An algebraic characterisation of staged trees

Christiane Görgen
and Jim Q. Smith

Genova - May 18, 2015

The Christchurch Health \& Development Study

Fergusson et al. (1986). Cowell and Smith (2015).

1 What do staged tree models look like?

2 How can we characterise a class of statistically equivalent staged trees?

3 Can we give a causal interpretation to the directionality of a tree graph?

Ingredients

for a staged tree statistical model

- a tree graph
- edge labels
- sum-to-1 conditions
- stage constraints

Formalisation

A tree model (represented by a staged tree) is the class of all distributions which 'factorise according to the tree'.

$$
\mathbb{P}=\left\{\boldsymbol{\pi} \mid \boldsymbol{\pi}(\lambda)=\prod_{e \in E(\lambda)} \theta(e) \text { for all atoms } \lambda\right\}
$$

Coin-toss example

$$
\mathbb{P}=\left\{\left(\theta^{2}, \theta(1-\theta), 1-\theta\right) \mid \quad \theta \in(0,1)\right\}
$$

Coin-toss model

$$
\boldsymbol{\pi}_{\theta}=\left(\theta^{2}, \theta(1-\theta), 1-\theta\right)
$$

Usefulness of staged trees

Discrete graphical models with many advantages:

- highly expressive depiction of events
- easy to communicate
- can depict (context-specific) conditional independences \rightsquigarrow more general than BNs
- useful for asymmetric modelling situations
- model selection and learning techniques \rightsquigarrow chain event graphs

When are two trees statistically equivalent?

represent the same model/ equivalent distributional assumptions
\rightsquigarrow identified atoms have equal probabilities

- polynomial equivalence (same parametrisation)
- statistical equivalence

Linking a tree graph and a polynomial

Proposition Every staged tree is in 1-to-1 correspondence with a nested polynomial

$$
c_{\mathcal{T}}(\boldsymbol{\theta})=\sum_{v_{1} \in \operatorname{ch}\left(v_{0}\right)} \theta\left(v_{0}, v_{1}\right)\left(\sum_{v_{2} \in \operatorname{ch}\left(v_{1}\right)} \theta\left(v_{1}, v_{2}\right)\left(\cdots\left(\sum_{v_{k} \in \operatorname{ch}\left(v_{k-1}\right)} \theta\left(v_{k-1}, v_{k}\right)\right)\right)\right)
$$

Nesting a polynomial is not unique

Look for possible factorisations within the polynomial:

$$
\left(\theta_{1}+\theta_{2}\right)\left(\theta_{3}+\theta_{4}+\theta_{5}\right)
$$

Swap operator

distributive law on the polynomial \longleftrightarrow local graph changes
changing the order of parameters changes the order of events and vice versa

Lemma
Polynomial equivalence \Rightarrow statistical equivalence.

Swaps and arc reversals

Consider

$$
X_{1} \longrightarrow X_{2} \longrightarrow X_{3}
$$

with probability mass function $p\left(x_{1}, x_{2}, x_{3}\right)=\theta\left(x_{1}, x_{2}\right) \theta\left(x_{2}, x_{3}\right)$ so

$$
c(\boldsymbol{\theta})=\sum_{x_{1}, x_{2}, x_{3}} \theta\left(x_{1}, x_{2}\right) \theta\left(x_{2}, x_{3}\right)
$$

Nestings of $\sum_{x_{1}, x_{2}, x_{3}} \theta\left(x_{1}, x_{2}\right) \theta\left(x_{2}, x_{3}\right)$ include

$$
\begin{aligned}
& =\sum_{x_{1}, x_{2}} \theta\left(x_{1}, x_{2}\right)\left(\sum_{x_{3}} \theta\left(x_{2}, x_{3}\right)\right) \\
& \text { or } p_{12}\left(x_{1}, x_{2}\right) p_{3}\left(x_{3} \mid x_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{x_{2}, x_{3}} \theta\left(x_{2}, x_{3}\right)\left(\sum_{x_{1}} \theta\left(x_{1}, x_{2}\right)\right) \\
& \text { or } p_{23}\left(x_{2}, x_{3}\right) p_{1}\left(x_{1} \mid x_{2}\right) \\
& \text { (0, }
\end{aligned}
$$

so $X_{1} \longrightarrow X_{2} \longrightarrow X_{3}$ becomes $X_{1} \longleftarrow X_{2} \longleftarrow X_{3}$.

Independence and orders

Consider

$$
X_{1} \longrightarrow X_{3} \longleftarrow X_{2}
$$

with probability mass function
$p\left(x_{1}, x_{2}, x_{3}\right)=\theta\left(x_{1}\right) \theta\left(x_{2}\right) \theta\left(x_{1}, x_{2}, x_{3}\right)$ so

Polynomial equivalence is not everything

Remember

$$
X_{1} \longrightarrow X_{2} \longrightarrow X_{3}
$$

so $p\left(x_{1}, x_{2}, x_{3}\right)=\theta\left(x_{1}\right) \theta\left(x_{1}, x_{2}\right) \theta\left(x_{2}, x_{3}\right)$ and

Resize operator

substituting monomial terms \longleftrightarrow shortening subtrees
algebraic operation: monomial or rational map on the polynomial

BN-analogue: clique-parametrisation in decomposable graphs

Theorem

Between every two statistically equivalent staged trees there is a map which is a composition of swaps and resizes, and vice versa.

Görgen and Smith (2015). arXiv:1512.00209v2 [math.ST].

CHDS again

CHDS' statistical equivalence class

- create new variables: access to credit
- context-specific changes of the orders of events
- in all representations of the model: hospital admissions before life events \rightsquigarrow putative causal interpretation

Ongoing research

- CoCoA code which performs the swap/resize of a polynomial (with Eva Riccomagno and Anna Bigatti)
- causal discovery algorithm
- algebro-geometric characterisation of a staged tree model

Thanks for your attention!

