# Maximum likelihood threshold of a graph 

Elizabeth Gross<br>San José State University

Joint work with
Seth Sullivant, North Carolina State University

June 10, 2015
SJSU
DEPARTMENT OF
MATHEMATICS AND STATISTICS

## Gaussian graphical models

Random Vector:
$\mathbb{S}^{m}=m \times m$ symmetric real matrices
$\mathbb{S}_{>0}^{m}=$ pos. def. matrices in $\mathbb{S}^{m}$.
$\mathbb{S}_{\geq 0}^{m}=$ psd matrices in $\mathbb{S}^{m}$
Let $G=(V, E)$ with $|V|=m$.

$$
\begin{gathered}
\mathcal{M}_{G}=\left\{\Sigma \in \mathbb{S}_{>0}^{m}:\left(\Sigma^{-1}\right)_{i j}=0\right. \text { for all } \\
\\
i, j \text { s.t. } i \neq j, i j \notin E\}
\end{gathered}
$$

## Definition

The centered Gaussian graphical model associated to the graph $G$ is the set of all multivariate normal distributions $\mathcal{N}(0, \Sigma)$ such that $\Sigma \in \mathcal{M}_{\mathcal{G}}$.

## Maximum likelihood estimation

Goal: Find $\Sigma$ that best explains data
Observations: $Y_{1}, \ldots, Y_{n}$
Sample covariance matrix: $S=\frac{1}{n} \sum_{i=1}^{n} Y_{i} Y_{i}^{\top}$
If the MLE exists, it is the unique positive definite matrix $\Sigma$ that satisfies:

$$
\begin{gathered}
\Sigma_{i j}=S_{i j} \text { for } i j \in E \text { and } i=j \\
(\Sigma)_{i j}^{-1}=0 \text { for } i j \notin E \text { and } i \neq j
\end{gathered}
$$

When $n \geq m$, the MLE exists with probability one. What about the case when $m \gg n$ ?

## Question (Lauritzen)

For a given graph $G$ what is the smallest $n$ such that the MLE exists with probability one?

## Maximum likelihood threshold

## Definition

We call the smallest $n$ such that the MLE exists with probably one (i.e. for generic data) the maximum likelihood threshold, or, mlt.

- Clique number: $\omega(G)=$ size of a largest clique of $G$
- Chordal graph: A graph with no induced cycle of length $\geq 4$.
- Chordal cover of $G=(V, E)$ : A graph $H=\left(V, E^{\prime}\right)$ such that $H$ is chordal and $E \subseteq E^{\prime}$.
- Tree width:
$\tau(G)=\min \{\omega(H)-1: H$ is a chordal cover of $G\}$.


## Proposition (Buhl 1993)

$$
\omega(G) \leq m / t(G) \leq \tau(G)+1
$$

## Bounds

## Notice that these bounds can be far away from each other.

Consider for example, $G=G r_{k_{1}, k_{2}}$, the $k_{1} \times k_{2}$ grid graph:

$\omega(G)=$ size of largest clique $=2$
$\tau(G)=$ tree width $=\min \left(k_{1}, k_{2}\right)$

## Proposition (Uhler 2012)

The maximum likelihood threshold of the $3 \times 3$ grid graph is 3 .

## Rank of a graph

Let

$$
\begin{gathered}
\phi_{G}: \mathbb{S}^{m} \rightarrow \mathbb{R}^{V+E} \\
\phi_{G}(\Sigma)=\left(\sigma_{i i}\right)_{i \in V} \oplus\left(\sigma_{i j}\right)_{i j \in E}
\end{gathered}
$$



Cone of sufficient statistics:
$\mathcal{C}_{G}:=\phi_{G}\left(\mathbb{S}_{>0}^{m}\right)$.

$$
\phi_{G}\left(\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 2 \\
3 & 2 & 1
\end{array}\right]\right)
$$

Remark: For a given $S \in \mathbb{S}_{\geq 0}^{m}$, the MLE

$$
=(1,1,1,2,2)^{T}
$$

exists if and only if $\phi_{G}(S) \in \operatorname{int}\left(\mathcal{C}_{G}\right)$.
Let $S(m, n)=\left\{\Sigma \in \mathbb{R}^{m \times m}: \Sigma=\Sigma^{T}, \operatorname{rank}(\Sigma) \leq n\right\}$.

