Symbolic methods in statistics: elegance towards efficiency

E. Di Nardo

University of Basilicata, Italy

June, 10th 2015 - Genova

Algebraic Statistics 2015

(1) What I mean by symbolic methods?
(2) Why symbolic methods?
(3) The moment symbolic method
(4) Applications to random matrices

How to convince people that in programming, simplicity and clarity in short what mathematicians call elegance - are a crucial matter that decides between success and failure? (E. Dijkstra)

The symbolic approach to combinatorial enumerations

The symbolic approach to combinatorial enumerations

Systematic relations between some of the major constructions of discrete mathematics (words, trees, graphs, and permutations) and operations on generating functions that exactly encode counting sequences.

The symbolic approach to combinatorial enumerations

Systematic relations between some of the major constructions of discrete mathematics (words, trees, graphs, and permutations) and operations on generating functions that exactly encode counting sequences.
\triangleright Flajolet, P. and Sedgewick, R. (2009) Analytic Combinatorics, Cambridge Univ. Press

The symbolic approach to combinatorial enumerations

Systematic relations between some of the major constructions of discrete mathematics (words, trees, graphs, and permutations) and operations on generating functions that exactly encode counting sequences.
\triangleright Flajolet, P. and Sedgewick, R. (2009) Analytic Combinatorics, Cambridge Univ. Press

The symbolic approach to combinatorial enumerations

Systematic relations between some of the major constructions of discrete mathematics (words, trees, graphs, and permutations) and operations on generating functions that exactly encode counting sequences.
\triangleright Flajolet, P. and Sedgewick, R. (2009) Analytic Combinatorics, Cambridge Univ. Press

$$
G\left(a_{n} ; t\right)=\sum_{n \geq 0} a_{n} \frac{t^{n}}{n!}(\text { exponential generating function) }
$$

The symbolic approach to combinatorial enumerations

Symbolic Combinatorics

Systematic relations between some of the major constructions of discrete mathematics (words, trees, graphs, and permutations) and operations on generating functions that exactly encode counting sequences.
\triangleright Flajolet, P. and Sedgewick, R. (2009) Analytic Combinatorics, Cambridge Univ. Press
\triangleright Roman, S.M. and Rota, G.-C. (1978) The umbral calculus, Adv.Math.

$$
G\left(a_{n} ; t\right)=\sum_{n \geq 0} a_{n} \frac{t^{n}}{n!}(\text { exponential generating function) }
$$

the "magic art" of lowering and raising exponents: $a_{n} \rightarrow a^{n}$

Gian-Carlo Rota

The classical umbral calculus

The classical umbral calculus

The umbral calculus: an approach to combinatorial sequences using cumulants.
\triangleright Sturmfels, B. and Zwiernik, P. (2011) Binary cumulant varieties, Annals of Combinatorics

The classical umbral calculus

The umbral calculus: an approach to combinatorial sequences using cumulants.
\triangleright Sturmfels, B. and Zwiernik, P. (2011) Binary cumulant varieties, Annals of Combinatorics
\triangleright Rota, G.-C. and Bryan, D.T. (1994) The classical umbral calculus, SIAM J. Math. Anal. Appl.

The classical umbral calculus

The umbral calculus: an approach to combinatorial sequences using cumulants.
\triangleright Sturmfels, B. and Zwiernik, P. (2011) Binary cumulant varieties, Annals of Combinatorics
\triangleright Rota, G.-C. and Bryan, D.T. (1994) The classical umbral calculus, SIAM J. Math. Anal. Appl.

\triangleright Bell, E.T. (1938) The history of Blissards symbolic method with a sketch of its inventors life, Amer. Math. Monthly

The classical umbral calculus

The umbral calculus: an approach to combinatorial sequences using cumulants.
\triangleright Sturmfels, B. and Zwiernik, P. (2011) Binary cumulant varieties, Annals of Combinatorics

Although the notation satisfied the most ardent advocate of spic-and-span rigor, the translation of "classical" umbral calculus into the newly found rigorous language made the method altogether unwieldy and unmanageable. Not only was the eerie feeling of witchcraft lost in the translation, but, after such a translation, the use of calculus to simplify computation and sharpen our intuition was lost by the wayside.
\triangleright Rota, G.-C. and Bryan, D.T. (1994) The classical umbral calculus, SIAM J. Math. Anal. Appl.

\triangleright Bell, E.T. (1938) The history of Blissards symbolic method with a sketch of its inventors life, Amer. Math. Monthly

What I mean by symbolic methods

A set of manipulation techniques aiming to perform algebraic calculations (possibly) through an algorithmic approach in order to find efficient mechanical processes to pass to a computer.
\triangleright Di Nardo, E. (2014) Symbolic Calculus in Mathematical Statistics: a review. Séminaire Lotharingien de Combinatoire

What I mean by symbolic methods

A set of manipulation techniques aiming to perform algebraic calculations (possibly) through an algorithmic approach in order to find efficient mechanical processes to pass to a computer.
\triangleright Di Nardo, E. (2014) Symbolic Calculus in Mathematical Statistics: a review. Séminaire Lotharingien de Combinatoire

> What about computation cost?

What I mean by symbolic methods

A set of manipulation techniques aiming to perform algebraic calculations (possibly) through an algorithmic approach in order to find efficient mechanical processes to pass to a computer.
\triangleright Di Nardo, E. (2014) Symbolic Calculus in Mathematical Statistics: a review. Séminaire Lotharingien de Combinatoire
What about computation cost?

- Efficiency is not so obvious.
- Sometimes a consequence of a different viewpoint.

What I mean by symbolic methods

A set of manipulation techniques aiming to perform algebraic calculations (possibly) through an algorithmic approach in order to find efficient mechanical processes to pass to a computer.
\triangleright Di Nardo, E. (2014) Symbolic Calculus in Mathematical Statistics: a review.
Séminaire Lotharingien de Combinatoire

- Efficiency is not so obvious.
- Sometimes a consequence of a different viewpoint.
progress

Why not a symbolic cumulant calculus?

What I mean by symbolic methods

A set of manipulation techniques aiming to perform algebraic calculations (possibly) through an algorithmic approach in order to find efficient mechanical processes to pass to a computer.
\triangleright Di Nardo, E. (2014) Symbolic Calculus in Mathematical Statistics: a review.
Séminaire Lotharingien de Combinatoire

- Efficiency is not so obvious.
- Sometimes a consequence of a different viewpoint.

Why not a symbolic cumulant calculus?
\leadsto Very close to the moment method for random matrices.
\leadsto Commutative counterpart of free probability.

U-statistics

An appropriate choice of language and notation can simplify and clarify many statistical calculations.
\triangleright McCullagh, P. (1987) Tensor Methods in Statistics. Chapman \& Hall, London

U-statistics

$$
U=\frac{1}{(n)_{m}} \sum \Phi\left(X_{j_{1}}, X_{j_{2}}, \ldots, X_{j_{m}}\right)
$$

- symmetric polynomial in ($X_{1}, X_{2}, \ldots, X_{n}$) i.i.d.r.v.'s;
- the sum ranges over the set of all permutations $\left(j_{1}, j_{2}, \ldots, j_{m}\right)$.

An appropriate choice of language and notation can simplify and clarify many statistical calculations.
\triangleright McCullagh, P. (1987) Tensor
Methods in Statistics. Chapman \& Hall, London

U-statistics

$$
U=\frac{1}{(n)_{m}} \sum \Phi\left(X_{j_{1}}, X_{j_{2}}, \ldots, X_{j_{m}}\right)
$$

- symmetric polynomial in $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ i.i.d.r.v.'s;
- the sum ranges over the set of all permutations $\left(j_{1}, j_{2}, \ldots, j_{m}\right)$.

An appropriate choice of language and notation can simplify and clarify many statistical calculations.
\triangleright McCullagh, P. (1987) Tensor Methods in Statistics. Chapman \& Hall, London

Augmented symmetric polynomials vs moments

If $\lambda=\left(1^{r_{1}}, 2^{r_{2}}, \ldots, m^{r_{m}}\right) \vdash n$ is a partition of $r_{1}+2 r_{2}+\cdots+m r_{m}=n$ of length
$r_{1}+r_{2}+\cdots+r_{m}=l(\lambda)$ and $E\left[X_{i}^{j}\right]=a_{j}, j=1,2, \ldots, m$ then

$$
E[\sum \underbrace{X_{s} X_{t} \cdots}_{r_{1}} \underbrace{X_{q}^{2} X_{r}^{2} \cdots}_{r_{2}} \underbrace{X_{u}^{m} X_{\nu}^{m} \cdots}_{r_{m}}]=(n)_{l(\lambda)} a_{1}^{r_{1}} a_{2}^{r_{2}} \cdots a_{m}^{r_{m}}
$$

\triangleright Stuart, A. and Ord, J.K. (1994) Kendall's Advanced Theory of Statistics. Vol. 1: Distribution Theory Edward Arnold, London (Section 12.5)

A key tool: the singleton umbra

A key tool: the singleton umbra

$$
\sum \underbrace{X_{s} X_{t} \cdots}_{r_{1}} \underbrace{X_{q}^{2} X_{r}^{2} \cdots}_{r_{2}} \underbrace{X_{u}^{m} X_{\nu}^{m} \cdots}_{r_{m}}
$$

A key tool: the singleton umbra

$$
\sum \underbrace{X_{s} X_{t} \cdots}_{r_{1}} \underbrace{X_{q}^{2} X_{r}^{2} \cdots}_{r_{2}} \underbrace{X_{u}^{m} X_{\nu}^{m} \ldots}_{r_{m}}
$$

assume that

A key tool: the singleton umbra

$$
\sum \underbrace{X_{s} X_{t} \cdots}_{r_{1}} \underbrace{X_{q}^{2} X_{r}^{2} \cdots}_{r_{2}} \underbrace{X_{u}^{m} X_{\nu}^{m} \cdots}_{r_{m}}
$$

assume that \Uparrow could be "symbolically represented "by \Downarrow

A key tool: the singleton umbra

$$
\sum \underbrace{X_{s} X_{t} \cdots}_{r_{1}} \underbrace{X_{q}^{2} X_{r}^{2} \cdots}_{r_{2}} \underbrace{X_{u}^{m} X_{\nu}^{m} \cdots}_{r_{m}}
$$

assume that \Uparrow could be "symbolically represented "by \Downarrow

$$
\prod_{j=1}^{m}\left(\chi_{1} X_{1}^{j}+\chi_{2} X_{2}^{j}+\cdots+\chi_{n} X_{n}^{j}\right)^{r_{j}}
$$

A key tool: the singleton umbra

$$
\sum \underbrace{X_{s} X_{t} \cdots}_{r_{1}} \underbrace{X_{q}^{2} X_{r}^{2} \cdots}_{r_{2}} \underbrace{X_{u}^{m} X_{\nu}^{m} \cdots}_{r_{m}}
$$

assume that \Uparrow could be "symbolically represented "by \Downarrow

$$
\prod_{j=1}^{m}\left(\chi_{1} X_{1}^{j}+\chi_{2} X_{2}^{j}+\cdots+\chi_{n} X_{n}^{j}\right)^{r_{j}}
$$

having a structure very similar to $\quad a_{1}^{r_{1}} a_{2}^{r_{2}} \cdots a_{m}^{r_{m}}$

A key tool: the singleton umbra

$$
\sum \underbrace{X_{s} X_{t} \cdots}_{r_{1}} \underbrace{X_{q}^{2} X_{r}^{2} \cdots}_{r_{2}} \underbrace{X_{u}^{m} X_{\nu}^{m} \cdots}_{r_{m}}
$$

assume that \Uparrow could be "symbolically represented "by \Downarrow

$$
\prod_{j=1}^{m}\left(\chi_{1} X_{1}^{j}+\chi_{2} X_{2}^{j}+\cdots+\chi_{n} X_{n}^{j}\right)^{r_{j}}
$$

A key tool: the singleton umbra

$$
E[\sum \underbrace{X_{s} X_{t} \cdots}_{r_{1}} \underbrace{X_{q}^{2} X_{r}^{2} \cdots}_{r_{2}} \underbrace{X_{u}^{m} X_{\nu}^{m} \cdots}_{r_{m}}]
$$

assume that \Uparrow could be "symbolically represented "by \Downarrow

$$
\mathbb{E}\left[\prod_{j=1}^{m}\left(\chi_{1} X_{1}^{j}+\chi_{2} X_{2}^{j}+\cdots+\chi_{n} X_{n}^{j}\right)^{r_{j}}\right]
$$

A key tool: the singleton umbra

$$
E[\sum \underbrace{X_{s} X_{t} \cdots}_{r_{1}} \underbrace{X_{q}^{2} X_{r}^{2} \cdots}_{r_{2}} \underbrace{X_{u}^{m} X_{\nu}^{m} \cdots}_{r_{m}}]
$$

assume that \Uparrow could be "symbolically represented "by \Downarrow

$$
\mathbb{E}\left[\prod_{j=1}^{m}\left(\chi_{1} X_{1}^{j}+\chi_{2} X_{2}^{j}+\cdots+\chi_{n} X_{n}^{j}\right)^{r_{j}}\right]
$$

How?

A key tool: the singleton umbra

$$
E[\sum \underbrace{X_{s} X_{t} \cdots}_{r_{1}} \underbrace{X_{q}^{2} X_{r}^{2} \cdots}_{r_{2}} \underbrace{X_{u}^{m} X_{\nu}^{m} \cdots}_{r_{m}}]
$$

assume that \Uparrow could be "symbolically represented "by \Downarrow

$$
\mathbb{E}\left[\prod_{j=1}^{m}\left(\chi_{1} X_{1}^{j}+\chi_{2} X_{2}^{j}+\cdots+\chi_{n} X_{n}^{j}\right)^{r_{j}}\right]
$$

How? $\quad \triangleright \mathbb{E}\left[\chi_{j}^{i}\right]=\left\{\begin{array}{cc}1 & i=0,1 \\ 0 & \text { otherwise }\end{array}\right.$

A key tool: the singleton umbra

$$
E[\sum \underbrace{X_{s} X_{t} \cdots}_{r_{1}} \underbrace{X_{q}^{2} X_{r}^{2} \cdots}_{r_{2}} \underbrace{X_{u}^{m} X_{\nu}^{m} \cdots}_{r_{m}}]
$$

assume that \Uparrow could be "symbolically represented "by \Downarrow

$$
\mathbb{E}\left[\prod_{j=1}^{m}\left(\chi_{1} X_{1}^{j}+\chi_{2} X_{2}^{j}+\cdots+\chi_{n} X_{n}^{j}\right)^{r_{j}}\right]
$$

How?

$$
\begin{aligned}
& \triangleright \mathbb{E}\left[\chi_{j}^{i_{1}}\right]=\left\{\begin{array}{lc}
1 & i=0,1 \\
0 & \text { otherwise }
\end{array}\right. \\
& \triangleright \mathbb{E}\left[\chi_{1}^{i_{1}} \chi_{2}^{i_{2}} \cdots \chi_{n}^{i_{n}}\right]=\mathbb{E}\left[\chi_{1}^{i_{1}}\right] E\left[\chi_{2}^{i_{2}}\right] \cdots \mathbb{E}\left[\chi_{n}^{i_{n}}\right]
\end{aligned}
$$

A key tool: the singleton umbra

$$
E[\sum \underbrace{X_{s} X_{t} \cdots}_{r_{1}} \underbrace{X_{q}^{2} X_{r}^{2} \cdots}_{r_{2}} \underbrace{X_{u}^{m} X_{\nu}^{m} \cdots}_{r_{m}}]
$$

assume that \Uparrow could be "symbolically represented "by \Downarrow

$$
\mathbb{E}\left[\prod_{j=1}^{m}\left(\chi_{1} X_{1}^{j}+\chi_{2} X_{2}^{j}+\cdots+\chi_{n} X_{n}^{j}\right)^{r_{j}}\right]
$$

How?

$$
\begin{aligned}
& \triangleright \mathbb{E}\left[\chi_{j}^{i_{1}}\right]=\left\{\begin{array}{lc}
1 & i=0,1 \\
0 & \text { otherwise }
\end{array}\right. \\
& \triangleright \mathbb{E}\left[\chi_{1}^{i_{1}} \chi_{2}^{i_{2}} \cdots \chi_{n}^{i_{n}}\right]=\mathbb{E}\left[\chi_{1}^{i_{1}}\right] E\left[\chi_{2}^{i_{2}}\right] \cdots \mathbb{E}\left[\chi_{n}^{i_{n}}\right]
\end{aligned}
$$

Are $\left\{\chi_{i}\right\}_{i=1}^{n}$ r.v.'s?

A key tool: the singleton umbra

$$
E[\sum \underbrace{X_{s} X_{1} \cdots}_{r_{1}} \underbrace{X_{q}^{2} X_{r}^{2} \cdots}_{r_{2}} \underbrace{X_{u}^{m} X_{\nu}^{m} \cdots}_{r_{m}}]
$$

assume that \Uparrow could be "symbolically represented "by \Downarrow

$$
\mathbb{E}\left[\prod_{j=1}^{m}\left(\chi_{1} X_{1}^{j}+\chi_{2} X_{2}^{j}+\cdots+\chi_{n} X_{n}^{j}\right)^{r_{j}}\right]
$$

How? $\quad \triangleright \mathbb{E}\left[\chi_{j}^{i}\right]=\left\{\begin{array}{cc}1 & i=0,1 \\ 0 & \text { otherwise }\end{array}\right.$

$$
\triangleright \mathbb{E}\left[\chi_{1}^{i_{1}} \chi_{2}^{i_{2}} \cdots \chi_{n}^{i_{n}}\right]=\mathbb{E}\left[\chi_{1}^{i_{1}}\right] E\left[\chi_{2}^{i_{2}}\right] \cdots \mathbb{E}\left[\chi_{n}^{i_{n}}\right]
$$

Are $\left\{\chi_{i}\right\}_{i=1}^{n}$ r.v.'s?

$$
\stackrel{\text { No }}{\Rightarrow} \mathbb{E}\left[\chi_{i}^{2}\right]=0
$$

A key tool: the singleton umbra

$$
E[\sum \underbrace{X_{s} X_{1} \cdots}_{r_{1}} \underbrace{X_{q}^{2} X_{r}^{2} \cdots}_{r_{2}} \underbrace{X_{u}^{m} X_{\nu}^{m} \cdots}_{r_{m}}]
$$

assume that \Uparrow could be "symbolically represented "by \Downarrow

$$
\mathbb{E}\left[\prod_{j=1}^{m}\left(\chi_{1} X_{1}^{j}+\chi_{2} X_{2}^{j}+\cdots+\chi_{n} X_{n}^{j}\right)^{r_{j}}\right]
$$

How? $\quad \triangleright \mathbb{E}\left[\chi_{j}^{i}\right]=\left\{\begin{array}{cc}1 & i=0,1 \\ 0 & \text { otherwise }\end{array}\right.$

$$
\triangleright \mathbb{E}\left[\chi_{1}^{i_{1}} \chi_{2}^{i_{2}} \cdots \chi_{n}^{i_{n}}\right]=\mathbb{E}\left[\chi_{1}^{i_{1}}\right] E\left[\chi_{2}^{i_{2}}\right] \cdots \mathbb{E}\left[\chi_{n}^{i_{n}}\right]
$$

Are $\left\{\chi_{i}\right\}_{i=1}^{n}$ r.v.'s?

$$
\stackrel{\text { No }}{\Rightarrow} \mathbb{E}\left[\chi_{i}^{2}\right]=0
$$

Singleton umbra

From vectors...

What calculations can be automated?

From vectors...

\leadsto What calculations can be automated?
\leadsto How can we automate them?

From vectors...

\leadsto What calculations can be automated?
\leadsto How can we automate them?
\leadsto What new concepts are required? (if any)

From vectors...

\leadsto What calculations can be automated?
\leadsto How can we automate them?
\leadsto What new concepts are required? (if any)

Computing

$$
E\left[\left(\sum_{i \neq j}^{n} X_{i}^{2} X_{j}\right)\left(\sum_{i=1}^{n} X_{i}^{2} Y_{i}\right)^{2}\right] \text { with }\left(X_{1}, Y_{1}\right), \cdots,\left(X_{n}, Y_{n}\right) \text { separately i.i.d.r.v.'s }
$$

From vectors...

What calculations can be automated?
How can we automate them?
What new concepts are required? (if any)

Computing

$E\left[\left(\sum_{i \neq j}^{n} X_{i}^{2} X_{j}\right)\left(\sum_{i=1}^{n} X_{i}^{2} Y_{i}\right)^{2}\right]$ with $\left(X_{1}, Y_{1}\right), \cdots,\left(X_{n}, Y_{n}\right)$ separately i.i.d.r.v.'s

- Push
\ldots and then: (with $\mu_{i, j}=E\left[X^{i} Y^{j}\right]$)

$$
\begin{aligned}
& 2(n)_{2}\left[2 \mu_{4,1} \mu_{3,1}+\mu_{5,2} \mu_{2,0}+\mu_{6,2} \mu_{1,0}\right]+2(n)_{3} \mu_{3,1} \mu_{2,1} \mu_{2,0}+ \\
& \quad(n)_{3}\left[2 \mu_{4,1} \mu_{2,1} \mu_{1,0}+\mu_{4,2} \mu_{2,0} \mu_{1,0}\right]+(n)_{4} \mu_{2,1}^{2} \mu_{2,0} \mu_{1,0}
\end{aligned}
$$

From vectors...

