
Semiparametric Bayesian multivariate models for
extreme exceedances

Manuele Leonelli, Dani Gamerman

Instituto de Matematica, Universidade Federal do Rio de Janeiro

Genova, 12/09/2016



Plan for this talk

Motivation

Background:
I Univariate extreme value theory
I Multivariate extreme value theory
I Copulae

Our proposed models

Simulations

An hydrological application



Motivation

Precise knowledge and predicting capabilities for extremes are fundamental
in many disciplines:

Environmental sciences

Finance and actuarial science

Engineering and reliability

Evidence of increasing occurrence of extremes and larger insurance and
economic losses.

Assessment of extreme dependence is often critical:

sea level and wave height

concentration of O3 and NO2



Contributions

Standard statistical methods do not guarantee precise extrapolations
towards the tail of the distribution where little, if no, data is available =⇒
extreme value theory.

For multivariate extremes these rely on highly technical results and are not
widely available for use.

We introduce here easily interpretable and flexible multivariate models to
investigate both marginal and joint extreme behaviour.

Inference is carried out within the Bayesian paradigm using the MCMC
machinery.



Univariate EVT: result 1

Let X1, . . . ,Xn i.i.d r.v.s and Mn = max{X1, . . . ,Xm}. If there exist
sequences an ∈ R>0 and bn ∈ R, then

lim
n→∞

P ((Mn − bn)/an ≤ x) = H(x),

where H is a generalized extreme value distribution

H(x |ξ, σ, u) = exp
{
− (1 + ξ(x − u)/σ)−1/ξ

}

Inference carried over sub-sample maxima.



Univariate EVT: result 2

Let X have d.f. F . Then

lim
u→∞

F (x |u) = P(X ≤ x + u|X > u) = P(x),

where P(x) is the d.f. of a generalized Pareto

P(x |ξ, σ, u) =

{
1− (1 + ξ

σ (x − u))−1/ξ, ξ 6= 0
1− exp(−(x − u)/σ), ξ = 0

ξ is the shape, σ the scale and u the threshold.

If ξ ≥ 0, x ∈ (u,∞), but if ξ < 0, x ∈ (u, u − σ/ξ).



Fitting a GPD: NO2 data
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Fitting a GPD: Simulated data
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Fitting a GPD: Simulated data
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Fitting a GPD: Mixture modelling
Two major drawbacks with standard techniques:

Most of the data is not formally used for inference

Arbitrary choice of the threshold

An alternative is a so-called extreme mixture model

GPD parametric model for the tail

An uncertain threshold

A non-parametric model for the bulk



Multivariate extremes

Let X1, . . . ,Xn be i.i.d d-dimensional random vectors with
Xi = (Xi ,1, . . . ,Xi ,d) and

Mn = ( max
1≤i≤n

X1,i , . . . , max
1≤i≤n

Xd ,i )

If there are sequences an > 0 and bn ∈ Rd such that

lim
n→∞

P
(
Mn − bn

an
≤ x

)
= G (x)

then G is the d.f. of a multivariate extreme value distribution.
The marginals of G are univariate extreme value distributions.



Multivariate extremes

Suppose Gi is unit Fréchet, i.e. Gi (x) = exp(−1/x). Then

G (x) = exp(−V (x))

where

V (x) = d

∫
Sd

max
i=1,...,d

ωi

xi
dH(w),

Sd is the unit simplex and H is a positive finite measure satisfying∫
Sd

widH(w) =
1

d
, ∀i = 1, . . . , d .

V is the exponent measure and H is the spectral measure.



Fitting multivariate extremes

As in the univariate case data above some threshold is supposed extreme
and formally used for inference.

Various approaches:

Parametric:
I for the exponent measure (simpler but less flexible) Coles and Tawn

1991, 1994; Jaruskova 2009; Joe 1990;
I for the spectral measure (computationally more intensive) Ballani and

Schlather 2011; Boldi and Davison 2007; Cooley et al. 2010;

Nonparametric modelling of the spectral measure (almost exclusively
non-Bayesian) Guillotte et al. 2011;.

Motivated by different theoretical justifications Bortot et al. 2000;
Heffernan and Tawn 2004; Ramos and Ledford 2009;.

In all cases some initial non-parametric data transformation is performed
(via ECDF)



Multivariate thresholds
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Asymptotic independence

Let G be a bivariate EVD for the maxima of (X1,X2). Then if

G (x1, x2) = G (x1)G (x2)

X1,X2 are said to be asymptotically independent.
This can be checked by computing

χ̄ = lim
u→1

P(F1(X1) > u|F2(X2) > u).