## Definition

The rank of a graph $G$ is the minimal $n$ such that $\operatorname{dim} \phi_{G}(S(m, n))=\operatorname{dim} \mathcal{C}_{G}=|V|+|E|$

Proposition (Uhler 2012) $\mathrm{mlt}(G) \leq \operatorname{rank}(G)$

## Algebraic Matroids

## Definition

Let $I \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be a prime ideal. This defines an algebraic matroid with ground set $\left\{x_{1}, \ldots, x_{n}\right\}$, and $K \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$ an independent set if and only if $I \cap \mathbb{K}[K]=\langle 0\rangle$.
$I_{n} \subseteq \mathbb{K}\left[\sigma_{i k} 1 \leq i \leq j \leq m\right]$ : ideal defining $S(m, n)$.
If $\phi_{G}(S(m, n))=\operatorname{dim} \mathcal{C}_{G}$, then $\operatorname{mlt}(G) \leq n$
Elimination criterion (Uhler 2012): If
$\Rightarrow \quad I_{n} \cap \mathbb{K}\left[\sigma_{i j}: i j \in E, i=j\right]$, then $m / t(G) \leq n$

## Corollary (Matroidal interpretation of elimination criterion)

If $\left\{\sigma_{i j}: i j \in E, i=j\right\}$ is an independent set in the algebraic matroid associated to $I_{n+1}$ then $m l t(G) \leq n$.

## Combinatorial Rigidity Theory


$G$ is called rigid if, for generic points $\mathbf{p}_{1}, \ldots, \mathbf{p}_{m} \in \mathbb{R}^{n}$, the set of distances $\left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\|_{2}$ for $i j \in E$, determine all the other distances $\left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\|_{2}$ with
$i j \in\binom{[m]}{2}$

Consider the map $\psi_{n}: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}^{m(m-1) / 2}$

$$
\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{m}\right) \mapsto\left(\left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\|_{2}^{2}: 1 \leq i<j \leq m\right)
$$

Let $J_{n}=I\left(\operatorname{im}\left(\psi_{n}\right)\right) \subseteq \mathbb{K}\left[x_{i j} \quad 1 \leq i<j \leq m\right]$.
n-dimensional generic rigidity matroid: the algebraic matroid associated to the ideal $J_{n}$, is called the denoted $\mathcal{A}(n)$.

## Rigidity Matroid $\cong$ Symmetric Minor Matroid

## Theorem (Gross-Sullvant 2014)

- A graph $G=(V, E)$ has $\operatorname{rank}(G)=n$ if and only if $E$ is an independent set in $\mathcal{A}(n-1)$ and not an independent set in $\mathcal{A}(n-2)$.
- The matroid $\mathcal{A}(n-1)$ is isomorphic to the contraction of the rank $n$ symmetric minor matroid via the diagonal elements.


## Proof.

Compare the Jacobian of the map

$$
\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{m}\right) \mapsto\left(\left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\|_{2}^{2}: 1 \leq i<j \leq m\right)
$$

to the Jacobian of the map

$$
\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{m}\right) \mapsto\left(\mathbf{p}_{i} \cdot \mathbf{p}_{j}: 1 \leq i<j \leq m\right)
$$

## Laman's Theorem

## Theorem (Laman's condition)

Let $G=(V, E)$ be a graph, and suppose that $\operatorname{rank}(G) \leq n$. Then, for all subgraphs $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of $G$ such that $\# V^{\prime} \geq n-1$ we must have

$$
\begin{equation*}
\# E^{\prime} \leq \# V^{\prime}(n-1)-\binom{n}{2} \tag{1}
\end{equation*}
$$

Laman's Theorem states that the condition above is both necessary and sufficient for a set to be independent in $\mathcal{A}(2)$.

## Corollary

Let $G=(V, E)$ be a graph, if for all subgraphs $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of $G$

$$
\# E^{\prime} \leq 2\left(\# V^{\prime}\right)-3
$$

then $m / t(G) \leq 3$.

## $r$-cores

## Definition

Let $G$ be a graph and $r \in \mathbb{N}$. The $r$-core of $G$ is the graph obtained by successively removing vertices of $G$ of degree $<r$.

## Theorem (Gross-Sullivant 2014, Ben-David 2014)

Let $G$ have an empty n-core, then $\operatorname{rank}(G) \leq n$.
$\Rightarrow \boldsymbol{m l t}\left(G r_{k_{1}, k_{2}}\right)=3$


## $r$-cores

## Definition

Let $G$ be a graph and $r \in \mathbb{N}$. The $r$-core of $G$ is the graph obtained by successively removing vertices of $G$ of degree $<r$.

