. Skovgaard 1981), the
Wasserstein Riemannian Manifold (A. Takatsu 2011), the
Exponential and Mixture Affine manifolds (G. Pistone & C. Sempi
1995). We discuss the features of these geometries, including the
second order properties (e.g. Hessians), with special emphasis of
the Wasserstein case. This turns out to be a special case of a more
general set-up introduced in 2001 by R. Otto.

This talk is based on joint work in progress with Luigi Malagò (Rist, Cluj-Napoca, Romania) and Luigi
Montrucchio (Collegio Carlo Alberto, Moncalieri, Italy).

• L. T. Skovgaard. A Riemannian geometry of the multivariate normal model. Scand. J. Statist.,
11(4):211–223, 1984

• A. Takatsu. Wasserstein geometry of Gaussian measures. Osaka J. Math., 48(4):1005–1026, 2011

• G. Pistone and C. Sempi. An infinite-dimensional geometric structure on the space of all the probability
measures equivalent to a given one. Ann. Statist., 23(5):1543–1561, October 1995

• F. Otto. The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial
Differential Equations, 26(1-2):101–174, 2001



Summary

1. Gaussian model

2. Fisher-Rao manifold

3. Exponential manifold

4. Wasserstein manifold

5. Gradient (short!)

6. Covariant derivative (very short!)



Gaussian model

• A random variable Y with values in Rd has distribution N (µ,Σ) if
Z = (Z1, . . . ,Zd) is IID N (0, 1) and X = µ + AZ with A ∈ M(d)
and AA∗ = Σ ∈ Sym+ (d). Notice the state-space definition.

• We can take for example A = Σ1/2 or any A = Σ1/2R∗ with
R∗R = I .

• If X ∼ N (0,ΣX ), then Y = TX ∼ N (0,TΣXT
∗), T ∈ M(d).

• If X ∼ N (0,ΣX ) and Y ∼ N (0,ΣY ), then X = TY with

T = Σ
1/2
Y

(
Σ

1/2
Y ΣXΣ

1/2
Y

)−1/2

Σ
1/2
Y

• If Σ ∈ Sym++ (d) = Sym+ (d) ∩ Gl(d) then N (0,Σ) has density

p(x ; Σ) = (2π)−d/2 det (Σ)−1/2 exp

(
−1

2
x∗Σ−1x

)



Fisher-Rao manifold I
• The Gaussian model N (0,Σ), Σ ∈ Sym++ (d) is parameterised

either by the covariance Σ ∈ Sym++ (d) or by the concentration
C = Σ−1 ∈ Sym++ (d).

• The vector space of symmetric matrices Sym (d) has the scalar
product (A,B) 7→ 〈A,B〉2 = 1

2 Tr (AB) and Sym++ (d) is an open
cone. The log-likelihood in the concentration C is

`(x ;C ) = log

(
(2π)−d/2 det (C )1/2 exp

(
−1

2
x∗Cx

))
= −d

2
log (2π) +

1

2
log detC − 1

2
Tr (Cxx∗)

= −d

2
log (2π) +

1

2
log detC − 〈C , xx∗〉2

• Fisher’s score in the direction V ∈ Sym (d) is the directional
derivative d(C 7→ `(x ;C ))[V ] = d

dt `(x ;C + tV )
∣∣
t=0

• J. R. Magnus and H. Neudecker. Matrix differential calculus with applications in statistics and
econometrics. Wiley Series in Probability and Statistics. John Wiley & Sons, Ltd., Chichester, 1999.
Revised reprint of the 1988 original, §8.3



Fisher-Rao manifold II

• As d
(
C 7→ 1

2 log detC
)

[V ] = 1
2 Tr

(
C−1V

)
=
〈
C−1,V

〉
2
, the

Fisher’s score is

S(x ;C )[V ] = d(C 7→ `(x ;C ))[V ] =〈
C−1,V

〉
2
− 〈V , xx∗〉2 =

〈
C−1 − xx∗,V

〉
2

• Notice that EΣ

[
C−1 − XX ∗

]
= C−1 − Σ = 0

• The covariance of the Fisher’s score in the directions V and W is
equal to minus (the expected value of) the second derivative. As
d(C 7→ C−1)[W ] = −C−1WC−1

CovC−1 (S(x ;C )[V ],S(x ;C )[W ]) = −d2`(x ;C )[V ,W ] =〈
C−1WC−1,V

〉
2

=
1

2
Tr
(
C−1WC−1V

)
• T. W. Anderson. An introduction to multivariate statistical analysis. Wiley Series in Probability and