What calculations can be automated?
How can we automate them?
What new concepts are required? (if any)

Computing

$E\left[\left(\sum_{i \neq j}^{n} X_{i}^{2} X_{j}\right)\left(\sum_{i=1}^{n} X_{i}^{2} Y_{i}\right)^{2}\right]$ with $\left(X_{1}, Y_{1}\right), \cdots,\left(X_{n}, Y_{n}\right)$ separately i.i.d.r.v.'s

- Push
\ldots and then: (with $\mu_{i, j}=E\left[X^{i} Y^{j}\right]$)

$$
\begin{aligned}
& 2(n)_{2}\left[2 \mu_{4,1} \mu_{3,1}+\mu_{5,2} \mu_{2,0}+\mu_{6,2} \mu_{1,0}\right]+2(n)_{3} \mu_{3,1} \mu_{2,1} \mu_{2,0}+ \\
& \quad(n)_{3}\left[2 \mu_{4,1} \mu_{2,1} \mu_{1,0}+\mu_{4,2} \mu_{2,0} \mu_{1,0}\right]+(n)_{4} \mu_{2,1}^{2} \mu_{2,0} \mu_{1,0}
\end{aligned}
$$

In a reasonable ammount of time
\leadsto In a form suitable for any symbolic language

...up to random matrices

Computing $>$ Algorithm

$$
\begin{gathered}
E\left\{\operatorname{Tr}\left[W_{p}(n) H_{1}\right] \operatorname{Tr}\left[W_{p}(n) H_{2}\right]^{2}\right\} \quad \text { with } \quad H_{1}, H_{2} \in \mathbb{C}^{p \times p} \\
W_{p}(n)=\sum_{i=1}^{n}\left(\boldsymbol{X}_{i}-\boldsymbol{m}_{i}\right)^{\dagger}\left(\boldsymbol{X}_{i}-\boldsymbol{m}_{i}\right) \text { and } \boldsymbol{X}_{i} \sim N\left(\boldsymbol{m}_{i}, \Sigma\right)
\end{gathered}
$$

<Wishart random matrix>

...up to random matrices

Computing $>$ Algorithm

$$
\begin{gathered}
E\left\{\operatorname{Tr}\left[W_{p}(n) H_{1}\right] \operatorname{Tr}\left[W_{p}(n) H_{2}\right]^{2}\right\} \quad \text { with } \quad H_{1}, H_{2} \in \mathbb{C}^{p \times p} \\
W_{p}(n)=\sum_{i=1}^{n}\left(\boldsymbol{X}_{i}-\boldsymbol{m}_{i}\right)^{\dagger}\left(\boldsymbol{X}_{i}-\boldsymbol{m}_{i}\right) \text { and } \boldsymbol{X}_{i} \sim N\left(\boldsymbol{m}_{i}, \Sigma\right)
\end{gathered}
$$

<Wishart random matrix>

...up to random matrices

Computing $>$ Algorithm

$$
\begin{gathered}
E\left\{\operatorname{Tr}\left[W_{p}(n) H_{1}\right] \operatorname{Tr}\left[W_{p}(n) H_{2}\right]^{2}\right\} \quad \text { with } \quad H_{1}, H_{2} \in \mathbb{C}^{p \times p} \\
W_{p}(n)=\sum_{i=1}^{n}\left(\boldsymbol{X}_{i}-\boldsymbol{m}_{i}\right)^{\dagger}\left(\boldsymbol{X}_{i}-\boldsymbol{m}_{i}\right) \text { and } \boldsymbol{X}_{i} \sim N\left(\boldsymbol{m}_{i}, \Sigma\right)
\end{gathered}
$$

<Wishart random matrix>

$$
\begin{aligned}
& \ldots \text { and then: }\left(\text { with } \Omega=\Sigma^{-1} M \text { and } M=\sum_{i=1}^{n} \boldsymbol{m}_{\boldsymbol{i}}^{\dagger} \boldsymbol{m}_{i}\right) \\
& E\left\{\operatorname{Tr}\left[W_{p}(n) H_{1}\right] \operatorname{Tr}\left[W_{p}(n) H_{2}\right]^{2}\right\}=n \operatorname{Tr}\left(H_{2}\right) \operatorname{Tr}\left(\Omega H_{1} H_{2}\right)-n \operatorname{Tr}\left(H_{2}\right) \operatorname{Tr}\left(\Omega H_{2} H_{1}\right) \\
+ & n \operatorname{Tr}\left(H_{2}\right) \operatorname{Tr}\left(\Omega H_{1}\right) \operatorname{Tr}\left(\Omega H_{2}\right)-n \operatorname{Tr}\left(\Omega H_{2}\right) \operatorname{Tr}\left(H_{1} H_{2}\right)-n^{2} \operatorname{Tr}\left(\Omega H_{2}\right) \operatorname{Tr}\left(H_{1}\right) \operatorname{Tr}\left(H_{2}\right) \\
+ & 2 \operatorname{Tr}\left(\Omega H_{2}\right) \operatorname{Tr}\left(\Omega H_{1} H_{2}\right)+2 \operatorname{Tr}\left(\Omega H_{2}\right) \operatorname{Tr}\left(\Omega H_{2} H_{1}\right)-\operatorname{Tr}\left(\Omega H_{1}\right)\left(\operatorname{Tr}\left(\Omega H_{2}\right)\right)^{2} \\
- & \operatorname{Tr}\left(\Omega H_{1} H_{2}{ }^{2}\right)-\operatorname{Tr}\left(\Omega H_{2} H_{1} H_{2}\right)+\operatorname{Tr}\left(\Omega H_{1}\right) \operatorname{Tr}\left(\Omega H_{2}{ }^{2}\right)+2 n^{2} \operatorname{Tr}\left(H_{1} H_{2}\right) \operatorname{Tr}\left(H_{2}\right) \\
+\quad & n^{2} / 2 \operatorname{Tr}\left(H_{1}\right) \operatorname{Tr}\left(H_{2}{ }^{2}\right)+n^{3} \operatorname{Tr}\left(H_{1}\right)\left(\operatorname{Tr}\left(H_{2}\right)\right)^{2}+n \operatorname{Tr}\left(H_{1} H_{2}{ }^{2}\right) \\
+\quad & n \operatorname{Tr}\left(H_{1}\right)\left(\operatorname{Tr}\left(\Omega H_{2}\right)\right)^{2}+n^{2} \operatorname{Tr}\left(\Omega H_{1}\right)\left(\operatorname{Tr}\left(H_{2}\right)\right)^{2}-n / 2 \operatorname{Tr}\left(\Omega H_{1}\right) \operatorname{Tr}\left(H_{2}{ }^{2}\right) \\
-\quad & n \operatorname{Tr}\left(H_{1}\right) \operatorname{Tr}\left(\Omega H_{2}{ }^{2}\right)
\end{aligned}
$$

Maple application center

$$
E\left\{\operatorname{Tr}\left[W_{p}(n) H_{1}\right]^{i_{1}} \cdots \operatorname{Tr}\left[W_{p}(n) H_{m}\right]^{i_{m}}\right\} \text { with } H_{1}, \ldots, H_{m} \in \mathbb{C}^{p \times p}
$$

\triangleright Di Nardo, E. (2014) On a symbolic representation of non-central Wishart random matrices with applications. Jour. Mult. Anal.

In the literature

\triangleright Kendall, W.S. (1993) Computer Algebra in probability and statistics. Statistica Neerlandica.

In the literature

\triangleright Kendall, W.S. (1993) Computer Algebra in probability and statistics. Statistica Neerlandica.
\triangleright Andrews, D.F. and Stafford, J.E. (2000) Symbolic computation for statistical inference. Oxford University Press.

In the literature

\triangleright Kendall, W.S. (1993) Computer Algebra in probability and statistics. Statistica Neerlandica.
\triangleright Andrews, D.F. and Stafford, J.E. (2000) Symbolic computation for statistical inference. Oxford University Press.
\triangleright McCullagh, P. (1987) Tensor methods in statistics. Chapman and Hall.

In the literature

\triangleright Kendall, W.S. (1993) Computer Algebra in probability and statistics. Statistica Neerlandica.
\triangleright Andrews, D.F. and Stafford, J.E. (2000) Symbolic computation for statistical inference. Oxford University Press.
\triangleright Rose, C. (2015) MathStatica: a symbolic approach to computational mathematical statistics. Version 2.7
\triangleright McCullagh, P. (1987) Tensor methods in statistics. Chapman and Hall.

In the literature

A steep learning curve but...

When symbolic methods are used properly, they can give us more insights to problems and the efficiency could be reached as by-product.
\triangleright Kendall, W.S. (1993) Computer Algebra in probability and statistics. Statistica Neerlandica.
\triangleright Andrews, D.F. and Stafford, J.E. (2000) Symbolic computation for statistical inference. Oxford University Press.
\triangleright Rose, C. (2015) MathStatica: a symbolic approach to computational mathematical statistics. Version 2.7
\triangleright McCullagh, P. (1987) Tensor methods in statistics. Chapman and Hall.

In the literature

A steep learning curve but...

When symbolic methods are used properly, they can give us more insights to problems and the efficiency could be reached as by-product.
\triangleright Kendall, W.S. (1993) Computer Algebra in probability and statistics. Statistica Neerlandica.
\triangleright Andrews, D.F. and Stafford, J.E. (2000) Symbolic computation for statistical inference. Oxford University Press.
\triangleright Rose, C. (2015) MathStatica: a symbolic approach to computational mathematical statistics. Version 2.7
\triangleright McCullagh, P. (1987) Tensor methods in statistics. Chapman and Hall.

$$
\text { - mean } \rightarrow c_{1}
$$

Example:

$$
n \text {-th cumulant } c_{n}=n \text {-th coeff. of } \log \text { MGF }
$$

In the literature

A steep learning curve but...

When symbolic methods are used properly, they can give us more insights to problems and the efficiency could be reached as by-product.
\triangleright Kendall, W.S. (1993) Computer Algebra in probability and statistics. Statistica Neerlandica.
\triangleright Andrews, D.F. and Stafford, J.E. (2000) Symbolic computation for statistical inference. Oxford University Press.
\triangleright Rose, C. (2015) MathStatica: a symbolic approach to computational mathematical statistics. Version 2.7
\triangleright McCullagh, P. (1987) Tensor methods in statistics. Chapman and Hall.

Example:

- mean $\rightarrow c_{1}$
n-th cumulant $c_{n}=n$-th coeff. of \log MGF

In the literature

A steep learning curve but...

When symbolic methods are used properly, they can give us more insights to problems and the efficiency could be reached as by-product.
\triangleright Kendall, W.S. (1993) Computer Algebra in probability and statistics. Statistica Neerlandica.
\triangleright Andrews, D.F. and Stafford, J.E. (2000) Symbolic computation for statistical inference. Oxford University Press.
\triangleright Rose, C. (2015) MathStatica: a symbolic approach to computational mathematical statistics. Version 2.7
\triangleright McCullagh, P. (1987) Tensor methods in statistics. Chapman and Hall.

Example:

n-th cumulant $c_{n}=n$-th coeff. of \log MGF

- mean $\rightarrow c_{1}$
- variance $\rightarrow c_{2}$
- skewness $\rightarrow c_{3} / c_{2}^{3 / 2}$

In the literature

A steep learning curve but...

When symbolic methods are used properly, they can give us more insights to problems and the efficiency could be reached as by-product.
\triangleright Kendall, W.S. (1993) Computer Algebra in probability and statistics. Statistica Neerlandica.
\triangleright Andrews, D.F. and Stafford, J.E. (2000) Symbolic computation for statistical inference. Oxford University Press.
\triangleright Rose, C. (2015) MathStatica: a symbolic approach to computational mathematical statistics. Version 2.7
\triangleright McCullagh, P. (1987) Tensor methods in statistics. Chapman and Hall.

Example:

n-th cumulant $c_{n}=n$-th coeff. of \log MGF

- mean $\rightarrow c_{1}$
- variance $\rightarrow c_{2}$
- skewness $\rightarrow c_{3} / c_{2}^{3 / 2}$
- kurtosis $\rightarrow c_{4} / c_{2}^{2}$

k-statistics

Definition

The n-th k-statistic k_{n} is the unique symmetric unbiased estimator of the n-th cumulant c_{n}, i.e. $E\left[k_{n}\right]=c_{n}$.

k-statistics

Definition

The n-th k-statistic k_{n} is the unique symmetric unbiased estimator of the n-th cumulant c_{n}, i.e. $E\left[k_{n}\right]=c_{n}$.
\triangleright Fisher, R.A. (1929) Moments and product moments of sampling distributions. Proc. London Math. Soc.

k-statistics

Definition

The n-th k-statistic k_{n} is the unique symmetric unbiased estimator of the n-th cumulant c_{n}, i.e. $E\left[k_{n}\right]=c_{n}$.
\triangleright Fisher, R.A. (1929) Moments and product moments of sampling distributions. Proc. London Math. Soc.

$$
\begin{array}{lll}
k_{1} & =\frac{S_{1}}{n} \\
k_{2} & =\frac{n S_{2}-S_{1}^{2}}{(n)_{2}} & S_{r}=\sum_{i=1}^{n} X_{i}^{r} \\
k_{3} & =\frac{2 S_{1}^{3}-3 n S_{1} S_{2}+n^{2} S_{3}}{(n)_{3}} & \\
k_{4} & =\frac{-6 S_{1}^{4}+12 n S_{1}^{2} S_{2}-3 n(n-1) S_{2}^{2}-4 n(n+1) S_{1} S_{3}+n^{2}(n+1) S_{4}}{(n)_{4}}
\end{array}
$$

k-statistics

A nice formula: cumulants in terms of moments

If $\lambda=\left(1^{r_{1}}, 2^{r_{2}}, \ldots, m^{r_{m}}\right) \vdash i \leq n$ then

$$
c_{i}=i!\sum_{\lambda \vdash i} \frac{\left.(-1)^{l(\lambda)-1}[l(\lambda)-1)\right]!}{r_{1}!r_{2}!\cdots r_{m}!} \frac{a_{1}^{r_{1}} a_{2}^{r_{2}} \cdots a_{m}^{r_{m}}}{(1!)^{r_{1}}(2!)^{r_{2}} \cdots(m!)^{r_{m}}}
$$

k-statistics

A nice formula: cumulants in terms of moments

If $\lambda=\left(1^{r_{1}}, 2^{r_{2}}, \ldots, m^{r_{m}}\right) \vdash i \leq n$ then

$$
c_{i}=i!\sum_{\lambda \vdash i} \frac{\left.(-1)^{l(\lambda)-1}[l(\lambda)-1)\right]!}{r_{1}!r_{2}!\cdots r_{m}!} \frac{a_{1}^{r_{1}} a_{2}^{r_{2}} \cdots a_{m}^{r_{m}}}{(1!)^{r_{1}}(2!)^{r_{2} \cdots(m!)^{r_{m}}}}
$$

k-statistics

A nice formula: cumulants in terms of moments

If $\lambda=\left(1^{r_{1}}, 2^{r_{2}}, \ldots, m^{r_{m}}\right) \vdash i \leq n$ then

$$
c_{i}=i!\sum_{\lambda \vdash i} \frac{\left.(-1)^{l(\lambda)-1}[l(\lambda)-1)\right]!}{r_{1}!r_{2}!\cdots r_{m}!} \frac{a_{1}^{r_{1}} a_{2}^{r_{2}} \cdots a_{m}^{r_{m}}}{(1!)^{r_{1}}(2!)^{r_{2} \cdots(m!)^{r_{m}}}}
$$

k-statistics

A nice formula: cumulants in terms of moments

If $\lambda=\left(1^{r_{1}}, 2^{r_{2}}, \ldots, m^{r_{m}}\right) \vdash i \leq n$ then

$$
c_{i}=i!\sum_{\lambda \vdash i} \frac{\left.(-1)^{l(\lambda)-1}[l(\lambda)-1)\right]!}{r_{1}!r_{2}!\cdots r_{m}!} \frac{a_{1}^{r_{1}} a_{2}^{r_{2}} \cdots a_{m}^{r_{m}}}{(1!)^{r_{1}}(2!)^{r_{2}} \cdots(m!)^{r_{m}}}
$$

$$
\frac{\sum \underbrace{X_{s} X_{t} \cdots}_{r_{1}} \underbrace{X_{q}^{2} X_{r}^{2} \cdots}_{r_{2}} \underbrace{X_{u}^{m} X_{\nu}^{m} \cdots}_{r_{m}}}{n(n-1) \cdots(n-l(\lambda)+1)}
$$

k-statistics

A nice formula: cumulants in terms of moments

If $\lambda=\left(1^{r_{1}}, 2^{r_{2}}, \ldots, m^{r_{m}}\right) \vdash i \leq n$ then

$$
c_{i}=i!\sum_{\lambda \vdash i} \frac{\left.(-1)^{l(\lambda)-1}[l(\lambda)-1)\right]!}{r_{1}!r_{2}!\cdots r_{m}!} \frac{a_{1}^{r_{1}} a_{2}^{r_{2}} \cdots a_{m}^{r_{m}}}{(1!)^{r_{1}}(2!)^{r_{2}} \cdots(m!)^{r_{m}}}
$$

$$
\frac{\sum \underbrace{X_{s} X_{t} \cdots}_{r_{1}} \underbrace{X_{q}^{2} X_{r}^{2} \cdots}_{r_{2}} \underbrace{X_{u}^{m} X_{\nu}^{m} \cdots}_{r_{m}}}{n(n-1) \cdots(n-l(\lambda)+1)}
$$

in terms of power sums

k-statistics

A nice formula: cumulants in terms of moments

If $\lambda=\left(1^{r_{1}}, 2^{r_{2}}, \ldots, m^{r_{m}}\right) \vdash i \leq n$ then

$$
c_{i}=i!\sum_{\lambda \vdash i} \frac{\left.(-1)^{l(\lambda)-1}[l(\lambda)-1)\right]!}{r_{1}!r_{2}!\cdots r_{m}!} \frac{a_{1}^{r_{1}} a_{2}^{r_{2}} \cdots a_{m}^{r_{m}}}{(1!)^{r_{1}}(2!)^{r_{2}} \cdots(m!)^{r_{m}}}
$$

in terms of power sums
\triangleright Too heavy from a computational point of view!

Computational results

(A\&S) Andrews, D.F. and Stafford, J.E. (2000) Symbolic computation for statistical inference. Oxford University Press.

k-statistics	$A \& S$
k_{5}	0.06
k_{7}	0.31
k_{9}	1.44
k_{11}	8.36
k_{14}	396.39
k_{16}	57982.4
k_{18}	-
k_{20}	-
k_{22}	-
k_{24}	-
k_{26}	-
k_{28}	-

PC Pentium(R)4, Intel(R)
CPU 2.08 Ghz
512MB Ram
Maple 10.0
Mathematica 4.2
Times in seconds

Computational results

(A\&S) Andrews, D.F. and Stafford, J.E. (2000) Symbolic computation for statistical inference. Oxford University Press.
(Symbolic) Di Nardo, E., Guarino, G. and Senato, D. (2008)
A unifying framework for k-statistics, polykays and their multivariate generalizations. Bernoulli.

k-statistics	$A \& S$
k_{5}	0.06
k_{7}	0.31
k_{9}	1.44
k_{11}	8.36
k_{14}	396.39
k_{16}	57982.4
k_{18}	-
k_{20}	-
k_{22}	-
k_{24}	-
k_{26}	-
k_{28}	-

MathStat	Symbolic
0.01	0.01
0.02	0.01
0.04	0.01
0.14	0.01
0.64	0.02
2,63	0.08
6.90	0.16
25.15	0.33
81.70	0.80
359.40	1.62
1581.05	2.51
6505.45	4.83

PC Pentium(R)4, Intel(R)
CPU 2.08 Ghz
512MB Ram
Maple 10.0
Mathematica 4.2
Times in seconds

k-statistics

A nice formula: cumulants in terms of moments

If $\lambda=\left(1^{r_{1}}, 2^{r_{2}}, \ldots, m^{r_{m}}\right) \vdash i \leq n$ then

$$
c_{i}=i!\sum_{\lambda \vdash i} \frac{\left.(-1)^{l(\lambda)-1}[l(\lambda)-1)\right]!}{r_{1}!r_{2}!\cdots r_{m}!} \frac{a_{1}^{r_{1}} a_{2}^{r_{2}} \cdots a_{m}^{r_{m}}}{(1!)^{r_{1}}(2!)^{r_{2}} \cdots(m!)^{r_{m}}}
$$

k-statistics

A nice formula: cunsulants in terms of moments
If $\lambda=\left(1^{r_{1}}, 2^{r_{2}}, \ldots, m^{r_{m}}\right) \vdash \imath \leq r_{\text {a }}$ then

$$
c_{i}=i!\sum_{\lambda \vdash i} \frac{\left.(-1)^{l(\lambda)}-\mathbb{L}[\vec{l}(\lambda)-1)\right]!}{r_{1}!r_{2}!\cdots r_{m}!} \frac{\nabla_{1}^{r_{1}} a_{2}^{r_{2}} \cdots a_{m}^{r_{m}}}{(1!)^{r_{1}}(2!)^{r_{2}} \cdot \nabla(m!)^{r_{m}}}
$$

k-statistics

If $\lambda=\left(1^{r_{1}}, 2^{r_{2}}, \ldots, m^{r_{m}}\right) \vdash \imath \leq r_{\text {a }}$ then

$$
c_{i}=i!\sum_{\lambda \vdash i} \frac{\left.(-1)^{l(\lambda)}-1[l(\lambda)-1)\right]!}{r_{1}!r_{2}!\cdots r_{m}!} \frac{\boldsymbol{u}_{1}^{r_{1}} a_{2}^{r_{2}} \cdots a_{m}^{r_{m}}}{(1!)^{r_{1}}(2!)^{r_{2}} \cdot \nabla(m!)^{r_{m}}}
$$

