Maximum likelihood threshold of a graph

Elizabeth Gross San José State University

Joint work with Seth Sullivant, North Carolina State University

June 10, 2015

伺 ト イヨト イヨト

Gaussian graphical models

$$X = (X_1, X_2, X_3, X_4)$$

Let $X \sim \mathcal{N}(0, \Sigma)$.

The non-edges of G record the conditional independence structure of X:

 $\begin{array}{c} X_1 \perp \perp X_4 \mid (X_2, X_3) \\ \\ X_1 \perp \perp X_3 \mid (X_2, X_4) \\ \\ \Rightarrow (\Sigma^{-1})_{14} = 0, \ (\Sigma^{-1})_{13} = 0. \end{array}$

$$\begin{split} \mathbb{S}^{m} &= m \times m \text{ symmetric real matrices} \\ \mathbb{S}^{m}_{>0} &= \text{ pos. def. matrices in } \mathbb{S}^{m}. \\ \mathbb{S}^{m}_{\geq 0} &= \text{ psd matrices in } \mathbb{S}^{m} \\ \text{Let } G &= (V, E) \text{ with } |V| = m. \\ \mathcal{M}_{G} &= \{\Sigma \in \mathbb{S}^{m}_{>0} : (\Sigma^{-1})_{ij} = 0 \text{ for all} \\ i, j \text{ s.t. } i \neq j, ij \notin E \} \end{split}$$

Definition

The centered **Gaussian graphical model** associated to the graph *G* is the set of all multivariate normal distributions $\mathcal{N}(0, \Sigma)$ such that $\Sigma \in \mathcal{M}_{\mathcal{G}}$.

Maximum likelihood estimation

Goal: Find Σ that best explains data

Observations: Y_1, \ldots, Y_n Sample covariance matrix: $S = \frac{1}{n} \sum_{i=1}^n Y_i Y_i^T$

If the MLE exists, it is the unique positive definite matrix $\boldsymbol{\Sigma}$ that satisfies:

$$\Sigma_{ij} = S_{ij}$$
 for $ij \in E$ and $i = j$
 $(\Sigma)_{ij}^{-1} = 0$ for $ij \notin E$ and $i \neq j$

When $n \ge m$, the MLE exists with probability one. What about the case when m >> n?

Question (Lauritzen)

For a given graph G what is the smallest n such that the MLE exists with probability one?

We call the smallest n such that the MLE exists with probably one (i.e. for generic data) the **maximum likelihood threshold**, or, **mlt**.

- Clique number: ω(G) = size of a largest clique of G
- Chordal graph: A graph with no induced cycle of length \geq 4.
- Chordal cover of G = (V, E): A graph H = (V, E') such that H is chordal and $E \subseteq E'$.
- Tree width:

 $\tau(G) = \min\{\omega(H) - 1 : H \text{ is a chordal cover of } G\}.$

Proposition (Buhl 1993)

$$\omega(G) \leq \textit{mlt}(G) \leq \tau(G) + 1$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Bounds

Notice that these bounds can be far away from each other.

Consider for example, $G = Gr_{k_1,k_2}$, the $k_1 \times k_2$ grid graph:

 $\omega(G) = \text{size of largest clique} = 2$ $\tau(G) = \text{tree width} = \min(k_1, k_2)$

Proposition $\overline{(Uhler 2012)}$

The maximum likelihood threshold of the 3×3 grid graph is 3.

・ロト ・同ト ・ヨト ・ヨト

Rank of a graph

Let

$$\phi_G : \mathbb{S}^m \to \mathbb{R}^{V+E}$$
$$\phi_G(\Sigma) = (\sigma_{ii})_{i \in V} \oplus (\sigma_{ij})_{ij \in E}$$

Cone of sufficient statistics: $C_G := \phi_G(\mathbb{S}^m_{>0}).$

Remark: For a given $S \in \mathbb{S}^{m}_{\geq 0}$, the MLE exists if and only if $\phi_{G}(S) \in int(\mathcal{C}_{G})$.

