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How to convince people that in programming, simplicity and clarity -

in short what mathematicians call elegance - are a crucial matter

that decides between success and failure? (E. Dijkstra)
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The symbolic approach to combinatorial enumerations

Symbolic Combinatorics

Systematic relations between some of the major

constructions of discrete mathematics (words,

trees, graphs, and permutations) and

operations on generating functions that exactly

encode counting sequences.

� Flajolet, P. and Sedgewick, R. (2009) Analytic

Combinatorics, Cambridge Univ. Press

� Roman, S.M. and Rota, G.-C. (1978) The

umbral calculus, Adv.Math.

G(an; t) =
∑
n≥0

an
tn

n!
(exponential generating function)

the “magic art”of lowering and raising exponents: an → an

Gian-Carlo Rota
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The classical umbral calculus

The umbral calculus: an approach to combinatorial sequences using cumulants.

� Sturmfels, B. and Zwiernik, P. (2011) Binary cumulant varieties, Annals of

Combinatorics

Although the notation satisfied the most ardent

advocate of spic-and-span rigor, the translation of

“classical”umbral calculus into the newly found

rigorous language made the method altogether

unwieldy and unmanageable. Not only was the

eerie feeling of witchcraft lost in the translation,

but, after such a translation, the use of calculus to

simplify computation and sharpen our intuition was

lost by the wayside.

� Rota, G.-C. and Bryan, D.T. (1994) The classical

umbral calculus, SIAM J. Math. Anal. Appl.

� Bell, E.T. (1938) The history of

Blissards symbolic method with a

sketch of its inventors life, Amer.

Math. Monthly
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What I mean by symbolic methods

A set of manipulation techniques aiming to perform algebraic calculations
(possibly) through an algorithmic approach in order to find efficient
mechanical processes to pass to a computer.

� Di Nardo, E. (2014) Symbolic Calculus in Mathematical Statistics: a review.

Séminaire Lotharingien de Combinatoire

What about computation cost?

• Efficiency is not so obvious.

• Sometimes a consequence of a different viewpoint.

Why not a symbolic

cumulant calculus?

 Very close to the moment

method for random matrices.

 Commutative counterpart of

free probability.
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U-statistics

U =
1

(n)m

∑
Φ(Xj1 , Xj2 , . . . , Xjm )

• symmetric polynomial in (X1, X2, . . . , Xn) i.i.d.r.v.’s;

• the sum ranges over the set of all permutations (j1, j2, . . . , jm).

An appropriate choice of language and notation can

simplify and clarify many statistical calculations.

� McCullagh, P. (1987) Tensor

Methods in Statistics. Chapman

& Hall, London

Augmented symmetric polynomials vs moments

If λ = (1r1 , 2r2 , . . . ,mrm ) ` n is a partition of r1 + 2r2 + · · ·+mrm = n of length

r1 + r2 + · · ·+ rm = l(λ) and E[Xj
i ] = aj , j = 1, 2, . . . ,m then

E

∑XsXt · · ·︸ ︷︷ ︸
r1

X2
qX

2
r · · ·︸ ︷︷ ︸

r2

Xm
u X

m
ν · · ·︸ ︷︷ ︸

rm

 = (n)l(λ) a
r1
1 ar22 · · · a

rm
m

� Stuart, A. and Ord, J.K. (1994) Kendall’s Advanced Theory of Statistics. Vol. 1:

Distribution Theory Edward Arnold, London (Section 12.5)
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A key tool: the singleton umbra

E

[ ∑
XsXt · · ·︸ ︷︷ ︸

r1

X2
qX

2
r · · ·︸ ︷︷ ︸

r2

Xm
u X

m
ν · · ·︸ ︷︷ ︸

rm

]
assume that ⇑ could be “symbolically represented ”by ⇓

E
[ m∏
j=1

(χ1X
j
1 + χ2X

j
2 + · · ·+ χnX

j
n)
rj

]
having a structure very similar to ar11 a

r2
2 · · · armm

How?

� E[χij] =
{

1 i = 0, 1
0 otherwise

� E[χi11 χi22 · · ·χinn ] = E[χi11 ]E[χi22 ] · · ·E[χinn ]

Are {χi}ni=1 r.v.’s?
No⇒ E[χ2

i ] = 0 Singleton umbra
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Outline
What I mean by symbolic methods?