Statistics. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, third edition, 2003



Fisher-Rao manifold III
• If we make the same computation with respect to the parameter Σ,

because of the special properties of C 7→ Σ, we get the same result:

CovΣ (S(x ; Σ)[V ],S(x ; Σ)[W ]) =
1

2
Tr
(
Σ−1WΣ−1V

)
• As Sym++ (d) is an open subset of the Hilbert space Sym (d), then

Sym++ (d) is (trivially) a manifold. The velocity t 7→ DΣ(t) of a
curve t 7→ Σ(t) is extressed as the ordinary derivative t 7→ Σ̇(t).

• The tangent space of Sym++ (d) is Sym (d). In fact, a smooth
curve t 7→ Σ(t) ∈ Sym++ (d) has velocity Σ̇(t) ∈ Sym (d), and,
given any Σ ∈ Sym++ (d) and V ∈ Sym (d), the curve
Σ(t) = Σ1/2 exp

(
tΣ−1/2VΣ−1/2

)
Σ1/2 has Σ(0) = Σ and

Σ̇(0) = V .

• Each tangent space TΣ Sym++ (d) = Sym (d) has a scalar product

FΣ(U,V ) =
1

2
Tr
(
Σ−1WΣ−1V

)
, V ,W ∈ TΣ Sym++ (d)

• The metric (family of scalar products) F =
{
FΣ

∣∣Σ ∈ Sym++ (d)
}

defines the Fisher-Rao Riemannian manifold



Fisher-Rao manifold IV

• In the Fisher-Rao Riemannian manifold (Sym++ (d) ,F ) the length
of the curve [0, 1] 3 t 7→ Σ(t) is∫ 1

0

dt
√
FΣ(t)(Σ̇(t), Σ̇(t))

• The Fisher-Rao distance between Σ1 and Σ2 is the minimal length
of a curve connecting the two points. The value of the distance is

F (Σ1,Σ2) =

√
1

2
Tr
(

log
(

Σ
−1/2
1 Σ2Σ

−1/2
1

)
log
(

Σ
−1/2
1 Σ2Σ

−1/2
1

))
• The geodesics from Σ1 to Σ2 is

γ : t 7→ Σ
1/2
1

(
Σ
−1/2
1 Σ2Σ

−1/2
1

)t
Σ

1/2
1

• R. Bhatia. Positive definite matrices. Princeton Series in Applied Mathematics. Princeton University Press,
Princeton, NJ, 2007, §6.1



Fisher-Rao manifold V
• The velocity of the geodesics is

γ̇ : t 7→ Σ
1/2
1

(
Σ
−1/2
1 Σ2Σ

−1/2
1

)t
log
(

Σ
−1/2
1 Σ2Σ

−1/2
1

)
Σ

1/2
1

From that, one checks that the norm of the velocity is constant and
equal to the distance.

• The velocity at t = 0 is

γ̇(0) = Σ
1/2
1 log

(
Σ
−1/2
1 Σ2Σ

−1/2
1

)
Σ

1/2
1

and the equation can be solved for the final point Σ2 = γ(1),

Σ2 = Σ
1/2
1 exp

(
Σ
−1/2
1 γ̇(0)Σ

−1/2
1

)
Σ

1/2
1

so that the geodesics is expressed in terms of the initial point Σ and
the initial velocity V by the Riemannian exponential

ExpΣ (tV ) = Σ1/2 exp
(

Σ−1/2(tV )Σ−1/2
)

Σ1/2



Exponential manifold I

• An affine manifold is defined by an atlas of charts such that all
change-of-charts mappings are affine mappings. Exponential
families are affine manifolds if one takes as charts the centered
log-likelihood.

• We study the full Gaussian model paramerised by the concentration
matrix C = Σ−1 ∈ Sym++ (d) as an affine manifold.