 $=(1,1,1,2,2)^{T}$

Let $S(m,n) = \{\Sigma \in \mathbb{R}^{m \times m} : \Sigma = \Sigma^T, \operatorname{rank}(\Sigma) \le n\}.$

Definition

The rank of a graph G is the minimal n such that $\dim \phi_G(S(m, n)) = \dim C_G = |V| + |E|$

Proposition (Uhler 2012) $mlt(G) \leq rank(G)$

Algebraic Matroids

Definition

 \Rightarrow

Let $I \subset \mathbb{K}[x_1, \ldots, x_n]$ be a prime ideal. This defines an **algebraic** matroid with ground set $\{x_1, \ldots, x_n\}$, and $K \subseteq \{x_1, \ldots, x_n\}$ an independent set if and only if $I \cap \mathbb{K}[K] = \langle 0 \rangle$.

 $I_n \subseteq \mathbb{K}[\sigma_{ik} \ 1 \leq i \leq j \leq m]$: ideal defining S(m, n).

If $\phi_G(S(m, n)) = \dim C_G$, then $mlt(G) \leq n$

Elimination criterion (Uhler 2012): If $I_n \cap \mathbb{K}[\sigma_{ij} : ij \in E, i = j]$, then $mlt(G) \leq n$

Corollary (Matroidal interpretation of elimination criterion)

If $\{\sigma_{ij} : ij \in E, i = j\}$ is an independent set in the algebraic matroid associated to I_{n+1} then $mlt(G) \leq n$.

Combinatorial Rigidity Theory

G is called **rigid** if, for generic points $\mathbf{p}_1, \ldots, \mathbf{p}_m \in \mathbb{R}^n$, the set of distances $||\mathbf{p}_i - \mathbf{p}_j||_2$ for $ij \in E$, determine all the other distances $||\mathbf{p}_i - \mathbf{p}_j||_2$ with $ij \in {[m] \choose 2}$

Consider the map $\psi_n : \mathbb{R}^{n \times m} \to \mathbb{R}^{m(m-1)/2}$

 $(\mathbf{p}_1,\ldots,\mathbf{p}_m)\mapsto (||\mathbf{p}_i-\mathbf{p}_j||_2^2 : 1 \leq i < j \leq m).$

Let $J_n = I(\operatorname{im}(\psi_n)) \subseteq \mathbb{K}[x_{ij} \ 1 \leq i < j \leq m].$

n - **dimensional generic rigidity matroid**: the algebraic matroid associated to the ideal J_n , is called the denoted $\mathcal{A}(n)$.

Rigidity Matroid \cong Symmetric Minor Matroid

Theorem (Gross-Sullvant 2014)

- A graph G = (V, E) has rank(G) = n if and only if E is an independent set in $\mathcal{A}(n-1)$ and not an independent set in $\mathcal{A}(n-2)$.
- The matroid A(n-1) is isomorphic to the contraction of the rank n symmetric minor matroid via the diagonal elements.

Proof.

Compare the Jacobian of the map

$$(\mathbf{p}_1,\ldots,\mathbf{p}_m)\mapsto (||\mathbf{p}_i-\mathbf{p}_j||_2^2 : 1 \leq i < j \leq m)$$

to the Jacobian of the map

$$(\mathbf{p}_1, \ldots, \mathbf{p}_m) \mapsto (\mathbf{p}_i \cdot \mathbf{p}_j : 1 \le i < j \le m)$$

Theorem (Laman's condition)

Let G = (V, E) be a graph, and suppose that $rank(G) \le n$. Then, for all subgraphs G' = (V', E') of G such that $\#V' \ge n - 1$ we must have

$$\#E' \le \#V'(n-1) - \binom{n}{2}.$$
 (1)

Laman's Theorem states that the condition above is both necessary and sufficient for a set to be independent in $\mathcal{A}(2)$.

Corollary

Let G = (V, E) be a graph, if for all subgraphs G' = (V', E') of G

$$\#E'\leq 2(\#V')-3,$$

then $mlt(G) \leq 3$.

