Matrices of nonnegative rank at most three

Emil Horobeț

(with Rob H. Eggermont and Kaie Kubjas)

Eindhoven University of Technology e.horobet@tue.nl

Nonnegative rank

- A fictional study on "Does watching football cause hair loss?"

$$
\begin{gathered}
\text { plenty medium less } \\
\leq 2 \mathrm{~h} \\
2-6 \mathrm{~h} \\
\geq 6 \mathrm{~h}
\end{gathered}\left(\begin{array}{ccc}
51 & 45 & 33 \\
28 & 30 & 29 \\
15 & 27 & 38
\end{array}\right)=: U
$$

Nonnegative rank

- A fictional study on "Does watching football cause hair loss?"

$$
\begin{aligned}
& \text { plenty medium less } \\
& \leq 2 \mathrm{~h} \\
& 2-6 \mathrm{~h} \\
& \geq 6 \mathrm{~h}
\end{aligned}\left(\begin{array}{ccc}
51 & 45 & 33 \\
28 & 30 & 29 \\
15 & 27 & 38
\end{array}\right)=: U
$$

- The 3×3 contingency table is of rank 2 , so apparently they are correlated.

Nonnegative rank

- A fictional study on "Does watching football cause hair loss?"

$$
\begin{aligned}
& \text { plenty medium less } \\
& \leq 2 \mathrm{~h} \\
& 2-6 \mathrm{~h} \\
& \geq 6 \mathrm{~h}
\end{aligned}\left(\begin{array}{ccc}
51 & 45 & 33 \\
28 & 30 & 29 \\
15 & 27 & 38
\end{array}\right)=: U
$$

- The 3×3 contingency table is of rank 2 , so apparently they are correlated.
- We get a much better understanding if we consider the hidden variable gender.
- We get the sum of two rank one contingency tables:

$$
U=\left(\begin{array}{ccc}
3 & 9 & 15 \\
4 & 12 & 20 \\
7 & 21 & 35
\end{array}\right)+\left(\begin{array}{ccc}
48 & 36 & 18 \\
24 & 18 & 9 \\
8 & 6 & 3
\end{array}\right)
$$

- So watching football and hair loss are independent given the gender.
- We get the sum of two rank one contingency tables:

$$
U=\left(\begin{array}{ccc}
3 & 9 & 15 \\
4 & 12 & 20 \\
7 & 21 & 35
\end{array}\right)+\left(\begin{array}{ccc}
48 & 36 & 18 \\
24 & 18 & 9 \\
8 & 6 & 3
\end{array}\right)
$$

- So watching football and hair loss are independent given the gender.

Main motivation:
Determine whether such an "expanatory random variable" exists and what the number of its states is?

Nonnegative rank

Given $M \in \mathbb{R}_{\geq 0}^{m \times n}$ its nonnegative rank is the smallest r such that there exist $A \in \mathbb{R}_{\geq 0}^{m \times r}$ and $B \in \mathbb{R}_{\geq 0}^{r \times n}$ with

$$
M=A \cdot B .
$$

- Matrices of nonnegative rank at most r form a semialgebraic set $\mathcal{M}_{m \times n}^{r}$.

Nonnegative rank

Given $M \in \mathbb{R}_{\geq 0}^{m \times n}$ its nonnegative rank is the smallest r such that there exist $A \in \mathbb{R}_{\geq 0}^{m \times r}$ and $B \in \mathbb{R}_{\geq 0}^{r \times n}$ with

$$
M=A \cdot B .
$$

- Matrices of nonnegative rank at most r form a semialgebraic set $\mathcal{M}_{m \times n}^{r}$.
- If the nonnegative rank is 1 or 2 , then it equals the rank.
- First interesting example is $\mathcal{M}_{m \times n}^{3}$.
- We want to solve optimization problems on $\mathcal{M}_{m \times n}^{3}$ (e.g. maximum likelihood estimation).
- We want to solve optimization problems on $\mathcal{M}_{m \times n}^{3}$ (e.g. maximum likelihood estimation).
- For this we need to understand the Zariski closure of the boundary.

Algebraic boundary of $\mathcal{M}_{m \times n}^{3}$
Let us denote the multiplication map by

$$
\begin{gathered}
\mu: M_{m \times 3} \times M_{3 \times n} \rightarrow M_{m \times n} \\
\left(\left(a_{i k}\right),\left(b_{k j}\right)\right) \mapsto\left(x_{i j}\right) .
\end{gathered}
$$

Theorem (Kubjas-Robeva-Sturmfels)
The irreducible components of $\overline{\partial\left(\mathcal{M}_{m \times n}^{3}\right)}$ are
components defined by $x_{i j}=0$

- components parametrized by

$$
\left(x_{i j}\right)=A \cdot B \text { or }\left(x_{i j}\right)=B \cdot A,
$$

where A has four zeros in three columns and distinct rows, and B has three zeros in distinct rows and columns.

