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Algebraic Statistics 2015
Genova, Italy
June 8–11, 2015

Exponential Varieties

Bernd Sturmfels1

1 University of California Berkeley, USA, bernd@math.berkeley.edu

Exponential varieties arise from exponential families in statistics. These real algebraic varieties have strong
positivity and convexity properties, generalizing those of toric varieties and their moment maps. Another spe-
cial class, including Gaussian graphical models, are varieties of inverses of symmetric matrices satisfying linear
constraints. We present a general theory of exponential varieties, with focus on those defined by hyperbolic poly-
nomials. This is joint work with Mateusz Michałek, Caroline Uhler, and Piotr Zwiernik.

7



Algebraic Statistics 2015
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Tying Up Loose Strands: Defining Equations of the Strand Symmetric Model

Colby Long1, Seth Sullivant1

1 North Carolina State University, Raleigh, NC, USA, {celong2, smsulli2 }@ncsu.edu

The strand symmetric model is a phylogenetic model designed to reflect the symmetry inherent in the double-
stranded structure of DNA. As the four DNA bases are always paired across the two strands (A with T and C with G),
a change of base in one strand will induce a complementary change in the other. Thus, we impose the following re-
strictions on the entries of the transition matrices: θAA = θT T ,θAC = θT G,θAG = θTC,θAT = θTA,θCC = θGG,θCG =
θGC,θCT = θGA,θGT = θCA. Imposing only these restrictions gives the general strand symmetric model (SSM). The
phylogenetic invariants of a model are algebraic relationships that must be satisfied by the probability distributions
arising from the model. Their study was originally proposed as a method for reconstructing phylogenetic trees
[3, 9], but they have also been useful theoretical tools in proving identifiability results (see e.g. [1]). Results in
[5] imply that to determine generators of the ideal of phylogenetic invariants for the SSM for any trivalent tree, it
suffices to determine them for the claw tree, K1,3.

Though the general strand symmetric model itself is not group-based, Casanellas and the second author [2]
showed that it is still amenable to the Fourier/Hadamard transform technique of [6, 11]. In the Fourier coordinates,
it becomes evident that the parameterization of the model for K1,3 is a coordinate projection of the secant variety
of the Segre embedding of P3×P3×P3. From this observation, the same authors were able to find 32 degree three
and 18 degree four invariants of the homogenous ideal for K1,3 and to show that these invariants generate the ideal
up to degree four. Whether or not these equations generate the entire ideal was heretofore unknown. Our recent
finding is the following theorem.

Theorem 1 [10] The vanishing ideal of the strand symmetric model for the graph K1,3 is minimally generated by
32 cubics and 18 quartics. The ideal has dimension 20, degree 9024, and Hilbert series

1+12t +78t2 +332t3 +984t4 +1908t5 +2394t7 +1908t8 +984t9 +332t10 +78t11 +12t12 + t13

(1− t)20 .

In this talk, we will discuss the procedure that we used to obtain this result and how the same methods might
be applied to other problems arising in algebraic statistics. Our two major tools are the tropical secant dimension
approach of Draisma [4] and the following lemma.

Lemma 1 [7, Proposition 23] Let k be a field and J⊂ k[x1, . . . ,xn] be an ideal containing a polynomial f = gx1+h
with g,h not involving x1 and g a non-zero divisor modulo J. Let J1 = J ∩ k[x2, . . . ,xn] be the elimination ideal.
Then J is prime if and only if J1 is prime.

First, we use the tropical secant dimension approach to determine the dimension of the variety of probability
distributions arising from the model. Then, using Macaulay2 [8], we show that the ideal generated by these fifty
equations defines a variety of the same dimension. Finally, with the aid of symbolic computation (again using
Macaulay2), we generate a decreasing sequence of elimination ideals, and apply Lemma 1 to demonstrate that the
ideal in question is prime. Thus, the variety defined by these equations is irreducible, contains the parameterization,
and is of the same dimension as the parameterization, from which the result follows.

We have since used this same method to determine generators for the secant ideals of the binary Jukes-Cantor
model for trees with six or fewer leaves. In general, the same procedure may prove useful in instances where one
can compute low degree equations of an ideal and wishes to determine if these equations generate the entire ideal
under consideration.
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From Factorial Designs to Hilbert Schemes

Lorenzo Robbiano1

1 University of Genova, Italy, robbiano@dima.unige.it

This talk is meant to explain the evolution of research which originated a few years ago from some problems
in statistics. In particular, the inverse problem for factorial designs gave birth to new ideas for the study of special
schemes, called Border Basis Schemes. They parametrize zero-dimensional ideals which share a common quotient
basis, and turn out to be open sets in the corresponding Hilbert Schemes.
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Decomposing Tensors into Frames

Elina Robeva1

1 University of California, Berkeley, USA, erobeva@gmail.com

Recent machine learning studies [1, 2] have shown that one can learn latent variable model parameters by
finding the decomposition of a given tensor. This is done by applying a transformation to the tensor and then
using the tensor power method. In [1], the authors study tensors T of rank at most n of size n× n× ·· · × n
(d times), which represent the observed data from a latent variable model. They show that by transforming T
to an orthogonally decomposable tensor Tod , the power method recovers the decomposition of Tod and that also
gives the decomposition of T . It turns out that the elements in the decomposition of Tod are robust eigenvectors.
In [4] we study the algebraic geometry of orthogonally decomposable tensors. We give a formula for all of
their eigenvectors in terms of the robust ones. Furthermore, we propose equations that define the variety of all
orthogonally decomposable tensors.

In [2], the authors consider n×n×·· ·×n tensors of rank higher than n and show that under certain conditions,
the tensor power method can still recover the decomposition. Motivated by this study, we take [4] one step further.
In join work with Luke Oeding and Bernd Sturmfels [3] we study the algebraic geometry of symmetric tensors
which can be decomposed as T = ∑

r
i=1 λiv⊗d

i where v1, ...,vr form a unit norm tight frame. We explain for which
types of frames one can use the tensor power method to recover the decomposition. In the case n = 2, the variety of
frame decomposable tensors is given by the vanishing of the maximal minors of a certain matrix whose entries are
linear in the entries of T . Using this representation, we can recover the decomposition of such tensors efficiently.
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R package for algebraic statistics

Luis García-Puente1

1 Sam Houston State University, USA, lgarcia@shsu.edu

In this tutorial we will introduce the R package ?algstat?. R is a free software environment for statistical
computing and graphics. The package algstat provides functionality for algebraic statistics in R. We will discuss
some of its features such as exact inference in log-linear models for contingency table data, analysis of ranked
and partially ranked data, and basic multivariate polynomial manipulation through its interface with computer
algebra systems such as Macaulay2 and Bertini. The tutorial will include a large practical/hands on component.
No previous experience with R or other computer algebra systems is required.
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Algebraic geometry of Poisson regression

Thomas Kahle 1

1 OvGU Magdeburg, Germany, thomas.kahle@ovgu.de

Designing experiments for generalized linear models is tricky because the optimal design depends on unknown
parameters. Here we investigate local optimality. We try to understand, for each design, its region of optimality in
parameter space. In some cases these regions are semi-algebraic and feature interesting symmetries. We demon-
strate this with the Rasch Poisson counts model. This is joint work with Rainer Schwabe.
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What are shell structures of random networks telling us?

Sonja Petrović1

1 Illinois Institute of Technology, USA, Sonja.Petrovic@iit.edu

In the network (random graphs) literature, network analyses are often concerned - either directly or indirectly
- with the degrees of the nodes in the network. Familiar statistical frameworks, such as the beta or p1 models,
associate probabilities to networks in terms of their degree distributions. However, this approach may fail to
capture certain vital connectivity information about the network. Often, it matters not just to how many other
nodes a particular node in the network is connected, but also to which other nodes it is connected. Degree-
centric analyses are not well-suited to model such situations. This talk introduces a model family for one such
connectivity structure motivated by examples of social networks, and discusses the relevant algebraic/geometric
problems, simulations and sampling algorithms. (Joint work with Karwa, Pelsmajer, Stasi, Wilburne)
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The geometry of the statistical model for range–based localization

M. Compagnoni1, R. Notari1, A.A. Ruggiu2, F. Antonacci3, A. Sarti3

1 Politecnico di Milano - Dipartimento di Matematica, Milano, Italy, {marco.compagnoni,roberto.notari}@polimi.it
2 Linköping University - MAI, Linköping, Sweden, andrea.ruggiu@liu.se
3 Politecnico di Milano - Dipartimento di Elettronica, Informatica e Bioingegneria, Milano, Italy,

{fabio.antonacci,augusto.sarti}@polimi.it

A plenty of problems in science and engineering are formulated in terms of distances (or ranges) between
couples of points in a given set. Without any claim to exhaustiveness, we can list a number of research fields
where the above issue plays a key role: radar and sonar technology, wireless sensor networks, statics, robotics,
molecular conformation and dimensionality reduction in statistics and machine learning (see [1]).

In this talk, we focus on the problem of locate a radiant source using range measurements. This is the prototype
problem in active localization technologies such as radar and active sonar. In this situations, the measurements are
the time delays between the transmission of a pulse signal and the reception of its echo. Assuming known and
constant the speed of propagation, the Time Of Arrival (TOA) of the signal is directly related to the range between
the source and the corresponding emitter/receiver. The goal of the localization is to find the source position from
the TOAs.

The localization problem is a fundamental issue also for wireless sensor networks. Indeed, the network routers
must be updated of the positions of the sensors (e.g. smartphones), in order to adapt routes, frequencies, and
network ID data accordingly. It is well known that the distance between any pair of sufficiently close sensors is
strongly correlated to the battery charge used in their communications. Furthermore, by the fact that the positions
of the fixed elements of the network (e.g routers and repeaters) are known, it follows that wireless sensor networks
localization has many analogies to a multi–source localization problem based on TOA measurements.

In mathematical literature, the problems involving ranges measurements have been intensively studied in the
context of Euclidean Distance Geometry (DG) [1]. The fundamental problem in DG can be formulated in terms
of the embeddability of a weighted graph G = (V,E) into a suitable k–dimensional Euclidean space. Roughly
speaking, one has to understand when the set V of vertices pi, i = 1, . . . ,n actually corresponds to a set of points
φ(pi), i = 1, . . . ,n in Rk, where the Euclidean distance ‖φ(pi)−φ(p j)‖ is equal to the weight of the edge ei j ∈ E.
In localization problems the vertices pi of G correspond to the sensors and sources, while the weighted edges ei j

are the available range measurements.

In real world applications the range measurements are affected by noise. The source estimation, in particular
the Maximum Likelihood Estimation (MLE), is a non linear and non convex problem, therefore it is difficult to
globally solve it. This is why researchers have studied many different approaches and algorithms that give rise to
robust estimations, but that are suboptimal from a statistical point of view. The wish to give different perspective
on this important problem has been one of the main motivation of our work.