Why symbolic methods?
The moment symbolic method

Applications to random matrices

A look into the past
An example
Throw away paper and pencil

From vectors...

 What calculations can be automated?

 How can we automate them?

 What new concepts are required? (if any)

Computing

E

 n∑
i 6=j

X2
i Xj

( n∑
i=1

X2
i Yi

)2
 with (X1, Y1), · · · , (Xn, Yn) separately i.i.d.r.v.’s

Push ... and then: (with µi,j = E[XiY j ])

2 (n)2 [2µ4,1 µ3,1 + µ5,2 µ2,0 + µ6,2 µ1,0] + 2 (n)3 µ3,1 µ2,1 µ2,0+
(n)3 [2µ4,1 µ2,1 µ1,0 + µ4,2 µ2,0 µ1,0] + (n)4 µ

2
2,1 µ2,0 µ1,0

 In a reasonable ammount of time

 In a form suitable for any symbolic language
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Outline
What I mean by symbolic methods?

Why symbolic methods?
The moment symbolic method

Applications to random matrices

A look into the past
An example
Throw away paper and pencil

...up to random matrices

Computing Algorithm

E
{

Tr [Wp(n)H1] Tr [Wp(n)H2]2
}

with H1, H2 ∈ Cp×p

Wp(n) =
n∑
i=1

(XXXi −mi)
†(XXXi −mi) and XXXi ∼ N(mi,Σ)

<Wishart random matrix>

Push ... and then:

(
with Ω = Σ−1M and M =

n∑
i=1

m†imi

)
E
{

Tr [Wp(n)H1] Tr [Wp(n)H2]2
}

= nTr (H2) Tr (ΩH1H2)− nTr (H2) Tr (ΩH2H1)

+ nTr (H2) Tr (ΩH1) Tr (ΩH2)− nTr (ΩH2) Tr (H1H2)− n2Tr (ΩH2) Tr (H1) Tr (H2)

+ 2 Tr (ΩH2) Tr (ΩH1H2) + 2 Tr (ΩH2) Tr (ΩH2H1)− Tr (ΩH1) (Tr (ΩH2))2

− Tr
(
ΩH1H2

2
)
− Tr (ΩH2H1H2) + Tr (ΩH1) Tr

(
ΩH2

2
)

+ 2n2Tr (H1H2) Tr (H2)

+ n2/2Tr (H1) Tr
(
H2

2
)

+ n3Tr (H1) (Tr (H2))2 + nTr
(
H1H2

2
)

+ nTr (H1) (Tr (ΩH2))2 + n2Tr (ΩH1) (Tr (H2))2 − n/2 Tr (ΩH1) Tr
(
H2

2
)

− nTr (H1) Tr
(
ΩH2

2
)
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Why symbolic methods?
The moment symbolic method

Applications to random matrices

A look into the past
An example
Throw away paper and pencil

Maple application center

E
{

Tr [Wp(n)H1]i1 · · ·Tr [Wp(n)Hm]im
}

with H1, . . . , Hm ∈ Cp×p

� Di Nardo, E. (2014) On a symbolic representation of non-central Wishart

random matrices with applications. Jour. Mult. Anal.

10 / 39



Outline
What I mean by symbolic methods?

Why symbolic methods?
The moment symbolic method

Applications to random matrices

An instance in point: k-statistics
Computational statistics

In the literature

A steep learning curve but...

When symbolic methods are used properly, they can give us more insights to

problems and the efficiency could be reached as by-product.

� Kendall, W.S. (1993) Computer Algebra in probability and statistics.

Statistica Neerlandica.

� Andrews, D.F. and Stafford, J.E. (2000) Symbolic computation for

statistical inference. Oxford University Press.

� Rose, C. (2015) MathStatica: a symbolic approach to computational

mathematical statistics. Version 2.7

� McCullagh, P. (1987) Tensor methods in statistics. Chapman and Hall.

Example:

n-th cumulant cn = n-th coeff. of log MGF

• mean → c1
• variance → c2
• skewness → c3/c

3/2
2

• kurtosis → c4/c
2
2
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k-statistics

Definition

The n-th k-statistic kn is the unique symmetric unbiased estimator of the n-th

cumulant cn, i.e. E[kn] = cn.