A speeder way of computing

$$
c_{i}=E\left[\left(C_{1, z}+\cdots+C_{n, z}\right)^{i}\right]
$$

k-statistics

A nice formula: cunsulants in terms of moments
If $\lambda=\left(1^{r_{1}}, 2^{r_{2}}, \ldots, m^{r_{m}}\right) \vdash \imath \leq r_{\text {a }}$ then

$$
c_{i}=i!\sum_{\lambda \vdash i} \frac{(-1)^{l(\lambda)-4}[(l(\lambda)-1)]!}{r_{1}!r_{2}!\cdots r_{m}!} \frac{a_{1}^{r_{1}} a_{2}^{r_{2}} \cdots a_{m}^{r_{m}}}{(1!)^{r_{1}}(2!)^{r_{2}} \cdot \nabla(m!)^{r_{m}}}
$$

A speeder way of computing

$$
c_{i}=E\left[\left(C_{1, z}+\cdots+C_{n, z}\right)^{i}\right]
$$

- $\left\{C_{j, y}\right\}_{j=1}^{n}$ are i.i.d.r.v.'s whose moments are cumulants of randomized compound Poisson r.v.'s with parameter Z

k-statistics

A nice formula: cunsulants in terms of moments
If $\lambda=\left(1^{r_{1}}, 2^{r_{2}}, \ldots, m^{r_{m}}\right) \vdash \imath \leq r_{\text {a }}$ then

$$
c_{i}=i!\sum_{\lambda \vdash i} \frac{\left.(-1)^{l(\lambda)}-4[l(\lambda)-1)\right]!}{r_{1}!r_{2}!\cdots r_{m}!} \frac{\boldsymbol{a}_{1 /}^{r_{1}} a_{2}^{r_{2}} \cdots a_{m}^{r_{m}}}{(1!)^{r_{1}(2!)^{r_{2}} \cdot \nabla(m!)^{r_{m}}}}
$$

A speeder way of computing

$$
c_{i}=E\left[\left(C_{1, z}+\cdots+C_{n, z}\right)^{i}\right]
$$

- $\left\{C_{j, y}\right\}_{j=1}^{n}$ are i.i.d.r.v.'s whose moments are cumulants of randomized compound Poisson r.v.'s with parameter Z
- $E\left[Z^{m}\right]=(-1)^{m-1}(m-1)!/(n)_{m}$ for $m=0,1, \ldots, n$

k-statistics

A nice formula: cunsulants in terms of moments
If $\lambda=\left(1^{r_{1}}, 2^{r_{2}}, \ldots, m^{r_{m}}\right) \vdash \imath \leq r_{\text {a }}$ then

$$
c_{i}=i!\sum_{\lambda \vdash i} \frac{\left.(-1)^{l(\lambda)}-1[l(\lambda)-1)\right]!}{r_{1}!r_{2}!\cdots r_{m}!} \frac{a_{1}^{r_{1}} a_{2}^{r_{2}} \cdots a_{m}^{r_{m}}}{(1!)^{r_{1}}(2!)^{r_{2} \cdot \nabla(m!)^{r_{m}}}}
$$

A speeder way of computing $=$ a new formula and a new insight

$$
c_{i}=E\left[\left(C_{1, z}+\cdots+C_{n, Z}\right)^{i}\right]
$$

- $\left\{C_{j, y}\right\}_{j=1}^{n}$ are i.i.d.r.v.'s whose moments are cumulants of randomized compound Poisson r.v.'s with parameter Z
- $E\left[Z^{m}\right]=(-1)^{m-1}(m-1)!/(n)_{m}$ for $m=0,1, \ldots, n$

k-statistics

A nice formula: cunsulants in terms of moments
If $\lambda=\left(1^{r_{1}}, 2^{r_{2}}, \ldots, m^{r_{m}}\right) \vdash \imath \leq r_{\text {a }}$ then

$$
c_{i}=i!\sum_{\lambda \vdash i} \frac{\left.(-1)^{l(\lambda)}-1[l(\lambda)-1)\right]!}{r_{1}!r_{2}!\cdots r_{m}!} \frac{a_{1}^{r_{1}} a_{2}^{r_{2}} \cdots a_{m}^{r_{m}}}{(1!)^{r_{1}}(2!)^{r_{2} \cdot \nabla(m!)^{r_{m}}}}
$$

A speeder way of computing $=$ a new formula and a new insight

$$
c_{i}=E\left[\left(C_{1, z}+\cdots+C_{n, Z}\right)^{i}\right]
$$

- $\left\{C_{j, y}\right\}_{j=1}^{n}$ are i.i.d.r.v.'s whose moments are cumulants of randomized compound Poisson r.v.'s with parameter Z
- $E\left[Z^{m}\right]=(-1)^{m-1}(m-1)!/(n)_{m}$ for $m=0,1, \ldots, n$

Statistics and Computing (2009)

"Every polynomial symmetric function can be expressed in terms of polykays."
Tukey, J. (1956) Keeping moment-like sample computations simple. Ann.Math.Stat.

$k_{r, \ldots, s}$	AS Algorithms	MathStatica		Polyk-algorithm
$k_{3,2}$	0.06	0.02		0.02
$k_{4,4}$	0.67	0.06		0.06
$k_{5,3}$	0.69	0.08		0.07
$k_{7,5}$	34.23	0.79		0.70
$k_{7,7}$	435.67	2.52		2.43
$k_{9,9}$	-	27.41		23.32
$k_{10,8}$	-	30.24		25.06
$k_{4,4,4}$	34.17	0.64		0.77

Statistics and Computing (2009)

Polykays $k_{r, \ldots, s}$

Unbiased estimators of product of cumulants, that is $E\left[k_{r, \ldots, s}\right]=c_{r} \cdots c_{s}$
"Every polynomial symmetric function can be expressed in terms of polykays."
Tukey, J. (1956) Keeping moment-like sample computations simple. Ann.Math.Stat.

$k_{r, \ldots, s}$	AS Algorithms	MathStatica		Polyk-algorithm
$k_{3,2}$	0.06	0.02		0.02
$k_{4,4}$	0.67	0.06		0.06
$k_{5,3}$	0.69	0.08		0.07
$k_{7,5}$	34.23	0.79		0.70
$k_{7,7}$	435.67	2.52		2.43
$k_{9,9}$	-	27.41		23.32
$k_{10,8}$	-	30.24		25.06
$k_{4,4,4}$	34.17	0.64		0.77

Statistics and Computing (2009)

Polykays $k_{r, \ldots, s}$

Unbiased estimators of product of cumulants, that is $E\left[k_{r, \ldots, s}\right]=c_{r} \cdots c_{s}$
"Every polynomial symmetric function can be expressed in terms of polykays."
Tukey, J. (1956) Keeping moment-like sample computations simple. Ann.Math.Stat.

$k_{r, \ldots, s}$	AS Algorithms	MathStatica	Fast-algorithms	Polyk-algorithm
$k_{3,2}$	0.06	0.02	0.01	0.02
$k_{4,4}$	0.67	0.06	0.02	0.06
$k_{5,3}$	0.69	0.08	0.02	0.07
$k_{7,5}$	34.23	0.79	0.11	0.70
$k_{7,7}$	435.67	2.52	0.26	2.43
$k_{9,9}$	-	27.41	2.26	23.32
$k_{10,8}$	-	30.24	2.98	25.06
$k_{4,4,4}$	34.17	0.64	0.08	0.77

Statistics and Computing (2009)

Polykays $k_{r, \ldots, s}$

Unbiased estimators of product of cumulants, that is $E\left[k_{r, \ldots, s}\right]=c_{r} \cdots c_{s}$
"Every polynomial symmetric function can be expressed in terms of polykays."
Tukey, J. (1956) Keeping moment-like sample computations simple. Ann.Math.Stat.

$k_{r, \ldots, s}$	AS Algorithms	MathStatica	Fast-algorithms	Polyk-algorithm
$k_{3,2}$	0.06	0.02	0.01	0.02
$k_{4,4}$	0.67	0.06	0.02	0.06
$k_{5,3}$	0.69	0.08	0.02	0.07
$k_{7,5}$	34.23	0.79	0.11	0.70
$k_{7,7}$	435.67	2.52	0.26	2.43
$k_{9,9}$	-	27.41	2.26	23.32
$k_{10,8}$	-	30.24	2.98	25.06
$k_{4,4,4}$	34.17	0.64	0.08	0.77

\triangleright Staude, B. and Rotter, S. (2010) Cubic: cumulant based inference of higher-order correlations in massively parallel spike trains. J. Comp. Neuroscience

Joint cumulants are zero for i.r.v.'s

Table: For AS Algorithms, missed computational times means "greater than 20 hours". For MathStatica, missed computational times means "procedures not available"

$k_{s_{1} \ldots s_{r} ; l_{1} \ldots l_{m}}$	AS Algorithms	MathStatica	
k_{32}	0.25	0.03	
k_{44}	28.36	0.16	
k_{55}	259.16	0.55	
k_{65}	959.67	1.01	
k_{77}	-	8.49	
k_{87}	-	14.92	
k_{333}	1180.03	0.88	
k_{443}	-	4.80	
k_{444}	-	13.53	
$k_{21 ; 11}$	0.20	-	
$k_{22 ; 21}$	6.30	-	
$k_{2 ; 22}$	33.75	-	
$k_{22 ; 21,11}$	126.19	-	
$k_{22 ; 21,21}$	398.42	-	
$k_{22 ; 22,21}$	1387.00	-	
$k_{22 ; 22 ; 22}$	3787.41	-	

Joint cumulants are zero for i.r.v.'s

Table: For AS Algorithms, missed computational times means "greater than 20 hours". For MathStatica, missed computational times means "procedures not available"

$k_{S_{1} \ldots s_{r} ; l_{1} \ldots l_{m}}$	AS Algorithms	MathStatica	Fast-algorithms
k_{32}	0.25	0.03	0.01
k_{44}	28.36	0.16	0.02
k_{55}	259.16	0.55	0.06
k_{65}	959.67	1.01	0.16
k_{77}	-	8.49	1.04
k_{87}	-	14.92	2.19
k_{333}	1180.03	0.88	0.47
k_{443}	-	4.80	0.94
k_{444}	-	13.53	2.30
$k_{21 ; 11}$	0.20	-	0.01
$k_{2 ; 21}$	6.30	-	0.08
$k_{2 ; 22}$	33.75	-	0.14
$k_{22 ; 21,11}$	126.19	-	0.28
$k_{22 ; 21 ; 21}$	398.42	-	0.55
$k_{22 ; 22,21}$	1387.00	-	1.25
$k_{22 ; 22 ; 22}$	3787.41	-	2.91

An overview on what we have done...

Statistics

- Moments of sampling distributions
- Moments of moments
- Sheppard's corrections

Computationalskills

- Fast algorithms for U-statistics
- Sheppard's corrections
- Solving linear recurrences

The symbolic (moment) calculus

Multivariate calculus

- Multivariate Faà di Bruno's formula
- Wishart random matrices

Combinatorics

- Sheffer polynomial sequences
- Riordan arrays

Lagrange inversion formula

Symbolic moment calculus

Symbolic combinatorics
$a_{i}=\mid\{$ discrete structures $\} \mid$ gen.func. $1+\sum_{i \geq 1} a_{i} \frac{t^{i}}{i!}$

Symbolic moment calculus

Symbolic combinatorics

$$
a_{i}=\mid\{\text { discrete structures }\} \mid
$$

$$
\text { gen.func. } 1+\sum_{i \geq 1} a_{i} \frac{t^{i}}{i!}
$$

Symbolic moment calculus
a_{i} represented by a symbol $\alpha \in \mathcal{A}$

Probability in terms of r.v.'s

Take an ordered commutative algebra over $\mathbb{C}[\mathcal{A}]$ and endows it with a positive linear functional \mathbb{E} :

- an element of $\mathcal{A} \Rightarrow$ a r.v.
- the linear functional $\mathbb{E} \Rightarrow$ the expectation of a r.v.
- the sequence $\left\{a_{i}\right\} \Rightarrow$ the moments of a r.v.

Symbolic combinatorics

$$
a_{i}=\mid\{\text { discrete structures }\} \mid
$$

$$
\text { gen.func. } 1+\sum_{i \geq 1} a_{i} \frac{t^{i}}{i!}
$$

Symbolic moment calculus
a_{i} represented by a symbol $\alpha \in \mathcal{A}$

Probability in terms of r.v.'s

Take an ordered commutative algebra over $\mathbb{C}[\mathcal{A}]$ and endows it with a positive linear functional \mathbb{E} :

- an element of $\mathcal{A} \Rightarrow$ a r.v.
- the linear functional $\mathbb{E} \Rightarrow$ the expectation of a r.v.
- the sequence $\left\{a_{i}\right\} \Rightarrow$ the moments of a r.v.

Special Umbrae	Moments
Augmentation umbra	$\mathbb{E}\left[\varepsilon^{i}\right]=0$
Unity umbra	$\mathbb{E}\left[u^{i}\right]=1$
Singleton umbra	$\mathbb{E}\left[\chi^{i}\right]=\delta_{i, 1}$
Bell umbra	$\mathbb{E}\left[\beta^{i}\right]=\mathfrak{B}_{i}$

Symbolic combinatorics
$a_{i}=\mid\{$ discrete structures $\} \mid$ gen.func. $1+\sum_{i \geq 1} a_{i} \frac{t^{i}}{i!}$

Symbolic moment calculus
a_{i} represented by a symbol
$\alpha \in \mathcal{A}$

Probability in terms of r.v.'s

Take an ordered commutative algebra over $\mathbb{C}[\mathcal{A}]$ and endows it with a positive linear functional \mathbb{E} :

- an element of $\mathcal{A} \Rightarrow$ a r.v.
- the linear functional $\mathbb{E} \Rightarrow$ the expectation of a r.v.
- the sequence $\left\{a_{i}\right\} \Rightarrow$ the moments of a r.v.

Special Umbrae	Moments
Augmentation umbra	$\mathbb{E}\left[\varepsilon^{i}\right]=0$
Unity umbra	$\mathbb{E}\left[u^{i}\right]=1$
Singleton umbra	$\mathbb{E}\left[\chi^{i}\right]=\delta_{i, 1}$
Bell umbra	$\mathbb{E}\left[\beta^{i}\right]=\mathfrak{B}_{i}$

\triangleright Not all r.v.'s can be represented by umbrae.
\triangleright Not all umbrae are r.v.'s.

The algebra of non-commutative r.v.'s

The algebra of non-commutative r.v.'s

- $a \in \mathcal{A}$ (non-commutative r.v.'s)
- unital linear functional $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ with $\varphi\left(a^{i}\right) i$-th moment
- $\left\{\varphi\left(a^{i}\right)\right\}_{i \geq 1}$ distribution of a

The algebra of non-commutative r.v.'s

- $a \in \mathcal{A}$ (non-commutative r.v.'s)
- unital linear functional $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ with $\varphi\left(a^{i}\right) i$-th moment
- $\left\{\varphi\left(a^{i}\right)\right\}_{i \geq 1}$ distribution of a
- $\varphi\left(a^{i} b^{i}\right)$ joint moment of a and $b \neq \varphi(a b a b \cdots a b)$

The algebra of non-commutative r.v.'s

- $a \in \mathcal{A}$ (non-commutative r.v.'s)
- unital linear functional $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ with $\varphi\left(a^{i}\right) i$-th moment
- $\left\{\varphi\left(a^{i}\right)\right\}_{i \geq 1}$ distribution of a
- $\varphi\left(a^{i} b^{i}\right)$ joint moment of a and $b \neq \varphi(a b a b \cdots a b)$
X, Y i.r.v.'s then $c_{i}(X+Y)=c_{i}(X)+c_{i}(Y) \quad a, b$ free r.v.'s then $c_{i}(a+b)=c_{i}(a)+c_{i}(b)$

The algebra of non-commutative r.v.'s

- $a \in \mathcal{A}$ (non-commutative r.v.'s)
- unital linear functional $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ with $\varphi\left(a^{i}\right) i$-th moment
- $\left\{\varphi\left(a^{i}\right)\right\}_{i \geq 1}$ distribution of a
- $\varphi\left(a^{i} b^{i}\right)$ joint moment of a and $b \neq \varphi(a b a b \cdots a b)$
X, Y i.r.v.'s then $c_{i}(X+Y)=c_{i}(X)+c_{i}(Y) \quad a, b$ free r.v.'s then $c_{i}(a+b)=c_{i}(a)+c_{i}(b)$

$$
\begin{aligned}
c_{1} & =\varphi(a), c_{2}=\varphi\left(a^{2}\right)-\varphi(a)^{2} \\
c_{3} & =\varphi\left(a^{3}\right)-3 \varphi\left(a^{2}\right) \varphi(a)+2 \varphi(a)^{3} \\
c_{4} & =\varphi\left(a^{4}\right)-4 \varphi\left(a^{3}\right) \varphi(a)-2 \varphi\left(a^{2}\right)^{2} \\
& +10 \varphi\left(a^{2}\right) \varphi(a)^{2}-5 \varphi(a)^{4} \\
& \quad \text { Free cumulants }-\operatorname{Nc}(i)
\end{aligned}
$$

The algebra of non-commutative r.v.'s

- $a \in \mathcal{A}$ (non-commutative r.v.'s)
- unital linear functional $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ with $\varphi\left(a^{i}\right) i$-th moment
- $\left\{\varphi\left(a^{i}\right)\right\}_{i \geq 1}$ distribution of a
- $\varphi\left(a^{i} b^{i}\right)$ joint moment of a and $b \neq \varphi(a b a b \cdots a b)$
X, Y i.r.v.'s then $c_{i}(X+Y)=c_{i}(X)+c_{i}(Y) \quad a, b$ free r.v.'s then $c_{i}(a+b)=c_{i}(a)+c_{i}(b)$

$$
\begin{aligned}
c_{1} & =\varphi(a), c_{2}=\varphi\left(a^{2}\right)-\varphi(a)^{2} \\
c_{3} & =\varphi\left(a^{3}\right)-3 \varphi\left(a^{2}\right) \varphi(a)+2 \varphi(a)^{3} \\
c_{4} & =\varphi\left(a^{4}\right)-4 \varphi\left(a^{3}\right) \varphi(a)-2 \varphi\left(a^{2}\right)^{2} \\
& +10 \varphi\left(a^{2}\right) \varphi(a)^{2}-5 \varphi(a)^{4} \\
& \quad \text { Free cumulants }-\operatorname{Nc}(i)
\end{aligned}
$$

The algebra of non-commutative r.v.'s

- $a \in \mathcal{A}$ (non-commutative r.v.'s)
- unital linear functional $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ with $\varphi\left(a^{i}\right) i$-th moment
- $\left\{\varphi\left(a^{i}\right)\right\}_{i \geq 1}$ distribution of a
- $\varphi\left(a^{i} b^{i}\right)$ joint moment of a and $b \neq \varphi(a b a b \cdots a b)$
X, Y i.r.v.'s then $c_{i}(X+Y)=c_{i}(X)+c_{i}(Y) \quad a, b$ free r.v.'s then $c_{i}(a+b)=c_{i}(a)+c_{i}(b)$

$$
\begin{aligned}
& c_{1}=\mu_{1}, c_{2}=\mu_{2}-\mu_{1}^{2} \\
& c_{3}=\mu_{3}-3 \mu_{2} \mu_{1}+2 \mu_{1}^{3} \\
& c_{4}=\mu_{4}-4 \mu_{3} \mu_{1}-3 \mu_{2}+12 \mu_{2} \mu_{1}-6 \mu_{1}^{4}
\end{aligned}
$$

Classical cumulants - $\Pi(i)$

$$
\begin{aligned}
c_{1} & =\varphi(a), c_{2}=\varphi\left(a^{2}\right)-\varphi(a)^{2} \\
c_{3} & =\varphi\left(a^{3}\right)-3 \varphi\left(a^{2}\right) \varphi(a)+2 \varphi(a)^{3} \\
c_{4} & =\varphi\left(a^{4}\right)-4 \varphi\left(a^{3}\right) \varphi(a)-2 \varphi\left(a^{2}\right)^{2} \\
& +10 \varphi\left(a^{2}\right) \varphi(a)^{2}-5 \varphi(a)^{4} \\
& \quad \text { Free cumulants }-\operatorname{Nc}(i)
\end{aligned}
$$

The algebra of non-commutative r.v.'s

- $a \in \mathcal{A}$ (non-commutative r.v.'s)
- unital linear functional $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ with $\varphi\left(a^{i}\right) i$-th moment
- $\left\{\varphi\left(a^{i}\right)\right\}_{i \geq 1}$ distribution of a
- $\varphi\left(a^{i} b^{i}\right)$ joint moment of a and $b \neq \varphi(a b a b \cdots a b)$
X, Y i.r.v.'s then $c_{i}(X+Y)=c_{i}(X)+c_{i}(Y) \quad a, b$ free r.v.'s then $c_{i}(a+b)=c_{i}(a)+c_{i}(b)$

$$
\begin{aligned}
& c_{1}=\mu_{1}, c_{2}=\mu_{2}-\mu_{1}^{2} \\
& c_{3}=\mu_{3}-3 \mu_{2} \mu_{1}+2 \mu_{1}^{3} \\
& c_{4}=\mu_{4}-4 \mu_{3} \mu_{1}-3 \mu_{2}+12 \mu_{2} \mu_{1}-6 \mu_{1}^{4}
\end{aligned}
$$

Classical cumulants - $\Pi(i)$

$$
\begin{aligned}
c_{1} & =\varphi(a), c_{2}=\varphi\left(a^{2}\right)-\varphi(a)^{2} \\
c_{3} & =\varphi\left(a^{3}\right)-3 \varphi\left(a^{2}\right) \varphi(a)+2 \varphi(a)^{3} \\
c_{4} & =\varphi\left(a^{4}\right)-4 \varphi\left(a^{3}\right) \varphi(a)-2 \varphi\left(a^{2}\right)^{2} \\
& +10 \varphi\left(a^{2}\right) \varphi(a)^{2}-5 \varphi(a)^{4} \\
& \quad \text { Free cumulants }-\operatorname{Nc}(i)
\end{aligned}
$$

Remark: a, b are free commutative r.v.'s iff at least one of them has vanishing variance.