• The charts in the exponential atlas
{
sA
∣∣A ∈ Sym++ (d)

}
are the

centered log-likelyhoods defined by

sA(C ) = (`C − `A)− EA [`C − `A]

= 〈A− C ,XX ∗〉2 −
〈
A− C ,A−1

〉
2

• S. Amari and H. Nagaoka. Methods of information geometry. American Mathematical Society, Providence,
RI, 2000. Translated from the 1993 Japanese original by Daishi Harada, Ch. 2–3

• G. Pistone and C. Sempi. An infinite-dimensional geometric structure on the space of all the probability
measures equivalent to a given one. Ann. Statist., 23(5):1543–1561, October 1995

• G. Pistone. Nonparametric information geometry. In F. Nielsen and F. Barbaresco, editors, Geometric
science of information, volume 8085 of Lecture Notes in Comput. Sci., pages 5–36. Springer, Heidelberg,
2013. First International Conference, GSI 2013 Paris, France, August 28-30, 2013 Proceedings



Exponential manifold II
• We use the scalar product defined on Sym (d) by
〈A,B〉2 = 1

2 Tr (AB), and write X ⊗ X = XX ∗. The chart at A is

sA(C )) =
〈
A− C ,X ⊗ X − A−1

〉
2

• The image of each sA is a set of second order polynomials of the
type

1

2

d∑
i,j=1

(aij − cij)(xixj − aij), A−1 = [aij ]di,j=1 ,

that is, a second order symmetric polynomial of order 2, without
first order terms, with zero expected value at N

(
0,A−1

)
. And

viceversa.

• For each A ∈ Sym++ (d) the vector space of such polynomials is the
model space for the affine manifold in the chart sA. Such a space is
an expression of the tangent space at A if the velocity DC (0) of the
curve t 7→ C (t), C (0) = A, is computed as

DC (0) =
d

dt
sC(0)(C (t))

∣∣∣∣
t=0

=
〈
Ċ (0),C−1(0)− X ⊗ X

〉
2



Exponential manifold III
• Define the score space at A to be the vector space generated by the

image of sA, namely

SA Sym++ (d) =
{〈

V , x ⊗ x − A−1
〉

2

∣∣V ∈ Sym (d)
}

• The image of the chart sA in this vector space is characterised by a
V = A− C , C ∈ Sym++ (d).

• Each score space is a fiber of the score bundle S Sym++ (d).

• On each fiber SA Sym++ (d) we have the scalar product induced by
L2(N

(
0,A−1

)
, namely the Fisher information operator,

EA−1 [V (X )W (X )] = EA−1

[〈
V ,X ⊗ X − A−1

〉
2

〈
W ,X ⊗ X − A−1

〉
2

]
= FA(V ,W )

• The change-of-chart sB ◦ s−1
A : SA Sym++ (d)→ SB Sym++ (d) is

affine with linear part

eUB
A :
〈
V ,X ⊗ X − A−1

〉
2
7→
〈
V ,X ⊗ X − B−1

〉
2



Exponential manifold IV

• Note that the exponential transport eUB
A is the identity on the

parameter V and it coincides with the centering of a random
variable.

• The mixture transport is the dual mUA
B = (eUB

A)∗, hence for each
W ∈ Sym (d),

FB(eUB
AV ,W ) = FA(V ,mUA

BW )

• We have

mUA
B

〈
W ,X ⊗ X − B−1

〉
2

=〈
AB−1WB−1A,X ⊗ X − A−1

〉
2

=〈
B−1WB−1, (AX )⊗ (AX )− A−1

〉
2



W-manifold: Gini’s dissimilarity

• Given Σ1,Σ2 ∈ Sym++ (d), define

Γ(Σ1,Σ2) =

{
Σ ∈ Sym++ (2d)

∣∣∣∣Σ =

[
Σ1 Σ1,2

Σ2,1 Σ2

]}
• Given (X ,Y ) ∼ N2d(0,Σ),

Σ ∈ Γ(Σ1,Σ2) ⇔ X ∼ N(0,Σ1) ∧ Y ∼ N(0,Σ2)

• We look for the index of dissimilarity defined by

W (Σ1,Σ2) = inf
Σ∈Γ(Σ1,Σ2)

EΣ

[
‖X − Y ‖2

]
• Notice that

EΣ

[
‖X − Y ‖2

]
= Tr (Σ1) + Tr (Σ2)− 2 Tr (Σ12)



W-manifold: An equivalent problem

• If Σ1,Σ2 ∈ Sym++ (d), then[
Σ1 K
K∗ Σ2

]
∈ Sym+ (2d) ⇐⇒ Σ1 − K∗Σ−1

2 K ∈ Sym+ (d)

• We can consider the problem

γ = min
K
−2 Tr (K )

Σ1 − K∗Σ−1
2 K ∈ Sym+ (d)

• A feasible K is such that the Shur complement is zero:

