Symbolic methods in statistics:

elegance towards efficiency

E. Di Nardo

University of Basilicata, Italy

June, 10th 2015 — Genova

Algebraic Statistics 2015

1/39



Outline

How to convince people that in programming, simplicity and clarity -
in short what mathematicians call elegance - are a crucial matter
that decides between success and failure? (E. Dijkstra)
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Although the notation satisfied the most ardent
advocate of spic-and-span rigor, the translation of
“classical” umbral calculus into the newly found
rigorous language made the method altogether
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ks 0.06 0.01 0.01
27 (1)2}1 882 88} PC Pentium(R)4, Intel(R)

9 . . .

K1 8.36 0.14 0.01 CPU 208 Ghe
k14 396.39 0.64 0.02 512MB Ram
k16 57982.4 2,63 0.08 Maple 10.0
ks - 6.90 0.16 Mathematica 4.2
koo - 25.15 0.33
k22 _ 81.70 0.80 Times in seconds
koa - 359.40 1.62
kag - 1581.05 2.51
kos - 6505.45 4.83
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Why symbolic methods?

If A= (1",2",...,m"™) F i< n then

l(>\) 1 _ TiaT2 ... qTm
_ ’L'Z ()‘) 1)]' a, a’z2 a,,
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@ = ilz (- 1)A(MA[ N)-D Y wialz - alm
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Why symbolic methods?

cs and Computing (2009)

“Every polynomial symmetric function can be expressed in terms of polykays.”

> Tukey, J. (1956) Keeping moment-like sample computations simple. Ann.Math.Stat.

kr...,s | AS Algorithms | MathStatica Polyk-algorithm
k3,2 0.06 0.02 0.02
k4,4 0.67 0.06 0.06
ks.s 0.69 0.08 0.07
k7.5 34.23 0.79 0.70
. 435.67 2.52 2.43
koo - 27.41 23.32
k10,8 - 30.24 25.06
k41,4 34.17 0.64 0.77
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s and Computing (2009)

Unbiased estimators of product of cumulants, that is E[k,...s] =c¢r---cs \

“Every polynomial symmetric function can be expressed in terms of polykays.”

> Tukey, J. (1956) Keeping moment-like sample computations simple. Ann.Math.Stat. ‘

kr,....s AS Algorithms | MathStatica | Fast-algorithms | Polyk-algorithm
k3,2 0.06 0.02 0.01 0.02

ka,a 0.67 0.06 0.02 0.06

ks,3 0.69 0.08 0.02 0.07

k7,5 34.23 0.79 0.11 0.70

k7,7 435.67 2.52 0.26 2.43

koo - 27.41 2.26 23.32
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Why symbolic methods?

s and Computing (2009)

Unbiased estimators of product of cumulants, that is E[k,...s] =c¢r---cs \

“Every polynomial symmetric function can be expressed in terms of polykays.”

> Tukey, J. (1956) Keeping moment-like sample computations simple. Ann.Math.Stat. ‘

kr,....s AS Algorithms | MathStatica | Fast-algorithms | Polyk-algorithm

k3,2 0.06 0.02 0.01 0.02

ka,a 0.67 0.06 0.02 0.06

ks,3 0.69 0.08 0.02 0.07

k7,5 34.23 0.79 0.11 0.70

k7,7 435.67 2.52 0.26 2.43

koo - 27.41 2.26 23.32
kio,s - 30.24 2.98 25.06
ka,a,4 34.17 0.64 0.08 0.77

>> Staude, B. and Rotter, S. (2010) Cubic: cumulant based inference of higher-order
correlations in massively parallel spike trains. J. Comp. Neuroscience
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Why symbolic methods?

mulants are zero for i.r.v.’s

For AS Algorithms, missed computational times means “greater than 20
hours”. For MathStatica, missed computational times means “procedures not

available”
ks|..sp51y...1,, | AS Algorithms | MathStatica

k3o 0.25 0.03

kia 28.36 0.16

ks s 259.16 0.55

ke s 959.67 1.01

k7 - 8.49

ks 7 - 14.92

k3zs 1180.03 0.88

kias - 4.80

kiaa - 13.53
kot;11 0.20 -
k22,21 6.30 -
ko220 33.75 -
ka2,21;11 126.19 -
k22,2121 398.42 -
k22,22,21 1387.00 -
k2o;22,22 3787.41 -
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mulants are zero for i.r.v.’s