The framework

Uncorrelation property

$$
\begin{gathered}
\mathbb{E}\left[\alpha^{i} \gamma^{j} \cdots \delta^{k}\right]=\mathbb{E}\left[\alpha^{i}\right] \mathbb{E}\left[\gamma^{j}\right] \cdots \mathbb{E}\left[\delta^{k}\right] \\
\mathbb{E} \text { factorizes on different symbols }
\end{gathered}
$$

The framework

Uncorrelation property
$\mathbb{E}\left[\alpha^{i} \gamma^{j} \cdots \delta^{k}\right]=\mathbb{E}\left[\alpha^{i}\right] \mathbb{E}\left[\gamma^{j}\right] \cdots \mathbb{E}\left[\delta^{k}\right]$

$$
\sum_{j=1}^{i}\binom{i}{j} a_{j} g_{i-j} \Rightarrow \sum_{j=1}^{i}\binom{i}{j} \alpha^{j} \gamma^{i-j}=(\alpha+\gamma)^{i}
$$

\mathbb{E} factorizes on different symbols

The framework

Uncorrelation property

$$
\begin{gathered}
\mathbb{E}\left[\alpha^{i} \gamma^{j} \cdots \delta^{k}\right]=\mathbb{E}\left[\alpha^{i}\right] \mathbb{E}\left[\gamma^{j}\right] \cdots \mathbb{E}\left[\delta^{k}\right] \\
\mathbb{E} \text { factorizes on different symbols }
\end{gathered}
$$

- α, α^{\prime} similar $\Leftrightarrow \mathbb{E}\left[\alpha^{i}\right]=\mathbb{E}\left[\left(\alpha^{\prime}\right)^{i}\right]=a_{i}$ for all i, in symbols $\alpha \equiv \alpha^{\prime}$

The framework

Uncorrelation property
$\mathbb{E}\left[\alpha^{i} \gamma^{j} \cdots \delta^{k}\right]=\mathbb{E}\left[\alpha^{i}\right] \mathbb{E}\left[\gamma^{j}\right] \cdots \mathbb{E}\left[\delta^{k}\right]$
\mathbb{E} factorizes on different symbols

$$
\left\{\begin{array}{l}
\sum_{j=1}^{i}\binom{i}{j} a_{j} g_{i-j} \Rightarrow \sum_{j=1}^{i}\binom{i}{j} \alpha^{j} \gamma^{i-j}=(\alpha+\gamma)^{i} \\
\mathbb{E}\left[(2 . \alpha)^{i}\right]=\sum_{j=1}^{i}\binom{i}{j} a_{j} a_{i-j} \Rightarrow \sum_{j=1}^{i}\binom{i}{j} \alpha^{j}\left(\alpha^{\prime}\right)^{i-j}
\end{array}\right.
$$

- α, α^{\prime} similar $\Leftrightarrow \mathbb{E}\left[\alpha^{i}\right]=\mathbb{E}\left[\left(\alpha^{\prime}\right)^{i}\right]=a_{i}$ for all i, in symbols $\alpha \equiv \alpha^{\prime}$

The framework

Uncorrelation property
$\mathbb{E}\left[\alpha^{i} \gamma^{j} \cdots \delta^{k}\right]=\mathbb{E}\left[\alpha^{i}\right] \mathbb{E}\left[\gamma^{j}\right] \cdots \mathbb{E}\left[\delta^{k}\right]$
\mathbb{E} factorizes on different symbols

$$
\left\{\begin{array}{l}
\sum_{j=1}^{i}\binom{i}{j} a_{j} g_{i-j} \Rightarrow \sum_{j=1}^{i}\binom{i}{j} \alpha^{j} \gamma^{i-j}=(\alpha+\gamma)^{i} \\
\mathbb{E}\left[(2 . \alpha)^{i}\right]=\sum_{j=1}^{i}\binom{i}{j} a_{j} a_{i-j} \Rightarrow \sum_{j=1}^{i}\binom{i}{j} \alpha^{j}\left(\alpha^{\prime}\right)^{i-j}
\end{array}\right.
$$

Two special devices:

- α, α^{\prime} similar $\Leftrightarrow \mathbb{E}\left[\alpha^{i}\right]=\mathbb{E}\left[\left(\alpha^{\prime}\right)^{i}\right]=a_{i}$ for all i, in symbols $\alpha \equiv \alpha^{\prime}$
- m. α dot-product $=\underbrace{\alpha^{\prime}+\alpha^{\prime \prime}+\cdots+\alpha^{\prime \prime \prime}}_{m}$ with $\alpha^{\prime} \equiv \alpha^{\prime \prime} \equiv \cdots \equiv \alpha^{\prime \prime \prime} \equiv \alpha$.

The framework

Uncorrelation property

$\mathbb{E}\left[\alpha^{i} \gamma^{j} \cdots \delta^{k}\right]=\mathbb{E}\left[\alpha^{i}\right] \mathbb{E}\left[\gamma^{j}\right] \cdots \mathbb{E}\left[\delta^{k}\right]$
\mathbb{E} factorizes on different symbols

$$
\left\{\begin{array}{l}
\sum_{j=1}^{i}\binom{i}{j} a_{j} g_{i-j} \Rightarrow \sum_{j=1}^{i}\binom{i}{j} \alpha^{j} \gamma^{i-j}=(\alpha+\gamma)^{i} \\
\mathbb{E}\left[(2 . \alpha)^{i}\right]=\sum_{j=1}^{i}\binom{i}{j} a_{j} a_{i-j} \Rightarrow \sum_{j=1}^{i}\binom{i}{j} \alpha^{j}\left(\alpha^{\prime}\right)^{i-j}
\end{array}\right.
$$

Two special devices:

- α, α^{\prime} similar $\Leftrightarrow \mathbb{E}\left[\alpha^{i}\right]=\mathbb{E}\left[\left(\alpha^{\prime}\right)^{i}\right]=a_{i}$ for all i, in symbols $\alpha \equiv \alpha^{\prime}$
- $m . \alpha$ dot-product $=\underbrace{\alpha^{\prime}+\alpha^{\prime \prime}+\cdots+\alpha^{\prime \prime \prime}}_{m}$ with $\alpha^{\prime} \equiv \alpha^{\prime \prime} \equiv \cdots \equiv \alpha^{\prime \prime \prime} \equiv \alpha$.
$\hookrightarrow \sum_{\lambda \vdash i}(m)_{\nu_{l(\lambda)}} d_{\lambda} a_{\lambda}=\mathbb{E}\left[(m . \alpha)^{i}\right]\left\{\begin{array}{l}\lambda=\left(1^{r_{1}}, 2^{r_{2}}, \ldots\right) \vdash i \\ a_{\lambda}=a_{1}^{r_{1}} a_{2}^{r_{2}} \cdots \\ d_{\lambda}=\frac{i!}{(1!)^{r_{1}} r_{1}!(2!)^{r_{2}} r_{2}!\cdots}\end{array}\right.$

The framework

Uncorrelation property

$\mathbb{E}\left[\alpha^{i} \gamma^{j} \cdots \delta^{k}\right]=\mathbb{E}\left[\alpha^{i}\right] \mathbb{E}\left[\gamma^{j}\right] \cdots \mathbb{E}\left[\delta^{k}\right]$
\mathbb{E} factorizes on different symbols

$$
\left\{\begin{array}{l}
\sum_{j=1}^{i}\binom{i}{j} a_{j} g_{i-j} \Rightarrow \sum_{j=1}^{i}\binom{i}{j} \alpha^{j} \gamma^{i-j}=(\alpha+\gamma)^{i} \\
\mathbb{E}\left[(2 . \alpha)^{i}\right]=\sum_{j=1}^{i}\binom{i}{j} a_{j} a_{i-j} \Rightarrow \sum_{j=1}^{i}\binom{i}{j} \alpha^{j}\left(\alpha^{\prime}\right)^{i-j}
\end{array}\right.
$$

Two special devices:

- α, α^{\prime} similar $\Leftrightarrow \mathbb{E}\left[\alpha^{i}\right]=\mathbb{E}\left[\left(\alpha^{\prime}\right)^{i}\right]=a_{i}$ for all i, in symbols $\alpha \equiv \alpha^{\prime}$
- m. α dot-product $=\underbrace{\alpha^{\prime}+\alpha^{\prime \prime}+\cdots+\alpha^{\prime \prime \prime}}_{m}$ with $\alpha^{\prime} \equiv \alpha^{\prime \prime} \equiv \cdots \equiv \alpha^{\prime \prime \prime} \equiv \alpha$.
$\leftrightarrow \sum_{\lambda \vdash i}(m)_{\nu_{l(\lambda)}} d_{\lambda} a_{\lambda}=\mathbb{E}\left[(m . \alpha)^{i}\right]\left\{\begin{array}{l}\lambda=\left(1^{r_{1}}, 2^{r_{2}}, \ldots\right) \vdash i \\ a_{\lambda}=a_{1}^{r_{1}} a_{2}^{r_{2}} \cdots \\ d_{\lambda}=\frac{i!}{(1!)^{r_{1}} r_{1}!(2!)^{r_{2}} r_{2}!\cdots}\end{array}\right.$

$$
\boldsymbol{\sum _ { \lambda \vdash i } (\gamma) _ { l (\lambda) } d _ { \lambda } a _ { \lambda } = q _ { i } (\gamma) \Rightarrow \mathbb { E } [(\gamma \cdot \alpha) ^ { i }] = \sum _ { \lambda \vdash i } g _ { l (\lambda) } d _ { \lambda } a _ { \lambda } . . . ~}
$$

Generalized random sum

$$
\mathcal{S}_{N}=X_{1}+\cdots+X_{N}
$$

Generalized random sum

$$
\begin{aligned}
& \gamma . \alpha \text { vs } S_{N} \\
& \mathcal{S}_{N}=X_{1}+\cdots+X_{N} \\
& \gamma . \alpha \equiv \underbrace{\alpha^{\prime}+\cdots+\alpha^{\prime \prime}}_{\gamma}
\end{aligned}
$$

Generalized random sum

$\gamma . \alpha$ vs S_{N}
$\mathcal{S}_{N}=X_{1}+\cdots+X_{N}$
$\gamma \cdot \alpha \equiv \underbrace{\alpha^{\prime}+\cdots+\alpha^{\prime \prime}}_{\gamma}$

Cumulants: $\kappa \equiv \chi . \alpha$

Generalized random sum

$\gamma . \alpha$ vs S_{N}
$\mathcal{S}_{N}=X_{1}+\cdots+X_{N}$
$\chi . \alpha \equiv \underbrace{\alpha^{\prime}+\cdots+\alpha^{\prime \prime}}_{\chi}$

Cumulants: $\kappa \equiv \chi . \alpha$

Generalized random sum

$$
\begin{aligned}
& \gamma . \alpha \text { vs } S_{N} \\
& \mathcal{S}_{N}=X_{1}+\cdots+X_{N} \\
& \chi \cdot \alpha \equiv \underbrace{\alpha^{\prime}+\cdots+\alpha^{\prime \prime}}_{\chi}
\end{aligned}
$$

Cumulants: $\kappa \equiv \chi . \alpha$
R.v.'s vectors

$$
\begin{gathered}
\boldsymbol{S}_{N}=\boldsymbol{X}_{1}+\cdots+\boldsymbol{X}_{N} \\
\gamma \cdot \boldsymbol{\mu} \equiv \underbrace{\boldsymbol{\mu}^{\prime}+\cdots+\boldsymbol{\mu}^{\prime \prime}}_{\gamma}
\end{gathered}
$$

Generalized random sum

$$
\begin{aligned}
& \gamma . \alpha \text { vs } S_{N} \\
& \mathcal{S}_{N}=X_{1}+\cdots+X_{N} \\
& \chi \cdot \alpha \equiv \underbrace{\alpha^{\prime}+\cdots+\alpha^{\prime \prime}}_{\chi}
\end{aligned}
$$

Cumulants: $\kappa \equiv \chi . \alpha$
R.v.'s vectors
$\boldsymbol{S}_{N}=\boldsymbol{X}_{1}+\cdots+\boldsymbol{X}_{N}$

$$
\chi \cdot \boldsymbol{\mu} \equiv \underbrace{\boldsymbol{\mu}^{\prime}+\cdots+\boldsymbol{\mu}^{\prime \prime}}_{\chi}
$$

Generalized random sum

$\gamma . \alpha$ vs S_{N}

$$
\begin{aligned}
& \mathcal{S}_{N}=X_{1}+\cdots+X_{N} \\
& \chi \cdot \alpha \equiv \underbrace{\alpha^{\prime}+\cdots+\alpha^{\prime \prime}}_{\chi}
\end{aligned}
$$

Cumulants: $\kappa \equiv \chi . \alpha$
R.v.'s vectors

$$
\begin{gathered}
\boldsymbol{S}_{N}=\boldsymbol{X}_{1}+\cdots+\boldsymbol{X}_{N} \\
\chi \cdot \boldsymbol{\mu} \equiv \underbrace{\boldsymbol{\mu}^{\prime}+\cdots+\boldsymbol{\mu}^{\prime \prime}}_{\chi}
\end{gathered}
$$

Randomized compound Poisson r.v.

$$
\mathcal{S}_{N}=X_{1}+\cdots+X_{N} \Rightarrow N \approx \operatorname{Po}(R)
$$

Generalized random sum

```
\gamma.\alpha vs S}\mp@subsup{S}{N}{
```

$$
\begin{aligned}
& \mathcal{S}_{N}=X_{1}+\cdots+X_{N} \\
& \gamma \cdot \alpha \equiv \underbrace{\alpha^{\prime}+\cdots+\alpha^{\prime \prime}}_{\gamma}
\end{aligned}
$$

Randomized compound Poisson r.v.

$$
\begin{gathered}
\mathcal{S}_{N}=X_{1}+\cdots+X_{N} \Rightarrow N \approx \operatorname{Po}(R) \\
\gamma \cdot \beta \cdot \alpha \equiv \underbrace{\alpha^{\prime}+\cdots+\alpha^{\prime \prime}}_{\gamma \cdot \beta \Rightarrow \operatorname{Po}(\gamma)}
\end{gathered}
$$

Cumulants: $\kappa \equiv \chi . \alpha$
R.v.'s vectors

$$
\begin{gathered}
\boldsymbol{S}_{N}=\boldsymbol{X}_{1}+\cdots+\boldsymbol{X}_{N} \\
\chi \cdot \boldsymbol{\mu} \equiv \underbrace{\boldsymbol{\mu}^{\prime}+\cdots+\boldsymbol{\mu}^{\prime \prime}}_{\chi}
\end{gathered}
$$

Generalized random sum

$\gamma . \alpha$ vs S_{N}

$$
\begin{gathered}
\mathcal{S}_{N}=X_{1}+\cdots+X_{N} \\
\gamma \cdot \alpha \equiv \underbrace{\alpha^{\prime}+\cdots+\alpha^{\prime \prime}}_{\gamma}
\end{gathered}
$$

Cumulants: $\kappa \equiv \chi . \alpha$
R.v.'s vectors

$$
\begin{gathered}
\boldsymbol{S}_{N}=\boldsymbol{X}_{1}+\cdots+\boldsymbol{X}_{N} \\
\chi \cdot \boldsymbol{\mu} \equiv \underbrace{\boldsymbol{\mu}^{\prime}+\cdots+\boldsymbol{\mu}^{\prime \prime}}_{\chi}
\end{gathered}
$$

Randomized compound Poisson r.v.

$$
\begin{gathered}
\mathcal{S}_{N}=X_{1}+\cdots+X_{N} \Rightarrow N \approx \operatorname{Po}(R) \\
\gamma \cdot \beta \cdot \alpha \equiv \underbrace{\alpha^{\prime}+\cdots+\alpha^{\prime \prime}}_{\gamma \cdot \beta \Rightarrow \operatorname{Po}(\gamma)}
\end{gathered}
$$

Moments: $\equiv u . \beta . \kappa$

Generalized random sum

$\gamma . \alpha$ vs S_{N}

$$
\begin{aligned}
& \mathcal{S}_{N}=X_{1}+\cdots+X_{N} \\
& \gamma \cdot \alpha \equiv \underbrace{\alpha^{\prime}+\cdots+\alpha^{\prime \prime}}_{\gamma}
\end{aligned}
$$

Cumulants: $\kappa \equiv \chi . \alpha$
R.v.'s vectors

$$
\begin{gathered}
\boldsymbol{S}_{N}=\boldsymbol{X}_{1}+\cdots+\boldsymbol{X}_{N} \\
\chi \cdot \boldsymbol{\mu} \equiv \underbrace{\boldsymbol{\mu}^{\prime}+\cdots+\boldsymbol{\mu}^{\prime \prime}}_{\chi}
\end{gathered}
$$

Randomized compound Poisson r.v.

$$
\begin{gathered}
\mathcal{S}_{N}=X_{1}+\cdots+X_{N} \Rightarrow N \approx \operatorname{Po}(R) \\
u . \beta . \kappa \equiv \underbrace{\kappa^{\prime}+\cdots+\kappa^{\prime \prime}}_{u \cdot \beta \Rightarrow \operatorname{Po}(u)}
\end{gathered}
$$

Moments: $\alpha \equiv u . \beta . \kappa$

Generalized random sum

$\gamma . \alpha$ vs S_{N}

$$
\begin{gathered}
\mathcal{S}_{N}=X_{1}+\cdots+X_{N} \\
\gamma \cdot \alpha \equiv \underbrace{\alpha^{\prime}+\cdots+\alpha^{\prime \prime}}_{\gamma}
\end{gathered}
$$

Cumulants: $\kappa \equiv \chi . \alpha$
R.v.'s vectors

$$
\begin{gathered}
\boldsymbol{S}_{N}=\boldsymbol{X}_{1}+\cdots+\boldsymbol{X}_{N} \\
\chi \cdot \boldsymbol{\mu} \equiv \underbrace{\boldsymbol{\mu}^{\prime}+\cdots+\boldsymbol{\mu}^{\prime \prime}}_{\chi}
\end{gathered}
$$

Randomized compound Poisson r.v.

$$
\begin{gathered}
\mathcal{S}_{N}=X_{1}+\cdots+X_{N} \Rightarrow N \approx \operatorname{Po}(R) \\
u \cdot \beta \cdot \kappa \equiv \underbrace{\kappa^{\prime}+\cdots+\kappa^{\prime \prime}}_{u \cdot \beta \Rightarrow \operatorname{Po}(u)}
\end{gathered}
$$

Moments: $\alpha \equiv u . \beta . \kappa$

Multivariate randomized compound Poisson r.v.

$$
\begin{gathered}
\boldsymbol{S}_{N}=\boldsymbol{X}_{1}+\cdots+\boldsymbol{X}_{N} \Rightarrow N \approx \operatorname{Po}(R) \\
\gamma \cdot \beta \cdot \boldsymbol{\mu} \equiv \underbrace{\boldsymbol{\mu}^{\prime}+\cdots+\boldsymbol{\mu}^{\prime \prime}}_{\gamma \cdot \beta \Rightarrow \operatorname{Po}(\gamma)}
\end{gathered}
$$

Generalized random sum

$\gamma . \alpha$ vs S_{N}

$$
\begin{gathered}
\mathcal{S}_{N}=X_{1}+\cdots+X_{N} \\
\gamma \cdot \alpha \equiv \underbrace{\alpha^{\prime}+\cdots+\alpha^{\prime \prime}}_{\gamma}
\end{gathered}
$$

Cumulants: $\kappa \equiv \chi . \alpha$

R.v.'s vectors

$$
\begin{gathered}
\boldsymbol{S}_{N}=\boldsymbol{X}_{1}+\cdots+\boldsymbol{X}_{N} \\
\chi \cdot \boldsymbol{\mu} \equiv \underbrace{\boldsymbol{\mu}^{\prime}+\cdots+\boldsymbol{\mu}^{\prime \prime}}_{\chi}
\end{gathered}
$$

Randomized compound Poisson r.v.

$$
\begin{gathered}
\mathcal{S}_{N}=X_{1}+\cdots+X_{N} \Rightarrow N \approx \operatorname{Po}(R) \\
u \cdot \beta . \kappa \equiv \underbrace{\kappa^{\prime}+\cdots+\kappa^{\prime \prime}}_{u \cdot \beta \Rightarrow \operatorname{Po}(u)}
\end{gathered}
$$

Moments: $\alpha \equiv u . \beta . \kappa$

Multivariate randomized compound Poisson r.v.

$$
\begin{gathered}
\boldsymbol{S}_{N}=\boldsymbol{X}_{1}+\cdots+\boldsymbol{X}_{N} \Rightarrow N \approx \operatorname{Po}(R) \\
u \cdot \beta \cdot \kappa \equiv \underbrace{\kappa^{\prime}+\cdots+\kappa^{\prime \prime}}_{u \cdot \beta \Rightarrow \operatorname{Po}(u)}
\end{gathered}
$$

