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Introduction

This talk is about a construction of probability density functions
supported on closed and bounded star domains.

Figure: A “natural” closed and bounded star domain: the starfruit.

The construction exploits tools from numerical computational algebra.
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Probability density functions on bounded star domains

The density function defined here is represented by three equations.

Let Ω ⊂ Rn be a bounded star domain s.t. its frontier is described by
f (x0) = 0, with f polynomial, and let g be a non negative continuous
function. Let Σ be a surface in Rn+1 defined by

x = z + s(x0 − z)

f (x0) = 0

xn+1 = g(s)

with s ∈ [0, 1] (1)

If the surface Σ and the star domain Ω bound a region D ⊂ Rn+1 s.t.
Vol(D) = 1, then (1) defines a probability density function.
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Star domains

Let Ω ⊂ Rn be a star domain, that is there exists (a vantage point)
z ∈ Ω s.t. ∀x ∈ Ω the segment from z to x is contained in Ω.
Let f be a polynomial s.t. f (x0) = 0 bounds the star domain Ω.

The parametric description of Ω w.r.t. the vantage point z is given by{
x = z + s(x0 − z)

f (x0) = 0
with s ∈ [0, 1]

Example: Star-shaped set with boundary given by{
(x1, x2) ∈ R2 : (x2

1 + x2
2 − 1)3 − x2

1x
3
2 = 0

}
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Choice of the probability density function g

Probability density function:
x = z + s(x0 − z)

f (x0) = 0

xn+1 = g(s)

with s ∈ [0, 1]

The function g is strictly decreasing in [0, 1], with g(1) = 0, highest value
g(0) and the level curves of Σ are contractions of Ω.

Cone: gc(s) =
n + 1

Vol(Ω)
(1− s).

Paraboloid: gp(s) =
n + 2

2 Vol(Ω)
(1− s2).

Ellipsoid: ge(s) =
2

B
(
n
2 + 1, 1

2

)
Vol(Ω)

√
1− s2.
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Mixture of probability density functions

Starting from gc , gp and ge a new probability density function supported
on Ω is

x = z + s(x0 − z)

f (x0) = 0

xn+1 = αgc(s) + βgp(s) + (1− α− β)ge(s)

s ∈ [0, 1]

where α, β ∈ [0, 1] and α + β ≤ 1.

The xn+1 component is a decreasing function of s ∈ [0, 1].
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PolyStar classification algorithm

Given a finite set of labelled points in Rn partitioned in k categories, the
classification PolyStar algorithm consists of two parts:

model construction: for each j = 1, . . . , k we construct the system
x = zj + sj(x0 − zj)

fj(x0) = 0

xn+1 = gj(sj)

with sj ∈ [0, 1]

point classification: the point x is
allocated to the category j for which gj(sj(x)) is largest and positive
and
not classified if there are ties or all gj are negative or complex numbers.

Different allocation criteria: x is assigned to the cluster j s.t.

wj gj (s(x))∑k
j=1 wj gj (s(x))

is largest.
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Model construction

For each j , the construction of the system
x = zj + sj(x0 − zj)

fj(x0) = 0

xn+1 = gj(sj)

with sj ∈ [0, 1]

requires

a boundary polynomial fj for Ωj (a-priori known or estimated
processing a finite set of boundary points by NBM, LDP...),

a (given or estimated) vantage point zj ,

a probability density function gj and

the computation of Vol(Ωj) (invariant by the choice of zj) for
normalising gj .

The performance of PolyStar will be strongly effected by the choice of the
vantage point.
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Point classification


x = zj + sj(x0 − zj)

fj(x0) = 0

xn+1 = gj(sj)

with sj ∈ [0, 1]

The classification of a single point x ∈ Rn requires, for each j = 1, . . . , k ,

the computation of sj(x) and

the evaluation of the univariate function gj(sj(x)).

The value sj(x) is the Minkowski functional of x w.r.t. Ωj .
Since x0 = zj + (x − zj)/sj(x), we have

fj(x0) = 0 ⇔ fj(zj + (x − zj)/sj(x)) = 0

and so we compute sj(x) applying a root finding method to the univariate
equation fj(zj + (x − zj)/sj(x)) = 0.
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Computational cost

The construction of the model is done once.
For each j , the computational cost is close to O(#I 2

j ), for low degree
polynomial computed using the NBM algorithm.

