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Gaussian graphical models

X3

X4

X2
X1

Random Vector:

X = (X1,X2,X3,X4)

Let X ∼ N (0,Σ).

The non-edges of G record
the conditional independence
structure of X :

X1 ⊥⊥ X4 | (X2,X3)

X1 ⊥⊥ X3 | (X2,X4)

⇒ (Σ−1)14 = 0, (Σ−1)13 = 0.

Sm=m ×m symmetric real matrices

Sm>0= pos. def. matrices in Sm.

Sm≥0= psd matrices in Sm

Let G = (V ,E ) with |V | = m.

MG = {Σ ∈ Sm>0 : (Σ−1)ij = 0 for all

i , j s.t. i 6= j , ij /∈ E}

Definition

The centered Gaussian graphical
model associated to the graph G is
the set of all multivariate normal
distributions N (0,Σ) such that
Σ ∈MG .
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Maximum likelihood estimation

Goal: Find Σ that best explains data

Observations: Y1, . . . ,Yn

Sample covariance matrix: S = 1
nΣn

i=1YiY
T
i

If the MLE exists, it is the unique positive definite matrix Σ that
satisfies:

Σij = Sij for ij ∈ E and i = j

(Σ)−1
ij = 0 for ij /∈ E and i 6= j

When n ≥ m, the MLE exists with probability one. What about
the case when m >> n?

Question (Lauritzen)

For a given graph G what is the smallest n such that the MLE
exists with probability one?
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Maximum likelihood threshold

Definition

We call the smallest n such that the MLE exists with probably one
(i.e. for generic data) the maximum likelihood threshold, or,
mlt.

Clique number: ω(G ) = size of a largest clique of G

Chordal graph: A graph with no induced cycle of length ≥ 4.

Chordal cover of G = (V ,E ): A graph H = (V ,E ′) such
that H is chordal and E ⊆ E ′.

Tree width:
τ(G ) = min{ω(H)− 1 : H is a chordal cover of G}.

Proposition (Buhl 1993)

ω(G ) ≤ mlt(G ) ≤ τ(G ) + 1
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Bounds

Notice that these bounds can be far away from each other.

Consider for example, G = Grk1,k2 , the k1 × k2 grid graph:

Basic Facts

Note that the bounds

!(G)  mlt(G)  ⌧(G) + 1.

are far from each other in many situations.

Proposition

[Buhl 1993] For m-cycle Cm mlt(Cm) = 3.
mlt(G) = 1 if and only if G has no edges.
mlt(G) = 2 if and only if G has no cycles.
mlt(G) = m if and only if G = Km.
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ω(G ) = size of largest clique = 2
τ(G ) = tree width = min(k1, k2)

Proposition (Uhler 2012)

The maximum likelihood threshold of the 3× 3 grid graph is 3.
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Rank of a graph

Let
φG : Sm → RV+E

φG (Σ) = (σii )i∈V ⊕ (σij)ij∈E

Cone of sufficient statistics:
CG := φG (Sm>0).

Remark: For a given S ∈ Sm≥0, the MLE
exists if and only if φG (S) ∈ int(CG ).

G : 1 2 3

φG

 1 2 3
2 1 2
3 2 1


= (1, 1, 1, 2, 2)T

Let S(m, n) = {Σ ∈ Rm×m : Σ = ΣT , rank(Σ) ≤ n}.

Definition

The rank of a graph G is the minimal n such that
dimφG (S(m, n)) = dim CG = |V |+ |E |

Proposition (Uhler 2012) mlt(G ) ≤ rank(G )
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Algebraic Matroids

Definition

Let I ⊂ K[x1, . . . , xn] be a prime ideal. This defines an algebraic
matroid with ground set {x1, . . . , xn}, and K ⊆ {x1, . . . , xn} an
independent set if and only if I ∩K[K ] = 〈0〉.

In ⊆ K[σik 1 ≤ i ≤ j ≤ m]: ideal defining S(m, n).

