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The Christchurch Health & Development Study
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Fergusson et al. (1986). Cowell and Smith (2015).
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1 What do staged tree models look like?

2 How can we characterise a class of statistically equivalent
staged trees?

3 Can we give a causal interpretation to the directionality of a
tree graph?
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Ingredients

for a staged tree statistical model

• a tree graph

• edge labels

• sum-to-1 conditions

• stage constraints
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Formalisation

A tree model (represented by a staged tree) is the class of all
distributions which ‘factorise according to the tree’.

P = {π | π(λ) =
∏

e∈E(λ)

θ(e) for all atoms λ}
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Coin-toss example

v0

v1

v2

v3

v4

θ heads

1− θ tails

θ heads

1− θ tails

P =
{(
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| θ ∈ (0, 1)

}
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Coin-toss model
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Usefulness of staged trees

Discrete graphical models with many advantages:

• highly expressive depiction of events

• easy to communicate

• can depict (context-specific) conditional independences
 more general than BNs

• useful for asymmetric modelling situations

• model selection and learning techniques  chain event graphs
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When are two trees statistically equivalent?

represent the same model/ equivalent distributional assumptions
 identified atoms have equal probabilities

• polynomial equivalence (same parametrisation)

• statistical equivalence
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Linking a tree graph and a polynomial
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Proposition Every staged tree is in 1-to-1 correspondence with a
nested polynomial

cT (θ) =
∑

v1∈ch(v0)

θ(v0, v1)
(∑
v2∈ch(v1)

θ(v1, v2)
(
· · ·
(∑

vk∈ch(vk−1)

θ(vk−1, vk)
)))

.
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Nesting a polynomial is not unique

Look for possible factorisations within the polynomial:
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Swap operator

distributive law on the polynomial ←→ local graph changes

changing the order of parameters changes the order of events and
vice versa

Lemma
Polynomial equivalence ⇒ statistical equivalence.
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Swaps and arc reversals

Consider
X1 −→ X2 −→ X3

with probability mass function p(x1, x2, x3) = θ(x1, x2)θ(x2, x3) so

c(θ) =
∑

x1,x2,x3

θ(x1, x2)θ(x2, x3)
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Nestings of
∑

x1,x2,x3

θ(x1, x2)θ(x2, x3) include

=
∑
x1,x2

θ(x1, x2)
(∑
x3

θ(x2, x3)
)

or p12(x1, x2)p3(x3|x2)
(x1

, x2
) =

(0,
0)

(1, 0
)
(0, 1)

(1, 1)

x3 = 0

1
0

1

0
1

0
1

=
∑
x2,x3

θ(x2, x3)
(∑
x1

θ(x1, x2)
)

or p23(x2, x3)p1(x1|x2)
(x2

, x3
) =

(0,
0)

(0, 1
)
(1, 0)

(1, 1)

x1 = 0

1
0

1

0
1

0
1

so X1 −→ X2 −→ X3 becomes X1 ←− X2 ←− X3.
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Independence and orders

Consider
X1 −→ X3 ←− X2

with probability mass function
p(x1, x2, x3) = θ(x1)θ(x2)θ(x1, x2, x3) so
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Polynomial equivalence is not everything

Remember
X1 −→ X2 −→ X3

so p(x1, x2, x3) = θ(x1)θ(x1, x2)θ(x2, x3) and
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Resize operator

substituting monomial terms ←→ shortening subtrees

algebraic operation: monomial or rational map on the polynomial

BN-analogue: clique-parametrisation in decomposable graphs
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Theorem

Between every two statistically equivalent staged trees there is a
map which is a composition of swaps and resizes, and vice versa.

Görgen and Smith (2015). arXiv:1512.00209v2 [math.ST].
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CHDS again

background:
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CHDS’ statistical equivalence class

• create new variables: access to credit

• context-specific changes of the orders of events

• in all representations of the model: hospital admissions before
life events  putative causal interpretation
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Ongoing research

• CoCoA code which performs the swap/resize of a polynomial
(with Eva Riccomagno and Anna Bigatti)

• causal discovery algorithm

• algebro-geometric characterisation of a staged tree model

Thanks for your attention!
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