� Fisher, R.A. (1929) Moments and product moments of sampling
distributions. Proc. London Math. Soc.

k1 =
S1

n

k2 =
nS2 − S2

1

(n)2
Sr =

n∑
i=1

Xr
i

k3 =
2S3

1 − 3nS1S2 + n2S3

(n)3

k4 =
−6S4

1 + 12nS2
1S2 − 3n(n− 1)S2

2 − 4n(n+ 1)S1S3 + n2(n+ 1)S4

(n)4
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k-statistics

A nice formula: cumulants in terms of moments

If λ = (1r1 , 2r2 , . . . ,mrm) ` i ≤ n then

ci = i!
∑
λ`i

(−1)l(λ)−1[l(λ)− 1)]!

r1!r2! · · · rm!

ar11 a
r2
2 · · · armm

(1!)r1(2!)r2 · · · (m!)rm

∑
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2
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u X

m
ν · · ·︸ ︷︷ ︸

rm

n (n− 1) · · · (n− l(λ) + 1)

-
-
-

-
-
-

-

in terms of power sums

� Too heavy from a computational point of view!
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An instance in point: k-statistics
Computational statistics

Computational results

(A&S) Andrews, D.F. and Stafford, J.E. (2000) Symbolic
computation for statistical inference. Oxford
University Press.

(Symbolic) Di Nardo, E., Guarino, G. and Senato, D. (2008)
A unifying framework for k-statistics, polykays and
their multivariate generalizations. Bernoulli. (MathStat)

k-statistics A&S
k5 0.06
k7 0.31
k9 1.44
k11 8.36
k14 396.39
k16 57982.4
k18 –
k20 –
k22 –
k24 –
k26 –
k28 –

MathStat Symbolic
0.01 0.01
0.02 0.01
0.04 0.01
0.14 0.01
0.64 0.02
2, 63 0.08
6.90 0.16
25.15 0.33
81.70 0.80
359.40 1.62
1581.05 2.51
6505.45 4.83

PC Pentium(R)4, Intel(R)

CPU 2.08 Ghz

512MB Ram

Maple 10.0

Mathematica 4.2

Times in seconds
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A speeder way of computing

= a new formula and a new insight

ci = E[(C1,Z + · · ·+ Cn,Z)
i]

• {Cj,y}nj=1 are i.i.d.r.v.’s whose moments are cumulants of
randomized compound Poisson r.v.’s with parameter Z

• E[Zm] = (−1)m−1(m− 1)!/(n)m for m = 0, 1, . . . , n
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What I mean by symbolic methods?

Why symbolic methods?
The moment symbolic method

Applications to random matrices

An instance in point: k-statistics
Computational statistics

Statistics and Computing (2009)

Polykays kr,...,s

Unbiased estimators of product of cumulants, that is E[kr,...,s] = cr · · · cs

“Every polynomial symmetric function can be expressed in terms of polykays.”

� Tukey, J. (1956) Keeping moment-like sample computations simple. Ann.Math.Stat.

kr,..., s AS Algorithms MathStatica

Fast-algorithms

Polyk-algorithm
k3,2 0.06 0.02

0.01

0.02
k4,4 0.67 0.06

0.02

0.06
k5,3 0.69 0.08

0.02

0.07
k7,5 34.23 0.79

0.11

0.70
k7,7 435.67 2.52

0.26

2.43
k9,9 - 27.41

2.26

23.32
k10,8 - 30.24

2.98

25.06
k4,4,4 34.17 0.64

0.08

0.77

� Staude, B. and Rotter, S. (2010) Cubic: cumulant based inference of higher-order

correlations in massively parallel spike trains. J. Comp. Neuroscience
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An instance in point: k-statistics
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Joint cumulants are zero for i.r.v.’s

Table: For AS Algorithms, missed computational times means “greater than 20
hours”. For MathStatica, missed computational times means “procedures not
available”

ks1... sr ; l1...lm AS Algorithms MathStatica

Fast-algorithms

k3 2 0.25 0.03

0.01

k4 4 28.36 0.16

0.02

k5 5 259.16 0.55

0.06

k6 5 959.67 1.01

0.16

k7 7 - 8.49

1.04

k8 7 - 14.92

2.19

k3 3 3 1180.03 0.88

0.47

k4 4 3 - 4.80

0.94

k4 4 4 - 13.53

2.30

k2 1; 1 1 0.20 -

0.01

k2 2; 2 1 6.30 -

0.08

k2 2; 2 2 33.75 -

0.14

k2 2; 2 1; 1 1 126.19 -

0.28

k2 2; 2 1; 2 1 398.42 -

0.55

k2 2; 2 2; 2 1 1387.00 -

1.25

k2 2; 2 2; 2 2 3787.41 -

2.91
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Outline
What I mean by symbolic methods?