Outline
What I mean by symbolic methods? Why symbolic methods?
The moment symbolic method

What free probability can do for statistician?
Again on efficiency: Wishart random matrices Spectral random sampling Conclusions

Outline
What I mean by symbolic methods? Why symbolic methods?
The moment symbolic method

What free probability can do for statistician?
Again on efficiency: Wishart random matrices Spectral random sampling Conclusions

A nice shortcut

Random matrices are non-commutative objects whose large-dimension asymptotic have provided the major applications of free probability:

$$
\phi\left(a^{i}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\operatorname{Tr}\left(A^{i}\right)\right]
$$

A nice shortcut

Random matrices are non-commutative objects whose large-dimension asymptotic have provided the major applications of free probability:

$$
\phi\left(a^{i}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\operatorname{Tr}\left(A^{i}\right)\right] .
$$

Ex: $A_{[n \times n]}$ gaussian hermitian $\mu_{A}=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{j}(A)} \stackrel{\text { a.e. }}{\Rightarrow}$ Wigner (semicircle)

$\operatorname{Eig}(A+B) \neq \operatorname{Eig}(A)+\operatorname{Eig}(B)$

A nice shortcut

Random matrices are non-commutative objects whose large-dimension asymptotic have provided the major applications of free probability:

$$
\phi\left(a^{i}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\operatorname{Tr}\left(A^{i}\right)\right] .
$$

Ex: $A_{[n \times n]}$ gaussian hermitian $\mu_{A}=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{j}(A)} \stackrel{\text { a.e. }}{\Rightarrow}$ Wigner (semicircle)

$\operatorname{Eig}(A+B) \neq \operatorname{Eig}(A)+\operatorname{Eig}(B)$

A nice shortcut

Random matrices are non-commutative objects whose large-dimension asymptotic have provided the major applications of free probability:

$$
\phi\left(a^{i}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\operatorname{Tr}\left(A^{i}\right)\right] .
$$

Ex: $A_{[n \times n]}$ gaussian hermitian $\mu_{A}=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{j}(A)} \stackrel{\text { a.e. }}{\Rightarrow}$ Wigner (semicircle)

If A and B are indipendent diagonal matrices

$$
\begin{gathered}
\log \operatorname{MGF}(A+B)=\log \operatorname{MGF}(A)+\log \operatorname{MGF}(B) \\
i \text {-th coeff. } \log \operatorname{MGF}=c_{i}
\end{gathered}
$$

$\operatorname{Eig}(A+B) \neq \operatorname{Eig}(A)+\operatorname{Eig}(B)$

A nice shortcut

Random matrices are non-commutative objects whose large-dimension asymptotic have provided the major applications of free probability:

$$
\phi\left(a^{i}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\operatorname{Tr}\left(A^{i}\right)\right] .
$$

Ex: $A_{[n \times n]}$ gaussian hermitian $\mu_{A}=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{j}(A)} \stackrel{\text { a.e. }}{\Rightarrow}$ Wigner (semicircle)

If A and B are indipendent diagonal matrices

$$
\begin{gathered}
\log \operatorname{MGF}(A+B)=\log \operatorname{MGF}(A)+\log \operatorname{MGF}(B) \\
i \text {-th coeff. } \log \mathrm{MGF}=c_{i}
\end{gathered}
$$

- What about $c_{i}(A+B)$?
- How to define $c_{i}(A)$?

Non-asymptotic case

If A and B are asymptotically free, then the asymptotic spectrum of the sum can be obtained from the individual asymptotic spectra.
\leadsto As free probability only covers the asymptotic regime in which n is sent to infinity, there are some aspects of random matrix theory to which the tools of free probability are not sufficient by themselves to resolve.

How to preserve the framework of free probability?

Non-asymptotic case

If A and B are asymptotically free, then the asymptotic spectrum of the sum can be obtained from the individual asymptotic spectra.
\leadsto As free probability only covers the asymptotic regime in which n is sent to infinity, there are some aspects of random matrix theory to which the tools of free probability are not sufficient by themselves to resolve.

How to preserve the framework of free probability?

Non-asymptotic case

If A and B are asymptotically free, then the asymptotic spectrum of the sum can be obtained from the individual asymptotic spectra.
\leadsto As free probability only covers the asymptotic regime in which n is sent to infinity, there are some aspects of random matrix theory to which the tools of free probability are not sufficient by themselves to resolve.

How to preserve the framework of free probability?

Non-asymptotic case

If A and B are asymptotically free, then the asymptotic spectrum of the sum can be obtained from the individual asymptotic spectra.
\leadsto As free probability only covers the asymptotic regime in which n is sent to infinity, there are some aspects of random matrix theory to which the tools of free probability are not sufficient by themselves to resolve.

How to preserve the framework of free probability?
If in $\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\operatorname{Tr}\left(A^{i}\right)\right]$

Non-asymptotic case

If A and B are asymptotically free, then the asymptotic spectrum of the sum can be obtained from the individual asymptotic spectra.
\leadsto As free probability only covers the asymptotic regime in which n is sent to infinity, there are some aspects of random matrix theory to which the tools of free probability are not sufficient by themselves to resolve.

How to preserve the framework of free probability?
If in $\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\operatorname{Tr}\left(A^{i}\right)\right]$

Non-asymptotic case

If A and B are asymptotically free, then the asymptotic spectrum of the sum can be obtained from the individual asymptotic spectra.
\longrightarrow As free probability only covers the asymptotic regime in which n is sent to infinity, there are some aspects of random matrix theory to which the tools of free probability are not sufficient by themselves to resolve.

How to preserve the framework of free probability?
If in $\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\operatorname{Tr}\left(A^{i}\right)\right]$
the symbolic moment method can be resorted in order to compute

Non-asymptotic case

If A and B are asymptotically free, then the asymptotic spectrum of the sum can be obtained from the individual asymptotic spectra.
\leadsto As free probability only covers the asymptotic regime in which n is sent to infinity, there are some aspects of random matrix theory to which the tools of free probability are not sufficient by themselves to resolve.

How to preserve the framework of free probability?
If in $\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\operatorname{Tr}\left(A^{i}\right)\right]=\tau\left(A^{i}\right)$ the symbolic moment method can be resorted in order to compute $\left\{\tau\left(A^{i}\right)\right\}_{i \geq 1}$.

Non-asymptotic case

If A and B are asymptotically free, then the asymptotic spectrum of the sum can be obtained from the individual asymptotic spectra.
\leadsto As free probability only covers the asymptotic regime in which n is sent to infinity, there are some aspects of random matrix theory to which the tools of free probability are not sufficient by themselves to resolve.

How to preserve the framework of free probability?
If in $\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\operatorname{Tr}\left(A^{i}\right)\right]=\tau\left(A^{i}\right)$ the symbolic moment method can be resorted in order to compute $\left\{\tau\left(A^{i}\right)\right\}_{i \geq 1}$.

Assume to symbolically represent the eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ of A with $\left\{\mu_{1}, \ldots, \mu_{n}\right\}$ umbral monomials so that

$$
\tau\left(A^{i}\right)=\frac{1}{n} \mathbb{E}\left[\mu_{1}^{i}+\cdots+\mu_{n}^{i}\right] \text { power sum symmetric polynomials in }\left\{\mu_{i}\right\}
$$

\triangleright Capitaine M., Casalis M. (2006) Cumulants for random matrices as convolutions on the symmetric group. Probab. Theory Relat. Fields.
\triangleright Capitaine M., Casalis M. (2006) Cumulants for random matrices as convolutions on the symmetric group. Probab. Theory Relat. Fields.
> \triangleright Di Nardo E., McCullagh P., Senato D. (2013) Natural statistics for spectral samples. Ann. Stat.
\triangleright Capitaine M., Casalis M. (2006) Cumulants for random matrices as convolutions on the symmetric group. Probab. Theory Relat. Fields.
\triangleright Di Nardo E., McCullagh P., Senato D. (2013) Natural statistics for spectral samples. Ann. Stat.

Cumulants of random matrices

If $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)$ represents the eigenvalues of A then $\mathfrak{c}_{\boldsymbol{\mu}}=\left(\mathfrak{c}_{1, \boldsymbol{\mu}}, \ldots, \mathfrak{c}_{n, \boldsymbol{\mu}}\right)$

$$
\operatorname{Tr}(A) \Leftarrow \mu_{1}+\cdots+\mu_{n} \equiv n \cdot \beta \cdot\left(\mathfrak{c}_{1, \boldsymbol{\mu}}+\cdots+\mathfrak{c}_{n, \boldsymbol{\mu}}\right) \Rightarrow \operatorname{Tr}(\mathfrak{C}(A))
$$

represents the n-tuple of cumulants of A.
\triangleright Capitaine M., Casalis M. (2006) Cumulants for random matrices as convolutions on the symmetric group. Probab. Theory Relat. Fields.
\triangleright Di Nardo E., McCullagh P., Senato D. (2013) Natural statistics for spectral samples. Ann. Stat.

Cumulants of random matrices

If $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)$ represents the eigenvalues of A then $\mathfrak{c}_{\boldsymbol{\mu}}=\left(\mathfrak{c}_{1, \boldsymbol{\mu}}, \ldots, \mathfrak{c}_{n, \boldsymbol{\mu}}\right)$

$$
\operatorname{Tr}(A) \Leftarrow \mu_{1}+\cdots+\mu_{n} \equiv n \cdot \beta \cdot\left(\mathfrak{c}_{1, \mu}+\cdots+\mathfrak{c}_{n, \mu}\right) \Rightarrow \operatorname{Tr}(\mathfrak{C}(A))
$$

represents the n-tuple of cumulants of A.

$$
\mathbb{E}\left\{[\operatorname{Tr}(A)]^{i}\right\}=\sum_{\lambda \vdash i} d_{\lambda} n^{l(\lambda)} \prod_{j=1}^{l(\lambda)} \mathbb{E}\left\{[\operatorname{Tr}(\mathfrak{C}(A))]^{\lambda_{j}}\right\}
$$

\triangleright Capitaine M., Casalis M. (2006) Cumulants for random matrices as convolutions on the symmetric group. Probab. Theory Relat. Fields.
\triangleright Di Nardo E., McCullagh P., Senato D. (2013) Natural statistics for spectral samples. Ann. Stat.

Cumulants of random matrices

If $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)$ represents the eigenvalues of A then $\mathfrak{c}_{\boldsymbol{\mu}}=\left(\mathfrak{c}_{1, \boldsymbol{\mu}}, \ldots, \mathfrak{c}_{n, \boldsymbol{\mu}}\right)$

$$
\operatorname{Tr}(A) \Leftarrow \mu_{1}+\cdots+\mu_{n} \equiv n \cdot \beta \cdot\left(\mathfrak{c}_{1, \mu}+\cdots+\mathfrak{c}_{n, \mu}\right) \Rightarrow \operatorname{Tr}(\mathfrak{C}(A))
$$

represents the n-tuple of cumulants of A.

$$
\mathbb{E}\left\{[\operatorname{Tr}(A)]^{i}\right\}=\sum_{\lambda \vdash i} d_{\lambda} n^{l(\lambda)} \prod_{j=1}^{l(\lambda)} \mathbb{E}\left\{[\operatorname{Tr}(\mathbb{C}(A))]^{\lambda_{j}}\right\} \Rightarrow \mathfrak{m}[A]=\mathfrak{m}[I] \star \mathfrak{c}[A]
$$

\star convolution on symmetric group
\triangleright Capitaine M., Casalis M. (2006) Cumulants for random matrices as convolutions on the symmetric group. Probab. Theory Relat. Fields.
\triangleright Di Nardo E., McCullagh P., Senato D. (2013) Natural statistics for spectral samples. Ann. Stat.

Cumulants of random matrices

If $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)$ represents the eigenvalues of A then $\mathfrak{c}_{\boldsymbol{\mu}}=\left(\mathfrak{c}_{1, \boldsymbol{\mu}}, \ldots, \mathfrak{c}_{n, \boldsymbol{\mu}}\right)$

$$
\operatorname{Tr}(A) \Leftarrow \mu_{1}+\cdots+\mu_{n} \equiv n \cdot \beta \cdot\left(\mathfrak{c}_{1, \boldsymbol{\mu}}+\cdots+\mathfrak{c}_{n, \boldsymbol{\mu}}\right) \Rightarrow \operatorname{Tr}(\mathfrak{C}(A))
$$

represents the n-tuple of cumulants of A.

$$
\mathbb{E}\left\{[\operatorname{Tr}(A)]^{i}\right\}=\sum_{\lambda \vdash i} d_{\lambda} n^{l(\lambda)} \prod_{j=1}^{l(\lambda)} \mathbb{E}\left\{[\operatorname{Tr}(\mathfrak{C}(A))]^{\lambda_{j}}\right\} \Rightarrow \mathfrak{m}[A]=\mathfrak{m}[I] \star \mathfrak{c}[A]
$$

\star convolution on symmetric group

$$
\mathfrak{m}[A(\sigma)]=\mathbb{E}\left\{\prod_{c \in C(\sigma)} \operatorname{Tr}\left[A^{1(c)}\right]\right\} \quad \mathfrak{c}[A(\sigma)]=\prod_{c \in C(\sigma)} \frac{\mathbb{E}\left\{[\operatorname{Tr}(\mathfrak{C}(A))]^{1(c)}\right\}}{(1(c)-1)!} \Rightarrow \text { polykays }
$$

\triangleright Capitaine M., Casalis M. (2006) Cumulants for random matrices as convolutions on the symmetric group. Probab. Theory Relat. Fields.
\triangleright Di Nardo E., McCullagh P., Senato D. (2013) Natural statistics for spectral samples. Ann. Stat.

Cumulants of random matrices

If $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)$ represents the eigenvalues of A then $\mathfrak{c}_{\boldsymbol{\mu}}=\left(\mathfrak{c}_{1, \boldsymbol{\mu}}, \ldots, \mathfrak{c}_{n, \boldsymbol{\mu}}\right)$

$$
\operatorname{Tr}(A) \Leftarrow \mu_{1}+\cdots+\mu_{n} \equiv n \cdot \beta \cdot\left(\mathfrak{c}_{1, \boldsymbol{\mu}}+\cdots+\mathfrak{c}_{n, \boldsymbol{\mu}}\right) \Rightarrow \operatorname{Tr}(\mathfrak{C}(A))
$$

represents the n-tuple of cumulants of A.

$$
\begin{array}{cl}
\mathbb{E}\left\{[\operatorname{Tr}(A)]^{i}\right\}=\sum_{\lambda \vdash i} d_{\lambda} n^{l(\lambda)} \prod_{j=1}^{l(\lambda)} \mathbb{E}\left\{[\operatorname{Tr}(\mathfrak{C}(A))]^{\lambda_{j}}\right\} & \Rightarrow \mathfrak{m}[A]=\mathfrak{m}[I] \star \mathfrak{c}[A] \\
\star \text { convolution on symmetric group } & \alpha \equiv \text { u.ß.к }
\end{array}
$$

$$
\mathfrak{m}[A(\sigma)]=\mathbb{E}\left\{\prod_{c \in C(\sigma)} \operatorname{Tr}\left[A^{1(c)}\right]\right\} \quad \mathfrak{c}[A(\sigma)]=\prod_{c \in C(\sigma)} \frac{\mathbb{E}\left\{[\operatorname{Tr}(\mathfrak{C}(A))]^{1(c)}\right\}}{(l(c)-1)!} \Rightarrow \text { polykays }
$$

The non central Wishart distribution

- Let $\left\{\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right\}$ be random row vectors independently drawn from a p-variate complex normal distribution with zero mean and full rank covariance matrix Σ with eigenvalues $\left\{\theta_{1}, \ldots, \theta_{p}\right\}$
- Let $\boldsymbol{m}_{1}, \ldots, \boldsymbol{m}_{n}$ be complex row vectors of dimension p.

$$
W_{p}(n, \Sigma, M)=\sum_{i=1}^{n}\left(\boldsymbol{X}_{i}-\boldsymbol{m}_{i}\right)^{\dagger}\left(\boldsymbol{X}_{i}-\boldsymbol{m}_{i}\right)
$$

The non central Wishart distribution

- Let $\left\{\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right\}$ be random row vectors independently drawn from a p-variate complex normal distribution with zero mean and full rank covariance matrix Σ with eigenvalues $\left\{\theta_{1}, \ldots, \theta_{p}\right\}$
- Let $\boldsymbol{m}_{1}, \ldots, \boldsymbol{m}_{n}$ be complex row vectors of dimension p.

$$
\Omega=\Sigma^{-1} M \Leftarrow
$$

non-centrality matrix

$$
W_{p}(n, \Sigma, M)=\sum_{i=1}^{n}\left(\boldsymbol{X}_{i}-\boldsymbol{m}_{i}\right)^{\dagger}\left(\boldsymbol{X}_{i}-\boldsymbol{m}_{i}\right)
$$

$$
M=\sum_{i=1}^{n} \boldsymbol{m}_{i}^{\dagger} \boldsymbol{m}_{i}
$$

The non central Wishart distribution

- Let $\left\{\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right\}$ be random row vectors independently drawn from a p-variate complex normal distribution with zero mean and full rank covariance matrix Σ with eigenvalues $\left\{\theta_{1}, \ldots, \theta_{p}\right\}$
- Let $\boldsymbol{m}_{1}, \ldots, \boldsymbol{m}_{n}$ be complex row vectors of dimension p.

$$
\Omega=\Sigma^{-1} M \Leftarrow
$$

non-centrality matrix

$$
W_{p}(n, \Omega, M)=\sum_{i=1}^{n}\left(\boldsymbol{X}_{i}-\boldsymbol{m}_{i}\right)^{\dagger}\left(\boldsymbol{X}_{i}-\boldsymbol{m}_{i}\right) \quad M=\sum_{i=1}^{n} \boldsymbol{m}_{i}^{\dagger} \boldsymbol{m}_{i}
$$

Symbolic representation with $\widehat{W}(n)=W_{p}(n, \Sigma, 0)$

$$
+\overbrace{n .\left(\theta_{1} \bar{u}_{1}+\cdots+\theta_{p} \bar{u}_{p}\right)}^{\operatorname{Tr}[\widehat{W}(n)] \Leftarrow \text { central comp. }}
$$

The non central Wishart distribution

- Let $\left\{\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right\}$ be random row vectors independently drawn from a p-variate complex normal distribution with zero mean and full rank covariance matrix Σ with eigenvalues $\left\{\theta_{1}, \ldots, \theta_{p}\right\}$
- Let $\boldsymbol{m}_{1}, \ldots, \boldsymbol{m}_{n}$ be complex row vectors of dimension p.

$$
\Omega=\Sigma^{-1} M \Leftarrow
$$

non-centrality matrix

$$
W_{p}(n, \Omega, M)=\sum_{i=1}^{n}\left(\boldsymbol{X}_{i}-\boldsymbol{m}_{i}\right)^{\dagger}\left(\boldsymbol{X}_{i}-\boldsymbol{m}_{i}\right) \quad M=\sum_{i=1}^{n} \boldsymbol{m}_{i}^{\dagger} \boldsymbol{m}_{i}
$$

Symbolic representation with $\widehat{W}(n)=W_{p}(n, \Sigma, 0)$

$$
\operatorname{Tr}[W(n)] \equiv \overbrace{-1 . \beta . \alpha}^{\alpha \Leftarrow \text { formal comp. }}+\overbrace{n \cdot\left(\theta_{1} \bar{u}_{1}+\cdots+\theta_{p} \bar{u}_{p}\right)}^{\operatorname{Tr}[\widehat{W}(n)] \Leftarrow \text { central comp. }}
$$

The non central Wishart distribution

- Let $\left\{\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right\}$ be random row vectors independently drawn from a p-variate complex normal distribution with zero mean and full rank covariance matrix Σ with eigenvalues $\left\{\theta_{1}, \ldots, \theta_{p}\right\}$
- Let $\boldsymbol{m}_{1}, \ldots, \boldsymbol{m}_{n}$ be complex row vectors of dimension p.

$$
\Omega=\Sigma^{-1} M \Leftarrow
$$

non-centrality matrix

$$
W_{p}(n, \Omega, M)=\sum_{i=1}^{n}\left(\boldsymbol{X}_{i}-\boldsymbol{m}_{i}\right)^{\dagger}\left(\boldsymbol{X}_{i}-\boldsymbol{m}_{i}\right) \quad M=\sum_{i=1}^{n} \boldsymbol{m}_{i}^{\dagger} \boldsymbol{m}_{i}
$$

Symbolic representation with $\widehat{W}(n)=W_{p}(n, \Sigma, 0)$

$$
\operatorname{Tr}[W(n)] \equiv \overbrace{-1 . \beta . \alpha}^{\alpha \Leftarrow \text { formal comp. }}+\overbrace{n \cdot\left(\theta_{1} \bar{u}_{1}+\cdots+\theta_{p} \bar{u}_{p}\right)}^{\operatorname{Tr}[\widehat{W}(n)] \Leftarrow \text { central comp. }}
$$

$$
\operatorname{Cum}_{i}(\operatorname{Tr}[W(n)])=-i!\operatorname{Tr}\left(M \Sigma^{i-1}\right)+n(i-1)!\operatorname{Tr}\left(\Sigma^{i}\right)
$$

$$
\mathbb{E}\left[\alpha^{i}\right]
$$

$$
\operatorname{Tr}[\widehat{W}(n)]
$$

The non central Wishart distribution

- Let $\left\{\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right\}$ be random row vectors independently drawn from a p-variate complex normal distribution with zero mean and full rank covariance matrix Σ with eigenvalues $\left\{\theta_{1}, \ldots, \theta_{p}\right\}$
- Let $\boldsymbol{m}_{1}, \ldots, \boldsymbol{m}_{n}$ be complex row vectors of dimension p.

$$
\Omega=\Sigma^{-1} M \Leftarrow
$$

non-centrality matrix

$$
W_{p}(n, \Omega, M)=\sum_{i=1}^{n}\left(\boldsymbol{X}_{i}-\boldsymbol{m}_{i}\right)^{\dagger}\left(\boldsymbol{X}_{i}-\boldsymbol{m}_{i}\right) \quad M=\sum_{i=1}^{n} \boldsymbol{m}_{i}^{\dagger} \boldsymbol{m}_{i}
$$

Symbolic representation with $\widehat{W}(n)=W_{p}(n, \Sigma, 0)$

$$
\operatorname{Tr}[W(\gamma)] \equiv \overbrace{-1 . \beta . \alpha}^{\alpha \Leftarrow \text { formal comp. }}+\overbrace{\gamma \cdot\left(\theta_{1} \bar{u}_{1}+\cdots+\theta_{p} \bar{u}_{p}\right)}^{\operatorname{Tr}[\widehat{W}(\gamma)] \Leftarrow \text { central comp. }}
$$

$$
\operatorname{Cum}_{i}(\operatorname{Tr}[W(n)])=-i!\operatorname{Tr}\left(M \Sigma^{i-1}\right)+n(i-1)!\operatorname{Tr}\left(\Sigma^{i}\right)
$$

$$
\mathbb{E}\left[\alpha^{i}\right]
$$

$$
\operatorname{Tr}[\widehat{W}(n)]
$$

A different way to represent the central component

$\operatorname{Tr}[\widehat{W}(n)]=\operatorname{Tr}\left[\boldsymbol{X}_{1}^{\dagger} \boldsymbol{X}_{1}+\cdots+\boldsymbol{X}_{n}^{\dagger} \boldsymbol{X}_{n}\right]$ with $\left\{\boldsymbol{X}_{1}^{\dagger} \boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}^{\dagger} \boldsymbol{X}_{n}\right\}$ i.i.d. random matrices of order p.