Σ1 − K∗Σ−1
2 K

The unique symmetric solution is

K = Σ
1/2
1 (Σ

1/2
1 Σ−1

2 Σ
1/2
1 )−1/2Σ

1/2
1



W-manifold: Linear programming I
• Write E = Sym (2d) and F = Sym (d)× Sym (d); P1 =

[
Id 0d

]
,

and P2 =
[
0d Id

]
and define the marginalization operator as

A : E 3 Σ 7→ (P1ΣP∗1 ,P2ΣP∗2 ) ∈ F

• We have

EΣ [〈X ,Y 〉] = EΣ

[
d∑

i=1

XiYi

]
=

d∑
i=1

(Σ12)ii = Tr (Σ12) =

Tr (P1ΣP∗2 ) = Tr

(
1

2
(P∗2 P1 + P∗1 P2)Σ

)
= 〈Σ,P∗2 P1 + P∗1 P2〉E

• The problem becomes the canonical probelm

γ = inf
Σ∈E
〈Σ,−(P∗2 P1 + P∗1 P2)〉E

A(Σ) = (Σ1,Σ2)

Σ ≥Sym+(2d) 0

• The canonical problem is feasible: take Σ = diag (Σ1,Σ2).



W-manifold: Linear programming II
• The adjoint A∗ : F → E is defined by

〈A∗(F1,F2),C 〉E = 〈(F1,F2),A(C )〉F

• We have

〈(F1,F2),A(C )〉F =
1

2
Tr (F1P1CP

∗
1 ) +

1

2
Tr (F2P2CP

∗
2 )

=
1

2
Tr ((P∗1 F1P1 + P∗2 F2P2)C )

= 〈P∗1 F1P1 + P∗2 F2P2,C 〉E

hence

A∗(F1,F2) = P∗1 F1P1 + P∗2 F2P2 = diag (F1,F2)

• The dual problem is

β = sup(F1,F2)∈F 〈(Σ1,Σ2), (F1,F2)〉F
A∗(F1,F2) ≤Sym+(2d) −(P∗2 P1 + P∗1 P2)



W-manifold: Value of the dissimilarity

• The dual problem is

β = sup(F1,F2)∈F (Tr (Σ1F1) + Tr (Σ2F2))[
(−F1) I

I (−F2)

]
∈ Sym+ (2d)

• It holds γ = β

• The optimal value is

W (Σ1,Σ2)2 = Tr (Σ1) + Tr (Σ2)− 2 Tr
(

(Σ
1/2
1 Σ2Σ

1/2
1 )1/2

)
• D. C. Dowson and B. V. Landau. The Fréchet distance between multivariate normal distributions. J.

Multivariate Anal., 12(3):450–455, 1982

• C. R. Givens and R. M. Shortt. A class of Wasserstein metrics for probability distributions. Michigan Math.
J., 31(2):231–240, 1984



Wasserstein Riemannian manifold I

• In M(d) = Rd×d with scalar product

(A,B) 7→ 〈A,B〉2 =

1

2
Tr (AB∗) =

1

2
Tr (B∗A) =

1

2
Tr (BA∗) =

1

2
Tr (A∗B)

the symmetric matrices Sym (d) i.e., A∗ = A, form a vector
subspace whose orthogonal complement is the space of
antisymmetric matrices i.e., A∗ = −A.

• We recall that for A,B ∈ M(d) we have the vectorized form

〈A,B〉2 =
1

2
vec (A)∗ vec (B)

vec (AB) = (I ⊗ A) vec (B) = (B ⊗ I ) vec (A)

• J. R. Magnus and H. Neudecker. Matrix differential calculus with applications in statistics and
econometrics. Wiley Series in Probability and Statistics. John Wiley & Sons, Ltd., Chichester, 1999.
Revised reprint of the 1988 original, §2.4



Wasserstein Riemannian manifold II

• The set Sym++ (d) ⊂ Sym (d) of positive definite matrices is an
open convex cone.

• As a sub-manifold of Sym d its tangent bundle is

T Sym++ (d) =
{

(V ,Z )
∣∣V ∈ Sym++ (d) ,Z ∈ Sym (d)

}
.

• The immersion Sym++ (d)→ Sym (d) induces on each tangent
space TC Sym++ (d) the (trivial) metric.