Why symbolic methods?
The moment symbolic method

Applications to random matrices

Give up the sample space
Paralleling free probability
A quick shot

Symbolic combinatorics

Symbolic moment calculus

ai = |{ discrete structures }|

gen.func. 1 +
∑
i≥1

ai
ti

i!

ai represented
by a symbol
α ∈ A

E[αi] = ai

Probability in terms of r.v.’s

Take an ordered commutative algebra over C[A] and endows it with a positive linear
functional E :

• an element of A ⇒ a r.v.

• the linear functional E ⇒ the expectation of a r.v.

• the sequence {ai} ⇒ the moments of a r.v.

Special Umbrae Moments

Augmentation umbra E[εi] = 0
Unity umbra E[ui] = 1
Singleton umbra E[χi] = δi,1
Bell umbra E[βi] = Bi

� Not all r.v.’s can be represented by

umbrae.

� Not all umbrae are r.v.’s.
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Outline
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Why symbolic methods?
The moment symbolic method

Applications to random matrices

Give up the sample space
Paralleling free probability
A quick shot

The algebra of non-commutative r.v.’s

• a ∈ A (non-commutative r.v.’s)

• unital linear functional ϕ : A → C with ϕ(ai) i-th moment

• {ϕ(ai)}i≥1 distribution of a

• ϕ(aibi) joint moment of a and b 6= ϕ(abab · · · ab)

X,Y i.r.v.’s then ci(X + Y ) = ci(X) + ci(Y ) a, b free r.v.’s then ci(a+ b) = ci(a) + ci(b)

⇐ Cumulants ⇒

c1 = µ1, c2 = µ2 − µ21
c3 = µ3 − 3µ2µ1 + 2µ31

c4 = µ4 − 4µ3µ1 − 3µ2 + 12µ2µ1 − 6µ41

Classical cumulants - Π(i)

c1 = ϕ(a), c2 = ϕ(a2)− ϕ(a)2

c3 = ϕ(a3)− 3ϕ(a2)ϕ(a) + 2ϕ(a)3

c4 = ϕ(a4)− 4ϕ(a3)ϕ(a)− 2ϕ(a2)2

+ 10ϕ(a2)ϕ(a)2 − 5ϕ(a)4

Free cumulants - Nc(i)

Remark: a, b are free commutative r.v.’s iff at least one of them has vanishing variance.
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The framework

Uncorrelation property

E[αiγj · · · δk] = E[αi]E[γj ] · · · E[δk]

E factorizes on different symbols


i∑

j=1

(i
j

)
ajgi−j ⇒

i∑
j=1

(i
j

)
αjγi−j = (α+ γ)i

E[(2.α)i] =
i∑

j=1

(i
j

)
ajai−j ⇒

i∑
j=1

(i
j

)
αj(α′)i−j

Two special devices:

α, α′ similar⇔ E[αi] = E[(α′)i] = ai for all i, in symbols α ≡ α′

m.α dot-product = α′ + α′′ + · · ·+ α′′′︸ ︷︷ ︸
m

with α′ ≡ α′′ ≡ · · · ≡ α′′′ ≡ α.

∑
λ`i

(m)νl(λ)dλaλ = E[(m.α)i]


λ = (1r1 , 2r2 , . . .) ` i
aλ = ar11 ar22 · · ·

dλ =
i!

(1!)r1r1! (2!)r2r2! · · ·∑
λ`i

(γ)l(λ)dλaλ = qi(γ)⇒ E[(γ.α)i] =
∑
λ`i

gl(λ)dλaλ

21 / 39
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What free probability can do for statistician?
Again on efficiency: Wishart random matrices
Spectral random sampling
Conclusions

Eig(A+B) 6= Eig(A) + Eig(B)

A nice shortcut

Random matrices are non-commutative objects whose large-dimension asymptotic

have provided the major applications of free probability:

φ(ai) = lim
n→∞

1

n
E[Tr(Ai)].