In this talk we give an overview of the range–based localization from the point of view of differential and alge-
braic geometry. We focus on the range–based source localization with two and three calibrated and synchronous
sensors [2]. Firstly, we define the stochastic model for range measurements. It encodes the range–based local-
ization into a map from the Euclidean space containing source and receivers to the space of range measurements.
Then, we offer a complete characterization of such a map. We address the identifiability problem and we describe
in great details the geometry of the sets of feasible range measurements.
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The most interesting results concern the case of three non collinear receivers. If also the source belongs to
the receivers plane, then the set of feasible measurements is contained in a Kummer’s quartic surface. We give
a detailed description of its geometric properties, both from an algebraic and a differential point of view. In
particular, we investigate the link between the properties of the Kummer’s and some distinguished sets in the
physical Euclidean plane. On the contrary, if the source stays outside the receivers plane, the set of feasible
measurements is the domain bounded by the previous surface. Thanks to classical results on Kummer’s surfaces,
we have been able to compute the convex hull of the set of measurements and a linear approximation of it.

Figure 1: An example of the set of feasible range measurements for a non collinear configuration of receivers. The grey surface is the
real part of a Kummer’s surface contained in the first octant of the space of the ranges. The bold curves are arcs of conics and they are the
asymptotic curves of the surface. They meet at the singular points of the surface, which are the images of the receivers.

We performed numerical tests on Euclidean Distance degree of the surface. Currently, we are studying the
Euclidean Distance discriminant and the extension to a larger number of receivers and sources. Our analysis is
helpful also for the study of pseudorange–based localization (e.g. Global Positioning System). Indeed, from a
mathematical point of view, the two models are related through a linear projection.
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56-1, 3-69.

[2] M. Compagnoni, R. Notari, A.A. Ruggiu, F. Antonacci and A. Sarti, (2015), The Algebro-Geometric Study of Range Maps, preprint.

16



Algebraic Statistics 2015
Genova, Italy
June 8–11, 2015

Matrices of nonnegative rank at most three

Rob H. Eggermont1, Emil Horobeţ2 and Kaie Kubjas3

1 Eindhoven University of Technology, The Netherlands, r.h.eggermont@tue.nl
2 Eindhoven University of Technology, The Netherlands, e.horobet@tue.nl
3 Aalto University, Finland, kaie.kubjas@gmail.com

The nonnegative rank of a matrix M ∈ Rm×n
≥0 is the smallest r ∈ N such that there exist matrices A ∈ Rm×r

≥0 and
B ∈ Rr×n

≥0 with M = AB. Matrices of nonnegative rank at most r form a semialgebraic set, i.e. they are defined by
Boolean combinations of polynomial equations and inequalities. We denote this semialgebraic set by M r

m×n. If
a nonnegative matrix has rank 1 or 2, then its nonnegative rank equals its rank. In these cases, the semialgebraic
set M r

m×n is defined by 2×2 or 3×3-minors respectively together with the nonnegativity constraints. In the first
interesting case when r = 3, a semialgebraic description is given by Robeva, Sturmfels and Kubjas [4, Theorem
4.1].

This description is in the parameter variables of A and B, where M = AB is any size 3 factorization of M, so
it is not clear from the description what (the Zariski closure of) the boundary is. Some boundary components are
defined by the ideals 〈xi j〉, where 1≤ i≤ m,1≤ j ≤ n and xi j denote the coordinates on Mm×n. We call them the
trivial boundary components.

In this talk we present the proof and some consequences of the main result from [2], previously conjectured
in [4, Conjecture 6.4]:

Theorem 2 ([2], Theorem 1.1) Let m≥ 4,n≥ 3 and consider a nontrivial irreducible component of ∂M 3
m×n. The

prime ideal of this component is minimally generated by
(m

4

)(n
4

)
quartics, namely the 4×4-minors, and either by(m

3

)
sextics that are indexed by subsets {i, j,k} of {1,2, . . . ,m} or

(n
3

)
sextics that are indexed by subsets {i, j,k} of

{1,2, . . . ,n}. These form a Gröbner basis with respect to graded reverse lexicographic order.

One motivation for studying the nonnegative matrix rank comes from statistics. A probability matrix of non-
negative rank r records joint probabilities Prob(X = i,Y = j) of two discrete random variables X and Y with m and
n states respectively that are conditionally independent given a third discrete random variable Z with r states. The
intersection of M r

m×n with the probability simplex ∆mn−1 is called the r-th mixture model, see [5, Section 4.1] for
details. Nonnegative matrix factorizations appear also in audio processing [3], image compression and document
analysis [5].

Understanding the Zariski closure of the boundary is necessary for solving optimization problems on M r
m×n

with the certificate that we have found a global maxima. One example of such an optimization problem is the
maximum likelihood estimation, i.e. given data from observations one would like to find a point in the r-th mixture
model that maximizes the value of the likelihood function. To find the global optima, one would have to use the
method of Lagrange multipliers on the Zariski closure of the semialgebraic set, its boundaries and intersections of
boundaries.
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Algebraic Graph Limits

A. Engström1, P. Norén2

1 Aalto University, Finland, alexander.engstrom@aalto.fi
2 North Carolina State University, USA, pgnoren2@ncsu.edu

The theory of graph limits associates random graph models to symmetric measurable functions on the unit
square [1, 2, 3]. We investigate what happens when these functions are polynomials. For low degree polynomials
the models appearing are familiar and important, for example preferential attachment and Erdös-Rényi. The higher
degree polynomials are also useful as any graph limit can be arbitrarily well approximated by a polynomial. We
show that this setup could be useful in applications: To determine the parameters of an algebraic graph limit that
fits observed data best one can use numerical algebraic geometry efficiently.
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Hypergraph Decompositions and Toric Ideals

E. Gross1, K. Kubjas2

1 San José State University, USA, elizabeth.gross@sjsu.edu
2 Aalto University, Helsinki, Finland, kaie.kubjas@gmail.com

Let H = (E,V ) be a hypergraph where V is the set of vertices and E ⊆ 2V \{ /0} is the set of hyperedges. Let
k[pe : e ∈ E] and k[qv : v ∈V ] be polynomial rings over a field k. The toric ideal IH of a hypergraph H is a binomial
ideal defined as the kernel of the ring homomorphism

k[pe : e ∈ E]→ k[qv : v ∈V ],

pe 7→ ∏v∈e qv.

Any toric ideal arises as the kernel of a monomial map encoded by an integer matrix A. In the case of the toric
ideal IH of a hypergaph H, this is the incidence matrix of the hypergraph H. In fact all, all toric ideals defined by
0-1 matrices can be regarded as toric ideals of hypergraphs.

In this ongoing work we study generating sets of toric ideals IH of hypergraphs or equivalently, by the Fun-
damental Theorem of Markov Bases [1], Markov bases of log-linear models with square-free parameterizations.
In particular, we address a modification of [2, Problem 6.3], which was also asked by Sonja Petrović at the open
problem session of Algebraic Statistics 2014 at IIT:

Problem Given a hypergraph H that is obtained by identifying vertices from two smaller hypergraphs H1 and H2,
is it possible to obtain generating set of IH from the generating set of IH1 and IH2?

We give an affirmative answer to this question, and give explicit constructions for a Markov basis and the
Graver basis. As an example, consider the monomial sunflower [2] in Figure 2. We can construct larger monomial
sunflowers by taking an even number of copies of H and identifying all copies of the vertex v1. We consider 128
copies of the sunflower. If we split it into two and apply our construction for computing a Markov basis, then we
get a 10 times speed up compared to computing a Markov basis directly using Macaulay2 interface for 4ti2.

v1

Figure 2: Monomial sunflower.
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The maximum likelihood degree of rank 2 matrices via Euler characteristics
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Maximum likelihood estimation is a fundamental computational task in statistics. A typical problem encoun-
tered in its applications is the occurrence of multiple local maxima. To be certain that a global maximum of the
likelihood function has been achieved, one can locate all solutions to a system of polynomial equations called
likelihood equations. The number of solutions to these equations is called the maximum likelihood degree (ML
degree) and gives a measure of complexity to the global optimization problem [3, 5]. In this talk, we provide
closed form expressions for ML degrees of rank at most 2 matrices, which are the Zariski closure of mixtures of
independence models. This answers an outstanding conjecture of [2].

We consider the case for two discrete random variables, having m and n states respectively. A joint probability
distribution for two such random variables is written as an m×n-matrix:

P =


p11 p12 · · · p1n

p21 p22 · · · p2n
...

...
. . .

...
pm1 pm2 · · · pmn

 . (1)

The (i, j)th entry pi j represents the probability that the first variable is in state i and the second variable is in state j.
By a statistical model, we mean a subset M of the probability simplex4mn−1 of all such matrices P. The models
we consider in this talk are Mmn the set of rank at most 2 matrices.

If i.i.d. samples are drawn from some distribution P, then we summarize the data also in a matrix:

u =


u11 u12 · · · u1n

u21 u22 · · · u2n
...

...
. . .

...
um1 um2 · · · umn

 . (2)

The entries of u are non-negative integers where ui j is the number of samples drawn with state (i, j).

The likelihood function corresponding to the data matrix u is given by

`u(p) := pu11
11 pu12

12 · · · p
umn
mn (3)

Maximum likelihood estimation is an optimization problem. This problem consists of determining, for fixed u,
the argmax of `u(p) on a statistical model M . The optimal solution is called the maximum likelihood estimate
(mle). For the models we consider, the mle is a solution to the likelihood equations. So by solving the likelihood
equations, we solve the maximum likelihood estimation problem. Since the ML degree is the number of solutions
to the likelihood equations, it gives a measure on the difficulty of the problem.
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In [2], the following table of ML degrees of Mmn were computed for various m and n:

n = 3 4 5 6 7 8 9 10
m = 3 : 10 26 58 122 250 506 1018 2042
m = 4 : 26 191 843 3119 6776

.

The first main result of this talk and of [7] proves a formula for the first row of the table:

MLdegreeM3n = 2n+1−6 for n≥ 3.

Our techniques relate ML degrees to Euler characteristics. Work by Huh [4] has shown that the ML degree
of smooth algebraic statistical models M with Zariski closure X equals the signed topological characteristic of an
open subvariety Xo where Xo is the set of points of X with nonzero coordinates and non-zero coordinate sums.
More recent work of Budur and Wang [1] show that the ML degree of a singular model is a stratified topological
invariant. They show that the Euler characteristic of Xo is a sum of ML degrees weighted by Euler obstructions,
which can be thought of measuring the multiplicity of the singular locus.

We further develop these techniques and apply them to the mixture model Mmn. Doing so, we provide a
recursion to compute the ML degree of Mmn for any fixed m and n, see [7]. This talk will present an example
based on DiaNA’s dice [6] to bridge statistics, Euler characteristics, and applied algebraic geometry, concluding
with the recursion.
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The contribution concerns the geometry of conditional independence (CI). Morton [4, Thm 2.4.3] in his thesis
established a one-to-one correspondence between (the class of) structural CI models [8] and (the class of) certain
polytopes, namely Minkowski summands of the permutohedron. These polytopes are known in the recent literature
as generalized permutohedra.

The generalized permutohedra were introduced by Postnikov and his co-workers [5, 6] as the polytopes obtain-
able by moving vertices of the usual permutohedron while the directions of edges are preserved. Their connection
to supermodular and submodular functions has been indicated by Doker in his thesis [1].