A different way to represent the central component

$$
\operatorname{Tr}[\widehat{W}(n)] \equiv n .\left(\theta_{1} \bar{u}_{1}+\cdots+\theta_{p} \bar{u}_{p}\right) \equiv n . \beta . \delta
$$

$\triangleright\left\{\bar{u}_{1}, \ldots, \bar{u}_{p}\right\}$ uncorrelated umbrae similar to the boolean unity umbra \bar{u} whose moments are equal to the number of permutations of a set.

$$
\operatorname{Tr}[\widehat{W}(n)]=\operatorname{Tr}\left[\boldsymbol{X}_{1}^{\dagger} \boldsymbol{X}_{1}+\cdots+\boldsymbol{X}_{n}^{\dagger} \boldsymbol{X}_{n}\right]
$$ with $\left\{\boldsymbol{X}_{1}^{\dagger} \boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}^{\dagger} \boldsymbol{X}_{n}\right\}$ i.i.d. random matrices of order p.

A different way to represent the central component

$$
\operatorname{Tr}[\widehat{W}(n)] \equiv n .\left(\theta_{1} \bar{u}_{1}+\cdots+\theta_{p} \bar{u}_{p}\right) \equiv n . \beta . \delta
$$

$\triangleright\left\{\bar{u}_{1}, \ldots, \bar{u}_{p}\right\}$ uncorrelated umbrae similar to the boolean unity umbra \bar{u} whose moments are equal to the number of permutations of a set.

$$
\operatorname{Tr}[\widehat{W}(n)]=\operatorname{Tr}\left[\boldsymbol{X}_{1}^{\dagger} \boldsymbol{X}_{1}+\cdots+\boldsymbol{X}_{n}^{\dagger} \boldsymbol{X}_{n}\right]
$$

with $\left\{\boldsymbol{X}_{1}^{\dagger} \boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}^{\dagger} \boldsymbol{X}_{n}\right\}$ i.i.d. random matrices of order p.

A different way to represent the central component

$$
\operatorname{Tr}[\widehat{W}(n)] \equiv n \cdot\left(\theta_{1} \bar{u}_{1}+\cdots+\theta_{p} \bar{u}_{p}\right) \equiv n . \beta . \delta
$$

$\triangleright\left\{\bar{u}_{1}, \ldots, \bar{u}_{p}\right\}$ uncorrelated umbrae similar to the boolean unity umbra \bar{u} whose moments are equal to the number of permutations of a set.

$$
\operatorname{Tr}[\widehat{W}(n)]=\operatorname{Tr}\left[\boldsymbol{X}_{1}^{\dagger} \boldsymbol{X}_{1}+\cdots+\boldsymbol{X}_{n}^{\dagger} \boldsymbol{X}_{n}\right]
$$ with $\left\{\boldsymbol{X}_{1}^{\dagger} \boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}^{\dagger} \boldsymbol{X}_{n}\right\}$ i.i.d. random matrices of order p.

A different way to represent the central component

$$
\operatorname{Tr}[\widehat{W}(n)] \equiv n \cdot\left(\theta_{1} \bar{u}_{1}+\cdots+\theta_{p} \bar{u}_{p}\right) \equiv n . \beta . \delta
$$

$\triangleright\left\{\bar{u}_{1}, \ldots, \bar{u}_{p}\right\}$ uncorrelated umbrae similar to the boolean unity umbra \bar{u} whose moments are equal to the number of permutations of a set.

$$
\operatorname{Tr}[\widehat{W}(n)]=\operatorname{Tr}\left[\boldsymbol{X}_{1}^{\dagger} \boldsymbol{X}_{1}+\cdots+\boldsymbol{X}_{n}^{\dagger} \boldsymbol{X}_{n}\right]
$$ with $\left\{\boldsymbol{X}_{1}^{\dagger} \boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}^{\dagger} \boldsymbol{X}_{n}\right\}$ i.i.d. random matrices of order p.

As a summation of compound Poisson r.v.'s

$$
\operatorname{Tr}[\widehat{W}(1)]=\operatorname{Tr}\left[\quad \boldsymbol{X}_{i}^{\dagger} \boldsymbol{X}_{i}\right]=Z_{1}+\cdots+Z_{\operatorname{Po}(1)} \text { with }
$$

- $\left\{Z_{i}\right\}_{i=1}^{n}$ i.i.d. r.v.'s;
- $E\left[Z_{i}^{k}\right]=(k-1)!\operatorname{Tr}\left(\Sigma^{k}\right)=\operatorname{Cum}_{k}\left(\boldsymbol{X}_{i}^{\dagger} \boldsymbol{X}_{i}\right)$ for $k \in \mathbb{N}$

A different way to represent the central component

$$
\operatorname{Tr}[\widehat{W}(n)] \equiv n \cdot\left(\theta_{1} \bar{u}_{1}+\cdots+\theta_{p} \bar{u}_{p}\right) \equiv n . \beta . \delta
$$

$\triangleright\left\{\bar{u}_{1}, \ldots, \bar{u}_{p}\right\}$ uncorrelated umbrae similar to the boolean unity umbra \bar{u} whose moments are equal to the number of permutations of a set.

$$
\operatorname{Tr}[\widehat{W}(n)]=\operatorname{Tr}\left[\boldsymbol{X}_{1}^{\dagger} \boldsymbol{X}_{1}+\cdots+\boldsymbol{X}_{n}^{\dagger} \boldsymbol{X}_{n}\right]
$$ with $\left\{\boldsymbol{X}_{1}^{\dagger} \boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}^{\dagger} \boldsymbol{X}_{n}\right\}$ i.i.d. random matrices of order p.

As a summation of compound Poisson r.v.'s

$$
\operatorname{Tr}[\widehat{W}(n)]=\operatorname{Tr}\left[\sum_{i=1}^{n} \boldsymbol{X}_{i}^{\dagger} \boldsymbol{X}_{i}\right]=Z_{1}+\cdots+Z_{\operatorname{Po}(n)} \text { with }
$$

- $\left\{Z_{i}\right\}_{i=1}^{n}$ i.i.d. r.v.'s;
- $E\left[Z_{i}^{k}\right]=(k-1)!\operatorname{Tr}\left(\Sigma^{k}\right)=\operatorname{Cum}_{k}\left(\boldsymbol{X}_{i}^{\dagger} \boldsymbol{X}_{i}\right)$ for $k \in \mathbb{N}$

A different way to represent the central component

$$
\operatorname{Tr}[\widehat{W}(n)] \equiv n \cdot\left(\theta_{1} \bar{u}_{1}+\cdots+\theta_{p} \bar{u}_{p}\right) \equiv n . \beta . \delta
$$

$\triangleright\left\{\bar{u}_{1}, \ldots, \bar{u}_{p}\right\}$ uncorrelated umbrae similar to the boolean unity umbra \bar{u} whose moments are equal to the number of permutations of a set.

$$
\operatorname{Tr}[\widehat{W}(n)]=\operatorname{Tr}\left[\boldsymbol{X}_{1}^{\dagger} \boldsymbol{X}_{1}+\cdots+\boldsymbol{X}_{n}^{\dagger} \boldsymbol{X}_{n}\right]
$$ with $\left\{\boldsymbol{X}_{1}^{\dagger} \boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}^{\dagger} \boldsymbol{X}_{n}\right\}$ i.i.d. random matrices of order p.

As a summation of compound Poisson r.v.'s

$$
\operatorname{Tr}[\widehat{W}(n)]=\operatorname{Tr}\left[\sum_{i=1}^{n} \boldsymbol{X}_{i}^{\dagger} \boldsymbol{X}_{i}\right]=Z_{1}+\cdots+Z_{\operatorname{Po}(n)} \text { with }
$$

- $\left\{Z_{i}\right\}_{i=1}^{n}$ i.i.d. r.v.'s;
- $E\left[Z_{i}^{k}\right]=(k-1)!\operatorname{Tr}\left(\Sigma^{k}\right)=\operatorname{Cum}_{k}\left(\boldsymbol{X}_{i}^{\dagger} \boldsymbol{X}_{i}\right)$ for $k \in \mathbb{N}$
\rightsquigarrow The sequence of moments of $\operatorname{Tr}[\widehat{W}(n)]$ is of binomial type.
\rightsquigarrow The sequence of moments of $\operatorname{Tr}[W(n)]$ is of Sheffer type.

Generalizing the computation of $\mathfrak{m}[W(n)]$ with multivariate notations

$$
E\left\{\operatorname{Tr}\left[W(n) H_{1}\right]^{i_{1}} \cdots \operatorname{Tr}\left[W(n) H_{m}\right]^{i_{m}}\right\}
$$

Generalizing the computation of $\mathfrak{m}[W(n)]$ with multivariate notations

$$
\begin{equation*}
E\left\{\operatorname{Tr}\left[W(n) H_{1}\right]^{i_{1}} \cdots \operatorname{Tr}\left[W(n) H_{m}\right]^{i_{m}}\right\}=\mathbb{E}\left[(-1 \cdot \beta \cdot \tilde{\boldsymbol{\eta}}+n \cdot \beta \cdot \tilde{\boldsymbol{\rho}})^{i}\right] \tag{Solution}
\end{equation*}
$$

4
Univariate case: $E\left\{\operatorname{Tr}[W(n)]^{k}\right\}=\mathbb{E}\left[(-1 . \beta . \alpha+n . \beta . \delta)^{k}\right]$

Generalizing the computation of $\mathfrak{m}[W(n)]$ with multivariate notations

$$
E\left\{\operatorname{Tr}\left[W(n) H_{1}\right]^{i_{1}} \cdots \operatorname{Tr}\left[W(n) H_{m}\right]^{i_{m}}\right\}=\mathbb{E}\left[(-1 \cdot \beta \cdot \tilde{\boldsymbol{\eta}}+n \cdot \beta \cdot \tilde{\boldsymbol{\rho}})^{i}\right]
$$

Multivariate moments: receipe ingredients

For $\left\{g_{i}\right\}_{i \in \mathbb{N}_{0}^{m}} \in \mathbb{C}$ with $g_{i}=g_{i_{1}, i_{2}}, \ldots, i_{m}$ and $g_{\mathbf{o}}=1$, such that $\mathbb{E}\left[\boldsymbol{\nu}^{\boldsymbol{i}}\right]=g_{i}$

- $\boldsymbol{\nu}=\left(\nu_{1}, \ldots, \nu_{m}\right) m$-tuple of umbral monomials (not necessarely uncorrelated)
- $\boldsymbol{i} \in \mathbb{N}_{0}^{m}$ multi-index.

Univariate case: $E\left\{\operatorname{Tr}[W(n)]^{k}\right\}=\mathbb{E}\left[(-1 . \beta . \alpha+n . \beta \cdot \delta)^{k}\right]$

Generalizing the computation of $\mathfrak{m}[W(n)]$ with multivariate notations

$$
\begin{equation*}
E\left\{\operatorname{Tr}\left[W(n) H_{1}\right]^{i_{1}} \cdots \operatorname{Tr}\left[W(n) H_{m}\right]^{i_{m}}\right\}=\mathbb{E}\left[(-1 \cdot \beta \cdot \tilde{\boldsymbol{\eta}}+n \cdot \beta \cdot \tilde{\boldsymbol{\rho}})^{i}\right] \tag{Solution}
\end{equation*}
$$

Multivariate moments: receipe ingredients

For $\left\{g_{i}\right\}_{i \in \mathbb{N}_{0}^{m}} \in \mathbb{C}$ with $g_{i}=g_{i_{1}, i_{2}, \ldots, i_{m}}$ and $g_{\mathbf{o}}=1$, such that $\mathbb{E}\left[\boldsymbol{\nu}^{i}\right]=g_{i}$

- $\boldsymbol{\nu}=\left(\nu_{1}, \ldots, \nu_{m}\right) m$-tuple of umbral monomials (not necessarely uncorrelated)
- $\boldsymbol{i} \in \mathbb{N}_{0}^{m}$ multi-index.

Univariate case: $E\left\{\operatorname{Tr}[W(n)]^{k}\right\}=\mathbb{E}\left[(-1 . \beta . \alpha+n . \beta . \delta)^{k}\right]$
\triangleright Multinomial expansion:

$$
\sum_{\substack{t_{1}, \boldsymbol{t}_{2} \in \mathbb{N}_{0}^{m} \\ \boldsymbol{t}_{1}+\boldsymbol{t}_{2}=\boldsymbol{i}}}\binom{\boldsymbol{i}}{\boldsymbol{t}_{1}, \boldsymbol{t}_{2}} \mathbb{E}\left[(-1 . \beta . \tilde{\boldsymbol{\eta}})^{\boldsymbol{t}_{1}}\right] \mathbb{E}\left[(n . \beta . \tilde{\boldsymbol{\rho}})^{\boldsymbol{t}_{2}}\right]
$$

Generalizing the computation of $\mathfrak{m}[W(n)]$ with multivariate notations

$$
E\left\{\operatorname{Tr}\left[W(n) H_{1}\right]^{i_{1}} \cdots \operatorname{Tr}\left[W(n) H_{m}\right]^{i_{m}}\right\}=\mathbb{E}\left[(-1 \cdot \beta \cdot \tilde{\boldsymbol{\eta}}+n \cdot \beta \cdot \tilde{\boldsymbol{\rho}})^{\boldsymbol{i}}\right]
$$

Multivariate moments: receipe ingredients

For $\left\{g_{i}\right\}_{i \in \mathbb{N}_{0}^{m}} \in \mathbb{C}$ with $g_{i}=g_{i_{1}, i_{2}, \ldots, i_{m}}$ and $g_{\mathbf{o}}=1$, such that $\mathbb{E}\left[\boldsymbol{\nu}^{i}\right]=g_{i}$

- $\boldsymbol{\nu}=\left(\nu_{1}, \ldots, \nu_{m}\right) m$-tuple of umbral monomials (not necessarely uncorrelated)
- $\boldsymbol{i} \in \mathbb{N}_{0}^{m}$ multi-index.

Univariate case: $E\left\{\operatorname{Tr}[W(n)]^{k}\right\}=\mathbb{E}\left[(-1 . \beta . \alpha+n . \beta \cdot \delta)^{k}\right]$
\triangleright Multinomial expansion:

$$
\begin{aligned}
& \triangleright \text { Multinomial expansion: } \sum_{\substack{\boldsymbol{t}_{1}, \boldsymbol{t}_{2} \in \mathbb{N}_{0}^{m} \\
\boldsymbol{t}_{1}+\boldsymbol{t}_{2}=\boldsymbol{i}}}\binom{\boldsymbol{i}}{\boldsymbol{t}_{1}, \boldsymbol{t}_{2}} \mathbb{E}\left[(-1 \cdot \beta \cdot \tilde{\boldsymbol{\eta}})^{\boldsymbol{t}_{1}}\right] \mathbb{E}\left[(\gamma \cdot \beta \cdot \tilde{\boldsymbol{\rho}})^{\boldsymbol{t}_{2}}\right] \\
& \boldsymbol{N}_{m}[\boldsymbol{i}]=\{\text { necklaces of type } \boldsymbol{i} \text { on }[m]\}\left\{\begin{array}{lll}
\boldsymbol{N}_{3}[(3,0,0)] & =\{111\} \\
\boldsymbol{N}_{3}[(1,2,0)] & =\{122\} \\
\boldsymbol{N}_{3}[(1,1,1)] & =\{123,132\}
\end{array}\right.
\end{aligned}
$$

Generalizing the computation of $\mathfrak{m}[W(n)]$ with multivariate notations

$$
\begin{equation*}
E\left\{\operatorname{Tr}\left[W(\gamma) H_{1}\right]^{i_{1}} \cdots \operatorname{Tr}\left[W(\gamma) H_{m}\right]^{i_{m}}\right\}=\mathbb{E}\left[(-1 . \beta \cdot \tilde{\boldsymbol{\eta}}+\gamma \cdot \beta \cdot \tilde{\boldsymbol{\rho}})^{i^{i}}\right] \tag{Solution}
\end{equation*}
$$

Multivariate moments: receipe ingredients

For $\left\{g_{i}\right\}_{i \in \mathbb{N}_{0}^{m}} \in \mathbb{C}$ with $g_{i}=g_{i_{1}, i_{2}, \ldots, i_{m}}$ and $g_{\mathbf{o}}=1$, such that $\mathbb{E}\left[\boldsymbol{\nu}^{i}\right]=g_{i}$

- $\boldsymbol{\nu}=\left(\nu_{1}, \ldots, \nu_{m}\right) m$-tuple of umbral monomials (not necessarely uncorrelated)
- $\boldsymbol{i} \in \mathbb{N}_{0}^{m}$ multi-index.