(C ,H,K ) 7→ 〈H,K 〉C = 〈H,K 〉2 , H,K ∈ Sym (d)

• We are going to use a different contruction as in the example

f : R2 \ (0, 0) 3 (x , y) 7→ x2 + y2 ∈]0,+∞[



Wasserstein Riemannian manifold III

• Let f : H → N be a smooth surjection of from Hilbert space H onto
a manifold N . Assume that for each A ∈ H the tangent mapping at
A, df (A) : H → Tf (A)N , is surjective.

• In such a case, for each C ∈ N , the fiber f −1(C ) is a submanifold.

• Given a point A ∈ f −1(C ), a vector U ∈ H is vertical if it is tangent
to the manifold f −1(A). Each such a tangent vector U is the
velocity at t = 0 of some smooth curve t 7→ γ(t) with γ(0) = A
and γ̇(0) = U. Precisely, from f (γ(t)) = C for all t we derive the
characterisation of vertical vectors. We have dAf (A) = 0 i.e., the
tangent space at A is TAf

−1(f (A)) = Ker(df (A)). Consider the
orthogonal space to the tangent space TAf

−1(f (A)). Such a space
is called the space of horizontal vectors.

HA = Ker(df (A))⊥ = Im (df (A)∗) .

• The notion of submersion is discussed in M. P. do Carmo. Riemannian geometry. Mathematics: Theory &
Applications. Birkhäuser Boston Inc., Boston, MA, 1992. Translated from the second Portuguese edition by
Francis Flaherty, Ch. 8, Ex. 8–10, or S. Lang. Differential and Riemannian manifolds, volume 160 of
Graduate Texts in Mathematics. Springer-Verlag, New York, third edition, 1995, §II.2



Wasserstein Riemannian manifold IV

• The general linear group Gl(d) is an open subset of M(d), which is
an Hilbert space of dimension d × d with the scalar product

〈X ,Y 〉2 =
1

2
Tr (Y ∗X )

• The mapping

σ : Gl(d) ⊂ M(d)→ Sym++ (d) ⊂ M(d)

defined by
A 7→ σ(A) = AA∗

has an obvious meaning for Gaussian distributions: it is the
computation of the covariance matrix Σ = AA∗ of the random
vector X = AZ when Z ∼ N (0, I ).

• As the mapping σ is not 1-to-1 we cannot use A as a parameter.
The choice A = Σ1/2 does not lead to the metric we want.



Wasserstein Riemannian manifold V

• We say that the submersion f is Riemannian if for all A the linear
map df (A) : HA → TCN is an isometry i.e.,

U,V ∈ HA ⇒ 〈dU f (A), dV f (A)〉f (A) = 〈U,V 〉H .

• As a linear isometry is 1-to-1 we can write

X ,Y ∈ TCN ⇒ 〈X ,Y 〉C =〈
df (f −1(C ))

∣∣
Hf−1(C)−1

X , df (f −1(C ))
∣∣
Hf−1(C)−1

Y

〉
H

.

• A Riemannian submersion preserves the length of curves. Let
[0, 1] 3 t 7→ γ(t) be a smooth curve in H and consider its image
[0, 1] 3 t 7→ f (γ(t)). The velocity of the image is
t 7→ df (γ(t))[γ̇(t)] and its length is∫ 1

0

dt 〈df (γ(t))[γ̇(t)], df (γ(t))[γ̇(t)]〉1/2
f (γ(t)) =

∫ 1

0

dt ‖γ̇(t)‖H



Wasserstein Riemannian manifold VI

• The us derive the Wasserstein Riemannian metric by letting the
mapping A 7→ AA∗, A invertible matrix, to be a Riemannian
submersion.

• For each A ∈ Gl(d) the matrix Σ = AA∗ belongs in Sym++ (d) and,
viceversa, each element of Sym++ (d) has such a presentation.

• The mapping σ : Gl(d)→ Sym++ (d) given by σ(A) = AA∗ has
derivative at A in the direction X ∈ M(d) given by

dXσ(A) = XA∗ + AX ∗

• In vectorized form, we can write

dXσ(A) = XA∗ + AX ∗ = bind ((A⊗ I ) vec (X ) + (I ⊗ A) vec (X ∗))

where bind is the inverse of vec.



Wasserstein Riemannian manifold VII
• Let us discuss the problem of defining a metric such as σ is a

Riemannian submersion. The mapping σ : Gl(d) is onto Sym++ (d),
which is an open subset of Sym (d), precisely the interior of the
cone Sym+ (d). The vector space Sym (d) is a sub-vector space of
M(d) with dimension 1

2d(d + 1) that inherits the Hilbert structure
of the super-space.