In our recent manuscript [9, Cor 11] we have observed that generalized permutohedra, in fact, coincide with
(the class of) polytopes which were formerly studied in the context of the cooperative game theory, namely with the
cores of supermodular games, called convex games in that context [7]. We have been interested in the description
(and later possible characterization) of those supermodular games that are extreme (= generating the extreme rays of
the cone of standardized supermodular games). It turns out that the core polytopes for these extreme supermodular
games are just those generalized permutohedra P that are indecomposable in sense of Meyer [3], which means that
every Minkowski summand of P⊆ RN has the form α ·P⊕{v}, where α ≥ 0 and v ∈ RN .

Motivated by the game-theoretical point of view, we have offered in [9] a simple linear-algebraic criterion to
recognize whether a (standardized) supermodular game is extreme. The criterion is based on a vertex-description
of the corresponding core polytope, which is easy to find owing to a classic result by Shapley [7]. Our criterion
leads to solving a linear equation system determined by the combinatorial core structure, which is a concept
recently pinpointed in the context of game theory [2].

Thus, our result gives, as a by-product, a criterion to recognize whether a given generalized permutohedron
is indecomposable. Note that the criterion is different (and simpler than) Meyer’s general criterion to recognize
indecomposable polytopes based on their facet-description [3].

In the first part of the presentation, the first author plans to recall the motivation and explain the wider context
as indicated in this abstract. In the second part of the presentation, the second author plans formulate the criterion
from [9] and illustrate it by a few simple examples.

Acknowledgements. Milan Studený is supported from the GAČR project n. 13-20012S. Tomáš Kroupa gratefully
acknowledges the support from Marie Curie Intra-European Fellowship OASIG (PIEF-GA-2013-622645).
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In the last ten years, the employment of symbolic methods has substantially extended both the theory and
the applications of statistics. By symbolic methods we refer to the set of manipulation techniques aiming to per-
form algebraic calculations through an algorithmic approach. The goal is to find efficient mechanical processes to
pass to a computer. Typically these algebraic expressions are encountered within statistical inference or param-
eter estimation. Recent connections with free probability and its applications, within random matrices and other
satellite area, have extended its boundaries of applicability. To find efficient symbolic algorithms challenges with
new problems involving both computational and conceptual issues. There are many packages devoted to numeri-
cal/graphical statistical tool sets but not doing algebraic/symbolic computations. The packages filling this gap are
not open source. R is a much stronger numeric programming environment and the procedures including symbolic
software are not yet specifically oriented for statistical calculations. So the availability of a widely spread open
source symbolic platform will be of great interest, especially if there are interface capabilities to external programs.
The conceptual aspects related to symbolic methods involve more strictly mathematical issues. In this picture, the
combinatorics has no doubt a preeminent role. But, what we regard as symbolic computation is now evolving
towards an universal algebraic language which aims to combine syntactic elegance and computational efficiency.
Experience have shown that syntactic elegance often requires the acquisition of innovative techniques and to climb
this steep learning curve can be a deterrent to pursue the goal. But, having got a different and deeper viewpoint,
the efficiency is obtained as by product and the result can be surprisingly better of what you expected. Working
examples will be polykays for random vectors or random matrices, with special reference to non-central Wishart
distributions.
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The class of chain event graphs (CEGs) - which contains the class of discrete Bayes Nets as a special case - has
now been established as a widely applicable modeling tool. But the family also enjoys some interesting associated
mathematical structure. A CEG is specifed through an event tree with some of its edge probabilities being equated.
So in particular each of its atoms - its root to leaf paths - has a monomial associated to it corresponding to a product
of edge probabilities. It therefore follows that, in particular, the class of probability measures associated with each
given CEG can be mapped on to a family of polynomials. This gives a new area of statistics where techniques of
algebraic geometry can be usefully applied. In this talk I will illustrate how we have recently used this algebraic
description to come to a better understanding of the statistical equivalence classes of CEGs. The potential uses
of this classification for causal discovery will then be explored. This is joint work with one of my PhD students:
Christiane Görgen.
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H. Reichenbach [13, Chapter 19] defined a conjunctive fork as an ordered triple (A,B,C) of events in a proba-
bility space (Ω,F ,P) such that

P(A∩C|B) = P(A|B)P(C|B) , P(A|B)> P(A|Ω\B) ,

P(A∩C|Ω\B) = P(A|Ω\B)P(C|Ω\B) , P(C|B)> P(C|Ω\B) .

Implicit in this definition is the assumption 0 < P(B)< 1, which is necessary to make the conditional probabilities
well-defined. The context of discourse was physics: conjunctive forks play a central role in Reichenbach’s causal
theory of time. In this role, they have attracted considerable attention: over one hundred publications, such as [1],
[14], [15], [6], [2], [4], [16], [7], [10], refer to them. A similar notion was introduced earlier by P. Kendall and P.
Lazarsfeld [8, Part I, Section 2] in the context of sociology.

As recognized by W. Spohn [16, page 2], Reichenbach’s definition can be interpreted in terms of indicator
functions 11A of events A. The above equalities mean that the random variables 11A and 11C are conditionally inde-
pendent given 11B. The strict inequalities are equivalent to P(AB)> P(A)P(B) and P(BC)> P(B)P(C). This means
that the covariance of 11A and 11B is positive and so is that of 11B and 11C.

Given (not necessarily distinct) events A,B,C ∈F , let (A,B,C)P mean that the triple of events is a conjunctive
fork. Events Ai indexed by i in finite set N will be said to fork represent a ternary relation R on a ground set N if
and only if

(i, j,k) ∈R ⇔ (Ai,A j,Ak)P .

A ternary relation will be called fork representable if and only if it admits a fork representation. In this contribution
the finite fork representable relations are characterized in a way which implies that fork representability of finite
ternary relations can be tested in polynomial time.

Following E. Pitcher and M. F. Smiley [12] a ternary relation R is called a betweenness if and only if it satisfies,
for all choices of elements i, j,k of its ground set,

(i, j,k) ∈R ⇒ (k, j, i) ∈R ,

(i, j,k) ∈R and (i,k, j) ∈R ⇒ j = k ,

and (i, j, j) ∈R. It is called weak betweenness if it satisfies the above two implications,

(i,k, j) ∈R ⇒ (i, j, j) ∈R ,( j,k,k) ∈R and (k, i, i) ∈R

and (i, i, i) ∈ R. Given a ternary relation R, let VR = {i ∈ N : (i, i, i) ∈ R} and R∼ be the binary relation on VR

defined by
i R∼ j if and only if (i, j, i) ∈R and ( j, i, j) ∈R.
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The relation R will be called regular if and only if R ⊆V 3
R , R∼ is an equivalence relation and

(i, j,k) ∈R, i R∼ i′, j R∼ j′, k R∼ k′ ⇒ (i′, j′,k′) ∈R.

Every regular ternary relation R generates its quotient relation which is the ternary relation Q on the set of
equivalence classes of R∼ defined by (I,J,K) ∈Q if and only if (i, j,k) ∈R for at least one i in I, at least one j
in J, and at least one k in K. For the quotient Q, write

EQ = {{I,J} : I 6= J, (I,J,J) ∈Q, (J, I, I) ∈Q}

and note that if (I,J,K) belongs to Q and I,J,K are pairwise distinct, then all three {I,J}, {J,K}, {K, I} belong
to EQ. The quotient Q will be called solvable if and only if the system

x{I,K} = x{I,J}+ x{J,K} for (I,J,K) ∈Q pairwise distinct,

x{I,J} > 0 for {I,J} ∈ EQ

has a solution.

The main result to be presented can be now formulated as follows. A ternary relation on a finite set is fork
representable if and only if it is regular and its quotient relation is a solvable weak betweenness. Hence, the fork
representability of a ternary relation R can be verified in time polynomial in |R|, by the epoch-making result of
L.G. Khachiyan [9].

Constraints of the fork type define new classes of semialgebraic varieties similar to the conditional inde-
pendence varieties [5] arising from conditional independence structures [11, 17]. Open problems related to the
varieties will be discussed.
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Let X = (X1, . . . ,Xm) be a m-dimensional random vector distributed according to a multivariate normal distri-
bution, i.e. X ∼N (µ,Σ). In a Gaussian graphical model, an undirected graph G = ({1, . . . ,m},E) encodes the
conditional independence structure of the distribution: the edge (i, j) /∈ E if and only if Xi and X j are conditionally
independent given the remaining variables.

For Gaussian graphical models, when the number of observations n is larger than the number of random
variables m, the maximum likelihood estimator (MLE) is known to exist with probability one. But it is often the
case, especially in biological applications, that m� n. In this setting, it is still possible for the MLE to exist with
probability one, which invites the question: For a given graph G, what is the smallest n such that the maximum
likelihood estimator of Σ exists almost surely? We call the resulting graph invariant the maximum likelihood
threshold and denote it mlt(G).

We show that this graph parameter, the maximum likelihood threshold, is connected to the theory of com-
binatorial rigidity. In particular, if the edge set of a graph G is an independent set in the (n− 1)-dimensional
generic rigidity matroid, then the maximum likelihood threshold of G is less than or equal to n. This connection
implies many results about the maximum likelihood threshold for large classes of graphs. For example, if G has
an empty n-core then mlt(G)6 n. Or, as a corollary, let Grk1,k2 denote the k1× k2 grid graph with k1,k2 > 2, then
mlt(Grk1,k2) = 3. This extends the result in [2] that shows that mlt(Gr3,3) = 3.
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Probabilistic decision support tools for single agents are now, although still being refined, well developed and
used in practice in a variety of domains. However, the size of current applications requires expert judgements
coming from different panels of experts with diverse expertise. For example in nuclear emergency management
judgements concerning the safety of the source term, the atmospheric dispersion of a cloud of contamination and
the effects on human health deriving from radioactive intake, among the others, need to be taken into account in
the decision making process [4, 6].

Integrating Decision Support Systems (IDSSs) [5, 8] have been recently defined to generalize the coherence of
Bayesian decision support for single agents to the more realistic multi-expert setting. These take only a few selected
probabilistic outputs from each model used by the panels and then paste them together to provide a unique coherent
evaluation of the overall problem. A variety of different methodologies can be now employed by the panels to
model the domain under their jurisdiction, as for example large scale hierarchical Bayesian spatio-temporal models
based on advanced computational algorithms [1] or probabilistic emulators over massive deterministic simulators
[3].

Under conditions formally and extensively discussed in [8], a variety of both dynamic and non-dynamic graph-
ical models can be used as an overarching integrating tool to provide a unique coherent picture of the whole prob-
lem, in such a way that the judgements of the different panels do not contradict each other. Importantly, current
technology allows each of the components of the IDSS to be designed to be fast. Thus the distributive nature of
IDSSs guarantees that overall estimates can be produced in real time.