For AS Algorithms, missed computational times means “greater than 20
hours”. For MathStatica, missed computational times means “procedures not

available”
ks|..sp51y...1,, | AS Algorithms | MathStatica Fast-algorithms

k3o 0.25 0.03 0.01

kia 28.36 0.16 0.02

ks s 259.16 0.55 0.06

ke s 959.67 1.01 0.16

k7 - 8.49 1.04

ks 7 - 14.92 2.19

k3zs 1180.03 0.88 0.47
kias - 4.80 0.94
kiaa - 13.53 2.30
ko111 0.20 - 0.01
ko221 6.30 - 0.08
k22,22 33.75 - 0.14
ka2,21;11 126.19 - 0.28
k22,2121 398.42 - 0.55
k22,22,21 1387.00 - 1.25
k2o;22,22 3787.41 - 201
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Why symbolic methods?

verview on what we have done...

Computationalskills
Sta—tiStiCS_ ) o O Fast algorithms for U-statistics
O Moments ()l_ sampling distributions QO Sheppard’s corrections
O Moments of moments Q Solving linear recurrences
O Sheppard’s corrections

Multivariate calculus

O Multivariate Faa di Bruno’s formula
O Wishart random matrices

l, O Spectral sampling and polykays

Combinatorics

O Sheffer polynomial sequences
O Riordan arrays

O Lagrange inversion formula

Probability
O Levy processes
O Time-space harmonic polynomials

o o e e

O Parametrization of cumulants

18/39
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Symbolic moment calculus

a; represented _
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The moment symbolic method

Symbolic combinatorics

a; = |{ discrete structures }|
4
gen.func. 1+ E ai—
=

Take an ordered commutative algebra over C[A] and endows it with a positive linear

functional E :

an element of A = a r.v.

=

Symbolic moment calculus

a; represented
by a symbol
ae A

the linear functional E = the expectation of a r.v.

the sequence {a;} = the moments of a r.v.

Special Umbrae Moments
Augmentation umbra IE[E”“J =0
Unity umbra Efu'] =1
Singleton umbra E[x*] = di1
Bell umbra E[8!] = B;

=
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The moment symbolic method

Symbolic combinatorics Symbolic moment calculus

a; = |{ discrete structures }| a; represented

gen.func. 1+ Zaii: - by a symbol - E[ai} =q,
i

> ! ae A

Take an ordered commutative algebra over C[A] and endows it with a positive linear
functional E :

an element of A = a r.v.
the linear functional E = the expectation of a r.v.

the sequence {a;} = the moments of a r.v.

Special Umbrae Moments )

Augmentation umbra E[a”] s > Not all r.v.'s can be represented by
Unity umbra Efu'] =1 umbrae.

Singleton umbra E[x'] = di1 > Not all umbrae are r.v.’s.

Bell umbra E[3'] =B,

19/39
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a € A (non-commutative r.v.'s)
unital linear functional ¢ : A — C with ¢(a®) i-th moment
{p(a*)}i>1 distribution of a

©(a’b?) joint moment of a and b # @(abab- - - ab)

X,Yirv'sthen ¢;(X +Y) =c¢;(X) + ¢ (Y) a, b free r.v.'s then c;(a + b) = ¢;(a) + ¢;(b)

C1
C3

Cq

3 2 ?5.
14@1 ” < Cumulants = “ ‘A\
\ A _—

a = ¢(a),c2 = p(a®) — p(a)®
©(a®) — 3p(a®)p(a) + 2¢(a)®
ca = ¢(a*) — 4p(a®)p(a) — 2p(a?)?
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The moment symbolic method

ora of non-commutative r.v.’s

a € A (non-commutative r.v.'s)
unital linear functional ¢ : A — C with ¢(a®) i-th moment
{p(a*)}i>1 distribution of a

©(a’b?) joint moment of a and b # @(abab- - - ab)

X,Yirv'sthen ¢;(X +Y) =c¢;(X) + ¢ (Y) a, b free r.v.'s then c;(a + b) = ¢;(a) + ¢;(b)

3 2

) . .
14@1 ” < Cumulants = “ ‘A\
\ A _—

a = ¢(a),c2 = p(a®) — p(a)®
p(a®) — 3p(a®)p(a) + 2¢(a)?
ca = ¢(a*) — 4p(a®)p(a) — 2p(a?)?