If φG (S(m, n)) = dim CG , then mlt(G ) ≤ n

⇒
Elimination criterion (Uhler 2012): If

In ∩K[σij : ij ∈ E , i = j ], then
mlt(G ) ≤ n

Corollary (Matroidal interpretation of elimination criterion)

If {σij : ij ∈ E , i = j} is an independent set in the algebraic
matroid associated to In+1 then mlt(G ) ≤ n.
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Combinatorial Rigidity Theory

Combinatorial Rigidity Theory

Consider the map  n : Rn⇥m ! Rm(m�1)/2

(p1, . . . , pm) 7! (kpi � pjk2
2 : 1  i < j  m)

Let Jn = I(im( n)) ✓ K[xij : 1  i < j  m].
The resulting matroid A(n) is the n-dimensional generic rigidity
matroid.
Spanning sets in the matroid are called (generically infinitesimally)
rigid graphs.
Bases in the matroid are called (generically) isostatic graphs.
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G is called rigid if, for generic points
p1, . . . ,pm ∈ Rn, the set of distances
||pi − pj ||2 for ij ∈ E , determine all
the other distances ||pi − pj ||2 with

ij ∈
([m]

2

)
Consider the map ψn : Rn×m → Rm(m−1)/2

(p1, . . . ,pm) 7→ (||pi − pj ||22 : 1 ≤ i < j ≤ m).

Let Jn = I (im(ψn)) ⊆ K[xij 1 ≤ i < j ≤ m].

n - dimensional generic rigidity matroid: the algebraic matroid
associated to the ideal Jn, is called the denoted A(n).
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Rigidity Matroid ∼= Symmetric Minor Matroid

Theorem (Gross-Sullvant 2014)

A graph G = (V ,E ) has rank(G ) = n if and only if E is an
independent set in A(n − 1) and not an independent set in
A(n − 2).

The matroid A(n − 1) is isomorphic to the contraction of the
rank n symmetric minor matroid via the diagonal elements.

Proof.

Compare the Jacobian of the map

(p1, . . . ,pm) 7→ (||pi − pj ||22 : 1 ≤ i < j ≤ m)

to the Jacobian of the map

(p1, . . . ,pm) 7→ (pi · pj : 1 ≤ i < j ≤ m)
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Laman’s Theorem

Theorem (Laman’s condition)

Let G = (V ,E ) be a graph, and suppose that rank(G ) ≤ n. Then,
for all subgraphs G ′ = (V ′,E ′) of G such that #V ′ ≥ n − 1 we
must have

#E ′ ≤ #V ′(n − 1)−
(
n

2

)
. (1)

Laman’s Theorem states that the condition above is both
necessary and sufficient for a set to be independent in A(2).

Corollary

Let G = (V ,E ) be a graph, if for all subgraphs G ′ = (V ′,E ′) of G

#E ′ ≤ 2(#V ′)− 3,

then mlt(G ) ≤ 3.
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r -cores

Definition

Let G be a graph and r ∈ N. The r-core of G is the graph
obtained by successively removing vertices of G of degree< r .

Theorem (Gross-Sullivant 2014, Ben-David 2014)

Let G have an empty n-core, then rank(G ) ≤ n.

⇒ mlt(Grk1,k2) = 3
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Planar graphs

Planar Graphs

Theorem
If G is a planar graph then mlt(G)  4.

Proof.
Cauchy’s theorem implies that every edge graph of a simplicial
3-polytope is rigid.
Edge count =) G isostatic =) rank(G)  4.
Every planar graph is a subgraph of graph of a simplicial
3-polytope.
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Theorem (Gross-Sullivant 2014)

If G is a planar graph then mlt(G ) ≤ 4.
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Some questions

Find an example of a graph where mlt(G ) < rank(G ).

A graph where dimφG (S(m, n)) 6= |V |+ |E | but
φ(S(m, n) ∩ S≥0) is not in the algebraic boundary of CG .

How are the boundary components of CG related to the
circuits in the rigidity matroid?

Maximum likelihood threshold has a natural rigidity theory
analogue: are they equivalent?
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