The theory of IDSSs has mostly focused on the inferential full-distributional difficulties associated to this
integration. However a formal Bayesian decision analysis is based on the maximization of an expected utility
function that often only depends on some simple summaries of key output variables, as for example some low order
moments. This is the case for example when the utility function is a low degree polynomial. By requesting only
this information, the implementation of an IDSS can become orders of magnitude more manageable. Then panels
just need to communicate a few summaries from their sample: a trivial and fast task to perform. Surprisingly, it is
common to be able to partially define a coherent and distributed system with this property.

In this framework expected utilities are polynomials whose indeterminates are functions of the panels’ deliv-
ered summaries. A study of the polynomial structure of expected utilities enables us to identify in a variety of
examples the required summaries needed by different panels of experts that allows the decision center to compute
beliefs for the computation of the expected utility scores it needs to rank its alternatives. These summaries are
associated both with the shape of the utility function and the form of the probability density. This formal analysis
also enables us to identify a minimal set of independence assumptions that guarantee coherence in partially defined
systems. We will show that it is often only necessary that some of the moments satisfy certain polynomial rela-
tionships and explore some of these properties that we will term partial and moment independence relationships.

We will present the methodology in a variety of examples, including standard Gaussian Bayesian networks, a
class of asymmetric models called staged trees [7] and Bayes linear directed graphs [2]. In addition we will look
at situations where the shape of the expected utility function informs the (IDSS) that panels will rarely come to
an agreement on the course of action, since the optimal decision would only favour one group. We will term such
situations conflict models.
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Conditional independence (CI) constraints among a collection of discrete random variables can be formulated
algebraically in terms of the determinants of certain 2× 2-submatrices of the probability tensor. This allows to
associate a corresponding CI ideal with each collection of CI statements, and implications among CI statements can
be analyzed by studying these CI ideals. A primary decomposition often allows to understand the corresponding
CI variety, which contains all probability distributions satisfying the CI constraints, and to decompose this set
into irreducible subsets with a good statistical interpretation. Algebraically, the analysis is complicated by the
fact that CI ideals need not be radical. Furthermore, not all irreducible components need to contain a probability
distribution.

In the case of saturated CI statements, when all statements involve the same variables, the CI ideal is a binomial
ideal, which greatly simplifies the analysis. A special class of such statements leads to binomial edge ideals, which
are radical and which have a nice primary decomposition with a good statistical interpretation. The name of these
ideals comes from the fact that they can be described by a graph, where each node corresponds to a column of a
matrix of probabilities and where the edges describe the corresponding determinants.

Our goal is to study what happens in the presence of hidden variables; i.e. when taking the marginal distribution
over the hidden variables. When some of the variables are considered as hidden, CI statements lead to polynomial
equations that correspond to higher minors (i.e. determinants of larger submatrices) of the probability tensor. In
this case, the polynomial equations do not give a full characterization of the marginal model (i.e. to characterize
the marginal model, polynomial inequalities are needed), but nevertheless, information about the corresponding
CI ideal helps to understand the marginal model.

In special cases, this leads to determinantal hypergraph ideals, in which a hypergraph determines which minors
of a given matrix of probabilities are contained in the ideal. Such ideals have already been studied abstractly,
without observing the relation to statistics. Unlike binomial edge ideals, determinantal hypergraph ideals are not
necessarily radical, and so far, no satisfying description of the primary decomposition is known in the general case.
Only under strong conditions on the hypergraph is it possible to generalize the methods used for binomial edge
ideals. Instead of trying to generalize the old methods, another idea is to start with examples that are natural from
the point of view of statistics. These examples correspond to large hypergraphs with many symmetries.
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For a graph G with p vertices the cone of concentration matrices consists of all real positive semidefinite p× p
matrices with zeros in entries corresponding to missing edges of G. The extremal rays of this cone and their
associated ranks have applications to matrix completion problems, maximum likelihood estimation in Gaussian
graphical models in statistics, and Gauss elimination for sparse matrices. It is well-known that the extremal rays of
this cone in the case of the cycle are either rank 1 or rank p−2. Similarly, the cut polytope of the cycle has facets
of two distinct shapes. Using hyperplane translations and general duality theory of spectrahedra, we demonstrate
that a facet of a fixed shape corresponds to an extremal ray of a fixed rank. This shows that, in the case of the
cycle, the different facet shapes in the cut polytope identify the ranks of extremal rays in the cone of concentration
matrices, and this correspondence arises from the cutsets defining the facets. More generally, we show that any
series-parallel graph G has the facet-ray identification property, that is, the normal vectors to the facets of the cut
polytope identify extremal rays in the cone of concentration matrices of G.

33



Algebraic Statistics 2015
Genova, Italy
June 8–11, 2015

Information Geometry and Algebraic Statistics on a finite state space and on
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It was shown by C. R. Rao in a paper published 1945 that the set of positive probabilities on a finite state space
{0,1, . . . ,n} is a Riemannian manifold in a way which is of interest for Statistics. It was later pointed out by Sun-
Ichi Amari, that it is actually possible to define two other affine geometries of Hessian type on top of the classical
Riemannian geometry. Amari gave to this new topic the name of Information Geometry. Information Geometry
and Algebraic statistics are deeply connected because of the central place occupied by exponential families in both
fields. The present course is focused mainly on Differential Geometry, but arguments from the theory of Toric
Models will be important.

• Lecture 1 (Pistone) The Differential Geometry of the Simplex.

• Lecture 2 (Pistone) The differential Geometry of statistical models.

• Lecture 3 (Malagò) Applications to Optimization and Machine Learning.
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The aim of this short lecture course is to introduce various mathematical and statistical aspects of latent tree
graphical models. The latent tree graphical model is a special type of a statistical graphical model. The associ-
ated graph is a tree, which gives a tractable model with a rich combinatorial structure. What makes this model
more complicated and also more interesting is that some variables in the system are assumed to be latent (not
observed). This adds modeling power but also leads to various statistical issues. For example the associated likeli-
hood function is multimodal and its maxima often lie on the boundary of the parameter space (and hence they are
not critical points of the likelihood function). Another important statistical problem is that these models may be
not identifiable.

I will discuss the following related topics:

1. Trees, tree metrics and spaces of trees: basic graph-theoretic tree concepts, tree metrics and other tree spaces
that arise naturally in the study of latent tree graphical models.

2. Latent tree graphical models: model definition, links to Bayesian networks and undirected graphical models
on trees; identifiability and moment structure.

3. Tree inference and parameter estimation: overview of methods for learning the underlying tree structure
which is of interest in many applications; the structural EM algorithm for the MLE estimation and other
approximate methods.
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Pearson’s Crabs: Algebraic Statistics in 1894
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This is a work in progress that begins by revisiting Karl Pearson’s 1894 seminal paper [1] where he took on
the problem of estimating the parameters of a mixture model of two univariate Gaussians. His motivation was to
explain the asymmetry observed in data measured from a population of Naples’ crabs, believing it might have been
due to the fact that two subpopulations were present in the sample. In order to solve this problem, Pearson uses
the method of moments to obtain the following system of polynomial equations in the means µ1, µ2, the variances
σ2

1 , σ2
2 and the mixture proportions α1, α2:
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After considerable effort and cleverness, Pearson manages to eliminate variables from (4)-(9) to obtain a ninth
degree polynomial in the single variable x = µ1µ2,
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where λ4 = 9m2
2−3m4 and λ5 = 30m2m3−3m5. After substituting his numerical data, he finds the real roots of this

nonic in more than one example (a "heroic" task in his time), and determines if they can correspond to a solution
for the mixture model.

Nevertheless, even though his modeling ideas would greatly impact scientific research, the amount of compu-
tational effort needed in Pearson’s method led to various attempts to find alternatives that culminated in maximum
likelihood methods such as the popular EM (Expectation Maximization) algorithm. It has not been until recently
([2],[3]) that Pearson’s method of moments approach has been adapted to higher dimensions in a computationally
efficient way and even proven to be optimal in a particular sense ([4]).

It is in this framework that we believe the present research direction becomes significant. Concretely, we can
translate Pearson’s original problem into a study of a special algebraic variety, and bring Pearson’s work under
an Algebraic Statistics light. Indeed, a first result is that computing a Gröbner basis for the suitable elimination
ideal associated to (4)-(9) produces an irreducible 9th degree polynomial relation that coincides with Pearson’s
polynomial (10) in its full 30 term expansion in the mi’s. It is also natural in this formulation to deal with the
presence of multiple solutions (non-identifiability) or of none at all; two problems that Pearson faced. For the first,
he proposes to discriminate by looking at the proximity to the sixth moment m6; we can translate this to the study
of the irreducible polynomial relation among the first six moments m1, ...,m6. For the second problem, Pearson
gives an interesting interpretation in terms of homogeneity of the population and evolution, while we take it that
he encountered a distribution that belongs to the secant statistical model but not to the mixture one.

In summary, unbeknownst to him, Pearson was working in an Algebraic Statistics framework, obtaining results
and running into problems that may be expressed in modern language and techniques. Our main motivation is to
do so and find what the new perspective offers in this context.
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The algebraic method in experimental designs
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The algebraic approach to identify models in experimental designs represents a set of points D ⊂ Rk (design)
by the polynomial ideal I(D)⊂ R[x] generated by it. The monomial basis for the quotient R[x]/I(D) corresponds
to a statistical model that satisfies desirable properties such as hierarchy and identifiability [5].

This poster describes recent developments of our group on the relation between designs and identified models.
Three topics form the core of it, they are descriptions of the designs based on

1. The graded degree of models associated with it. This degree of algebraic models is termed aberration and
we give bounds for it [1].

2. The complexity of identifiable monomial models in terms of Betti numbers [3]. Our results coincide in some
specific cases with lex-segment ideals that maximize Betti numbers [2].

3. The identifiability of models when the design D is considered as a subset of a bigger grid design F and thus
it has a complementary (disjoint) fraction D ′ such that D ∪D ′ = F . Models for complementary designs
satisfy a general version of Alexander duality [4].
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In this poster we present a software package for CoCoA (a system for Computations in Commutative Algebra)
using Grb̈ner basis theory and some methods of Algebraic Geometry to solve a relevant problem in Statistics, more
specifically in the Design of Experiments. Namely suppose we are given a Full Factorial Design D and a complete
polynomial model P, whose support is contained in the order ideal of monomials defined by D. We show how to
construct families of ideals defining Fractions F of D which are minimally identified by P.
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Every ideal I ⊆ k[x1, ...,xm] is invariant under all permutations of some subgroup G ⊆ Sm. Many toric ideals
arising from statistical models possess rich symmetric structures (i.e. the corresponding G is non-trivial and in-
teresting). Here we take advantage of this structure in an attempt to fully characterize the various bases (Markov,
Universal Gröbner, Graver) of a well-known family of toric ideals arising from independence models.

We denote by I[2n] the ideal associated with the independence model of a 2×2×·· ·×2 (n times) contingency
table, see e.g. [1]. We show that this ideal is invariant under G∼= BCn, where BCn is the hyperoctahedral group of
dimension n. Of particular interest is the Universal Gröbner Basis of I[2n], denoted U[2n], which we define to be
the union of all reduced Gröbner Bases of I[2n].