• Consider the matrix A as a point in the fiber manifold σ−1(AA∗).
The derivative of σ at A in the direction X ∈ M(d) is the symmetric
matrix:

dσ(A)[X ] = XA∗ + AX ∗ ∈ Sym (m) .

• The linear mapping X 7→ XA∗ + AX ∗ is surjective, because for each
W ∈ Sym (d) we can define X = 1

2W (A∗)−1 to satisfy the equation
XA∗ + AX ∗ = W is true. hence, the fiber σ−1(AA∗) is a
submanifold of Gl(d).

• Let us compute the splitting od M(d) into the kernel of dσ(A) and
the horizontal vectors,

M(d) = Ker(dσ(A))⊕HA



Wasserstein Riemannian manifold VIII
• As the vector space tangent to σ−1(AA∗) at A is the kernel of the

derivative at A:

TAσ
−1(AA∗) = Ker(d(A 7→ σ(A))[X ]) =

{X ∈ M(d)|XA∗ + AX ∗ = 0} = {X ∈ M(d)|(AX ∗)∗ = −AX ∗} ,

it consists of all matrices A such that AX ∗ is anti-symmetric.

• A matrix W is horizontal at A if, and only if for each vertical
X ∈ TAσ

−1(AA∗) we have

0 = 〈W ,X 〉2 =
1

2
Tr (X ∗W ) =

1

2
Tr
(
AX ∗WA−1

)
=

1

2
Tr
(
(XA∗)∗(WA−1)

)
=
〈
WA−1,XA∗

〉
2
,

or, equivalently, for each X such that XA∗ is anti-symmetric.

• In conclusion, the vector space of horizontal vectors is

HA = (TAσ
−1(AA∗))⊥ =

{
W ∈ M(d)

∣∣WA−1 ∈ Sym (d)
}
.



Wasserstein Riemannian manifold IX

• Let X ∈ M(d) and consider the decomposition of X = XV + XH

with XV vertical at A and XH horizontal at A. Then
dσ(A)[X ] = dσ(A)[XH ] and the restriction of the derivative dσ(A)
to the vector space HA of horizontal vectors at A is 1-to-1 onto the
tangent space of Sym++ (d) at AA∗, that is Sym (d).

• In such a restriction we have for each W ∈ HA

U = dσ(A)[W ] = WA∗ + AW ∗ = WA−1AA∗ + A(WA−1A)∗

= (WA−1)AA∗ + AA∗(WA−1)∗ = (WA−1)AA∗ + AA∗(WA−1) ,

so that the inverse mapping of the restriction is given by

W =
(
dσ(A)|HA

)−1
(U) = L(U;AA∗)A ,

where L = L(U;C ) is the solution of the Liapunov equation

V = LC + CL, V , L ∈ Sym (d) ,C ∈ Sym++ (d) .



Wasserstein Riemannian manifold X
• The integral form solution is

L(V ;C ) =

∫ ∞
0

dt e−tCV e−tC .

• In vectorized form the Liapunov equation is

vec (V ) = (C ⊗ I + I ⊗ C ) vec (L) ,

hence the solution is

L(V ;C ) = bind
(
(C ⊗ I + I ⊗ C )−1 vec (V )

)
.

• A solution based on the spectral decomposition C = UΛU∗,
Λ = diag (λj : j = 1, . . . , d) and U ∗ U = I . The solution in the U
basis is

(U∗LU) =

[
1

λi + λj

]d
i,j=1

◦ (U∗VU)

• R. Bhatia. Positive definite matrices. Princeton Series in Applied Mathematics. Princeton University Press,
Princeton, NJ, 2007, Ex. 1.2.10.



Wasserstein Riemannian manifold XI
• The mapping

σ : HA 3 B 7→ BB∗ ∈ Sym++ (d) , AA∗ = Σ ∈ Sym++ (d)

is actually globally invertible. For each C ∈ Sym++ (d), the solution
of

C = BB∗ = (BA−1A)(BA−1A)∗ = (BA−1)Σ(BA−1)∗, (BA−1) ∈ Sym (d) ,

is the solution of a Riccati equation,

B = C 1/2(C 1/2ΣC 1/2)−1/2)C 1/2A .