Ex: A[n×n] gaussian hermitian µA =
1

n

n∑
j=1

δλj(A)
a.e.⇒ Wigner (semicircle)

If A and B are indipendent diagonal matrices

log MGF(A+B) = log MGF(A) + log MGF(B)

i-th coeff. log MGF = ci

• What about ci(A+B)?

• How to define ci(A)?
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Non-asymptotic case

If A and B are asymptotically free, then the asymptotic spectrum of the sum can be

obtained from the individual asymptotic spectra.

 As free probability only covers the asymptotic regime in which n is sent to

infinity, there are some aspects of random matrix theory to which the tools of free

probability are not sufficient by themselves to resolve.

How to preserve the framework of free probability?

If in lim
n→∞

1

n
E[Tr(Ai)] = τ(Ai) the symbolic moment method can be resorted in

order to compute {τ(Ai)}i≥1.

Assume to symbolically represent the eigenvalues {λ1, . . . , λn} of A with

{µ1, . . . , µn} umbral monomials so that

τ(Ai) =
1

n
E[µi1 + · · ·+ µin] power sum symmetric polynomials in {µi}
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n→∞

1

n
E[Tr(Ai)] = τ(Ai) the symbolic moment method can be resorted in

order to compute {τ(Ai)}i≥1.

Assume to symbolically represent the eigenvalues {λ1, . . . , λn} of A with

{µ1, . . . , µn} umbral monomials so that

τ(Ai) =
1

n
E[µi1 + · · ·+ µin] power sum symmetric polynomials in {µi}
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� Capitaine M., Casalis M. (2006)

Cumulants for random matrices as

convolutions on the symmetric group.

Probab. Theory Relat. Fields.

� Di Nardo E., McCullagh P., Senato D.

(2013) Natural statistics for spectral sam-

ples. Ann. Stat.

Cumulants of random matrices

If µµµ = (µ1, . . . , µn) represents the eigenvalues of A then cµµµ = (c1,µµµ, . . . , cn,µµµ)

Tr(A)⇐ µ1 + · · ·+ µn ≡ n.β.(c1,µµµ + · · ·+ cn,µµµ)⇒ Tr (C(A))

represents the n-tuple of cumulants of A.

E
{

[Tr(A)]i
}

=
∑
λ`i

dλn
l(λ)

l(λ)∏
j=1

E{[Tr (C(A))]λj }

m[A] = m[I] ? c[A]

? convolution on symmetric group

α ≡ u.β.κ

m[A(σ)] = E

 ∏
c∈C(σ)

Tr
[
Al(c)

] c[A(σ)] =
∏

c∈C(σ)

E
{

[Tr (C(A))]l(c)
}

(l(c)− 1)!
⇒ polykays
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The non central Wishart distribution

• Let {XXX1, . . . ,XXXn} be random row vectors independently drawn from a p-variate
complex normal distribution with zero mean and full rank covariance matrix Σ
with eigenvalues {θ1, . . . , θp}

• Let m1, . . . ,mn be complex row vectors of dimension p.

Ω = Σ−1M ⇐
non-centrality matrix

Wp(n,Σ,M) =
n∑
i=1

(XXXi −mi)
†(XXXi −mi)

M =

n∑
i=1

m†imi

Symbolic representation with Ŵ (n) = Wp(n,Σ, 0)

Tr[W (n)] ≡

α⇐ formal comp.︷ ︸︸ ︷
−1.β.α

+

Tr[Ŵ (n)]

⇐ central comp.

︷ ︸︸ ︷
n.(θ1ū1 + · · ·+ θpūp)

Cumi (Tr[W (n)]) = −i!Tr(MΣi−1) + n(i− 1)!Tr(Σi)

E[αi] Tr[Ŵ (n)]
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Cumi (Tr[W (n)]) = −i!Tr(MΣi−1) + n(i− 1)!Tr(Σi)

E[αi] Tr[Ŵ (n)]
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A different way to represent the central component

Tr[Ŵ (n)] ≡ n.(θ1ū1 + · · ·+ θpūp) ≡ n.β.δ
� {ū1, . . . , ūp} uncorrelated umbrae similar to the boolean unity umbra ū

whose moments are equal to the number of permutations of a set.