We say that u = (u1, ...,u2n),v = (v1, ...,v2n)∈ I[2n] have the same combinatorial type, or u∼ v, if u∈ {±(s ·v)}
for some s ∈ Sm, where m = 2n. It is shown that in general, u ∼ v does not imply u ∈ G · v, where G · v denotes
the orbit of v ∈ I[2n] under the action of G. Using a geometric approach, we develop formulae for the number of
distinct combinatorial types in a minimal Markov basis of I[2n] and the number of distinct minimal Markov bases
of I[2n] in general.

Motivated by a theorem of Sturmfels [2], we use the programs 4ti2 and polymake to examine the fiber
polytopes of the n-way independence model. Provisional results are included and we make a number of conjectures
about the general structure of U[2n].
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Recent research in statistical social network analysis has demonstrated the advantages and effectiveness of
probabilistic approaches to network data. In fact, Bayesian methods are becoming increasingly popular as tech-
niques for modeling social networks [1, 2, 3].

The likelihood of exponential random graph models [4] represents the probability distribution of a network
graph y and can be expressed as:

p(y|θ) = exp{s(y)tθ}
z(θ)

(11)

This equation states that the probability of observing a given network graph y is equal to the exponent of the
observed graph statistics s(y) multiplied by parameter vector θ divided by a normalising constant term z(θ). The
latter is calculated over the sum of all possible graphs on n nodes and it is therefore extremely difficult to evaluate
for all but trivially small graphs.

Following the Bayesian paradigm, prior distribution is assigned to θ . The posterior distribution of θ given the
data y is:

p(θ |y) = p(y|θ)p(θ)
p(y)

. (12)

Direct evaluation of p(θ |y) requires the calculation of both the likelihood p(y|θ), which is computationally de-
manding if not intractable, and the marginal likelihood p(y) which is typically intractable.

In this poster we present some Monte Carlo strategies for doubly intractable distributions which improve the
efficiency of Bayesian methods for exponential random graph models and increase their scalability to large network
graphs. The analysis is carried out using the Bergm package for R [5].
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Tree models are families of probability distributions used in modelling the evolution of a number of extant
species from a common ancestor. Such a model can be constructed as follows. Let G be a finite group. Let T be
a finite rooted tree, and attach to each of its vertices q an alphabet B, acted upon by G. To the root r of T , attach
a probability distribution π on B, and to each edge q→ q′ of T , attach a B×B-matrix Aqq′ for which the (b,c)-th
entry should be interpreted as the probability that letter b mutates into letter c. This gives rise to a probability
distribution on Bleaf(T ) by

P(b) = ∑
b′∈Bvert(T ) extending b

π(b′r) · ∏
q→q′∈edge(T )

Aqq′(b′q,b
′
q′). (13)

The set of probabilities thus obtained in Rleaf(T ) (or even Cleaf(T )) is called the equivariant model for the triple
(T,B,G). Its Zariski closure is an object of interest in algebraic statistics, and finding the ideal of this variety, or
even just a set of defining equations, can be quite difficult in general.

Sturmfels and Sullivant [SS05] conjecture that if G is Abelian and G acts transitively on B, then the ideals of the
equivariant model assigned to the star with n leaves are defined in degree |G|, independent of n. In this situation,
Michałek [Mic13] has shown that for general trees, there exists a degree bound for the associated projective
schemes, though he still requires that G acts transitively on B. We will show the following theorem, which is
weaker than both the conjecture and Michałek’s result in the sense that it is a set-theoretical result and that the
degree bound is unknown, but which does allow for more freedom in the trees and the alphabets.

Theorem 3 For a fixed finite alphabet B and a fixed Abelian group G with a fixed action on B, there exists a
uniform bound D = D(B,G) such that for any finite tree T the Zariski closure of the equivariant tree model for
(T,B,G) is defined by equations of degree at most D.

We show this theorem by working in a slightly more general setting, in which each vertex can be associated
to a different alphabet. We do this by first reducing to the case of star trees with the same alphabet attached to
each leaf (following along the lines of Draisma and Kuttler [DK09]), and then constructing a projective limit of
these trees. In this infinite-dimensional setting, we will prove Noetherianity up to symmetry, and we will use this
to show that up to symmetry, finitely many equations are needed to cut out the variety in finite dimension.

This talk is based on [DE14].
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The geometric structure of the fraction plays a prominent role for classifying fractional factorial designs. The
characterization of the geometric structure of a fraction can be made through combinatorial invariants associated
to the model matrix of the full factorial design.

A first result in this direction concerns the case of saturated fractions, i.e., fractions with as many points as the
number of parameters, and such that all the parameters are estimable and no degrees of freedom remain to estimate
the error term. Consider a model with p parameters and with model matrix X , and compute the circuits f1, . . . , fL

of X t . In [1] and [2] the author proved that a fraction with exactly p points is saturated is and only if it does not
contain any of the supports of the circuits f1, . . . , fL.

Further investigations have been performed in order to check the connections between the geometric structure
of a fraction and some optimality criteria. In small cases, where the enumeration of all saturated fraction is
possible, we have compared the D-efficiency of the fractions with its geometric structure. In particular, for a given
fraction F we have computed the quantities

bi = #supp( fi) , bi,F = #(supp( fi)∩F )

for i = 1, . . . ,L, and we have summarized the results through the following indices:

g2(F ) =
L

∑
i=1

(bi−bi,F )2 , g3(F ) = max
i
(bi,F ) .

As illustrated in [3], experiments and simulations show that D-optimal fractions present the highest values of the
indices g2 and g3.

Finally, under the point of view of model-free optimality criteria, the complex indicator function of a frac-
tion is a major tool for the computation of the Generalized Word-Length Pattern. The complex coding and the
corresponding indicator function are powerful ingredients to define properly Orthogonal Arrays in the multi-level
case. Indeed, the expression of the aberration depends only on the level counts and does not involve explicit
computations with complex numbers.
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There are two important angles to determine the structure of protein. They are usually written as φ and ψ,
where both range in [0,2π], and the loci of them are points on torus. They are called dihedral angles and have
already been used to plot the structure of proteins on the plane, well known as the Ramachandran plot (see, e.g.
[2]). Along with this, a recent application of statistics in biological sciences is concerned about studying bivariate
distributions to describe the joint variability of the dihedral angles. Among many densities the bivariate von Mises
distributions play a key role. The idea of these densities have been appeared first in [7]. But, two well known
distributions on torus, sine and cosine models and their statistical properties were comprehensively studied in [2].
Thereafter, these models have been extended in other directions including multivariate cases. Particularly, the
multivariate sine model has been studied in [1]. Recently, generalized multivariate sin model distribution has also
been investigated in [3].

Mathematically, a torus with big and small radii R, and r, respectively, can be described with the parametric
from,

x = (R+ r cosφ)cosψ, y = (R+ r cosφ)cosψ, z = r sinψ. (14)

Our aim in this paper is to derive the structure of standard Brownian motion on torus. There is a method for
obtaining the infinitesimal generator of a Brownian motion on a manifold by using the metric tensor. In fact, it
uses a second order differential operator, called the Laplace-Beltrami operator. It is usually defined as “ div grad ”
in textbooks (see, e.g. [4], §4.3 and [5], pp. 256-270) and can be used to obtain the infinitesimal parameters of a
diffusion process such as Brownian motion on a Riemannian manifold. Generally, the Laplace-Beltrami operator
on a manifold M with metric tensor G = [gi j], for any i, j = 1, . . . ,n, and the coordinates u = (u1, . . . ,un)

T , is
defined by

4 f =
1√

det(G)

n

∑
i=1

∂

∂ui

(√
det(G)

n

∑
j=1

gi j ∂ f
∂u j

)
, (15)

where gi j is the (i, j) entry of G−1, the inverse matrix of G, and f is a function satisfying some conditions.
Interestingly, there is a closed relationship between this operator and the elements of a standard Brownian motion
on manifold. Following [6], the infinitesimal generator of standard Brownian motion on a manifold M with metric
tensor G= [gi j] is given by one half of the Laplace-Belterami operator on M. Hence, we can derive the infinitesimal
drift and diffusion coefficients of Brownian motion on a manifold M with coordinates u = (u1, . . . ,un)

T , for any
i, j = 1, . . . ,n, as, respectively,

drift(d(ui)t) = µi(u)dt =
1

2
√

det(G)

n

∑
j=1

∂

∂u j

(√
det(G)gi j

)
dt (16)

and
d(ui)td(u j)t = (σσ

T )i jdt = gi jdt. (17)
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Recalling Eq. (14) and using simple computations, particularly algebraic calculus, it can be shown that the
tensor metric for the points on this torus is given as

G =

(
(R+ r cosφ)2 0

0 r2

)
.

Now, we can derive the infinitesimal drifts for φt and ψt using G−1 and Eq. (16). It is a bit of calculus to show
that

drift(dφt) = 0, drift(dψt) =
−sinψt

2r(R+ r cosφt)
dt. (18)

Similarly, those infinitesimal coefficients are obtained using G−1 and Eq. (17). Particularly, we have

dφtdψt =

(
1

(R+r cosφt)2 0
0 1

r2

)
dt. (19)

So, a general form of an Stochastic Differential Equation (SDE) of the standard Brownian motion on torus
using the dihedral angles, as the local coordinates, can be written as(

dφt

dψt

)
=

(
0

−sinφt
2r(R+r cosφt)

)
dt +

( 1
R+r cosφt

0
0 1

r

)(
dB1(t)
dB2(t)

)
, (20)

where Bt = (B1(t),B2(t))T represents the two dimensional Brownian motion on the Euclidean plane. To simulate
the data following the standard Brownian motion on torus, identified by the dihedral angles, one can utilize the
Euler discretized version of the SDE in Eq. (20).

To derive our manipulations in the above representation, we benefited from symbolic computations in both
Maple and Mathematica. Particularly, a combination of algebraic statistics and differential geometry along with
visual representations were employed to validate our results.

It is known that any standard Brownian motion defined on a manifold will eventually reach to its equilibrium
provided the corresponding diffusion process are satisfied on some criteria. So, our objective is to derive the
equilibrium density of the SDE given by Eq. (20). To obtain a density from multidimensional SDE is a tough
job, unless it is believed that the components describing the diffusion processes are mutually independent. This
is not the case for our SDE given by Eq. (20) since the drift of ψt depends on the stochastic process φt . Another
common procedure is to evaluate the densities, already defined on the corresponding manifold, to be satisfied in
the Kolmogorov forward equation. Because our motivating example comes from biological sciences, we were
conducted to review those popular and relevant densities in these contexts.

We have checked the sine and cosine models using the SDE given by Eq. (20) and Kolmogorov forward
equation. However, the results were not promising. So, it sounds that we should seek the other densities on torus
which have not been derived yet! This is our ongoing research.
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The Chain Event Graph (CEG) is a recently developed graphical statistical model based on an event tree [1].
It provides a very compact graphical description of the unfolding of events in a discrete setting.

CEGs have been successfully applied in a whole range of areas of statistical inference. They are more ex-
pressive and less redundant than tree representations. For instance, [2] list separation theorems to read all sorts
of conditional independence statements of functions of variables from a given CEG, [3] and [4] found advan-
tages in model selection and learning, [5] states propagation algorithms and [6] as well as [7] examined causal
interpretations.