• Let us push-forward the scalar product on HA to TAA∗ Sym++ (d) as

WAA∗(U,V ) =
〈(

dσ(A)|HA

)−1
(U),

(
dσ(A)|HA

)−1
(V )

〉
2

=

〈L(U;AA∗)A, L(V ;AA∗)A〉2 =
1

2
Tr (A∗L(V ;AA∗)L(U;AA∗)A) =

1

2
Tr (L(V ;AA∗)AA∗L(U;AA∗)) ,

which depends on AA∗ only.



Wasserstein Riemannian manifold XII

• We can take A = Σ1/2 and see that, in such a case, W ∈ HA, that
is WA−1 = WΣ1/2 ∈ Sym (d) and, so that

Ui = L(Ui ; Σ)Σ + ΣL(Ui ; Σ), i = 1, 2 , (1)

WΣ(U1,U2) =
1

2
Tr (L(U2; Σ)ΣL(U1; Σ)) . (2)

• Consider the mapping U 7→ L(U; Σ)Σ1/2. It maps the scalar
product wΣ to 〈·, ·〉2:

wΣ(U1,U2) =
〈
L(U1; Σ)Σ1/2, L(U2; Σ)Σ1/2

〉
2



Wasserstein Riemannian manifold XIII
• Let us construct now a Wasserstein geodesics connecting two

matrices Σ0,Σ1 ∈ Sym++ (d). Define the symmetric matrix

T = Σ
1/2
1 (Σ

1/2
1 Σ0Σ

1/2
1 )−1/2Σ

1/2
1 .

The matrix T is the unique solution in Sym+ (d) of the Riccati
equation TΣ0T = Σ1.

• We define a curve in Sym++ (d) connecting Σ0 and Σ1 as follows.
First we define

A0 = Σ
1/2
0 ,A1 = (T − I )Σ

1/2
0 ,

so that A0,A1 ∈ HΣ
1/2
0

because A0(Σ
1/2
0 )−1 = I ∈ Sym (d) and

A1(Σ
1/2
0 )−1 = T − I ∈ Sym (d). It follows that the the strait line

from A0 to A1 belongs to the vector space of horizontal vectors at

Σ
1/2
0 ,

[0, 1] 3 t 7→ A(t) = A0 + tA1 ∈ HΣ
1/2
0
, t ∈ R .

and it is a geodesics in M(d).

• As a consequence, t 7→ Σ(t) = A(t)A∗(t) is a geodesics in the
Wasserstein metric connecting Σ0 to Σ1.



Wasserstein Riemannian manifold XIV

• In conclusion, the curve

t 7→ Σ(t) = A(t)A(t)∗ = (I +t(T−I ))Σ0(I +t(T−I )) ∈ Sym++ (d)

connects Σ0 = Σ(0) to Σ1 = Σ(1) and has minimal length.

• Let us compute the length of the the geodesic t 7→ A(t), t ∈ [0, 1],
which is equal to the Wasserstein distance of Σ0 and Σ1. We have

∥∥∥Ȧ(t)
∥∥∥

2
=

√
1

2
Tr
(
Ȧ(t)(Ȧ(t))∗

)
=

√
1

2
Tr ((T − I )Σ0(T − I )) =√

1

2
(Tr (Σ0) + Tr (Σ1)− Tr (TΣ0)− Tr (Σ0T )) =√

1

2

(
Tr (Σ0) + Tr (Σ1)− Tr

(
(Σ

1/2
1 Σ0Σ

1/2
1 )1/2

))
.



Wasserstein Riemannian manifold XV
• Let us compute the velocity of the geodesics t 7→ Σ(t):

d

dt
Σ(t) = (T − I )Σ0 + Σ0(T − I ) + 2t(T − I )Σ0(T − I ) ,

in particular
Σ̇(0) = (T − I )Σ0 + Σ0(T − I )

• Recall that the linear map Sym (d) 3 A 7→ AΣ0 + Σ0A ∈ Sym (d) is
injective, hence surjective, and that we denote by L(·; Σ0) the
inverse map. From the first Eq. above, we have
T − I = L(Σ̇(0); Σ0), and hence

Σ(t) = Σ0 + t((T − I )Σ0 + Σ0(T − I )) + t2(T − I )Σ0(T − I )

= Σ(0) + tΣ̇(0) + t2L(Σ̇(0); Σ(0))Σ(0)L(Σ̇(0); Σ(0)) .

• Given V ∈ Sym (d) and C ∈ Sym++ (d) we define the Riemannian
exponential to be

ExpC (V ) = C + V + L(V ;C )CL(V ;C ) ,

so that the geodesics is Σ(t) = ExpΣ(0)

(
tΣ̇(0)

)
.