Tr[Ŵ (n)] = Tr[XXX†1XXX1 + · · ·+XXX†nXXXn]
with {XXX†1XXX1, . . . ,XXX

†
nXXXn} i.i.d. random matrices of order p.

As a summation of compound Poisson r.v.’s

Tr[Ŵ (1)] = Tr

[
n∑
i=1

XXX†iXXXi

]
= Z1 + · · ·+ ZPo(1) with

• {Zi}ni=1 i.i.d. r.v.’s;

• E[Zki ] = (k − 1)!Tr(Σk) = Cumk

(
XXX†iXXXi

)
for k ∈ N

 The sequence of moments of Tr[Ŵ (n)] is of binomial type.

 The sequence of moments of Tr[W (n)] is of Sheffer type.
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� {ū1, . . . , ūp} uncorrelated umbrae similar to the boolean unity umbra ū

whose moments are equal to the number of permutations of a set.

Tr[Ŵ (n)] = Tr[XXX†1XXX1 + · · ·+XXX†nXXXn]
with {XXX†1XXX1, . . . ,XXX

†
nXXXn} i.i.d. random matrices of order p.

As a summation of compound Poisson r.v.’s

Tr[Ŵ (1)] = Tr

[
n∑
i=1

XXX†iXXXi

]
= Z1 + · · ·+ ZPo(1) with

• {Zi}ni=1 i.i.d. r.v.’s;

• E[Zki ] = (k − 1)!Tr(Σk) = Cumk

(
XXX†iXXXi

)
for k ∈ N

 The sequence of moments of Tr[Ŵ (n)] is of binomial type.

 The sequence of moments of Tr[W (n)] is of Sheffer type.
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whose moments are equal to the number of permutations of a set.

Tr[Ŵ (n)] = Tr[XXX†1XXX1 + · · ·+XXX†nXXXn]
with {XXX†1XXX1, . . . ,XXX

†
nXXXn} i.i.d. random matrices of order p.

As a summation of compound Poisson r.v.’s
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Tr[Ŵ (n)] = Tr[XXX†1XXX1 + · · ·+XXX†nXXXn]
with {XXX†1XXX1, . . . ,XXX

†
nXXXn} i.i.d. random matrices of order p.

As a summation of compound Poisson r.v.’s
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Conclusions

Generalizing the computation of m[W (n)] with multivariate notations

E
{

Tr [W (n)H1]i1 · · ·Tr [W (n)Hm]im
}

= E[(−1.β.η̃ + n.β.ρ̃)i]

Solution

Multivariate moments: receipe ingredients

For {gi}i∈Nm
0
∈ C with gi = gi1,i2,...,im and g0 = 1, such that E[νi] = gi

• ν = (ν1, . . . , νm) m-tuple of umbral monomials (not necessarely uncorrelated)

• i ∈ Nm0 multi-index.

Univariate case: E
{

Tr [W (n)]k
}

= E[(−1.β.α+ n.β.δ)k]

� Multinomial expansion:
∑

t1,t2∈Nm0
t1+ t2=i

(
i

t1, t2

)
E[(−1.β.η̃)t1 ]E[(n.β.ρ̃)t2 ]

Nm[i] = {necklaces of type i on [m] }

 N3[(3, 0, 0)] = {111}
N3[(1, 2, 0)] = {122}
N3[(1, 1, 1)] = {123, 132}
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Tricking: an example

Cumi(Tr[W (n)H1], . . . ,Tr[W (n)Hm]) = i!(nE[ρi]− E[ηi])

Cum(1,2)(Tr[W (n)H1] ,Tr[W (n)H2]) = 2!
{
nTr

[
(ΣH1)(ΣH2)2

]
− Tr

[
Ω(ΣH1)(ΣH2)2

]
− Tr

[
Ω(ΣH2)2(ΣH1)

]
− Tr [Ω(ΣH1)(ΣH2)(ΣH1)]

}
(Randomized Wishart distribution)

nE[ρi]
replace⇐ ∑

λ`i

cl(λ)

m(λ)