We are currently working on a characterisation of statistically equivalent CEGs. This is an important concept
for three reasons. The first is computational: CEGs constitute a massive model space. By identifying a single
representative within an equivalence class we significantly reduce the search effort across that space. The second
is coherence: for Bayesian model selection, [8] and others have argued that two statistically equivalent models
(always giving the same likelihood) should be given the same prior. Otherwise in Bayes factor model selection,
one model will be given spuriously preference over another. Thus, it is critical to know when two CEGs make the
same distributional assertions—that is, are statistically equivalent. The third reason is inference: causal discovery
algorithms can be applied to CEGs just as well as BNs to discover putative causal ordering [7]. However to do
this we need to know there is an unambiguous causal ordering inferred from a given dataset. Just as for Bayesian
networks (BN) to confirm this we need to know all elements in a selected model class have the same directionality.

Notably, the class of CEG models contains BNs as a subclass. Now, different BNs which are in the same
equivalence class (in the sense of [8]) always share some of their topological structure. Namely, they have the
property that they can be characterised as the ones that share the same pattern. Consequently, a mixed graph can
act as a representation for a class of equivalent BNs. However, sadly no such elegant common representation
is available for the much larger class of CEGs. In fact, we know that even two equivalent CEGs which are
also equivalent to some BN representation do not necessarily have distinguishable topological characteristics in
common and their graphs can look quite different.

Nevertheless, [2] examine the implied conditional independence properties in various subclasses of the CEG
class and link these to the graphical description of a model within such a subclass. However, even in these restricted
settings, the graph is not sufficiently informative to be able to function as a representative of an equivalence class.

Our aim in this presentation is to algebraically—as opposed to graphically—characterise statistical equivalence
in the context of CEG models.

We note that in the proofs in [5], it can be seen that in fact it was sets of polynomial equations associated with
atomic probabilities—which are monomials in a certain polynomial ring determined by the model—that yielded
powerful propagation theorems and it was only subsequently that these were translated into a graphical syntax.
Similarly, in [6] and [9], it was again the algebraic properties of certain polynomials implicit in a CEG which led
to various causal implications to be proved. This is consistent: In most of the literature surrounding CEG models,
we notice that proofs always fall back on an algebraic description of the model class.
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We will therefore investigate the efficacy of applying algebraic methods directly to characterise equivalent
CEGs. We note that a characterisation in algebraic terms has already been extremely successful in the study of
properties of Bayesian networks even when this class enjoys the pattern property mentioned above. For the class
of CEGs the reasoning centres mainly around the construction of a polynomial which equals the sum of atomic
probabilities in a model, which we call the interpolating polynomial, after [10]. We will see in the following that
this function not only captures the graphical structure it is defined on but also yields information about conditional
independence readable from a CEG and about the class of probability models containing a given event tree.

Our ansatz is to start from well-understood equivalence classes, in particular those of discrete decomposable
Bayesian networks, and use their structure to understand CEG equivalence classes within this new framework. In
this context, event trees will be used as a vehicle to switch between different representations. We report on some
recent results.
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When the support of a data distribution is restricted to a path-connected subset M , called “data space”, of the
whole Euclidean space Ed , neither the population mean nor sample mean is necessarily in the data space. If some
“mean” in the data space is required, the intrinsic mean can be the first option and that is defined by

µ̂ = arg min
m∈M

n

∑
i=1

d(Xi,m)2

for samples X1, . . . ,Xn ∈M . Here d(·, ·) is the geodesic distance in M . The intrinsic mean is not necessarily
unique but some sufficient conditions for the uniqueness have been studied by using the curvature or CAT(k)
property of the data space.

To compute the intrinsic mean of a given data set, we need to calculate the geodesic distances but that is
difficult for complicated data spaces. For such cases, the extrinsic mean using the embedding Euclidean metric
can be the second option:

µ̂ = arg min
m∈M

n

∑
i=1
‖Xi−m‖2.

The extrinsic mean is again not necessarily unique. In this presentation, we consider a variation of the intrinsic
mean

µ̂ = arg min
m∈M

n

∑
i=1

g(d(Xi,m))2

with a non-decreasing concave function g such that g(0) = 0. For such a function g, d̃(·, ·) := g(d(·, ·)) becomes a
distance function but not necessarily a geodesic distance function. Since the curvature and CAT(k) properties are
usually defined only for geodesic metric spaces, change of the metric d by g prevents arguments of the uniqueness
of the mean in the aspect of the curvature of the data space. In order to solve this problem, we propose the following
concave function gβ with a parameter β > 0:

gβ (z) =
{

sin( πz
2β
), for 0 6 z 6 β ,

1, for z > β .

With this specific concave function, the intrinsic mean becomes equivalent to a variety of extrinsic mean for which
the data space is embedded into a metric cone but not into the Euclidean space. The parameter β corresponds to
the distance from the origin of the cone to the embedded data space and the CAT(k) property of the metric cone can
be controlled by β . In application, data spaces are often embedded into the Euclidean space with a much higher
dimension, but the embedding metric cone is only one-dimensional higher than the data space.

We propose the intrinsic means and the corresponding variances by using the new distance defined by gβ above
and show examples of their applications to some real data. We also present some relations between the metric-
cone embedding and the correlation function. This presentation is mainly based on our preprint arXiv:1401.3020
[math.ST] and some more resent results.
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The identification of experimental designs by a polynomial ideal has long been explored in algebraic statistics. A
key result being that features and properties of the ideal provide insight into the structure of models identifiable by
the design [3, 5]. Holliday et al. [3] for example apply this approach to an incomplete standard factorial design in
the automotive industry, Bates et al. [1] search for good polynomial meta-models for computer experiments.

Here, we treat a problem of model identifiability in a two-stage process, where observations or predictions
from a well-chosen experimental design are themselves input variables for an eventual output of interest. Our
work is motivated throughout by a thermal spraying process for which different modeling strategies are compared.
Figure 3 depicts the two-stage process.

X

Ê(Y |X)

Y = f (X)+ ε

Z

Predicted design points

Observed design points

Figure 3: Occurence of noisy design in two-stage process

In a thermal spraying process spray material is melted up in a spraying gun and a gas stream accelerates the
heated particles towards a surface which is to be coated [7]. A number of process parameters, such as the amount
of used kerosene, can be set to chosen values. These parameters are summarised in the vector X , for which a full
factorial design with a center point is used as experimental design DX .

Properties of the particles in flight, such as their velocity and temperature, are measured as intermediate output,
denoted by the random vector Y . Either these observations themselves (DY ) or predicted values from models built
between X and Y (DŶ ) then present the design for the eventually observed responses Z. Note, that our current
interest lies in identifiable models from Y to Z. The models treated in both parts are from the class of linear
models.

The design of interest, either DY or DŶ , may consist of noisy points, such that the class of identifiable models
from Y to Z determined by the standard approach might be unstable. More specifically, a model might only be
identifiable due to a small deviation from a more regular design. We solve this problem by switching from sym-
bolic, exact computation to numerical computations in the calculation of the design ideal and of its fan. We employ
an algorithm from Fassino [2], whose use in statistics is new. The design is identified by a set of polynomials which
“almost vanish“ at the design points. Thereby we derive a procedure to construct (numerical) statistical fans [6].
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For the thermal spraying application algebraic fans based on three standard term orders (lexicographical, degree
lexicographical and reverse degree lexicographical ordering) are calculated for different predicted designs DŶ as
well as the observed design Dy. Furthermore, the order of the main factors is permuted, such that to each design
we get a (subset of its) fan. We compare the leaves within each subfan by looking at the most frequent monomials.

Coming back to statistical modelling the leafs are used as saturated models for a forward and backward selec-
tion based on the AIC criterion. The resulting models are compared to those derive from a models selection based
on a second-order polynomial model in terms of AIC and R2 values. We find, that we achieve a much improved
model selection due to the enhanced knowledge of the space of identifiable models.
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The lasso methodology has recently atracted attention in the context of models with hierarchy restrictions. In
these models, an interaction term is allowed only if both main effects are active (strong hierarchy) or if at least
one main effect is active (weak hierarchy). For example, under strong hierarchy appearance of the term x1x2 in
a model requires both x1 and x2, while under weak hierarchy at least one of x1,x2 is needed. Recent approaches
to hierarchical lasso include convex relaxation of the problem [1, 2] and nonlinear parameterization and Bayesian
proposals [4, 5].

Our poster aims to describe the evolution of model terms as the parameter of regularization takes different
values. As model terms become active or inactive, the structure of interactions changes. We describe the model
in terms of components and cycles, borrowing from recent developments in computational topology in the area of
persistent homology [3]. In our setting, components are groups of variables that interact, whereas cycles describe
higher order interactions that are not currently included in the model. In the poster we briefly describe the elements
from statistics and computational topology involved and present and discuss preliminary results.
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Markov combinations of Gaussian models build a new model incorporating the constraints imposed by each
initial model and imposing conditional independence between variables not jointly observed. Such problems
correspond to finding a positive definite completion of the covariance/concentration matrix of all the variables of
interest. The missing component is the sub-matrix corresponding to the random variables not jointly observed.
We will firstly represent the covariance and concentration matrix of the combinations in term of matrix operations.
Then we will translate the matrix description into an algebraic geometry setting and derive explicit forms of
the combinations within this framework. In particular, a representation of each combination will be given in
terms of polynomial ideals. We will show the usefulness of this approach by looking at the combination of
Gaussian graphical models with equality and inequality constraints imposed by conditional independence relations,
stationary constraints or positive definiteness requirements, for example. We will conclude with an illustrative
example based on real data.
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Let G be a directed acyclic graph (DAG) on the vertex set [m]. We associate to each vertex i of G a Gaussian
random variable Xi, and let Σ be the corresponding covariance matrix. A conditional independence statement
XA ⊥⊥ XB|XC holds if and only if the set C d-separates the sets A and B in G, or equivalently, the rank of the
submatrix ΣA∪C,B∪C is equal to the cardinality of C. However, there exist additional subdeterminants of Σ that are
zero, but do not correspond to conditional independence relations associated to G.

In [2], Sullivant-Talaska-Draisma present a combinatorial characterization (in terms of treks) of subdetermi-
nants of the covariance matrix Σ corresponding to d-separation. In [3], Uhler-Raskutti-Bühlmann-Yu obtain a
combinatorial characterization for all subdeterminants of the concentration matrix Σ−1 in terms of the edge param-
eters of G.
Now take a collection S = {C1, . . . ,Cr} of conditional independence relations on the random variables {X` : ` ∈
[m]} that are not necessarily coming from G. We are interested in finding maximal sets S of conditional indepen-
dence relations that do not force any of the edge parameters to be equal to zero. For each Ci we denote by pCi the
corresponding subdeterminant of Σ−1. Now we study a similar question as in [2], [3]: Does the saturation of the
ideal generated by pCi (with respect to the product of the edge parameters) contain any additional subdeterminant?
In particular, we are interested in finding a combinatorial way to interpret these subdeterminants in terms of paths
in G. For example, using [1], [3] we can show that for any DAG model on a cactus graph (i.e. a connected graph
in which any two cycles have at most one vertex in common), the cardinality of S cannot be greater than one.
This is based on ongoing joint work with Caroline Uhler.
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A mode of a probability vector is a local maximum with respect to some vicinity structure on the set of
elementary events. The mode inequalities cut out a polytope from the simplex of probability vectors. Related to
this, a strong mode is an elementary event that has more probability mass than all its direct neighbors together.
The set of probability distributions with a given set of strong modes is again a polytope.