If χ̄ = 0 =⇒ asymptotic independence
If χ̄ ∈ (0, 1] =⇒ asymptotic dependence

If X1,X2 ∼ N , cor(X1,X2) = ρ 6= 0, then

lim
u→1

P(F1(X1) > u|F2(X2) > u) = 0.



Copulae

A copula C is a flexible tool to construct multivariate distributions with
given margins. Let X1, . . . ,Xd be r.v.s with d.f.s F1, . . . ,Fd .
A copula C is a function C : [0, 1]d → [0, 1] s.t.

F (x1, . . . , xd) = C (F1(x1), . . . ,Fd(xd))

Sklar’s theorem guarantees there always exists one such copula;

If X1, . . . ,Xd are continuous C is unique;

C is a d.f. in [0, 1] itself;

separate marginal and dependence modelling.



Copula density

Since C is a d.f. in [0, 1]d it has a density

c(u1, . . . , ud) =
d

du1 · · · dud
C (u1, . . . , ud),

and thus

f (x1, . . . , xd) = c(F1(x1), . . . ,Fd(xd))f1(x1) · · · fd(xd).



Construction of copulae

Sklar’s theorem guarantees that

F (x1, . . . , xd) = C (F1(x1), . . . ,Fd(xd)).

Calling ui = Fi (xi ), we have that xi = F−1i (ui ) and thus substituting

C (u1, . . . , ud) = F (F−11 (u1), . . . ,F−1d (ud)).

Often F is chosen to be an elliptical distribution. For example Gaussian

C (u1, . . . , ud) = ΦR(Φ−1(u1), . . . ,Φ−1(ud)),

where Φ is the standard normal d.f. and ΦR is the multivariate d.f. with
mean zero and correlation R.
But also Skew-Normal, T, Skew-T: Elliptical copulae.



Asymptotic behaviour
Recall, asymptotic dependence can be assessed by

χ̄ = lim
u→1

P(F1(X1) > u|F2(X2) > u)

Other measure is the sub-asymptotic dependence coefficient

χ̄sub = lim
u→1

2 logP(F1(X1) > u)

logP(F1(X1) > u,F2(X2) > u)
− 1 ∈ (−1, 1]

For Normal and skew-Normal χ̄ = 0 and χ̄sub ∈ (−1, 1)

For T and skew-T χ̄ ∈ (0, 1] and χ̄sub = 1.
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General idea

We build new models for multivariate extremes that

marginally utilize flexible extreme mixture models

exploit the flexibility of copulae to model dependence

assess extreme dependence from the chosen copula

formally utilize all data available



Marginal MGPDs

Marginally we use the MGPD model (Nascimento et al. 2012)

mixture of gammas for the bulk (Wiper et al. 2001)

GPD for the tail

f (x |·) =

{ ∑k
i=1 wigi (x |µi , ηi ), x ≤ u,(

1−
∑k

i=1 wiGi (x |µi , ηi )
)
p(x |ξ, σ, u), x > u

where p is the density of a GPD,
∑k

i=1 wi = 1, with wi ≥ 0, and Gi is the
d.f. of a Gamma with density

gi (x |µi , ηi ) =
(ηi/µi )

ηi

Γ(ηi )
xηi−1 exp(−(ηi/µi )x)

Parametrization chosen to address identifiability issues of mixtures.



Joint modelling

The full model is chosen as a mixture of elliptic copulas with MGPD
margins.

f (x |·) =
r∑

i=1

ωici (F1(x1), . . . ,Fd(xd))f1(x1) · · · fd(xd),

where fi is MGPD, ci is a copula density and
∑r

i=1 ωi = 1, ωi ≥ 0.

So for example if Gaussian

f (x |·) =
r∑

i=1

ωic
gauss
i (F1(x1), . . . ,Fd(xd))f1(x1) · · · fd(xd)

where cgaussi (u1, . . . , ud) = |Ri |−1/2 exp
(
−1

2y
T(R−1i − Id)y

)
, with

yT = (Φ−1(u1)), . . . ,Φ−1(ud)).



Some restrictions

For T copulas each mixture component has the same degrees of
freedom (∈ R+)

For skew-Normal copulas each mixture component has the same
skewness parameters

For skew-T copulas we consider one single copulas with integer
degrees of freedom

one correlation parameter ρi for each mixture component. For
identifiability ρ1 < ρ2 < · · · < ρr .



Priors

µij , ηij vague Inverse Gamma and Gamma respectively

ξi , σi uninformative prior π(ξi , σi ) ∝ σ−1i (1 + ξi )
−1(1 + 2ξi )

−1/2

(Castellanos and Cabras, 2007)

ui Normal distribution with prior mean around a high sample quantile

ρi and δi1, δi2 (skewness parameters) U(−1, 1)

v (integer) zero-truncated Poisson with mean 25

v (positive) uninformative prior (Fonseca et al. 2008)

π(v) ∝
(

v

v + 3

)1/2(
φ(v/2)− φ((v + 1)/2)− 2(v + 3)

v(v + 1)2

)1/2

,

where φ is the trigamma function.