10¢(a?)p(a)? — 5p(a)t
Classical cumulants - II(%) F:Oe(e czjcri(ul)ants _SON(C()l)

C1 = M1,C2 = 2 —#?
fs — Bpapn + 23
ca = pa — dpspn — 3pe + 12001 — 6t

C3

C3

+

Remark: a, b are free commutative r.v.'s iff at least one of them has vanishing variance.
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The moment symbolic method

o ) ) —1 J —
E[a”yy . (5k] _ E[Ozl] IE[’y]] . E[(Sk] Jj=1 | . i]—l i
E factorizes on different symbols E[(2.0)'] = Z <]) aja;_j = Z (

Two special devices:
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The moment symbolic method

o . . — J —1 J
Elo'y’ 0" = E[a|Efy] - EH {77 T 7 :
E factorizes on different symbols E[(2.0)'] = Z <]) aja;_; = Z (

Two special devices:

o a, @ similar < E[a'] = E[(«/)'] = a for all 4, in symbols a = o

o m.a dot-product =o' +a” +-- - +a” witha' =o' =---=a" = .

m
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Elo'y’ 0" = E[a|Efy] - EH {77 T 7 :
E factorizes on different symbols E[(2.0)'] = Z <]) aja;_; = Z (

Two special devices:

o a, @ similar < E[a'] = E[(«/)'] = a for all 4, in symbols a = o

o m.a dot-product =o' +a” +-- - +a” witha' =o' =---=a" = .

m
A= (171,272,..) F i
1 —a’tagrz...
‘Z Vz(x) %a'k = E[(ma)l] AT A il
J !
AFi AT AN (2D 2! -
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The moment symbolic method

Generalized random sum

Randomized compound Poisson r.v.
Sy=X,+-+Xy= N = Po(R)

R.v.’s vectors
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The moment symbolic method

d random sum

Sy=X,+-+Xy Svn=X,+ -+ Xy = N = Po(R)
ya=do +---+a’ upk=r+--+&"

—_— —

v ’u,.ﬁ:>PO(u)
Cumulants: kK = x.« Moments: a = u.8.k
b4 A4
|

Sy=X,+-+Xu Syv=X,+:-+ Xy = N = Po(R)
X-#Eﬂ/JF"'JFII'” ’Y-ﬁ-ﬂE#/Jr"'Jrﬂ”

—— —

X ~.8=-Po(v)
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The moment symbolic method

Generalized random sum

Randomized compound Poisson r.v.
Syv=X,+- -+ Xy= N = Po(R)
uBk=k+---+ K’
u.f=Po(u)

A

Moments: a = u.[.k

A

R.v.'s vectors Multivariate randomized compound Poisson r.v.

Sy=X,++Xy Sy=X,+:-+ Xy = N = Po(R)
xp=p +--+pu” uBk=k"+---+£K"
——— —

X u.f=Po(u)
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Random matrices are non-commutative objects whose large-dimension asymptotic

have provided the major applications of free probability:

o(a’) = lim %E[Tr(Ai)].

. . 1< ace. .
Ex: A(nxn) gaussian hermitian pa = — E 5>\j(A) =" Wigner (semicircle)
n
j=1

B ; N0 b

If A and B are indipendent diagonal matrices
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Applications to random matrices

# Eig(A) + Eig(B)

Random matrices are non-commutative objects whose large-dimension asymptotic

have provided the major applications of free probability:

o(a’) = lim %E[Tr(Ai)].

. . 1< ace. .
Ex: A(nxn) gaussian hermitian pa = — E 5>\j(A) =" Wigner (semicircle)
n
j=1

B ; N0 b

If A and B are indipendent diagonal matrices

log MGF(A + B) = log MGF(A) + log MGF(B)
i-th coeff. log MGF = ¢; How to define ¢;(A)?