The classification of a point x ∈ Rn requires, for each j , the
computation of sj(x) and of gj(sj(x)).
The computational cost of a root finding (as the Newton method)
applied to fj(zj + (x − zj)/sj(x)) = 0 is O(dj) where dj is the total
degree of fj . The computational cost for gj(sj(x) is linear in the
degree of gj .
If gj are low degree polynomials, then the computational cost for the

classification of a point x is kO(d̂) where d̂ = maxj∈{1,...,k}{dj}.
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Calibration

At times it might be needed a dilation of Ω, for instance for reducing the
number of non classified points.
Given ε > 0 and z ∈ Rn, the dilation function dε,z(x) = z + (1 + ε)(x − z)
defines the set

dε,z(Ω) = {x̃ = dε,z(x), x ∈ Ω} = {(1 + ε)x : x ∈ Ω} = (1 + ε)Ω

It is a dilation of Ω, a star domain with vantage point z and its volume is
(1 + ε)n Vol(Ω).

We work over dε,z(Ω) recycling the computations done for the original Ω.
Starting from x , we compute the point d−1

ε,z (x) ∈ Ω and its Minkowski
functional s w.r.t. Ω. The probability density function over dε,z(Ω) is
given by

xn+1 =
g(s)

(1 + ε)n
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A simulative example: blue and red hearts

(a) b=0 (b) b=0.5 (c) b=1

(d) b=1.5 (e) b=2 (f) b=2.5

C. Fassino (Univ. Genova) Classification in star domains 12 / 18



A simulative example: blue and red hearts

Let ΩB be the star domain bounded by (x2
1 + x2

2 − 1)3 − x2
1x

3
2 = 0

and with z = 0.

ΩB,b is obtained by translating ΩB along the x2-axis in such a way
that the vantage point becomes (0, b) with b ∈ {0, 0.5, 1, 1.5, 2, 2.5}.
ΩR is obtained by rotating ΩB clockwise by π/4.

Since ΩR and ΩB,b have the same volume, for classifying a single point we
only have to compare the s-values associated to each heart. It does not
matter which surface g we use as long as it is the same for both clusters.

The further apart are the two hearts, the better is the classification.

A dilation ε = 0.3 is applied to ΩR and ΩB,b or to none. Dilation improves
classification and reduces drastically the number of NC points.
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A simulative example: blue and red hearts

ε = 0 ε = 0.3

Cluster Exact Wrong NC Exact Wrong NC

ΩR 55.3 40.8 3.9 58.7 40.8 0.5
ΩB,0 57.2 38.1 4.7 61.1 38.9 0

ΩR 68.4 26.5 5.1 72.9 26.6 0.5
ΩB,0.5 67.6 27.2 5.2 71.8 28.2 0

ΩR 81.1 12.6 6.3 86.3 13.2 0.5
ΩB,1 78.9 14.5 6.6 85.1 14.7 0.2

ΩR 86.6 4.8 8.6 93.9 5.6 0.5
ΩB,1.5 86.6 2.9 10.5 95.9 3.9 0.2

ΩR 88.5 0 11.5 99.0 0 1
ΩB,2 87.7 0 12.3 99.3 0.5 0.2

ΩR 88.5 0 11.5 99.0 0 1
ΩB,2.5 87.6 0 12.4 99.8 0 0.2

Table: Percentages of points classified correctly (Exact), attributed to the wrong
set (Wrong), or not classified (NC).

C. Fassino (Univ. Genova) Classification in star domains 14 / 18



Example: colours

Figure: Left plot [4] shows the picture of 13 chickpeas of different colours,
labelled a, b, f ,m, n, o, q, r , v , w , x , y , z . Using the CIELAB model, 500 points of
R2 were sampled for each colours.
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Example: colours

For each j : Ωj is bounded by an ellipsis and the density function gj is a
mixture, that is gj = αgc + βgp + (1− α− β)ge .

NBM

ε (α, β) SR min NC

0 (0, 0.7) 83.8 64.6 3.9
0 (0.5, 0.3) 83.6 69.4 3.9

0.1 ( 0 , 0.9) 85.1 64.8 2.0
0.1 (0.7, 0.2) 84.9 70.4 2.0

0.2 (0.1, 0.9) 85.9 63.2 1.0
0.2 (1, 0) 85.7 70.4 1.0

For each ε the values of (α, β) are s.t. either the mean success rate (SR)
or the minimum of the correct classification rates (min) are maximum.
NC depends only on the dilation parameter because the NC points are
those outside the star domain basis.
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Example: Comparison with the benchmark method k-NN

The true advantage PolyStar has over the other methods is its
computational cost.
The cost of classifying a point PolyStar requires 13O(d̂) (d̂ = 2 for an
elliptical basis).
The k-NN algorithm for each single point requires

for k = 1: O(2v) and

for k = 5, 10: O(vk)

where v is the size of the training set.

Alg. SR min

1-NN 89 50
5-NN 89 70
10-NN 88 70

PolyStar1 85.9 63.2
PolyStar2 85.7 70.4
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