Let $\mathcal{A}=\left\{\left(\begin{array}{ccc}0 & * & * \\ 0 & * & * \\ * & 0 & * \\ * & * & 0\end{array}\right)\right\}$ and $\mathcal{B}=\left\{\left(\begin{array}{cccc}0 & * & * & \cdots \\ * & 0 & * & \cdots \\ * & * & 0 & \cdots\end{array}\right)\right\}$

Consider the following irreducible component

$$
\begin{aligned}
& \mu: M_{m \times 3} \times M_{3 \times n} \longrightarrow M_{m \times n} \\
& \text { UI UI } \\
& \mathcal{A} \times \mathcal{B} \longrightarrow \overline{\mu(\mathcal{A} \times \mathcal{B})}
\end{aligned}
$$

Generators of the ideal of X.

The following theorem was previously conjectured by Kubjas-Robeva-Sturmfels.

Main Theorem (Eggermont-H.-Kubjas)

The ideal of the variety X is generated by certain degree 6 polynomials and degree 4 determinants

$$
\mathcal{I}(X)=\left(f_{i}, \operatorname{det}_{j, k}\right)_{i, j, k}
$$

Moreover, these polynomials form a Gröbner basis with respect to the graded reverse lexicographic term order.

Steps of the proof

$$
\begin{gathered}
\mathrm{GL}_{3} \curvearrowright \mathcal{A} \times \mathcal{B} \\
g \cdot(A, B)=\left(A g^{-1}, g B\right)
\end{gathered}
$$

Steps of the proof

$\mathrm{GL}_{3} \curvearrowright \mathcal{A} \times \mathcal{B}$
$g \cdot(A, B)=\left(A g^{-1}, g B\right)$
\downarrow
$\mathrm{GL}_{3} \curvearrowright \mathbb{R}\left[M_{m \times 3} \times M_{3 \times n}\right]$

Steps of the proof

$\mathrm{GL}_{3} \curvearrowright \mathcal{A} \times \mathcal{B}$
$g \cdot(A, B)=\left(A g^{-1}, g B\right)$

\downarrow
$\mathrm{GL}_{3} \curvearrowright \mathbb{R}\left[M_{m \times 3} \times M_{3 \times n}\right]$

$\overline{\mathrm{GL}_{3} \cdot(\mathcal{A} \times \mathcal{B})}$ has codim. 1

Steps of the proof

Pick $f \in \mathcal{I}(X)$ from K-R-S

$$
\mu^{*} f=\operatorname{det} B_{i} \cdot f_{6,3}
$$

$\overline{\mathrm{GL}_{3} \cdot(\mathcal{A} \times \mathcal{B})}$ has codim. 1

Steps of the proof

Steps of the proof (cont.)
$\mathcal{I}\left(\mathrm{GL}_{3}(\mathcal{A} \times \mathcal{B})\right)=\left(f_{6,3}\right)$

Steps of the proof (cont.)

$$
\mathcal{I}\left(\mathrm{GL}_{3}(\mathcal{A} \times \mathcal{B})\right)=\left(f_{6,3}\right)
$$

Steps of the proof (cont.)

$\mathcal{I}\left(\mathrm{GL}_{3}(\mathcal{A} \times \mathcal{B})\right)=\left(f_{6,3}\right)$

$\mathrm{GL}_{3}(\mathcal{A} \times \mathcal{B})$ dense in X $\mu^{*} \mathcal{I}(X)=\mathcal{I}\left(\mathrm{GL}_{3}(\mathcal{A} \times \mathcal{B}) \cap \operatorname{Im} \mu^{*}\right.$

$$
\operatorname{Im} \mu^{*}=\mathbb{R}\left[M_{m \times 3} \times M_{3 \times n}\right]^{\mathrm{GL}_{3}}
$$

Steps of the proof (cont.)

$$
\begin{aligned}
& \mathcal{I}\left(\mathrm{GL}_{3}(\mathcal{A} \times \mathcal{B})\right)=\left(f_{6,3}\right) \\
& \mathrm{GL}_{3}(\mathcal{A} \times \mathcal{B}) \text { dense in } X \\
& \mu^{*} \mathcal{I}(X)=\mathcal{I}\left(\mathrm{GL}_{3}(\mathcal{A} \times \mathcal{B}) \cap \operatorname{Im} \mu^{*}\right. \\
& \operatorname{Im} \mu^{*}=\mathbb{R}\left[M_{m \times 3} \times M_{3 \times n}\right]^{\mathrm{GL}_{3}} \\
& \mu^{*} \mathcal{I}(X)=\left(f_{6,3}\right)^{\mathrm{GL}_{3}}=\left\{\sum_{i} f_{6,3} \cdot \operatorname{det} B_{i} \cdot h_{i}, h_{i} \text { is } \mathrm{GL}_{3} \text {-inv. }\right\}
\end{aligned}
$$

