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Psychometrics is the field of objective measurement of skill, knowledge,
ability, attitudes, personality, ....

Measuring Intelligence

The Berlin intelligence structure model (Jäger et al. 1984–) consists
of 12 components of intelligence. Four “operational facets”:

• Processing capacity (How many cores?)

• Processing speed (CPU frequency)

• Creativity (Hardware bugs?)

• Short-term memory (Size of CPU Cache)

are combined with “content categories”: symbolic, numerical, verbal.



Measuring mental speed

• Give many simple tasks and measure processing speed.

• Historically test items from hand-crafted databases
• labor intensive creation
• subjects learn them
• bias is hard to control

• Better: Rule-based item generation
• Define rules with fixed influence on difficulty.
• Trivial to generate more items by combining rules.

• Example: MS2T: Münster mental speed test, Doebler/Holling
in Learning and individual differences (2015).
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Example of rule based item generation

= red phone

Rule 1: Give the opposite of the correct answer
Rule 2: Apply Rule 1 only if the item in the picture is green.
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Rules! on your phone

...

36. Even monsters

35. Red animals

34. Multiples of three

33. Primes

32. Third column

31. Ascending except Whales

30. Shake if Whales

29. Bipeds

28. Foxes

27. Fives

26. 5s-9s

...



Task: Model number of correct answers as a function of rules.

Regression

• Influences (Rules) are binary x ∈ {0, 1}k.

• Response is a count whose mean depends deterministically on x.

General principle of statistical regression

The expected value of the dependent variable Y is a deterministic
function of the influences X:

E(Y |X = x) = r(x)
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The Rasch Poisson counts model

• The number of correct answers is Poisson distributed:

Prob(#correct answers = m) =
λme−λ

m!

• Intensity λ = θσ depends on ability θ of subject and easiness σ.



Calibration of rule influence

• Assume ability θ of a subject is known (or at least fixed).

• Want to calibrate the influence of rules on σ.

Poisson regression: Influence on exponential scale – log-linear model

λ(x) = θσ(x) = θ exp(f(x) · β)

• Binary rules: x ∈ {0, 1}k
• Regression functions f translate settings into numbers.

No interaction f(x) = (1, x1, x2, . . . , xk)
Pairwise interaction f(x) = (1, x1, . . . , xk, x1x2, . . . , xk−1xk)

. . .
Saturated model f(x) = (

∏
i∈A xi : A ⊆ {1, . . . , k})
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Multiplicative structure

λ(x) = θ exp(f(x) · β) =
∏

A⊆x
eβA

• Convenient: Rules determine which factors appear.
• Will often choose βA < 0

• Implicit equations in λ(x):
• Independence: (2× 2)-minors

λ(00, β)λ(11, β) = λ(10, β)λ(01, β)

• All terms up to order k − 1: One generator

∏

|x| odd

λ(x, β) =
∏

|x| even

λ(x, β)

• In between: Query MBDB, 4ti2, or give up.



General framework

In a generalized linear model, the expectation varies as

E(Y |X = x) = g−1(f(x) · β)

• f is a vector of regression functions

• β is a vector of parameters

• A link function g (e.g. id, log) couples the expectation value
and the linear predictor.

• Distributions around the mean from exponential family
(e.g Gauss, Poisson, Binomial, Gamma, ...).

⇒ general theory for estimation, testing, fit, etc.



Experimental design

• Can observe n times: generate (Yi|xi) for chosen xi.

• How to pick xi so that our experiment is most informative
about the parameters?

• A design is a choice of x1, . . . ,xn ∈ {0, 1}k.

• An approximate design is a choice of real weights
wx ≥ 0,x ∈ {0, 1}k with

∑
xwx = 1.

Optimal experimental design

A design is good if the variance of unbiased estimators is low.



Fisher Information

• Information gained from observing a single experiment (one
value of the Poisson variable, given a setting x) is measured
with the Fisher Information

M(x, β) = λ(x, β)f(x)f(x)T

• Information of an approximate design w

M(w, β) =
∑

x

wxλ(x, β)f(x)f(x)T

• Connection to estimator variance: Cramer-Rao inequality.