Inference

Inference is carried out via MCMC with Metropolis-Hastings steps

Implementation in OX

Variances of the proposals are tuned via adaptive M-H

Proposals:

I Gamma for parameters in R+

I Truncated normal for parameters taking values in continuous spaces

I a discrete uniform in {v − 2, v − 1, v , v + 1, v + 2} for integer v .

25000 iterations, 5000 burn-in and thinning every 20 iterations (giving
an MCMC sample of 1000 observations)

Number of Gamma mixture components was chosen via investigation
of the marginals and then held fixed



Inference

Since inference is via MCMC, we can compute posterior point estimates
and credibility intervals for any function of the parameters.

For extremes, interest is on

high marginal p-quantiles qi s.t. P(Xi > qi ) = p

qi = ui +
σi
ξi

[(
1− p − Fi (ui |·)

1− Fi (ui |·)

)−ξi
− 1

]
,

where Fi is the d.f. of the MGPD

Joint exceedances

P(X1 > x1,X2 > x2) = 1− F1(x1|·)− F2(x2|·)

+
r∑

i=1

ωiCi (F1(x1|·),F2(x2|·))



Predictions

For a parameter vector y , the density of a new observation y given a
sample x equals

f (y |x) =

∫
f (y ,θ|x)dθ =

∫
f (y |θ)π(θ|x)dθ = Eθ|x(f (y |θ))

This expectation has no closed-form but can be approximated via Monte
Carlo

f̂ (y |x) =
1

J

J∑
i=1

f (y |θ(i)),

where θ(i) is a value sampled from π(θ|x).

Thus we can straightforwardly produce predictions for high quantiles.



Simulation study

We simulated 1000 observations from 8 models, 4 asymptotically
dependent and 4 asymptotically independent:

Mixture of 2 T-copulae with MGPD margins

Mixture of 2 Gaussian copulae with MGPD margins

Skew Normal copula with MGPD margins

Skew-T copula with MGPD margins

Morgenstern copula with lognormal-GPD margins

Asymmetric logistic copula with lognormal-GPD margins

Cauchy copula with lognormal margins

Bilogistic copula with lognormal margins



Model selection: copulae weights

Weights of unnecessary components equal to zero
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Model selection: asy. dep. vs indep.

We are able to identify the right number of components

These can give an indication of extreme behavior

Gaussian Student-T Skew-Normal

Cauchy 2 1 2
Asy. log. 1 1 1

Skew T 2 1 2
2-T 2 2 2

Bilogistic 1 1 1

Morgenstern 1 1 1

Skew-Normal 1 1 1

2-Gauss 2 2 2



Model selection: degrees of freedom

T1 T2 ST

Cauchy (1) 0.95 (0.82,1.10) 1 (1,1)

Asy. log. 7.32 (4.42,16.07) 9 (4,22)

Skew T (5) 5.63 (3.86,9.36) 6 (4,12)

2-T (6) 2.35 (1.89,3.08) 9.83 (3.60,52.1) 3 (2,3)

Bilogistic 7.11 (4.33,14.6) 18 (6,29)

Morgenstern 38.8 (13.0,155) 20 (13,29)

Skew-Normal 28.9 (12.2,136) 1 19 (12,29)

2-Gauss 3.22 (2.46,4.50) 16.51 (5.83,141) 4 (3,6)



Model selection: BIC/DIC

2 Gaussian copulae

Ind. G1 G2 T1 T2 SN1 SN2 ST1

BIC 10285 9998 9973 9884 9668 10050 9986 9718

DIC 10033 9680 9604 9657 9635 9693 9612 9632

Skew-T copula

Ind. G1 T1 SN1 ST1

BIC 11083 10846 10774 10279 10278
DIC 10930 10705 10434 9865 9999

Cauchy copula

Ind. G1 G2 T1 SN1 SN2 ST1

BIC 9158 8923 8972 8953 8938 8988 8940

DIC 9260 9072 8928 9078 9091 8932 8934
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Rivers in Puerto Rico
Dataset: 2492 weekly maxima of Espiritu Santo and Fajardo rivers

Randomly selected 1492 observations to fit the models

1000 observations to investigate the models’ prediction power

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
● ● ●

●

●

●
●

●
●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●
●●

●●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●
●

●

● ●●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●
●
●

●

●●

●

● ●

●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●

● ●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
● ● ●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●
●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●