Let G be a graph and $r \in \mathbb{N}$. The r-core of G is the graph obtained by successively removing vertices of G of degree < r.

Theorem (Gross-Sullivant 2014, Ben-David 2014)

Let G have an empty n-core, then $rank(G) \leq n$.

$$\Rightarrow$$
 mlt(Gr_{k_1,k_2}) = 3

Let G be a graph and $r \in \mathbb{N}$. The r-core of G is the graph obtained by successively removing vertices of G of degree < r.

Theorem (Gross-Sullivant 2014, Ben-David 2014)

Let G have an empty n-core, then $rank(G) \leq n$.

$$\Rightarrow$$
 mlt(Gr_{k_1,k_2}) = 3

Let G be a graph and $r \in \mathbb{N}$. The r-core of G is the graph obtained by successively removing vertices of G of degree < r.

Theorem (Gross-Sullivant 2014, Ben-David 2014)

Let G have an empty n-core, then $rank(G) \leq n$.

$$\Rightarrow$$
 mlt(Gr_{k_1,k_2}) = 3

Let G be a graph and $r \in \mathbb{N}$. The r-core of G is the graph obtained by successively removing vertices of G of degree < r.

Theorem (Gross-Sullivant 2014, Ben-David 2014)

Let G have an empty n-core, then $rank(G) \leq n$.

\Rightarrow mlt(Gr_{k_1,k_2}) = 3

Let G be a graph and $r \in \mathbb{N}$. The r-core of G is the graph obtained by successively removing vertices of G of degree < r.

Theorem (Gross-Sullivant 2014, Ben-David 2014)

Let G have an empty n-core, then $rank(G) \leq n$.

 \Rightarrow mlt(Gr_{k_1,k_2}) = 3

Let G be a graph and $r \in \mathbb{N}$. The r-core of G is the graph obtained by successively removing vertices of G of degree < r.

Theorem (Gross-Sullivant 2014, Ben-David 2014)

Let G have an empty n-core, then $rank(G) \leq n$.

 \Rightarrow mlt(Gr_{k_1,k_2}) = 3

Let G be a graph and $r \in \mathbb{N}$. The r-core of G is the graph obtained by successively removing vertices of G of degree < r.

Theorem (Gross-Sullivant 2014, Ben-David 2014)

Let G have an empty n-core, then $rank(G) \leq n$.

 $\Rightarrow \mathbf{mlt}(Gr_{k_1,k_2}) = 3$

A B > A B >

Theorem (Gross-Sullivant 2014)

If G is a planar graph then $mlt(G) \leq 4$.

- Find an example of a graph where mlt(G) < rank(G).
 - A graph where dim $\phi_G(S(m, n)) \neq |V| + |E|$ but $\phi_(S(m, n) \cap \mathbb{S}_{\geq 0})$ is not in the algebraic boundary of \mathcal{C}_G .
- How are the boundary components of C_G related to the circuits in the rigidity matroid?
- Maximum likelihood threshold has a natural rigidity theory analogue: are they equivalent?

A 3 3 4 4

Thank you

- **E**. Ben-David. Sharper lower and upper bounds for the Gaussian rank of a graph. (2014) ArXiv: 1406: 4777.
- S. Buhl. On the existence of maximum likelihood estimators for graphical Gaussian models. *Scand. J. Statist.* **20** (1993), no. 3, 263–270.
- J. Graver, B. Servatius, and H. Servatius. *Combinatorial Rigidity*. Graduate Studies in Mathematics, Vol. 2. American Mathematical Society, 1993.
- **E.** Gross and S. Sullivant. The maximum likelihood threshold of a graph. (2014) ArXiv: 1404.6989.
- S. Lauritzen. *Graphical models*. Oxford Statistical Science Series **17**, Oxford University Press, New York, 1996.
- C. Uhler. Geometry of maximum likelihood estimation in Gaussian grpahical models. *Ann. Statist.* **40** (2012), no. 1, 238–261.

・ 同 ト ・ ヨ ト ・ ヨ ト