The patterns of modes that are possible in a given vicinity structure define special types of partial orders in the
coordinates of the probability vectors. Mode poset probability polytopes are special types of the well known order
and poset polytopes [1].

Statistical models are usually constrained in the patterns of modes and strong modes that they can realize. The
set of patterns of modes or strong modes realizable by a statistical model gives a combinatorial characteristic of
the model. In the case of exponential families, this is closely related to the combinatorics of convex supports and
their normal fans, whereby it also incorporates the extrinsic vicinity structure on the set of elementary events.

The mode characteristic of a statistical model can be used to describe a portion of its complement and rep-
resents a coarse form of implicit semialgebraic description. This idea can be used to draw sensible distinctions
between certain types of statistical models with hidden variables, such as softmax naïve Bayes models and re-
stricted Boltzmann machines [2].

We study the vertices, the facets, and the volume of mode poset probability polytopes, depending on the sets
of (strong) modes and the vicinity structures. We use the obtained results on a few examples describing statistical
models with hidden variables.
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In this poster we present the package for the algebraic software CoCoA that computes the simplicial homology
with explicit description of the generators of a given simplicial complex.

We also compute the Alexander Dual ideal and the Stanley-Reisner ideal associated to the simplicial complex
and other invariants, for example the f-vector.

Simplicial complexes are a natural choice to represent geometric objects computationally because they can
be easily implemented in a computer by an enumeration of the top simplices. In fact, the knowledge of the
top simplices of a complex uniquely determines the whole complex: given the collection of top simplices, it is
sufficient to take all their possible faces to construct the complex.

Notice that the simplicial complex approach can be used in the study of clustering data for example for the
case of datasets of large scale networks of neurons.
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This work deals with a problem that was stated in [1]: given an experimental design F , find polynomial
models identifiable by F . The set of all such models was named statistical fan in [2]. A known solution for the
problem is based on the connection between experimental designs and zero-dimensional polynomial ideals. Let
us denote I(F ) the ideal of polynomials who turn to zero on every point from F — the ideal of points. From
each Gröbner basis of I(F ) one can trivially obtain the monomial basis of its quotient ring, and the polynomial
model built on these monomials will be identifiable by F . The collection of polynomial models obtained from all
possible Gröbner bases is called an algebraic fan. Algorithms are known [3, 4] for finding the (always finite) set
of all possible Gröbner bases (Gröbner fan) given any single Gröbner basis. A single Gröbner basis can be found
using the Buchberger-Möller algorithm [5].

The algebraic fan of F is a subset of the statistical fan, and as it is shown in [2], the inclusion can be strong.
This work provides some more examples of differences between algebraic and statistical fans. GFan [4] was used
to obtain the algebraic fans for these examples, while a dedicated algorithm was designed and implemented for
finding the full statistical fan of an arbitrary experimental design.

The idea of the algorithm is based on the concept of design matrix [6]. Let us denote the polynomial model of
interest as

y = f (x1, . . . ,xd) =
n

∑
i=1

citi, (21)

where each of {ci} is a coefficient from some field K, and each of {ti} is a monomial: ti = ∏
d
j=1 xαi j

j . The set of
monomials {ti} is called the support of f , and it will be denoted Supp( f ) hereafter. At this point, we put a note
that the definitions of both algebraic and statistical fans imply that the used polynomials models are complete, i.e.
if Supp( f ) has some monomial t, then it has all t’s divisors as well.

Let the experimental design F have N d-dimensional points: F = {p1, . . . , pN}. Then the design matrix X is
defined in the following way:

Xi j(F ,Supp( f )) = t j(pi) =
d

∏
k=1

pi
α jk
k , i = 1..N, j = 1..n (22)

Model y = f (x1, . . . ,xd) is identifiable by design F iff rank(X(F ,Supp( f ))) = n. That obviously requires n 6 N.
Without the loss of generality, the search can be restricted to polynomial models that are identified unambiguously,
this requiring n = N. So the problem of finding the statistical fan of F can be restated as the following: find every
complete support S = {t1, . . . , tn} of size n whose design matrix X(F ,S) is nonsingular (has rank n).

The condition rank(X(F ,S)) = n = |S| means linear independence of monomials from S in I(F ). That ne-
cessitates linear independence of any subset of S in I(F ), which means that rank(X(F ,S′)) = |S′| for any S′ ⊂ S.
That, plus the condition that S′ is complete, gives an invariant for a combinatorial procedure. The procedure starts
with S0 = {1} and recursively enumerates all possible sequences of monomials, adding a single monomial to the
sequence at each step: Si+1 = Si∪ ti+1. Since there is generally more that one variable (d > 1), there is more than
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one possible Si+1 for a given Si. The procedure goes all the paths sequentially, and recursively all the paths that
branch from them. Some conditions must be hold to keep the invariant:

1. The completeness condition. For a given Si, ti+1 should be in “dimple” position regarding to Si. That is, for
every k ∈ [1..d], either ti+1 must have no xk multiple, or there must be t ′ ∈ Si such that ti+1 = t ′xk.

2. The rank condition. If rank(X(F ,Si ∪ ti+1)) = i instead of i+ 1, then the branch starting from ti+1 is
not run, and ti+1 (along with all its multiples) is excluded from the sequence in the current branch and all of its
sub-branches. That is, ti+1 is seen as a linear combination of monomials from Si in I(F ).

The procedure essentially is the enumeration of Young tableaux (condition 1) with some additional restriction
(condition 2). The technique for keeping the set of “dimple” monomials for condition 1 was presented in [7]. Now,
if i = n, the branch is terminated and the current Sn is yielded as one of the results. Also, the implementation of
the algorithm uses some techniques to avoid repeated calculations:

1. The values of t j(pi), used in the calculation of the design matrix, are cached. For each encountered mono-
mial, its values in all of {pi} are stored in a hash table and are accessed from it in the future steps.

2. Each encountered sequence is stored in a hash table as a set (a Young diagram). Future branches that have
their sequences resulting in the same set are not run. For example, if the sequence {1,x,y} has been processed, the
sequence {1,y,x} should not be, since it will not give any new results.

3. The rank of the matrix X(F ,Si∪ ti+1) is checked in an incremental way using intermediate results obtained
on the previous step with matrix X(F ,Si). That required an implementation of some modified Gauss-Jordan
elimination scheme.

Example 1. Box-Behnken design with d = 3: F = {(0,±1,±1),(±1,0,±1)(±1,±1,0)}. The algebraic fan
of F contains 12 polynomial models. The statistical fan of F contains 14, the two extra being (listing just the
monomials): {1,z,z2,y,yz,y2,y2z,x,xz,xz2,xy,x2,x2y} and {1,z,z2,y,yz,yz2,y2,x,xz,xy,xy2,x2,x2z}.

Example 2. Box-Behnken design with d = 4: the algebraic fan has 48 models, while the statistical fan has 96.

Example 3. Box-Wilson design with d = 3: F = {(0,±1,±1),(±1,0,±1)(±1,±1,0),(±1,0,0),(0,±1,0),
(0,0,±1),(0,0,0)}. The algebraic fan is equal to the statistical fan and has 6 models.

Example 4. Box-Wilson design with d = 4: the algebraic fan has 12 models, while the statistical fan has 54.

Example 5. F = {(1,3),(1,1),(0,1),(0,2),(0,0),(2,0)}. The algebraic fan consists of two models: {1,x,y,xy,
y2,y3} and {1,x,y,xy,x2,y2}. The statistical fan has two more models: {1,x,y,x2,y2,y3} and {1,x,y,xy,y2,xy2}.
The term xy2 is not present in any model from the algebraic fan.

Example 6. Considering a Boolean field, d = 4, and F = {(0,0,0,0),(0,1,1,1),(0,0,1,0),(1,0,0,0),(0,0,1,1),
(1,0,1,1),(0,1,0,0),(1,1,0,0)}. The albegraic fan has two models: {1,x,y,z,w,xy,xw,yw} and {1,x,y,z,w,xy,xz,yz},
while the statistical fan has two more: {1,x,y,z,w,xy,xz,yw} and {1,x,y,z,w,xy,yz,xw}.

Author would like to thank Nikolay Vasiliev and Konstantin Usevich for useful insights that and discussions
that preceded the appearance of this work.
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Copula functions are largely employed in applied statistics as a flexible tool to describe the behavior of the depen-
dence between random variables. As a matter of fact, according to the Sklar’s theorem (see refs. [7, 6]), the joint
bivariate distribution function FXY of two random variables X and Y with univariate marginal distribution functions
F and G, respectively, can be written as

FXY (x,y) =C(FX(x),FY (y)) (x,y ∈ R) (23)

where C is a bivariate copula uniquely determined on the set RanFX ×RanFY . Copulas are a very strong tool in
modeling in a continuous setting. Nevertheless, the use of such functions into a discrete one needs to be treated
differently and more carefully. The limitations and dangers of an undiscriminating transposition of modeling by
copulas in a discrete framework have been analyzed and discussed by several authors in the literature (e.g., see ref.
[2]). Due to the complexity and difficulties in extending the results from the continuous framework to the discrete
one, the concept of discrete copulas has been introduced. Such discrete copula functions can be regarded as the
restriction of a discrete bivariate distribution function with uniform discrete univariate marginals (see refs. [4, 3]).
The statistical meaning of these families has been discussed in [5, 2], where constructions of discrete copulas given
a contingency table have been shown.

In this work we study the connection between discrete copulas and contingency tables. To this end, we start
from the context considered in [1, 8] with respect to the problem of finding upper and lower bounds on cell counts
in cross classifications of nonnegative counts. In particular, we investigate the meaning of the generalized Fréchet
bounds obtained in [1] in the context of discrete copulas with the goal of better understanding the shape of the set
of all possible discrete copulas. We also present the relationship between the generalization of the Fréchet bounds
in [1] and the classical ones. Finally, we discuss some potential extensions to the multidimensional case.
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To address the issue of extracting useful information from large data-set of large scale networks of neurons,
I propose an approach that involves both algebraic-statistical and topological tools. The first part of my research
project is devoted to the investigation of the electrophysiological behavior of in vitro cortical assemblies both
during spontaneous and stimulus-evoked activity coupled to Micro-Electrode Arrays (MEAs). The goal is to
identify core sub-networks of repetitive and synchronous patterns of activity and to characterize them. The analysis
is performed at different resolution levels using a clustering algorithm that reduces the network dimensionality. To
better visualize the results, I provide a graphical representation of the detected sub-networks and characterize them
with a topological invariant, i.e. the sequence of Betti numbers computed on the associated simplicial complexes.
The results show that the extracted sub-populations of neurons have a more heterogeneous firing rate with respect to
the entire network. Furthermore, the comparison of spontaneous and stimulus-evoked behavior reveals similarities
in the identified clusters of neurons, indicating that in both conditions similar activation patterns drive the global
network activity. The second part of my research project treats the issue of parameters sensitivity’s analysis.
In order to validate the developed method, each parameter has been studied in all its variation range and the
corresponding results have been compared. Finally, the third part is devoted to the comparison of the proposed
methodology with gold standard methods used in this field like Cross-Correlation function and Transfer Entropy
algorithm.
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Introduction
In the last years, there was a huge theoretical development of Algebraic Statistics, covering different fields of in-
terest. However, still not many applications using real data have been provided. On the other hand, biostatisticians
faced the problem of the analysis of the so-called “big data” coming, for example, from genetic investigations. So,
they have a need of new and rigorous methods able to solve arising theoretical and computational problems.