●

●
●●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●
●●

●

●

●
●

●

●● ●● ●

●

●
●

●

●

●●
●

● ●

●

●

●

●
●●

●●

●
●

●

●

●

●

●
●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
● ●●

●

● ● ●

●

●
●

●
●

●

●
●

● ●●● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●
●●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

● ●● ●
●

● ●

●

●
●●

●

●

●
●

●

●

● ●

●

●●●
● ●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●●
● ●

●

●
● ●●

●

●

●

●

●●
●

●

●
●

●
●

●

●

● ●

●

●
●

●

●
●

●
●

●

●

●

●
● ●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●
●●

●

●●

●

●

●

●● ●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●
●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●●●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●
●

●

● ●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●● ●

●●
● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●●

●

●

●

●

●

●

●
●●

●● ●●

●

● ●●

●

●

●

●●

●

●

●

●●●
●

●

●

●●

●

●

● ●

●
●

●
●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●
●

● ●

●

●●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●●
●● ●

●

●

●
●

●

●●

●●

●

●

●
●●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●
● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●●●●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

● ●●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●
●

●●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

0 500 1000 1500 2000 2500

0
10

00
20

00
30

00
40

00

Espiritu Santo

Fa
ja

rd
o



Marginals

Ind. G2 T1 SN2 ST1

ξ1 0.26 (0.13,0.43) 0.19 (0.08,0.34) 0.22 (0.11,0.35) 0.18 (0.06,0.30) 0.20 (0.09,0.34)

ξ2 0.34 (0.15,0.62) 0.27 (0.12,0.48) 0.32 (0.16,0.51) 0.27 (0.11,0.49) 0.28 (0.14,0.51)
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Model selection

T degrees of freedom 5.31 (3.78,7.91), Skew T degrees of freedom 10
(6,22);

Mixture of 2 Gaussian/ Skew Normal copulae vs 1 T copula

BIC/DIC

Ind. G1 G2 T1 SN1 SN2 ST1

BIC 40753 39518 39496 39445 39538 39495 39518

DIC 40765 39747 39618 39494 39896 39487 39593



Extremes’ prediction

Espiritu

Prob. Emp. Ind. G2 T1 SN2

0.90 [402,404] 368 (335,405) 378 (345,413) 373 (343,410) 379 (312,447)

0.95 [570,572] 551 (497,610) 554 (506,608) 554 (509,611) 553 (472,645)

0.99 [1080,1120] 1128 (971,1354) 1061 (953,1235) 1092 (975,1262) 1047 (913,1249)

0.999 [2180,2280] 2527 (1850,3971) 2115 (1707,2999) 2277 (1816,3112) 2038 (1645,2846)

Fajardo

Prob. Emp. Ind. G2 T1 SN2

0.90 [441,441] 448 (395,492) 448 (402,493) 444 (396,491) 450 (401,496)

0.95 [610,629] 663 (599,747) 659 (602,732) 660 (599,734) 664 (601,739)

0.99 [1300,1370] 1421 (1207,1732) 1341 (1184,1560) 1388 (1214,1632) 1345 (1167,1592)

0.999 [2610,8800] 3564 (2536,6458) 2999 (2352,4418) 3379 (2586,4989) 2983 (2322,4627)

Joint

Point Prob. Ind. G2 T1 SN2

(305,300) 0.10 0.023 (0.019,0.027) 0.093 (0.082,0.11) 0.092 (0.081,0.11) 0.094 (0.075,0.114)
(475,470) 0.05 0.006 (0.005,0.008) 0.042 (0.035,0.051) 0.043 (0.036,0.052) 0.045 (0.035,0.057)
(850,850) 0.01 0.0006 (0.0004,0.0009) 0.01 (0.008,0.014) 0.012 (0.009,0.015) 0.0097 (0.0065,0.0137)

(2000,2500) 0.001 5.0e-6 (1.5e-6,1.4e-5) 0.0004 (0.0002,0.0009) 0.0008 (0.0004,0.0016) 0.0005 (0.0002,0.0010)



Discussion

We have introduced novel multivariate models for extremes that

do not require a pre-specified threshold

utilize all the data points

assess extreme dependence and can take into account asymptotic
independence

exploit the Bayesian paradigm to provide estimates and predictions of
high quantiles

and explored their performance for estimation and prediction with both
synthetic and real datasets.



Extensions

Extensions into higher dimensions:

I Identifiability constraint for matrices

I Use of vine copulae

Combination of a copula for the bulk and a parametric model of the
spectral measure for the ”tail”

Use of covariates, time-dependent copulae, Markov switching models
etc...

Thanks for your attention!
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