∏
λj

E[ρλj ]rj with cj = Cumj(γ)

⇑ ⇑
E[(χ.n.β.ρ̃)i]

corresponding⇐ ∑
λ`i

E[(χ.n)l(λ)]

m(λ)

∏
λj

E[ρλj ]rj (the central part)

Employ the results of E

{
Tr
[
Ŵ (n)H1

]
Tr
[
Ŵ (n)H2

]2}
2n2Tr (H1H2) Tr (H2) + n3Tr (H1) (Tr (H2))2 + nTr

(
H1H2

2
)

+ n2/2Tr (H1) Tr
(
H2

2
)

Replace ni with ci
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Ŵ (n)H1

]
Tr
[
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]
− Tr [Ω(ΣH1)(ΣH2)(ΣH1)]
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(Randomized Wishart distribution)

nE[ρi]
replace⇐ ∑

λ`i

cl(λ)

m(λ)

∏
λj

E[ρλj ]rj with cj = Cumj(γ)

⇑ ⇑
E[(χ.γ.β.ρ̃)i]

corresponding⇐ ∑
λ`i

E[(χ.γ)l(λ)]

m(λ)

∏
λj

E[ρλj ]rj (the central part)

Employ the results of E
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Tr
[
Ŵ (n)H2
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2n2Tr (H1H2) Tr (H2) + n3Tr (H1) (Tr (H2))2 + nTr

(
H1H2

2
)

+ n2/2Tr (H1) Tr
(
H2

2
)

Replace ni with ci
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Simple random sampling

Simple random sample

A sub-vector y consisting of m components of x = (x1, . . . , xn) ∈ Rn, selected

with equal probability 1/(n)m.

σ ∈ Sn a permutation
S the corresponding matrix

Sij =

{
1, if σ(i) = j,
0, otherwise.

S =



s1,1 s1,2 . . . s1,n
...

... . . .
...

sm,1 sm,2 . . . sm,n
sm+1,1 sm+1,2 . . . sm+1,n

...
...

...
...

sn,1 sn,2 . . . sn,n


A formal method

to select y :
x−→ Sn−m

y−→ diag(y) = S[m×n] diag(x)ST[m×n]

Properties:

� S[m×n] S
T
[m×n] = Im, � ST[m×n] S[m×n] 6= Im.
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Example

S =

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

 corresponding to σ =
(

1 2 3 4
4 3 1 2

)
∈ S4

A simple random sampling is:

(
x4 0
0 x3

)
=
(

0 0 0 1
0 0 1 0

) x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

 0 0
0 0
0 1
1 0


The full matrix is: x4 0 0 0

0 x3 0 0
0 0 x1 0
0 0 0 x2

 =

 0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0


 x1 0 0 0

0 x2 0 0
0 0 x3 0
0 0 0 x4


 0 0 0 1

0 0 1 0
0 1 0 0
1 0 0 0


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Spectral sample

Let H be a random unitary
matrix uniformly distributed
with respect to the Haar
measure on the group Un of
n× n unitary matrices.

H =



h1,1 h1,2 . . . h1,n
...

... . . .
...

hm,1 hm,2 . . . hm,n
hm+1,1 hm+1,2 . . . hm+1,n

...
...

...
...

hn,1 hn,2 . . . hn,n


x−→ Hn−m

Y−→ Y = H[m×n] diag(x)H†[m×n]

Spectral sample of size m

The eigenvalues (real r.v.’s)
y = (y1, . . . , ym) of Y

Open problem: Distribution of y?

2014 Ipsen, J.R., Kieburg, M. ... eigen-
value statistics for products of rectangular

random matrices Phys. Rev. E.

 Generalization: replace diag(x) with a Hermitian random matrix X

 Meaning: a restriction operation X 7→ Y extracting a partial
information from X
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A second meaning

A random Hermitian matrix A of order n is said to be freely randomized
if its distribution is invariant under unitary conjugation, i.e. A ∼ GAG†
for each unitary G.

Examples

a) if H is uniformly distributed with respect to Haar measure then,
HAH† is freely randomized.

b) if A is freely randomized, each leading sub-matrix is also freely
randomized.