## Theorem (Gross-Sullivant 2014, Ben-David 2014)

Let $G$ have an empty n-core, then $\operatorname{rank}(G) \leq n$.
$\Rightarrow \boldsymbol{m l t}\left(G r_{k_{1}, k_{2}}\right)=3$


## $r$-cores

## Definition

Let $G$ be a graph and $r \in \mathbb{N}$. The $r$-core of $G$ is the graph obtained by successively removing vertices of $G$ of degree $<r$.

## Theorem (Gross-Sullivant 2014, Ben-David 2014)

Let $G$ have an empty $n$-core, then $\operatorname{rank}(G) \leq n$.
$\Rightarrow \boldsymbol{m l t}\left(G r_{k_{1}, k_{2}}\right)=3$


## $r$-cores

## Definition

Let $G$ be a graph and $r \in \mathbb{N}$. The $r$-core of $G$ is the graph obtained by successively removing vertices of $G$ of degree $<r$.

## Theorem (Gross-Sullivant 2014, Ben-David 2014)

Let $G$ have an empty n-core, then $\operatorname{rank}(G) \leq n$.
$\Rightarrow \boldsymbol{m l t}\left(G r_{k_{1}, k_{2}}\right)=3$


## $r$-cores

## Definition

Let $G$ be a graph and $r \in \mathbb{N}$. The $r$-core of $G$ is the graph obtained by successively removing vertices of $G$ of degree $<r$.

## Theorem (Gross-Sullivant 2014, Ben-David 2014)

Let $G$ have an empty n-core, then $\operatorname{rank}(G) \leq n$.
$\Rightarrow \boldsymbol{m l t}\left(G r_{k_{1}, k_{2}}\right)=3$


## $r$-cores

## Definition

Let $G$ be a graph and $r \in \mathbb{N}$. The $r$-core of $G$ is the graph obtained by successively removing vertices of $G$ of degree $<r$.

## Theorem (Gross-Sullivant 2014, Ben-David 2014)

Let $G$ have an empty n-core, then $\operatorname{rank}(G) \leq n$.
$\Rightarrow \boldsymbol{m l t}\left(G r_{k_{1}, k_{2}}\right)=3$


## Definition

Let $G$ be a graph and $r \in \mathbb{N}$. The $r$-core of $G$ is the graph obtained by successively removing vertices of $G$ of degree $<r$.

## Theorem (Gross-Sullivant 2014, Ben-David 2014)

Let $G$ have an empty n-core, then $\operatorname{rank}(G) \leq n$.
$\Rightarrow \boldsymbol{m l t}\left(G r_{k_{1}, k_{2}}\right)=3$

## Planar graphs



## Theorem (Gross-Sullivant 2014) <br> If $G$ is a planar graph then $m / t(G) \leq 4$.

## Some questions

- Find an example of a graph where $\operatorname{mlt}(G)<\operatorname{rank}(G)$.
- A graph where $\operatorname{dim} \phi_{G}(S(m, n)) \neq|V|+|E|$ but $\phi\left(S(m, n) \cap \mathbb{S}_{\geq 0}\right)$ is not in the algebraic boundary of $\mathcal{C}_{G}$.
- How are the boundary components of $\mathcal{C}_{G}$ related to the circuits in the rigidity matroid?
- Maximum likelihood threshold has a natural rigidity theory analogue: are they equivalent?
E. Ben-David. Sharper lower and upper bounds for the Gaussian rank of a graph. (2014) ArXiv: 1406: 4777.
R. Buhl. On the existence of maximum likelihood estimators for graphical Gaussian models. Scand. J. Statist. 20 (1993), no. 3, 263-270.
R. Graver, B. Servatius, and H. Servatius. Combinatorial Rigidity. Graduate Studies in Mathematics, Vol. 2. American Mathematical Society, 1993.
E. Eross and S. Sullivant. The maximum likelihood threshold of a graph. (2014) ArXiv: 1404.6989.
S. Lauritzen. Graphical models. Oxford Statistical Science Series 17, Oxford University Press, New York, 1996.
(R. Uhler. Geometry of maximum likelihood estimation in Gaussian grpahical models. Ann. Statist. 40 (2012), no. 1, 238-261.