Tawe "~ N=300 T N=1000 ’ N=3000

What about ¢;(A + B)?
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Applications to random matrices

symptotic case

If A and B are asymptotically free, then the asymptotic spectrum of the sum can be
obtained from the individual asymptotic spectra. J

¢

V2 As free probability only covers the asymptotic regime in which n is sent to

infinity, there are some aspects of random matrix theory to which the tools of free

probability are not sufficient by themselves to resolve.

How to preserve the framework of free probability?
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obtained from the individual asymptotic spectra.

¢

2 As free probability only covers the asymptotic regime in which n is sent to

infinity, there are some aspects of random matrix theory to which the tools of free

probability are not sufficient by themselves to resolve.

How to preserve the framework of free probability?

1 ) )
If in —lim—fE[Tr(Al)] = 7(A") the symbolic moment method can be resorted in
n—oo n

order to compute {T(A%)};>;.

Assume to symbolically represent the eigenvalues {A1,...,An} of A with

{p1, ..., un} umbral monomials so that

. 1. ;
T(AY) = EIE[;& + -+ -+ pr] power sum symmetric polynomials in {u;}
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Applications to random matrices

on central Wishart distribution

Let {Xi,...,X.,} be random row vectors independently drawn from a p-variate
complex normal distribution with zero mean and full rank covariance matrix

with eigenvalues {6:,...,0,}

Let m,,...,m, be complex row vectors of dimension p.

A 4

W,(n, %, M) = i(X, —m)t (X —m,)
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srent way to represent the central component

Te[W(n)] = TrXTX, +--- + X1X ]
with {XJ{Xl, . ,XLXH} i.i.d. random matrices of order p.
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Applications to random matrices

way to represent the central component

Tr[W(n)] =n.(01a1 + - + 0,1,) = n.p.o
> {@i,...,u,} uncorrelated umbrae similar to the boolean unity umbra @
whose moments are equal to the number of permutations of a set.

T W(n)] = T XX, +--- + X[ X,
with {XJ{Xl, . ,XLXH} i.i.d. random matrices of order p.

TW(n)] = Tr [ijxi =Z1 4+ Zpo(n) With

=1

{Z:}izy iid. rv's;
E[Z¥] = (k — )!Tr(ZF) = Cumy (iji) for k € N

—

~~ The sequence of moments of Tr[W (n)] is of binomial type.
~~ The sequence of moments of Tr[W (n)] is of Sheffer type.
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Cum (Tr[W(n) Hi, ..., Te(W(n) H,]) = i!(nE[p*] — E[n?])
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andom sampling

A sub-vector y consisting of m components of @ = (z1,...,z,) € R", selected
with equal probability 1/(n)m,.
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with equal probability 1/(n)m,.

51,1 51,2 S1,n

o € G, a permutation
S the corresponding matrix s _
n—m —
. . . Sm+41,1 Sm+1,2 e Sm+1,n
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Sij = . . . .

0, otherwise.
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to select y : Sn—m
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andom sampling

A sub-vector y consisting of m components of z = (z1,...

with equal probability 1/(n)m,.

,Zn) € R™| selected

81,1
o € G, a permutation
S the corresponding matrix Spem = | Mt
. o ° Sm+41,1
g — 1, ifo(i) =y,
71 0, otherwise.
Sn,1

A formal method
to select y :

L% ) diag(y

51,2 S1,n
Sm,2 Sm,n
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Applications to random matrices

andom sampling

A sub-vector y consisting of m components of @ = (z1,...,z,) € R", selected
with equal probability 1/(n)m,.