Univariate case: $E\left\{\operatorname{Tr}[W(\gamma)]^{k}\right\}=\mathbb{E}\left[(-1 . \beta . \alpha+\gamma \cdot \beta \cdot \delta)^{k}\right]$
\triangleright Multinomial expansion:

$$
\begin{aligned}
& \triangleright \text { Multinomial expansion: } \sum_{\substack{\boldsymbol{t}_{1}, \boldsymbol{t}_{2} \in \mathbb{N}_{0}^{m} \\
\boldsymbol{t}_{1}+\boldsymbol{t}_{2}=\boldsymbol{i}}}\binom{\boldsymbol{i}}{\boldsymbol{t}_{1}, \boldsymbol{t}_{2}} \mathbb{E}\left[(-1 \cdot \beta \cdot \tilde{\boldsymbol{\eta}})^{\boldsymbol{t}_{1}}\right] \mathbb{E}\left[(\gamma \cdot \beta \cdot \tilde{\boldsymbol{\rho}})^{\boldsymbol{t}_{2}}\right] \\
& \boldsymbol{N}_{m}[\boldsymbol{i}]=\{\text { necklaces of type } \boldsymbol{i} \text { on }[m]\}\left\{\begin{array}{lll}
\boldsymbol{N}_{3}[(3,0,0)] & =\{111\} \\
\boldsymbol{N}_{3}[(1,2,0)] & =\{122\} \\
\boldsymbol{N}_{3}[(1,1,1)] & =\{123,132\}
\end{array}\right.
\end{aligned}
$$

Tricking: an example

$$
\operatorname{Cum}_{\boldsymbol{i}}\left(\operatorname{Tr}\left[W(n) H_{1}\right], \ldots, \operatorname{Tr}\left[W(n) H_{m}\right]\right)=\boldsymbol{i}!\left(n \mathbb{E}\left[\boldsymbol{\rho}^{\boldsymbol{i}}\right]-\mathbb{E}\left[\boldsymbol{\eta}^{\boldsymbol{i}}\right]\right)
$$

What free probability can do for statistician? Again on efficiency: Wishart random matrices Spectral random sampling Conclusions

Tricking: an example

$$
\operatorname{Cum}_{\boldsymbol{i}}\left(\operatorname{Tr}\left[W(n) H_{1}\right], \ldots, \operatorname{Tr}\left[W(n) H_{m}\right]\right)=\boldsymbol{i}!\left(n \mathbb{E}\left[\boldsymbol{\rho}^{i}\right]-\mathbb{E}\left[\boldsymbol{\eta}^{i}\right]\right)
$$

$\operatorname{Cum}_{(1,2)}\left(\operatorname{Tr}\left[W(n) H_{1}\right], \operatorname{Tr}\left[W(n) H_{2}\right]\right)=2!\left\{n \operatorname{Tr}\left[\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)^{2}\right]-\operatorname{Tr}\left[\Omega\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)^{2}\right]\right.$

$$
\left.-\quad \operatorname{Tr}\left[\Omega\left(\Sigma H_{2}\right)^{2}\left(\Sigma H_{1}\right)\right]-\operatorname{Tr}\left[\Omega\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)\left(\Sigma H_{1}\right)\right]\right\}
$$

Tricking: an example

$$
\operatorname{Cum}_{\boldsymbol{i}}\left(\operatorname{Tr}\left[W(n) H_{1}\right], \ldots, \operatorname{Tr}\left[W(n) H_{m}\right]\right)=\boldsymbol{i}!\left(n \mathbb{E}\left[\rho^{i}\right]-\mathbb{E}\left[\boldsymbol{\eta}^{i}\right]\right)
$$

$\operatorname{Cum}_{(1,2)}\left(\operatorname{Tr}\left[W(\gamma) H_{1}\right], \operatorname{Tr}\left[W(\gamma) H_{2}\right]\right)=2!\left\{n \operatorname{Tr}\left[\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)^{2}\right]-\operatorname{Tr}\left[\Omega\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)^{2}\right]\right.$
$\left.-\operatorname{Tr}\left[\Omega\left(\Sigma H_{2}\right)^{2}\left(\Sigma H_{1}\right)\right]-\operatorname{Tr}\left[\Omega\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)\left(\Sigma H_{1}\right)\right]\right\}$
(Randomized Wishart distribution)

Tricking: an example

$$
\operatorname{Cum}_{\boldsymbol{i}}\left(\operatorname{Tr}\left[W(n) H_{1}\right], \ldots, \operatorname{Tr}\left[W(n) H_{m}\right]\right)=\boldsymbol{i}!\left(n \mathbb{E}\left[\rho^{i}\right]-\mathbb{E}\left[\boldsymbol{\eta}^{i}\right]\right)
$$

$\operatorname{Cum}_{(1,2)}\left(\operatorname{Tr}\left[W(\gamma) H_{1}\right], \operatorname{Tr}\left[W(\gamma) H_{2}\right]\right)=2!\left\{n \operatorname{Tr}\left[\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)^{2}\right]-\operatorname{Tr}\left[\Omega\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)^{2}\right]\right.$
$\left.-\operatorname{Tr}\left[\Omega\left(\Sigma H_{2}\right)^{2}\left(\Sigma H_{1}\right)\right]-\operatorname{Tr}\left[\Omega\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)\left(\Sigma H_{1}\right)\right]\right\}$
(Randomized Wishart distribution)
$n \mathbb{E}\left[\boldsymbol{\rho}^{\boldsymbol{i}}\right]$

Tricking: an example

$$
\begin{aligned}
& \operatorname{Cum}_{\boldsymbol{i}}\left(\operatorname{Tr}\left[W(n) H_{1}\right], \ldots, \operatorname{Tr}\left[W(n) H_{m}\right]\right)=\boldsymbol{i}!\left(n \mathbb{E}\left[\boldsymbol{\rho}^{i}\right]-\mathbb{E}\left[\boldsymbol{\eta}^{i}\right]\right) \\
& \operatorname{Cum}_{(1,2)}\left(\operatorname{Tr}\left[W(\gamma) H_{1}\right], \operatorname{Tr}\left[W(\gamma) H_{2}\right]\right)=2!\left\{n \operatorname{Tr}\left[\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)^{2}\right]-\operatorname{Tr}\left[\Omega\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)^{2}\right]\right. \\
& \left.-\quad \operatorname{Tr}\left[\Omega\left(\Sigma H_{2}\right)^{2}\left(\Sigma H_{1}\right)\right]-\operatorname{Tr}\left[\Omega\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)\left(\Sigma H_{1}\right)\right]\right\} \\
& \text { (Randomized Wishart distribution) } \\
& n \mathbb{E}\left[\boldsymbol{\rho}^{i}\right] \\
& \uparrow
\end{aligned}
$$

Tricking: an example

$$
\operatorname{Cum}_{\boldsymbol{i}}\left(\operatorname{Tr}\left[W(n) H_{1}\right], \ldots, \operatorname{Tr}\left[W(n) H_{m}\right]\right)=\boldsymbol{i}!\left(n \mathbb{E}\left[\rho^{i}\right]-\mathbb{E}\left[\boldsymbol{\eta}^{i}\right]\right)
$$

$\operatorname{Cum}_{(1,2)}\left(\operatorname{Tr}\left[W(\gamma) H_{1}\right], \operatorname{Tr}\left[W(\gamma) H_{2}\right]\right)=2!\left\{n \operatorname{Tr}\left[\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)^{2}\right]-\operatorname{Tr}\left[\Omega\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)^{2}\right]\right.$

$$
\left.-\quad \operatorname{Tr}\left[\Omega\left(\Sigma H_{2}\right)^{2}\left(\Sigma H_{1}\right)\right]-\operatorname{Tr}\left[\Omega\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)\left(\Sigma H_{1}\right)\right]\right\}
$$

(Randomized Wishart distribution)

$$
n \mathbb{E}\left[\boldsymbol{\rho}^{\boldsymbol{i}}\right]
$$

$\mathbb{E}\left[(\chi . n . \beta . \tilde{\boldsymbol{\rho}})^{i}\right] \quad \stackrel{\text { corresponding }}{\rightleftharpoons} \sum_{\boldsymbol{\lambda} \vdash \boldsymbol{i}} \frac{\mathbb{E}\left[(\chi . n)^{l(\boldsymbol{\lambda})}\right]}{\mathfrak{m}(\boldsymbol{\lambda})} \prod_{\boldsymbol{\lambda}_{j}} \mathbb{E}\left[\boldsymbol{\rho}^{\boldsymbol{\lambda}_{j}}\right]^{r_{j}} \quad$ (the central part)

Tricking: an example

$$
\operatorname{Cum}_{\boldsymbol{i}}\left(\operatorname{Tr}\left[W(n) H_{1}\right], \ldots, \operatorname{Tr}\left[W(n) H_{m}\right]\right)=\boldsymbol{i}!\left(n \mathbb{E}\left[\rho^{i}\right]-\mathbb{E}\left[\boldsymbol{\eta}^{i}\right]\right)
$$

$\operatorname{Cum}_{(1,2)}\left(\operatorname{Tr}\left[W(\gamma) H_{1}\right], \operatorname{Tr}\left[W(\gamma) H_{2}\right]\right)=2!\left\{n \operatorname{Tr}\left[\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)^{2}\right]-\operatorname{Tr}\left[\Omega\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)^{2}\right]\right.$

$$
\left.-\quad \operatorname{Tr}\left[\Omega\left(\Sigma H_{2}\right)^{2}\left(\Sigma H_{1}\right)\right]-\operatorname{Tr}\left[\Omega\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)\left(\Sigma H_{1}\right)\right]\right\}
$$

(Randomized Wishart distribution)

$$
n \mathbb{E}\left[\boldsymbol{\rho}^{\boldsymbol{i}}\right]
$$

$\mathbb{E}\left[(\chi \cdot \gamma \cdot \beta . \tilde{\boldsymbol{\rho}})^{i}\right] \quad \stackrel{\text { corresponding }}{\rightleftharpoons} \sum_{\boldsymbol{\lambda} \vdash \boldsymbol{i}} \frac{\mathbb{E}\left[(\chi \cdot \gamma)^{l(\boldsymbol{\lambda})}\right]}{\mathfrak{m}(\boldsymbol{\lambda})} \prod_{\boldsymbol{\lambda}_{j}} \mathbb{E}\left[\boldsymbol{\rho}^{\boldsymbol{\lambda}_{j}}\right]^{r_{j}} \quad$ (the central part)

Tricking: an example

$$
\operatorname{Cum}_{\boldsymbol{i}}\left(\operatorname{Tr}\left[W(n) H_{1}\right], \ldots, \operatorname{Tr}\left[W(n) H_{m}\right]\right)=\boldsymbol{i}!\left(n \mathbb{E}\left[\rho^{i}\right]-\mathbb{E}\left[\boldsymbol{\eta}^{\boldsymbol{i}}\right]\right)
$$

$\operatorname{Cum}_{(1,2)}\left(\operatorname{Tr}\left[W(\gamma) H_{1}\right], \operatorname{Tr}\left[W(\gamma) H_{2}\right]\right)=2!\left\{n \operatorname{Tr}\left[\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)^{2}\right]-\operatorname{Tr}\left[\Omega\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)^{2}\right]\right.$

$$
\left.-\quad \operatorname{Tr}\left[\Omega\left(\Sigma H_{2}\right)^{2}\left(\Sigma H_{1}\right)\right]-\operatorname{Tr}\left[\Omega\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)\left(\Sigma H_{1}\right)\right]\right\}
$$

(Randomized Wishart distribution)

$$
\begin{array}{ccc}
n \mathbb{E}\left[\boldsymbol{\rho}^{\boldsymbol{i}}\right] & \stackrel{\text { replace }}{\rightleftharpoons} & \sum_{\boldsymbol{\lambda} \vdash \boldsymbol{i}} \frac{c_{l(\boldsymbol{\lambda})}}{\mathfrak{m}(\boldsymbol{\lambda})} \prod_{\boldsymbol{\lambda}_{j}} \mathbb{E}\left[\boldsymbol{\rho}^{\boldsymbol{\lambda}_{j}}\right]^{r_{j}} \text { with } c_{j}=\operatorname{Cum}_{j}(\gamma) \\
\uparrow & \uparrow
\end{array}
$$

$\mathbb{E}\left[(\chi \cdot \gamma \cdot \beta . \tilde{\boldsymbol{\rho}})^{i}\right] \stackrel{\text { corresponding }}{\rightleftharpoons}$

$$
\sum_{\boldsymbol{\lambda} \vdash \boldsymbol{i}} \frac{\mathbb{E}\left[(\chi \cdot \gamma)^{l(\boldsymbol{\lambda})}\right]}{\mathfrak{m}(\boldsymbol{\lambda})} \prod_{\boldsymbol{\lambda}_{j}} \mathbb{E}\left[\boldsymbol{\rho}^{\boldsymbol{\lambda}_{j}}\right]^{r_{j}} \quad \text { (the central part) }
$$

Tricking: an example

$$
\operatorname{Cum}_{\boldsymbol{i}}\left(\operatorname{Tr}\left[W(n) H_{1}\right], \ldots, \operatorname{Tr}\left[W(n) H_{m}\right]\right)=\boldsymbol{i}!\left(n \mathbb{E}\left[\rho^{i}\right]-\mathbb{E}\left[\boldsymbol{\eta}^{i}\right]\right)
$$

$\operatorname{Cum}_{(1,2)}\left(\operatorname{Tr}\left[W(\gamma) H_{1}\right], \operatorname{Tr}\left[W(\gamma) H_{2}\right]\right)=2!\left\{n \operatorname{Tr}\left[\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)^{2}\right]-\operatorname{Tr}\left[\Omega\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)^{2}\right]\right.$

$$
\left.-\operatorname{Tr}\left[\Omega\left(\Sigma H_{2}\right)^{2}\left(\Sigma H_{1}\right)\right]-\operatorname{Tr}\left[\Omega\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)\left(\Sigma H_{1}\right)\right]\right\}
$$

(Randomized Wishart distribution)

$$
\sum_{\boldsymbol{\lambda} \vdash \boldsymbol{i}} \frac{c_{l(\boldsymbol{\lambda})}}{\mathfrak{m}(\boldsymbol{\lambda})} \prod_{\boldsymbol{\lambda}_{j}} \mathbb{E}\left[\boldsymbol{\rho}^{\boldsymbol{\lambda}_{j}}\right]^{r_{j}} \text { with } c_{j}=\operatorname{Cum}_{j}(\gamma)
$$

$$
\mathbb{E}\left[(\chi \cdot \gamma \cdot \beta \cdot \tilde{\boldsymbol{\rho}})^{i}\right] \quad \stackrel{\text { corresponding }}{\rightleftharpoons} \sum_{\boldsymbol{\lambda} \vdash \boldsymbol{i}} \frac{\mathbb{E}\left[(\chi \cdot \gamma)^{l(\boldsymbol{\lambda})}\right]}{\mathfrak{m}(\boldsymbol{\lambda})} \prod_{\boldsymbol{\lambda}_{j}} \mathbb{E}\left[\boldsymbol{\rho}^{\boldsymbol{\lambda}_{j}}\right]^{r_{j}} \quad \text { (the central part) }
$$

Employ the results of $E\left\{\operatorname{Tr}\left[\widehat{W}(n) H_{1}\right] \operatorname{Tr}\left[\widehat{W}(n) H_{2}\right]^{2}\right\}$

$$
2 n^{2} \operatorname{Tr}\left(H_{1} H_{2}\right) \operatorname{Tr}\left(H_{2}\right)+n^{3} \operatorname{Tr}\left(H_{1}\right)\left(\operatorname{Tr}\left(H_{2}\right)\right)^{2}+n \operatorname{Tr}\left(H_{1} H_{2}{ }^{2}\right)+n^{2} / 2 \operatorname{Tr}\left(H_{1}\right) \operatorname{Tr}\left(H_{2}{ }^{2}\right)
$$

Tricking: an example

$$
\operatorname{Cum}_{\boldsymbol{i}}\left(\operatorname{Tr}\left[W(n) H_{1}\right], \ldots, \operatorname{Tr}\left[W(n) H_{m}\right]\right)=\boldsymbol{i}!\left(n \mathbb{E}\left[\boldsymbol{\rho}^{i}\right]-\mathbb{E}\left[\boldsymbol{\eta}^{i}\right]\right)
$$

$\operatorname{Cum}_{(1,2)}\left(\operatorname{Tr}\left[W(\gamma) H_{1}\right], \operatorname{Tr}\left[W(\gamma) H_{2}\right]\right)=2!\left\{n \operatorname{Tr}\left[\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)^{2}\right]-\operatorname{Tr}\left[\Omega\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)^{2}\right]\right.$

$$
\left.-\quad \operatorname{Tr}\left[\Omega\left(\Sigma H_{2}\right)^{2}\left(\Sigma H_{1}\right)\right]-\operatorname{Tr}\left[\Omega\left(\Sigma H_{1}\right)\left(\Sigma H_{2}\right)\left(\Sigma H_{1}\right)\right]\right\}
$$

(Randomized Wishart distribution)

$$
\mathbb{E}\left[(\chi \cdot \gamma \cdot \beta \cdot \tilde{\boldsymbol{\rho}})^{i}\right] \quad \stackrel{\text { corresponding }}{\rightleftharpoons} \sum_{\boldsymbol{\lambda} \vdash \boldsymbol{i}} \frac{\mathbb{E}\left[(\chi \cdot \gamma)^{l(\boldsymbol{\lambda})}\right]}{\mathfrak{m}(\boldsymbol{\lambda})} \prod_{\boldsymbol{\lambda}_{j}} \mathbb{E}\left[\boldsymbol{\rho}^{\boldsymbol{\lambda}_{j}}\right]^{r_{j}} \quad \text { (the central part) }
$$

Employ the results of $E\left\{\operatorname{Tr}\left[\widehat{W}(n) H_{1}\right] \operatorname{Tr}\left[\widehat{W}(n) H_{2}\right]^{2}\right\}$

$$
2 c_{2} \operatorname{Tr}\left(H_{1} H_{2}\right) \operatorname{Tr}\left(H_{2}\right)+c_{3} \operatorname{Tr}\left(H_{1}\right)\left(\operatorname{Tr}\left(H_{2}\right)\right)^{2}+c_{1} \operatorname{Tr}\left(H_{1} H_{2}^{2}\right)+c_{2} / 2 \operatorname{Tr}\left(H_{1}\right) \operatorname{Tr}\left(H_{2}^{2}\right)
$$

Simple random sampling

Simple random sample

A sub-vector \boldsymbol{y} consisting of m components of $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, selected with equal probability $1 /(n)_{m}$.

Simple random sampling

Simple random sample

A sub-vector \boldsymbol{y} consisting of m components of $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, selected with equal probability $1 /(n)_{m}$.
$\sigma \in \mathfrak{S}_{n}$ a permutation
S the corresponding matrix
$S_{i j}= \begin{cases}1, & \text { if } \sigma(i)=j, \\ 0, & \text { otherwise } .\end{cases}$

$$
S=\left(\begin{array}{cccc}
s_{1,1} & s_{1,2} & \cdots & s_{1, n} \\
\vdots & \vdots & \ldots & \vdots \\
s_{m, 1} & s_{m, 2} & \ldots & s_{m, n} \\
s_{m+1,1} & s_{m+1,2} & \ldots & s_{m+1, n} \\
\vdots & \vdots & \vdots & \vdots \\
s_{n, 1} & s_{n, 2} & \cdots & s_{n, n}
\end{array}\right)
$$

A formal method to select \boldsymbol{y} :

Simple random sampling

Simple random sample

A sub-vector \boldsymbol{y} consisting of m components of $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, selected with equal probability $1 /(n)_{m}$.

$\sigma \in \mathfrak{S}_{n}$ a permutation
S the corresponding matrix
$S_{i j}=\left\{\begin{array}{cc}1, & \text { if } \sigma(i)=j, \\ 0, & \text { otherwise. }\end{array}\right.$

\vdots \& \vdots \& ··· \& \vdots

s_{m, 1} \& s_{m, 2} \& ··· \& s_{m, n}

s_{m+1,1} \& s_{m+1,2} \& ··· \& s_{m+1, n}

\vdots \& \vdots \& \vdots \& \vdots

s_{n, 1} \& s_{n, 2} \& ··· \& s_{n, n}\end{array}\right)\)

A formal method
to select $\boldsymbol{y}:$$\xrightarrow{\boldsymbol{x}} \xrightarrow{S_{n-m}} \xrightarrow{\boldsymbol{y}}$

Simple random sampling

Simple random sample

A sub-vector \boldsymbol{y} consisting of m components of $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, selected with equal probability $1 /(n)_{m}$.

	$S_{n-m}=$	$s_{1,1}$	$s_{1,2}$		$s_{1, n}$
$\sigma \in \mathfrak{S}_{n}$ a permutation S the corresponding matrix			:	-••	
		$s_{m, 1}$	$s_{m, 2}$	-••	$s_{m, n}$
$S_{i j}-\{1, \quad$ if $\sigma(i)=j$,		$s_{m+1,1}$	$s_{m+1,2}$	\cdots	$s_{m+1, n}$
$S_{i j}= \begin{cases}\text { 0, } & \text { otherwise. }\end{cases}$		\vdots	:	:	\vdots
		$s_{n, 1}$	$s_{n, 2}$		$s_{n, n}$

A formal method to select \boldsymbol{y} :

$$
\xrightarrow{\boldsymbol{x}} S_{n-m} \xrightarrow{\boldsymbol{y}} \quad \Rightarrow \operatorname{diag}(\boldsymbol{y})=S_{[m \times n]} \operatorname{diag}(\boldsymbol{x}) S_{[m \times n]}^{T}
$$

Simple random sampling

Simple random sample

A sub-vector \boldsymbol{y} consisting of m components of $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, selected with equal probability $1 /(n)_{m}$.
$\sigma \in S_{n}$ a permutation
S the corresponding matrix
$S_{i j}=\left\{\begin{array}{l}1, \quad \text { if } \sigma(i)=j, \\ 0, \quad \text { otherwise. }\end{array} \quad S_{n-m}=\left(\begin{array}{cccc}s_{1,1} & s_{1,2} & \cdots & s_{1, n} \\ \vdots & \vdots & \ldots & \vdots \\ s_{m, 1} & s_{m, 2} & \cdots & s_{m, n} \\ s_{m+1,1} & s_{m+1,2} & \cdots & s_{m+1, n} \\ \vdots & \vdots & \vdots & \vdots \\ s_{n, 1} & s_{n, 2} & \cdots & s_{n, n}\end{array}\right)\right.$

A formal method to select \boldsymbol{y} :

$$
\xrightarrow{\boldsymbol{x}} S_{n-m} \xrightarrow{\boldsymbol{y}} \quad \mathrm{diag}(\boldsymbol{y})=S_{[m \times n]} \operatorname{diag}(\boldsymbol{x}) S_{[m \times n]}^{T}
$$

4 Properties:

$$
\triangleright S_{[m \times n]} S_{[m \times n]}^{T}=I_{m}, \quad \triangleright S_{[m \times n]}^{T} S_{[m \times n]} \neq I_{m}
$$

Example

$$
S=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \quad \text { corresponding to } \quad \sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 1 & 2
\end{array}\right) \in \mathfrak{S}_{4}
$$

Example

$$
S_{2}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \quad \text { corresponding to } \quad \sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 1 & 2
\end{array}\right) \in \mathfrak{S}_{4}
$$

A simple random sampling is:

$$
\left(\begin{array}{cc}
x_{4} & 0 \\
0 & x_{3}
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{cccc}
x_{1} & 0 & 0 & 0 \\
0 & x_{2} & 0 & 0 \\
0 & 0 & x_{3} & 0 \\
0 & 0 & 0 & x_{4}
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right)
$$

Example

$$
S_{2}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \quad \text { corresponding to } \quad \sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 1 & 2
\end{array}\right) \in \mathfrak{S}_{4}
$$

A simple random sampling is:

$$
\left(\begin{array}{cc}
x_{4} & 0 \\
0 & x_{3}
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{cccc}
x_{1} & 0 & 0 & 0 \\
0 & x_{2} & 0 & 0 \\
0 & 0 & x_{3} & 0 \\
0 & 0 & 0 & x_{4}
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right)
$$