Steps of the proof (cont.)

$$
\begin{gathered}
\mathcal{I}\left(\mathrm{GL}_{3}(\mathcal{A} \times \mathcal{B})\right)=\left(f_{6,3}\right) \\
\mu^{*} \mathcal{I}(X)=\left(f_{6,3}\right)^{\mathrm{GL}_{3}}=\left\{\sum_{i} f_{6,3} \cdot \operatorname{det} B_{i} \cdot h_{i}, h_{i} \text { is } \mathrm{GL}_{3} \text {-inv. }\right\} \\
\mu^{*} \mathcal{I}(X)=\mathcal{I}\left(\mathrm{GL}_{3}(\mathcal{A} \times \mathcal{B}) \cap \operatorname{Im} \mu^{*}\right. \\
\operatorname{Im} \mu^{*}=\mathbb{R}\left[M_{m \times 3} \times M_{3 \times n}\right]^{\mathrm{GL}} 3
\end{gathered}
$$

Stabilization of the boundary

- For matrix rank, if m, n are large enough, then already a submatrix has the given rank.

Stabilization of the boundary

- For matrix rank, if m, n are large enough, then already a submatrix has the given rank.
- When both m and n tend to infinity, this is not true for the nonneg. rank.

Example of Moitra: A $3 n \times 3 n$ matrix with nonneg. rank 4 and all its $3 n \times n$ submatrices have nonneg. rank 3 .

Stabilization of the boundary

- For matrix rank, if m, n are large enough, then already a submatrix has the given rank.
- When both m and n tend to infinity, this is not true for the nonneg. rank.

Example of Moitra: A $3 n \times 3 n$ matrix with nonneg. rank 4 and all its $3 n \times n$ submatrices have nonneg. rank 3 .

Given $M \in \mathbb{R}_{\geq 0}^{m \times n}$, let $W=\operatorname{Span}(M) \cap \Delta_{m-1}$ and $V=\operatorname{Cone}(M) \cap \Delta_{m-1}$.

Lemma

Let $\operatorname{rank}(M)=r$, then M has nonneg. rank exactly r if and only if there exists a $(r-1)$-simplex Δ, such that $V \subseteq \Delta \subseteq W$

Example

Here M^{ϵ} is a 12×12 matrix of rank 3 and nonnegative rank 4 .

$3 n=12 \&$ bounding triangles

After expanding by a factor ϵ

Any 12×5 (i.e $3 n \times\left(\left\lceil\frac{3}{2} n\right\rceil-1\right)$) submatrix has nonnegative rank 3.

Stabilization of the boundary

- We have seen that there is no stabilization for the topological boundary.
- What about the stabilization of the algebraic boundary?

Stabilization of the boundary

- We have seen that there is no stabilization for the topological boundary.
- What about the stabilization of the algebraic boundary?

Claim

For $n>4$, let $M \in \overline{\partial\left(\mathcal{M}_{m \times n}^{3}\right)}$. Then we can find a column i_{0} such that

$$
M^{i_{0}} \in \overline{\partial\left(\mathcal{M}_{m \times n-1}^{3}\right)},
$$

where $M^{i_{0}}$ is obtained by removing the i_{0}-th column of M.

Conjecture

For given $r \geq 3$, there exists $n_{0} \in \mathbb{N}$, such that for all $n \geq n_{0}$, and all matrices M on $\overline{\partial\left(\mathcal{M}_{m \times n}^{r}\right)}$, there is a column i_{0} such that

$$
M^{i_{0}} \in \overline{\partial\left(\mathcal{M}_{m \times n-1}^{r}\right)},
$$

where $M^{i_{0}}$ is obtained by removing the i_{0}-th column of M.

Conjecture

For given $r \geq 3$, there exists $n_{0} \in \mathbb{N}$, such that for all $n \geq n_{0}$, and all matrices M on $\overline{\partial\left(\mathcal{M}_{m \times n}^{r}\right)}$, there is a column i_{0} such that

$$
M^{i_{0}} \in \overline{\partial\left(\mathcal{M}_{m \times n-1}^{r}\right)},
$$

where $M^{i_{0}}$ is obtained by removing the i_{0}-th column of M.

Thank you!