An interesting and useful application of Algebraic Statistics may be the study of interactions between epidemi-
ological variables. In fact, traditional methods of studying interactions failed when working with a large number
of variables compared to the number of subjects.

Together with other colleagues, I studied the application of the independence model of two variables (X1,X2)
from a third X3 applied to the dependence of two genetic variables from the occurrence of cancer (“gene-gene”
interaction) and I propose here one of the possible future directions of Algebraic-Biostatistic research.

First example: EPIC-Genair Study
The aim of this first example (already published in [1]) is to develop a model that use computational algebraic
methods (namely, the Diaconis-Sturmfels algorithm [2]) in order to test the effect of the combination of two
variables (here, polymorphisms) on the risk of a disease (here, cancer). This analysis was performed in the Gen-
Air study. Gen-Air is a case-control study nested in the European Prospective Investigation into Cancer and
Nutrition (EPIC) cohort, that is a multicenter European study, in which more than 500 000 healthy volunteers were
recruited in 10 European countries [3]. The aim of Gen-Air was to study the relationship between some types
of cancer (bladder cancer, lung cancer, and leukaemia), air pollution, environmental tobacco smoke, and genetic
polymorphisms [4].

The most suitable model to apply is the model of independence of two random variables X1,X2 (the polymor-
phisms), from a third one X3 (presence or absence of cancer); in symbols:

P(X1 = i,X2 = j,X3 = k) = P(X1 = i,X2 = j)P(X3 = k) (24)

The parametric equations of model (24) are of the form: pi jk = θi jµk. We associate to this model the ideal I12,3
that contains all polynomials in the variables pi jk that identically vanish on the points given by the parametrization.
It is a toric ideal and a Gröbner basis for it is given by binomials of the form:

pi1 j1k1 pi2 j2k2− pi1 j1k2 pi2 j2k1 (25)

Then, using the Gröbner basis of the ideal associated to the model, we can apply the Diaconis-Sturmfels algorithm,
obtaining in a simpler way a Monte Carlo sampling.

Using this method we were able to identify several interactions that influence the risk of cancer. We compared
them with the results from the traditional logistic model and they were consistent.
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Second example: DRGP Study
The same method was applyed to the genotype-phenotype correlation study, a study that investigate the relation
between DNA repair capacity and DNA repair genes polymorphisms on healthy subjects [5]. Results are still
unpublished.

It is well known that the variant allele in the polymorphism rs1052133 in OGG1 gene (Ser326Cys) reduces
DNA glycosylase activity. For this reason, we decided to explore the interaction between DNA glycosylase activity,
OGG1 rs1052133 polymorphism and other genetic variants.

Among the results, it is interesting to observe that OGG1 rs1052133 interacts with other functional polymor-
phisms belonging to the same repair system (Base Excision Repair): XRCC1 rs17655484 and MUTYH rs3219474
(p−value= 0.00001 and p−value= 0.00003, respectively).

In the figure we showed the predicted (A) and observed (B) protein-protein interaction for OGG1, estimated
using STRING 9.0 (http://string-db.org)

Further prospective
Several other independence models using Algebraic Statistics have been studied [6, 7]. These models could be
used in order to explore pathways among variables.

For example, in the EPIC study, a full set of nutritional variables are available for all the over 500.000 subjects.
Our idea is to test several independence models in this database in order to identify food patterns.

Another example is the study of clusters of carcinogenic exposures in several occupational epidemiology stud-
ies.
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A current trend in marine robotics consists of performance evaluation of Unmanned Marine Vehicles (UMVs)
guidance systems. Among the recent literature on the topic (see for instance [2, 3, 4, 5, 8, 9, 12]), we follow the
work of [8]. In this paper the problem of evaluating robotic systems performances is addressed by means of three
steps: a) define a performance metrics M, based on reference, measurements, state signals, control actions, if ac-
cessible (it could be a combination of different performance indices and should be computed for each experiment);
b) define a system performance P as a function of M computable (at least theoretically) with respect to all possible
reference signals and initial conditions; c) design a limited suitable set of experiments.

We concentrate on step a). To this aim, we derive from [8] an innovative criterion to evaluate system per-
formance which gives an important contribution to the definition of M. The new criterion can be described as
follows. Let X = {(xR,i,yR,i), i = 1, . . . ,s} ⊂ R2 and Y = {(xV,i,yV,i), i = 1, . . . ,s′} ⊂ R2 be two sets identifying
the reference and vehicle paths, respectively. The method consists of the following two steps:

1. Approximation of the target path through a polynomial curve: compute an algebraic curve f = 0 that ap-
proximates the points of X by less than a tolerance ε1;

2. Identification of the robot well-approximated positions: select those points of Y far from the reference path
f = 0 for more than a tolerance ε2.

There are several methods in the literature to address step 1, among which an interesting class is formed by
recently developed algorithms relying on tools from Numerical Commutative Algebra (among the others we recall
[1, 6, 7, 10, 11]). In general, the input is a set of points in Rn and the output is a real multivariate polynomial f in n
variables whose zero-locus defines an algebraic hypersurface of Rn representing a good approximation (in some
sense) of the geometrical arrangement of the input points. For the evaluation of UMVs, obviously we have n = 2.
In this paper, we concentrate on the problem outlined in step 2, where a rule is required to classify whether or not
each point of Y lies close to the curve f = 0 by less than ε2. To this aim, we follow the general approach illustrated
in [13] and extend it to the Euclidean case.

Let f = 0 be an algebraic plane curve (for instance, the curve found in step 1 applying algorithms form
Numerical Commutative Algebra) and let ε2 be a fixed tolerance for the closeness of a generic point (xV ,yV ) ∈ Y
to f = 0. In [13] a crossing algorithm is presented based on a suitable criterion which, depending on the evaluation
f (xV ,yV ) and on the local differential geometry of f = 0, states whether or not the curve f = 0 crosses the ∞-
neighbourhood of radius ε2 of (xV ,yV ). In this paper, we propose new analytic bounds on which we plan to
produce a rule to identify the points of Y well-approximated by f = 0. The bounds are provided for the general
case of hypersurfaces. Following standard notation, we denote by BR(p) = {q ∈ Rn | ‖q− p‖2 < R} the 2-ball
centered at p ∈ Rn and given radius R, by Jac f (x1, . . . ,xn) :=

(
∂ f
∂x1

, . . . , ∂ f
∂xn

)
the Jacobian (or gradient) of f , and

by H f (x1, . . . ,xn) :=
(

∂ 2 f
∂xi∂x j

)
i, j=1,...,n

the n×n symmetric Hessian matrix of f . For length reasons we omit proofs

and deeper details.
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Proposition 4 Let ε > 0, let f be a non-costant polynomial of R[x1, . . . ,xn] and let p be a point of Rn.
a) Let H := maxq∈B(p) ‖H f (q)‖2; if

| f (p)|> ‖Jac f (p)‖2ε +
H

2
ε

2 =: B1, (26)

then the hypersurface of equation f = 0 does not cross Bε(p).

b) Suppose that f has degree > 2; if

| f (p)|> ‖Jac f (p)‖2ε +
1
2

σmax(H f (p))ε2 := B′1, (27)

then the hypersurface of equation f = 0 does not cross Bε(p) neglecting contributions of order O(ε3).

Proposition 5 Let ε > 0, let f be a degree > 2 polynomial of R[x1, . . . ,xn], and let p be a point of Rn such that
Jac f (p) is not the zero vector.

a) Let H := maxq∈Bε (p) ‖H f (q)‖2, let R be a positive real number such that R < min
{

ε,
‖Jac f (p)‖2

H

}
and let

J = 1
infq∈BR(p) ‖Jacf(q)‖2

. If

| f (p)|< 2R
J(2+HJR)

=: B2, (28)

then the hypersurface of equation f = 0 crosses Bε(p).

b) Suppose that the Hessian matrix H f (p) is nontrivial, let R be a positive real number s.t. R<min
{

ε,
‖Jac f (p)‖2
‖H f (p)‖2

}
and set Θ := ‖Jac†

f (p)‖2 +3
√

r ‖H f (p)‖2

‖Jac f (p)‖2
2
R where r = rank(DJac†

f (p)). If

| f (p)|< 2R
Θ(2+

√
r‖H f (p)‖2ΘR)

=: B′2, (29)

then the hypersurface of equation f = 0 crosses Bε(p) neglecting order O(R2) contributions.
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The theory of frame for a Hilbert space plays a fundamental role in signal processing, image processing, data
compression, sampling theory and more. In this paper, at first we show that Sigma-Delta quantization is a method
of representing band limited signals by 0,1 sequences that are from regularly spaced samples of this signals and we
peruse the performance of finite frames for encoding and decoding of vectors by applying first-order Sigma-Delta
quantization to the frame coefficients.

Furthermore, it is shown that for piecewise continuous frames with compact support, the associated regular
frame systems can be decomposed into a finite number of linearly independent sets. Starting the alternating projec-
tion scheme from the estimate provided by linear decoding is a way to find a consistent estimate that automatically
improves this decoding scheme.

The question is new to have an analytical evaluation of this improvement. Our approach is to find an upper
bound to any consistent estimate of X and compare it with the expected. MSE of a classical estimate and this is to
be compared with the classical decoding MSE, which is proportional to (1/R).

This means that under the special condition on the quantization threshold crossing of one of theorem in this
paper. In addition to redundant representations obtained with frame are playing an ever-expanding role in signal
processing data to design flexibility and other desirable properties. One such favorable property is robustness
to additive noise. This robustness, carried over to quantization noise (without regard to whether it is random
or signal-independent), explains the success of both ordinary over sampled analog-to-digital conversion (ADC)
and Sigma-Delta ADC with the canonical linear reconstruction. But the combination of frame expansions with
scalar quantization is considerably more interesting and intricate because boundedness of quantization noise can
be exploited in reconstruction and frames and quantizers can be designed jointly to obtain favorable performance.
This paper introduces a new use of finite frames in vector quantization: Frame Permutation Quantization (FPQ).
In FPQ permutation source decoding (PSC) is applied to a frame expansion of a vector. This means that the vector
is represented by a partial ordering of the frame coefficients or by signs of the frame coefficients. FPQ provides a
space partitioning that can be combined with additional signal constraints a prior knowledge to generate a variety
of vector quantizers.
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