Gradient I

• We have 3 manifold structures on Sym++ (d); Fisher-Rao
Riemannian manifold, Exponential affine manifold, Wasserstein
Riemannian manifold. In each case we have a definition of velocity
Dγ(t) of a curve t 7→ γ(t) ∈ Sym++ (d) and a scalar product on
each of the tangent space TA Sym++ (d), A ∈ Sym++ (d).

• In both the Fisher-Rao and Wasserstein manifold each tangent
space is identified with the Hilbert space Sym (d). In the
Exponential case, each tangent space is a sub-vector space od
codimension 1 of an Hilbert space. Let us denote by T the vector
space containing all tangent spaces.

• A smooth mapping X : Sym++ (d)→ T such that
f (A) ∈ TA Sym++ (d), A ∈ Sym++ (d), is a section or vector field
or estimating function.

• Given a vector field X , consider the differential equation

Dγ(t) = X (γ(t)), γ(0) = A

This defines the flow of X .



Gradient II

• Let f : Sym++ (d)→ R be a smooth function. For each smooth
curve t 7→ γ(t) the real runction t 7→ f (Σ(t)) is differentiable. The
natural gradient is the vector field grad f such that for all smooth
function f and all smooth curve γ we have

d

dt
f (γ(t)) = 〈grad f (γ(t),Dγ(t)〉γ(t)

• Given A ∈ Sym++ (d) and V ∈ TA Sym++ (d) let γ be a smooth
curve such that γ(0) = A and Dγ(0) = V . Then

〈grad f (A),V 〉A =
d

dt
f (γ(t))

∣∣∣∣
t=0

• The gradient flow of f is the flow of grad f . Each trajectory is a
solution of

Dγ(t) = grad f (γ(t))



Gradient III

• In both Fisher-Rao and Wasserstein the velocity is the ordinary
derivative, Dγ(t) = γ̇(t), hence

d

dt
f (γ(t)) = df (γ(t))[γ̇(t)] = 〈∇2f (γ(t)), γ̇(t)〉2

where ∇2 is the gradient with respect to the scalar product 〈·, ·〉2.

• We can express the Fisher metric with the 2-metric:

〈∇2f (γ(t)),Dγ(t)〉2 =
1

2
Tr (∇2f (γ(t))Dγ(t))

1

2
Tr
(
γ(t)−1γ(t)∇2f (γ(t))γ(t)γ(t)−1Dγ(t)

)
=

Fγ(t)(γ(t)∇2f (γ(t))γ(t),Dγ(t))

In this case
grad f (Σ) = Σ∇2f (Σ)Σ



Covariant derivative I
• Given two smooth vector fields X and Y the covariant derivative is

a vector field DXY which has the properties of a derivation of Y in
direction of X . The manifold structure does not define uniquely a
covariant derivative.

• When Y = grad f , then we define the Hessian as
HessX f = DX gradF .

• When Y (γ(t)) = Dγ(t), then DDγ(t)Y (γ(t)) is the accelleration of
the curve γ. By identifying curves with 0 accelleration, we can
compute relevant Taylor formulæ.

• In the case of both the Fisher-Rao and the Wasserstein Riemannian
structure, it is natural to use the Levi-Civita covariant derivative
which has the property “derivative of the product”:

d

dt
〈Y (γ(t)),Z (γ(t))〉γ(t) =〈

Dγ̇(t)Y (γ(t)),Z (γ(t))
〉
γ(t)

+
〈
Y (γ(t)),Dγ̇(t)Z (γ(t))

〉
γ(t)

• Levi-Civita connections are computed explicitely from derivation of
the left-end side.



Covariant derivative II

• In the case of the Exponential manifold, it is more appropriate to
use a different approach, using the transports eUB

A , mUB
A ,

A,B ∈ Sym++ (d).

• The velocity at t + h, Dγ(t + h) of the curve γ belongs to
Sγ(t+h) Sym++ (d) 6= Sγ(t) Sym++ (d), so we define the accelleration
to be

lim
h→0

h−1
(
eUγ(t)

γ(t+h)Dγ(t + h)− Dγ(t)
)

or
lim
h→0

h−1
(
mUγ(t)

γ(t+h)Dγ(t + h)− Dγ(t)
)
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• L. Malagò and G. Pistone. Second-order optimization over the multivariate gaussian distribution. In
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