51,1 51,2 o S1,n

o € G, a permutation

S the corresponding matrix Spem = | Mt Smy2 ... Sm.n

1 if U(Z) _ ] Sm+1,1 Sm+1,2 “ee Sm+1,n

Sig :{ 0, otherwise.
Sn,1 Sn,2 cee Sn,n

A formal method y . . T

to select y : — 2 - diag(y) = Simxn] diag(x) Sjp, )
‘Properties:
T T
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Applications to random matrices

0 1
1 0
0 O
0 O

1 2 4
corresponding to 0 = ( 4 3 ? 2 ) € G4

(=N e Ne)
o oo

31/39



Applications to random matrices

0 1
1 0
0 0
0 0

) N 1 2 3 4
Sy = corresponding to 0 = ( 4 3 1 2 ) €S

\ 4

o = O o
O oo

A simple random sampling is:

@ 0 0 0 0 0
¢4 0\ _ (0 0 0 1 0 22 0 0 0 0
(o xg)—(o 0 1 o) 0 0 =z3 0 0 1
0 0 0 a4 10
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Applications to random matrices

1
0
0
0

) N 1 2 3 4
Sy = corresponding to 0 = ( 4 3 1 2 ) €S

\ 4

o= OO
— o oo
OO =0

A simple random sampling is:

x1 0 0 0 0 0
T4 0 _ o 0 0 1 0 T2 0 0 0 0
0 z3 - 0O 0 1 0 0 0 xs3 0 0o 1
0 0 x4 1 0
The full matrix is:
T4 0 0 0 0o 0 0 1 T 0 0 0 0O 0 0 1
0 z3 0 0 . 0 0 1 O 0 x2 0 0 0O 0 1 0
0 0 =z 0 - 1 0 0 O 0 0 z3 0 0O 1 0 O
0 0 0 x2 0O 1 0 O 0 0 0 x4 1 0 0 O
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al sample

Let H be a random unitary
matrix uniformly distributed
with respect to the Haar
measure on the group U,, of
n X m unitary matrices.

x Y
= [Hon}

The eigenvalues (real r.v.’s)
Y= Ym) of ¥

n—m —

m» y_py

hi1 h1,2 h1n

hm,l hm,2 hm,n
h'm+1,1 hm,+1,2 hnl,+1,'n,

h/n“,l }’/71,2 h/'n,,n
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Applications to random matrices

| sample
hi1 h1,2 h1n
Let H be a random unitary : :
m.atrlx uniformly distributed | Ama hma2 oo hmn
with respect to the Haar nom hm+1,1 hm41,2 oo hmsgin

measure on the group U,, of
n X n unitary matrices. . hoo i hom

| Hyon | 7> Y = Hpyp ding(@) H,, oo

’Open problem: Distribution of y?

|
The cigenvalues (real rv's) | @ 2014 Tpsen, JR., Kieburg, M. . eigen-
Y= (Y1, ., ym) of ¥ value statistics for products of rectangular
I random matrices Phys. Rev. E.

V7 Generalization: replace diag(z) with a Hermitian random matrix X
V> Meaning: a restriction operation X +— Y extracting a partial

information from X
32/39



Applications to random matrices

nd meaning

A random Hermitian matrix A of order n is said to be freely randomized
if its distribution is invariant under unitary conjugation, i.e. A ~ GAGT
for each unitary G.

33/39



Applications to random matrices

d meaning

A random Hermitian matrix A of order n is said to be freely randomized
if its distribution is invariant under unitary conjugation, i.e. A ~ GAGT
for each unitary G.

Examples

if H is uniformly distributed with respect to Haar measure then,
HAH' is freely randomized.

if A is freely randomized, each leading sub-matrix is also freely
randomized.

33/39



Applications to random matrices

d meaning

A random Hermitian matrix A of order n is said to be freely randomized
if its distribution is invariant under unitary conjugation, i.e. A ~ GAGT
for each unitary G.

Examples

if H is uniformly distributed with respect to Haar measure then,
HAH' is freely randomized.

if A is freely randomized, each leading sub-matrix is also freely
randomized.

A spectral sample comes from a freely randomized matrix = Hdiag(x)H'

33/39



Applications to random matrices

d meaning

A random Hermitian matrix A of order n is said to be freely randomized
if its distribution is invariant under unitary conjugation, i.e. A ~ GAGT
for each unitary G.

Examples

if H is uniformly distributed with respect to Haar measure then,
HAH' is freely randomized.

if A is freely randomized, each leading sub-matrix is also freely
randomized.

A spectral sample comes from a freely randomized matrix = Hdiag(x)H'

if m = n, the subsample y is a random permutation of x.

if m < n, the elements of y do not occur among the components of
x.
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or spectral sampling?