A spectral sample comes from a freely randomized matrix ⇒ Hdiag(x)H†

• if m = n, the subsample y is a random permutation of x.

• if m < n, the elements of y do not occur among the components of
x.
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Statistics for spectral sampling?

 Which spectral properties are preserved on the average by freely randomized

matrix restriction? Example: the eigenvalue average is preserved.

� Tukey, J. (1956) Keeping moment-like sample computations simple. Ann.Math.Stat.

Natural statistics

A statistic T (a collection of functions Tn : Rn → R) is said to be natural

E [Tm(y)|x] = Tn(x) for each m ≤ n and y drawn from x

• symmetric funtions for m = n;

• not a single function in isolation, but a list of functions;

• common interpretation independent of the sample size

Spectral natural statistics

If y spectral sample and λ ` i, then E[κλ(y)] =

l(λ)∏
j=1

E[(c1,y + · · ·+ cm,y)λj ]

Fisher(1929) k-statistics are natural statistics for cumulants E[κn] = cn
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Matricial polykays

Main theorem

Matricial polykays are the symmetric functions Kλ(y) such that

E[Kλ(y)](σ) = const× E
{[
µ(Im)(−1) ? µ(Y )

]
(σ)
}
, i ≤ m

• σ ∈ Sm, a permutation with |C(σ)| disjoint cycles;

• (f ? g)(σ) =
∑
ρω=σ

f(ρ) g(ω) convolution on Sm;

• µ(Y )(σ) =
∏

c∈C(σ)

Tr
(
Y l(c)

)
and µ(Im)(σ) = m|C(σ)|;

• f (−1) ? f = f ? f (−1) = δ (indicator function)
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Connection with k-statistics

K(1) =
S1

n

= k(1)

K(2) =
nS2 − S2

1

n (n2 − 1)

=
k(2)

(n+ 1)

K(12) =
nS2

1 − S2

n (n2 − 1)

=
k(12)

(n+ 1)

K(3) = 2
2S3

1 − 3nS1 S2 + n2S3

n (n2 − 1) (n2 − 4)

=
2k(3)

(n+ 1)(n+ 2)

K(1,2) =
−2nS3 + (n2 + 2)S1 S2 − nS3

1

n (n2 − 1) (n2 − 4)

=
2k(1,2) − nk(1)k(2)

(n+ 1)(n+ 2)

K(13) =
S3
1(n2 − 2)− 3nS1 S2 + 4S3

n (n2 − 1) (n2 − 4)

=
2k(13) − 3k(1)k(2) + n(n+ 3)(k(1))

3

(n+ 1)(n+ 2)

.

The computation of µ(Im)(−1) requires to solve a system of m equations
in m indeterminates. A different way: the so-called Weingarten function
on Sm (Open problem).
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Properties

• Kλ(y) are called matricial polykays, unbiased estimators of
products of cumulants

• Kλ(y) are natural statistics (the proof is strictly connected with the
spectral sampling);

• The condition i ≤ m parallels the analogous condition for Fisher’s
k-statistics.

• E[Kλ(y)] tends towards the product of free cumulants when
m→∞ as Fisher’s polykays tends towards the product of classical
cumulants.

• Kλ(y) can be expressed as linear combination of generalized
k-statistics with coefficients independent of n.

� McCullagh, P. (1984) Tensor notation and cumulants of polynomials. Biometrika
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Generalized spectral polykays

Generalized cumulants

cr,s t = cov(Xr, XsXt) cr s,t u = cov(XrXs, XtXu)

application: in asymptotic approximations of distributions

Generalized k-statistics are the sample version of the generalized cumulants.

 the generalized k-statistics are linearly independent;

 every polynomial symmetric function can be expressed uniquely as a
linear combination of generalized k-statistics;

 any polynomial symmetric function whose expectation is
independent of n can be expressed as linear combination of
generalized k-statistics with coefficients independent of n.
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From Terence Tao’s blog

A different choice of foundations can lead to a different way of thinking
about the subject, and thus to ask a different set of questions and to
discover a different set of proofs and solutions. Thus it is often of value
to understand multiple foundational perspectives at once, to get a truly
stereoscopic view of the subject.

(Topics on random matrices, Terence Tao) - on line

Thanks for your attention!

Cumulants:
theory, computation and applications

Work in progress: Wiley
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