Experimental design as an optimization problem

Optimality

A design is locally D-optimal at β if it maximizes the determinant of
the information matrix.

Optimal experimental design

• Chicken and Egg Problem: Optimal design depends on β.

• BUT: “Regions of optimality” are often semi-algebraic.

Remarks

• Person with highest ability provides most information!

• Optimization can be carried out with θ = 1, β0 = 0.



Two independent rules (Graßhoff/Holling/Schwabe)

• Settings x ∈ {00, 01, 10, 11}, λ(x, β) =: λx =
∏
i e
xiβi

• Weights w00 + w01 + w10 + w11 = 1.

f(00)T = (1, 0, 0) f(10)T = (1, 1, 0)

f(01)T = (1, 0, 1) f(11)T = (1, 1, 1)

f(00)f(00)T =




1 0 0
0 0 0
0 0 0


 f(10)f(10)T =




1 1 0
1 1 0
0 0 0




f(01)f(01)T =




1 0 1
0 0 0
1 0 1


 f(11)f(11)T =




1 1 1
1 1 1
1 1 1






Two independent rules (Graßhoff/Holling/Schwabe)

• Settings x ∈ {00, 01, 10, 11}, λ(x, β) =: λx =
∏
i e
xiβi

• Weights w00 + w01 + w10 + w11 = 1.

Information of the design w:

M(w, β) =




∑
xwxλx w11λ11 + w10λ10 w11λ11 + w01λ01

w11λ11 + w10λ10 w11λ11 + w10λ10 w11λ11
w11λ11 + w01λ01 w11λ11 w11λ11 + w01λ01




with determinant

det(M(w, β)) = w11w10w01λ11λ10λ01 + w11w10w00λ11λ10λ00+

w11w01w00λ11λ01λ00 + w01w10w00λ01λ10λ00

Maximize as a function of parameters β1, β2.



Two independent rules (Graßhoff/Holling/Schwabe)

ξ00 = (13 ,
1
3 ,

1
3 , 0)

...
ξ11 = (0, 13 ,

1
3 ,

1
3)

Origin: (14 ,
1
4 ,

1
4 ,

1
4)

Diamond: Full support
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Fig. 1 Locally D-optimal designs in dependence on (b1,b2)

Yang et al. (2012) for binary response. In the case of vanishing effects, b1 = b2 = 0,
the information matrix coincides with the corresponding linear model of a two-way
layout, and the uniform design is optimal with weights wi = 1/4 on all four level
combinations x1, ...,x4.

Next we will consider two particular parameter constellations, where either one
of the effect sizes vanishes or where both effect sizes are equal: For the first case
we assume b1 = 0. The case b2 = 0 can be treated analogously. In this situation
the intensity l (x;b ) is constant in the first component, l1 = l3 = exp(b2) and
l2 = l4 = 1. Hence, according to Theorem 1 in Graßhoff et al. (2004) we obtain
an optimal product-type design x § defined by x §(x) = x §

2 (x2)/2 and the marginal
weight v§ = x §

2 (1) maximizes v(1° v)(1 +(l1 ° 1)v). If additionally also b2 = 0,
then l1 = 1 and the optimal marginal weight is v§ = 1/2, form which we recover the
optimality of the uniform four-point design. If b2 6= 0, then l1 6= 1 and the optimal
weight can be calculated as

v§ = 1/2 + (t °2
p

t2 °3)/(6(exp(b2/2)° exp(°b2/2)) ,

where t = exp(b2/2)+ exp(°b2/2) Note that 1/3 < v§ < 2/3. Consequently we
get 1/6 < w§

i < 1/3 as w§
1 = w§

3 = v§/2 and w§
2 = w§

4 = (1° v§)/2. The left panel
of Figure 2 exhibits these weights as functions of b2. The weights w§

1 = w§
3 for

x1 = (1,1) and x3 = (0,1) decrease, when b2 tends to minus infinity, i. e. if these
items become more difficult. Hence, more observations should be allocated to the
other items x2 = (1,0) and x4 = (0,0) with lower difficulty.