V2 Which spectral properties are preserved on the average by freely randomized

matrix restriction? Example: the eigenvalue average is preserved.

> Tukey, J. (1956) Keeping moment-like sample computations simple. Ann.Math.Stat.

A statistic T' (a collection of functions T;,: R™ — R) is said to be natural

E [T (y)|x] = Tn(x) for each m < n and y drawn from =

symmetric funtions for m = n;
not a single function in isolation, but a list of functions;

common interpretation independent of the sample size

LX)
If y spectral sample and A | i, then E[x(y)] = H El(c1,y + - -+ tm,y) i)

Fisher(1929) k-statistics are natural statistics for cumulants E[kn] = cn
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Applications to random matrices

polykays

Matricial polykays are the symmetric functions £ (y) such that
E[fa(y)](0) = const x E{ [u(n) Y« p(M)] (@)}, i<m

o€ C'Sm, a permutation with |C(o)| disjoint cycles;

(f*xg)( Z flp ) convolution on &,,;
pw=0c
- 11 Tf( ”) and (1) () = ml“)
ceC(o)

fEY % f = fx fY = § (indicator function)
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Applications to random matrices

The computation of M(Im)(_l) requires to solve a system of m equations
in m indeterminates. A different way: the so-called Weingarten function
on &,, (Open problem).
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S1 P nSy — Si
n @ n(n?—1)
nS? — S,
n(n?—1)

25% —3n8; S24+n%Ss
n(n?—1)(n%—4)
—2nSs + (n2 +2)51 5 — nS;
n(n?—1)(n?—4)
S:f’(n2 —2)—3nS5152+48s
n(n?—1)(n?—4)

The computation of M(Im)(_l) requires to solve a system of m equations
in m indeterminates. A different way: the so-called Weingarten function
on &,, (Open problem).
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tion with k-statistics

i—k q e L)
n W (2)_n(n2—1)_(n—|—1)

’I’LS% _SQ _ k(12)
nn2—1) (n+1)
25? —3nS SQ+H2S3 . 2]{‘(3)
nn2—-1)(n2—-4) ~ (n+Dn+2)
727153 -+ (n2 + 2)51 SQ — nSf _ 2]‘7(1.2) — ’rL/ﬁT(l)k<2)
n(n?—1)(n? —4)  (n+1D(n+2)
SP(n? —2)—3nS1 82 +48s _ 2kus) — 3kake) +n(n+ 3)(k))?
n(n? —1)(n?—4) N (n+1)(n+2) ’

The computation of M(Im)(_l) requires to solve a system of m equations
in m indeterminates. A different way: the so-called Weingarten function
on &,, (Open problem).
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R (y) are called matricial polykays, unbiased estimators of
products of cumulants

R (y) are natural statistics (the proof is strictly connected with the
spectral sampling);

The condition i < m parallels the analogous condition for Fisher's
k-statistics.

E[R(y)] tends towards the product of free cumulants when
m — oo as Fisher's polykays tends towards the product of classical
cumulants.

R (y) can be expressed as linear combination of generalized
k-statistics with coefficients independent of n.

‘ > McCullagh, P. (1984) Tensor notation and cumulants of polynomials. Biometrika
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zed spectral polykays

|
Crst = coV( X", XX crgpu = cov(X" X5 XEXY) ’

()application: in asymptotic approximations of distributions

‘ Generalized k-statistics are the sample version of the generalized cumulants.

~> the generalized k-statistics are linearly independent;

~> every polynomial symmetric function can be expressed uniquely as a
linear combination of generalized k-statistics;

~~ any polynomial symmetric function whose expectation is
independent of n can be expressed as linear combination of
generalized k-statistics with coefficients independent of n.
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Applications to random matrices

A different choice of foundations can lead to a different way of thinking
about the subject, and thus to ask a different set of questions and to
discover a different set of proofs and solutions. Thus it is often of value
to understand multiple foundational perspectives at once, to get a truly
stereoscopic view of the subject.

(Topics on random matrices, Terence Tao) - on line

Thanks for your attention!

Cumulants:
theory, computation and applications 6
Work in progress: Wiley
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