The full matrix is:
$\left(\begin{array}{cccc}x_{4} & 0 & 0 & 0 \\ 0 & x_{3} & 0 & 0 \\ 0 & 0 & x_{1} & 0 \\ 0 & 0 & 0 & x_{2}\end{array}\right)=\left(\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)\left(\begin{array}{cccc}x_{1} & 0 & 0 & 0 \\ 0 & x_{2} & 0 & 0 \\ 0 & 0 & x_{3} & 0 \\ 0 & 0 & 0 & x_{4}\end{array}\right)\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$

Outline Why symbolic methods?
The moment symbolic method Applications to random matrices

What free probability can do for statistician? Again on efficiency: Wishart random matrices Spectral random sampling
Conclusions

Spectral sample

Spectral sample

Let H be a random unitary matrix uniformly distributed with respect to the Haar measure on the group \mathcal{U}_{n} of $n \times n$ unitary matrices.

$$
H \quad\left(\begin{array}{cccc}
h_{1,1} & h_{1,2} & \cdots & h_{1, n} \\
\vdots & \vdots & \ldots & \vdots \\
h_{m, 1} & h_{m, 2} & \cdots & h_{m, n} \\
h_{m+1,1} & h_{m+1,2} & \ldots & h_{m+1, n} \\
\vdots & \vdots & \vdots & \vdots \\
h_{n, 1} & h_{n, 2} & \ldots & h_{n, n}
\end{array}\right)
$$

Spectral sample

Let H be a random unitary matrix uniformly distributed with respect to the Haar measure on the group \mathcal{U}_{n} of $n \times n$ unitary matrices.

$$
H_{n-m}=\left(\begin{array}{cccc}
h_{1,1} & h_{1,2} & \ldots & h_{1, n} \\
\vdots & \vdots & \ldots & \vdots \\
h_{m, 1} & h_{m, 2} & \cdots & h_{m, n} \\
h_{m+1,1} & h_{m+1,2} & \ldots & h_{m+1, n} \\
\vdots & \vdots & \vdots & \vdots \\
h_{n, 1} & h_{n, 2} & \ldots & h_{n, n}
\end{array}\right)
$$

$$
\xrightarrow{\boldsymbol{x}} H_{n-m} \xrightarrow{Y}
$$

Spectral sample

Let H be a random unitary matrix uniformly distributed with respect to the Haar measure on the group \mathcal{U}_{n} of $n \times n$ unitary matrices.

$$
H_{n-m}=\left(\begin{array}{cccc}
h_{1,1} & h_{1,2} & \ldots & h_{1, n} \\
\vdots & \vdots & \ldots & \vdots \\
h_{m, 1} & h_{m, 2} & \cdots & h_{m, n} \\
h_{m+1,1} & h_{m+1,2} & \ldots & h_{m+1, n} \\
\vdots & \vdots & \vdots & \vdots \\
h_{n, 1} & h_{n, 2} & \cdots & h_{n, n}
\end{array}\right)
$$

$$
\xrightarrow{\boldsymbol{x}} H_{n-m} \xrightarrow{Y} \quad \square Y=H_{[m \times n]} \operatorname{diag}(\boldsymbol{x}) H_{[m \times n]}^{\dagger}
$$

Spectral sample of size m

The eigenvalues (real r.v.'s)

$$
\boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right) \text { of } Y
$$

Spectral sample

Let H be a random unitary matrix uniformly distributed with respect to the Haar measure on the group \mathcal{U}_{n} of $n \times n$ unitary matrices.

$$
H_{n-m}=\left(\begin{array}{cccc}
h_{1,1} & h_{1,2} & \ldots & h_{1, n} \\
\vdots & \vdots & \ldots & \vdots \\
h_{m, 1} & h_{m, 2} & \cdots & h_{m, n} \\
h_{m+1,1} & h_{m+1,2} & \ldots & h_{m+1, n} \\
\vdots & \vdots & \vdots & \vdots \\
h_{n, 1} & h_{n, 2} & \cdots & h_{n, n}
\end{array}\right)
$$

$$
\xrightarrow{\boldsymbol{x}} H_{n-m} \xrightarrow{Y} \quad \square Y=H_{[m \times n]} \operatorname{diag}(\boldsymbol{x}) H_{[m \times n]}^{\dagger}
$$

Spectral sample of size m

The eigenvalues (real r.v.'s)

$$
\boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right) \text { of } Y
$$

Open problem: Distribution of \boldsymbol{y} ?
2014 Ipsen, J.R., Kieburg, M. ... eigenvalue statistics for products of rectangular random matrices Phys. Rev. E.

Spectral sample

Let H be a random unitary matrix uniformly distributed with respect to the Haar measure on the group \mathcal{U}_{n} of $n \times n$ unitary matrices.

$$
H_{n-m}=\left(\begin{array}{cccc}
h_{1,1} & h_{1,2} & \ldots & h_{1, n} \\
\vdots & \vdots & \cdots & \vdots \\
h_{m, 1} & h_{m, 2} & \cdots & h_{m, n} \\
h_{m+1,1} & h_{m+1,2} & \ldots & h_{m+1, n} \\
\vdots & \vdots & \vdots & \vdots \\
h_{n, 1} & h_{n, 2} & \ldots & h_{n, n}
\end{array}\right)
$$

$$
\xrightarrow{\boldsymbol{x}} H_{n-m} \xrightarrow{Y} \quad \square Y=H_{[m \times n]} \operatorname{diag}(\boldsymbol{x}) H_{[m \times n]}^{\dagger}
$$

Spectral sample of size m

The eigenvalues (real r.v.'s)

$$
\boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right) \text { of } Y
$$

Open problem: Distribution of \boldsymbol{y} ?
2014 Ipsen, J.R., Kieburg, M. ... eigenvalue statistics for products of rectangular random matrices Phys. Rev. E.

Generalization: replace $\operatorname{diag}(\boldsymbol{x})$ with a Hermitian random matrix X Meaning: a restriction operation $X \mapsto Y$ extracting a partial information from X

What free probability can do for statistician? Again on efficiency: Wishart random matrices Spectral random sampling

A second meaning

A random Hermitian matrix A of order n is said to be freely randomized if its distribution is invariant under unitary conjugation, i.e. $A \sim G A G^{\dagger}$ for each unitary G.

A second meaning

A random Hermitian matrix A of order n is said to be freely randomized if its distribution is invariant under unitary conjugation, i.e. $A \sim G A G^{\dagger}$ for each unitary G.

Examples

a) if H is uniformly distributed with respect to Haar measure then, $H A H^{\dagger}$ is freely randomized.
b) if A is freely randomized, each leading sub-matrix is also freely randomized.

A second meaning

A random Hermitian matrix A of order n is said to be freely randomized if its distribution is invariant under unitary conjugation, i.e. $A \sim G A G^{\dagger}$ for each unitary G.

Examples

a) if H is uniformly distributed with respect to Haar measure then, $H A H^{\dagger}$ is freely randomized.
b) if A is freely randomized, each leading sub-matrix is also freely randomized.

A spectral sample comes from a freely randomized matrix $\Rightarrow H \operatorname{diag}(\boldsymbol{x}) H^{\dagger}$

A second meaning

A random Hermitian matrix A of order n is said to be freely randomized if its distribution is invariant under unitary conjugation, i.e. $A \sim G A G^{\dagger}$ for each unitary G.

Examples

a) if H is uniformly distributed with respect to Haar measure then, $H A H^{\dagger}$ is freely randomized.
b) if A is freely randomized, each leading sub-matrix is also freely randomized.

A spectral sample comes from a freely randomized matrix $\Rightarrow H \operatorname{diag}(\boldsymbol{x}) H^{\dagger}$

- if $m=n$, the subsample \boldsymbol{y} is a random permutation of \boldsymbol{x}.
- if $m<n$, the elements of \boldsymbol{y} do not occur among the components of \boldsymbol{x}.

Outline

Statistics for spectral sampling?

Which spectral properties are preserved on the average by freely randomized matrix restriction? Example: the eigenvalue average is preserved.

Statistics for spectral sampling?

Which spectral properties are preserved on the average by freely randomized matrix restriction? Example: the eigenvalue average is preserved.
\triangleright Tukey, J. (1956) Keeping moment-like sample computations simple. Ann.Math.Stat.

Natural statistics

A statistic T (a collection of functions $T_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$) is said to be natural

$$
E\left[T_{m}(\boldsymbol{y}) \mid \boldsymbol{x}\right]=T_{n}(\boldsymbol{x}) \text { for each } m \leq n \text { and } \boldsymbol{y} \text { drawn from } \boldsymbol{x}
$$

Statistics for spectral sampling?

Which spectral properties are preserved on the average by freely randomized matrix restriction? Example: the eigenvalue average is preserved.
\triangleright Tukey, J. (1956) Keeping moment-like sample computations simple. Ann.Math.Stat.

Natural statistics

A statistic T (a collection of functions $T_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$) is said to be natural

$$
E\left[T_{m}(\boldsymbol{y}) \mid \boldsymbol{x}\right]=T_{n}(\boldsymbol{x}) \text { for each } m \leq n \text { and } \boldsymbol{y} \text { drawn from } \boldsymbol{x}
$$

- symmetric funtions for $m=n$;
- not a single function in isolation, but a list of functions;
- common interpretation independent of the sample size

Statistics for spectral sampling?

Which spectral properties are preserved on the average by freely randomized matrix restriction? Example: the eigenvalue average is preserved.
\triangleright Tukey, J. (1956) Keeping moment-like sample computations simple. Ann.Math.Stat.

Natural statistics

A statistic T (a collection of functions $T_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$) is said to be natural

$$
E\left[T_{m}(\boldsymbol{y}) \mid \boldsymbol{x}\right]=T_{n}(\boldsymbol{x}) \text { for each } m \leq n \text { and } \boldsymbol{y} \text { drawn from } \boldsymbol{x}
$$

- symmetric funtions for $m=n$;
- not a single function in isolation, but a list of functions;
- common interpretation independent of the sample size

Statistics for spectral sampling?

Which spectral properties are preserved on the average by freely randomized matrix restriction? Example: the eigenvalue average is preserved.
\triangleright Tukey, J. (1956) Keeping moment-like sample computations simple. Ann.Math.Stat.

Natural statistics

A statistic T (a collection of functions $T_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$) is said to be natural

$$
E\left[T_{m}(\boldsymbol{y}) \mid \boldsymbol{x}\right]=T_{n}(\boldsymbol{x}) \text { for each } m \leq n \text { and } \boldsymbol{y} \text { drawn from } \boldsymbol{x}
$$

- symmetric funtions for $m=n$;
- not a single function in isolation, but a list of functions;
- common interpretation independent of the sample size

Fisher(1929) k-statistics are natural statistics for cumulants $E\left[\kappa_{n}\right]=c_{n}$

Statistics for spectral sampling?

Which spectral properties are preserved on the average by freely randomized matrix restriction? Example: the eigenvalue average is preserved.
\triangleright Tukey, J. (1956) Keeping moment-like sample computations simple. Ann.Math.Stat.

Natural statistics

A statistic T (a collection of functions $T_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$) is said to be natural

$$
E\left[T_{m}(\boldsymbol{y}) \mid \boldsymbol{x}\right]=T_{n}(\boldsymbol{x}) \text { for each } m \leq n \text { and } \boldsymbol{y} \text { drawn from } \boldsymbol{x}
$$

- symmetric funtions for $m=n$;
- not a single function in isolation, but a list of functions;
- common interpretation independent of the sample size

Spectral natural statistics

$$
\text { If } \boldsymbol{y} \text { spectral sample and } \lambda \vdash i \text {, then } \mathbb{E}\left[\kappa_{\lambda}(\boldsymbol{y})\right]=\prod_{j=1}^{l(\lambda)} \mathbb{E}\left[\left(\mathfrak{c}_{1, \boldsymbol{y}}+\cdots+\mathfrak{c}_{m, \boldsymbol{y}}\right)^{\lambda_{j}}\right]
$$

Fisher(1929) k-statistics are natural statistics for cumulants $E\left[\kappa_{n}\right]=c_{n}$

Matricial polykays

Main theorem

Matricial polykays are the symmetric functions $\mathfrak{K}_{\lambda}(\boldsymbol{y})$ such that

$$
\mathbb{E}\left[\mathfrak{K}_{\lambda}(\boldsymbol{y})\right](\sigma)=\mathrm{const} \times \mathbb{E}\left\{\left[\mu\left(I_{m}\right)^{(-1)} \star \mu(Y)\right](\sigma)\right\}, \quad i \leq m
$$

- $\sigma \in \mathfrak{S}_{m}$, a permutation with $|C(\sigma)|$ disjoint cycles;
- $(f \star g)(\sigma)=\sum_{\rho \omega=\sigma} f(\rho) g(\omega)$ convolution on \mathfrak{S}_{m};
- $\mu(Y)(\sigma)=\prod_{c \in C(\sigma)} \operatorname{Tr}\left(Y^{\mathfrak{l}(c)}\right)$ and $\mu\left(I_{m}\right)(\sigma)=m^{|C(\sigma)|} ;$
- $f^{(-1)} \star f=f \star f^{(-1)}=\delta$ (indicator function)

The computation of $\mu\left(I_{m}\right)^{(-1)}$ requires to solve a system of m equations in m indeterminates. A different way: the so-called Weingarten function on \mathfrak{S}_{m} (Open problem).

$$
\begin{aligned}
\mathfrak{K}_{(1)} & =\frac{S_{1}}{n} \quad \mathfrak{K}_{(2)}=\frac{n S_{2}-S_{1}^{2}}{n\left(n^{2}-1\right)} \\
\mathfrak{K}_{\left(1^{2}\right)} & =\frac{n S_{1}^{2}-S_{2}}{n\left(n^{2}-1\right)} \\
\mathfrak{K}_{(3)} & =2 \frac{2 S_{1}^{3}-3 n S_{1} S_{2}+n^{2} S_{3}}{n\left(n^{2}-1\right)\left(n^{2}-4\right)} \\
\mathfrak{K}_{(1,2)} & =\frac{-2 n S_{3}+\left(n^{2}+2\right) S_{1} S_{2}-n S_{1}^{3}}{n\left(n^{2}-1\right)\left(n^{2}-4\right)} \\
\mathfrak{K}_{\left(1^{3}\right)} & =\frac{S_{1}^{3}\left(n^{2}-2\right)-3 n S_{1} S_{2}+4 S_{3}}{n\left(n^{2}-1\right)\left(n^{2}-4\right)}
\end{aligned}
$$

The computation of $\mu\left(I_{m}\right)^{(-1)}$ requires to solve a system of m equations in m indeterminates. A different way: the so-called Weingarten function on \mathfrak{S}_{m} (Open problem).

Connection with k-statistics

$$
\begin{aligned}
\mathfrak{K}_{(1)} & =\frac{S_{1}}{n}=k_{(1)} \quad \mathfrak{K}_{(2)}=\frac{n S_{2}-S_{1}^{2}}{n\left(n^{2}-1\right)}=\frac{k_{(2)}}{(n+1)} \\
\mathfrak{K}_{\left(1^{2}\right)} & =\frac{n S_{1}^{2}-S_{2}}{n\left(n^{2}-1\right)}=\frac{k_{\left(1^{2}\right)}}{(n+1)} \\
\mathfrak{K}_{(3)} & =2 \frac{2 S_{1}^{3}-3 n S_{1} S_{2}+n^{2} S_{3}}{n\left(n^{2}-1\right)\left(n^{2}-4\right)}=\frac{2 k_{(3)}}{(n+1)(n+2)} \\
\mathfrak{K}_{(1,2)} & =\frac{-2 n S_{3}+\left(n^{2}+2\right) S_{1} S_{2}-n S_{1}^{3}}{n\left(n^{2}-1\right)\left(n^{2}-4\right)}=\frac{2 k_{(1,2)}-n k_{(1)} k_{(2)}}{(n+1)(n+2)} \\
\mathfrak{K}_{\left(1^{3}\right)} & =\frac{S_{1}^{3}\left(n^{2}-2\right)-3 n S_{1} S_{2}+4 S_{3}}{n\left(n^{2}-1\right)\left(n^{2}-4\right)}=\frac{2 k_{\left(1^{3}\right)}-3 k_{(1)} k_{(2)}+n(n+3)\left(k_{(1)}\right)^{3}}{(n+1)(n+2)} .
\end{aligned}
$$

The computation of $\mu\left(I_{m}\right)^{(-1)}$ requires to solve a system of m equations in m indeterminates. A different way: the so-called Weingarten function on \mathfrak{S}_{m} (Open problem).

Properties

- $\mathfrak{K}_{\lambda}(\boldsymbol{y})$ are called matricial polykays, unbiased estimators of products of cumulants
$\AA_{\lambda}(y)$ are natural statistics (the proof is strictly connected with the spectral sampling) The condition $i<m$. parallels the analogous condition for Fisher's c -statistics.

Properties

- $\mathfrak{K}_{\lambda}(\boldsymbol{y})$ are called matricial polykays, unbiased estimators of products of cumulants
- $\mathfrak{K}_{\lambda}(\boldsymbol{y})$ are natural statistics (the proof is strictly connected with the spectral sampling);

Properties

- $\mathfrak{K}_{\lambda}(\boldsymbol{y})$ are called matricial polykays, unbiased estimators of products of cumulants
- $\mathfrak{K}_{\lambda}(\boldsymbol{y})$ are natural statistics (the proof is strictly connected with the spectral sampling);
- The condition $i \leq m$ parallels the analogous condition for Fisher's k-statistics.

Properties

- $\mathfrak{K}_{\lambda}(\boldsymbol{y})$ are called matricial polykays, unbiased estimators of products of cumulants
- $\mathfrak{K}_{\lambda}(\boldsymbol{y})$ are natural statistics (the proof is strictly connected with the spectral sampling);
- The condition $i \leq m$ parallels the analogous condition for Fisher's k-statistics.
- $\mathbb{E}\left[\mathfrak{K}_{\lambda}(\boldsymbol{y})\right]$ tends towards the product of free cumulants when $m \rightarrow \infty$ as Fisher's polykays tends towards the product of classical cumulants.

\qquad

Properties

- $\mathfrak{K}_{\lambda}(\boldsymbol{y})$ are called matricial polykays, unbiased estimators of products of cumulants
- $\mathfrak{K}_{\lambda}(\boldsymbol{y})$ are natural statistics (the proof is strictly connected with the spectral sampling);
- The condition $i \leq m$ parallels the analogous condition for Fisher's k-statistics.
- $\mathbb{E}\left[\mathfrak{K}_{\lambda}(\boldsymbol{y})\right]$ tends towards the product of free cumulants when $m \rightarrow \infty$ as Fisher's polykays tends towards the product of classical cumulants.
- $\mathfrak{K}_{\lambda}(\boldsymbol{y})$ can be expressed as linear combination of generalized k-statistics with coefficients independent of n.

Properties

- $\mathfrak{K}_{\lambda}(\boldsymbol{y})$ are called matricial polykays, unbiased estimators of products of cumulants
- $\mathfrak{K}_{\lambda}(\boldsymbol{y})$ are natural statistics (the proof is strictly connected with the spectral sampling);
- The condition $i \leq m$ parallels the analogous condition for Fisher's k-statistics.
- $\mathbb{E}\left[\mathfrak{K}_{\lambda}(\boldsymbol{y})\right]$ tends towards the product of free cumulants when $m \rightarrow \infty$ as Fisher's polykays tends towards the product of classical cumulants.
- $\mathfrak{K}_{\lambda}(\boldsymbol{y})$ can be expressed as linear combination of generalized k-statistics with coefficients independent of n.
\triangleright McCullagh, P. (1984) Tensor notation and cumulants of polynomials. Biometrika

Generalized spectral polykays

Generalized k-statistics are the sample version of the generalized cumulants.

Generalized spectral polykays

Generalized cumulants

$$
c_{r, s t}=\operatorname{cov}\left(X^{r}, X^{s} X^{t}\right) \quad c_{r s, t u}=\operatorname{cov}\left(X^{r} X^{s}, X^{t} X^{u}\right)
$$

application: in asymptotic approximations of distributions
Generalized k-statistics are the sample version of the generalized cumulants.

Generalized spectral polykays

Generalized cumulants

$$
c_{r, s t}=\operatorname{cov}\left(X^{r}, X^{s} X^{t}\right) \quad c_{r s, t u}=\operatorname{cov}\left(X^{r} X^{s}, X^{t} X^{u}\right)
$$

application: in asymptotic approximations of distributions
Generalized k-statistics are the sample version of the generalized cumulants.
\rightsquigarrow the generalized k-statistics are linearly independent;
\rightsquigarrow every polynomial symmetric function can be expressed uniquely as a linear combination of generalized k-statistics;
\rightsquigarrow any polynomial symmetric function whose expectation is independent of n can be expressed as linear combination of generalized k-statistics with coefficients independent of n.

A different choice of foundations can lead to a different way of thinking about the subject, and thus to ask a different set of questions and to discover a different set of proofs and solutions. Thus it is often of value to understand multiple foundational perspectives at once, to get a truly stereoscopic view of the subject.

From Terence Tao's blog

A different choice of foundations can lead to a different way of thinking about the subject, and thus to ask a different set of questions and to discover a different set of proofs and solutions. Thus it is often of value to understand multiple foundational perspectives at once, to get a truly stereoscopic view of the subject.
(Topics on random matrices, Terence Tao) - on line

From Terence Tao's blog

A different choice of foundations can lead to a different way of thinking about the subject, and thus to ask a different set of questions and to discover a different set of proofs and solutions. Thus it is often of value to understand multiple foundational perspectives at once, to get a truly stereoscopic view of the subject.
(Topics on random matrices, Terence Tao) - on line

Thanks for your attention!

Cumulants:
theory, computation and applications 4 Work in progress: Wiley