An alternative parameter constellation, where we can explicitly determine the
optimal weights, is the situation of equally sized effect sizes, |b2| = |b1|. In partic-
ular we consider the case b2 = b1 = b , which is relevant for our application. The
case b2 = °b1 can again be treated by symmetry considerations. Here the intensi-
ties are l1 = exp(2b ), l2 = l3 = exp(b ) and l4 = 1. Due to symmetry considera-

Curve in lower right quadrant:

λ10 + λ01 + λ11 = 1⇔ eβ1 + eβ2 + eβ1+β2 = 1⇔ β2 = log
1− eβ1
1 + eβ1

If rules make problem hard, then 11 is not very informative.



Geometry of fixed parameter optimization problem

• Maximize log-concave function det over

• Polytope of design matrices

Pβ = conv{λ(x, β)f(x)f(x)T : x ∈ {0, 1}k}

Note: Both target function and geometry of Pβ depend on β.

Three Independent rules

• β = 0: Cyclic polytope

• β 6= 0: Simplex



Candidates for optimal designs

Full support

• For β = 0, equal weights on all design points x ∈ {0, 1}k.

• Numerical optimization in region with full support
• Need to round before realization

• Caratheodory’s theorem: Solution in w not unique.

Restricted support

• A design is saturated if the support of w has the same size as
the number of parameters.

• This is the minimal number (otherwise det = 0)
• Can be expensive to change setting x (not here)
• All weights must be equal → Optimal weights rational
• Model validation (test for for higher interaction) is impossible.



The corner design

If rules make the problem hard

Fix an interaction order d. The corner design w∗ consists of equal
weights on the points

{
x ∈ {0, 1}k : |x|1 ≤ d

}



Optimality of the corner design

Theorem

Consider the Rasch Poisson counts model with interaction order d
and k binary predictors. Denote µA = eβA , |A| ≤ d. The design w∗

is D-optimal if and only if for all C ⊆ [k] with |C| = d+ 1

∏

A⊆C
µA +

∑

B⊆C

∏

A⊆C,
A 6=B

µA ≤ 1

Note: inequalities are imposed in parameter space.
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Example: k independent rules (Graßhoff/Holling/Schwabe)

Design w∗ is optimal if for all pairs i, j

µiµj + µi + µj ≤ 1.



Technology: the Kiefer-Wolfowitz Theorem

For saturated designs, the optimization problem is solved in general by

Kiefer-Wolfowitz general equivalence theorem

Let w be a saturated design. Ψ = diag(1, (µA)|A|≤d), and F the
matrix with rows {f(x) : x ∈ supp(w)}. Then w is locally D-optimal
if and only if for all x ∈ {0, 1}k

λ(x)(F−T f(x))TΨ−1(F−T f(x)) ≤ 1

• For corner design w∗ can determine F−T explicitly.

• Equality holds on the design points x ∈ supp(w)

• For |x|1 = d+ 1 we get inequalities in the theorem

• Remaining inequalities redundant by monotonicity arguments.



Other saturated designs

Conjecture

If βA < 0 then no saturated design except w∗ is ever optimal.

Kiefer-Wolfowitz

• For each saturated design get (rational) inequality system
• Don’t know how to invert F by hand.

• Need to show that inequality system is infeasible.
• Best software comes from optimization community
• Positivstellensatz



Evidence in easy cases

• Grasshoff/Holling/Schwabe did d = 1, k = 3 by hand:
• Up to symmetry there are 4 inequality systems to be checked.
• Could find two inequalities that contradict each other.

• Magma, Maxima, Maple: DNF

• Numerics: For d = 1, k = 4
• used moment relaxations with Sage/Matlab/Yalmip/MOSEK
• Challenge: Conditioning of the resulting SDP

Goal: Explicit Positivstellensatz certificates.



Outlook

• Interpretation: Optimal design wants many combinations, but
avoid low intensity.

• Geometry of the information matrix polytope?

• Inequalities in λ(x) ?

Related work

• Russel et al (2009): Similar results for (independent) continuous
predictors.

• Yang et al. (2012): successful application of quantifier
elimination in a similar setting (binary response).

Thanks!
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