Hypergraph Decompositions and Toric Ideals

Elizabeth Gross and Kaie Kubjas

A^{31}
Aalto University
June 9, 2015

Toric ideal of a hypergraph

- $H=(E, V)$ hypergraph
- I_{H} is kernel of the monomial map

$$
\begin{aligned}
\mathbb{K}\left[p_{e}: e \in E\right] & \rightarrow \mathbb{K}\left[q_{v}: v \in V\right] \\
p_{e} & \mapsto \prod_{v \in e} q_{v}
\end{aligned}
$$

- the toric ideal is parametrized by the vertex-edge incidence matrix

$$
\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Main problem

Sonja Petrović and Despina Stasi (2014), Toric algebra of hypergraphs, J. Algebraic Combin., 39, 187-208:

Question

Given a hypergraph H that is obtained by identifying vertices from two smaller hypergraphs H_{1} and H_{2}, is it possible to obtain generating set of I_{H} from the generating set of $I_{H_{1}}$ and $I_{H_{2}}$?

Hierarchical models

grade by the values on the intersection

Toric fiber products

- $\mathbb{K}[x]=\mathbb{K}\left[x_{j}^{j}: i \in[r], j \in\left[s_{i}\right]\right], \mathbb{K}[y]=\mathbb{K}\left[y_{k}^{i}: i \in[r], k \in\left[t_{i}\right]\right]$
- multigraded by

$$
\operatorname{deg}\left(x_{j}^{i}\right)=\operatorname{deg}\left(y_{k}^{i}\right)=\mathbf{a}^{i} \in \mathbb{Z}^{d}
$$

- $I \subseteq \mathbb{K}[x], J \subseteq \mathbb{K}[y]$ homogeneous wrt the multigrading
- $\mathbb{K}[z]=\mathbb{K}\left[z_{j k}^{i}: i \in[r], j \in\left[s_{i}\right], k \in\left[t_{i}\right]\right]$
- $\phi_{I, J}: \mathbb{K}[z] \rightarrow \mathbb{K}[x] / I \otimes_{\mathbb{K}} \mathbb{K}[y] / J, z_{j k}^{i} \mapsto x_{j}^{i} \otimes y_{k}^{i}$
- toric fiber product: $I \times_{\mathcal{A}} J=\operatorname{ker}\left(\phi_{I, J}\right)$
- Sullivant 2007; Engström, Kahle, Sullivant 2014; Kahle, Rauh 2014; Rauh, Sullivant 2014+

Possibility for toric fiber products?

- One idea:
- $V=V_{1} \cup V_{2}$
- H_{i} is the subhypergraph induced by V_{i}
- grade edges in H_{i} by their incidence vectors for $V_{1} \cap V_{2}$
- However, there are problems:
- the ideals are not homogeneous
- knowing the incidence vectors for the intersection $V_{1} \cap V_{2}$ is not enough information

- Multigrading has to remember which edges can be glued

Modified construction

- $H=(V, E)$ hypergraphs
- $V=V_{1} \cup V_{2}$
- $H_{i}=\left(V_{i}, E_{i}\right)$ is the subhypergraph induced by V_{i}
- $E_{i}=\left\{e \cap V_{i}: e \in E, e \cap V_{i} \neq \emptyset\right\}$
- we view E_{1} and E_{2} as multisets

->

Modified construction

- $\mathbb{K}\left[H_{i}\right]=\mathbb{K}\left[x_{e}: e \in E, e \cap V_{i} \neq \emptyset\right]$
- multigraded by

$$
\begin{aligned}
& \operatorname{deg}\left(x_{e}\right)=\operatorname{deg}\left(y_{e}\right)=u_{e} \text { if } e \cap V_{1} \neq \emptyset \text { and } e \cap V_{2} \neq \emptyset \\
& \operatorname{deg}\left(x_{e}\right)=\operatorname{deg}\left(y_{e}\right)=0 \text { otherwise }
\end{aligned}
$$

- $\mathbb{K}[H]=\mathbb{K}\left[z_{e}: e \in E\right]$,
- ring homomorphism $\phi_{I_{H_{1}}, I_{H_{2}}}: \mathbb{K}[H] \rightarrow \mathbb{K}\left[H_{1}\right] / I_{H_{1}} \otimes \mathbb{K}\left[H_{2}\right] / I_{H_{2}}$ defined by

$$
\begin{aligned}
& z_{e} \mapsto x_{e} \otimes y_{e} \text { if } e \cap V_{1} \neq \emptyset \text { and } e \cap V_{2} \neq \emptyset \\
& z_{e} \mapsto x_{e} \otimes 1 \text { if } e \subseteq V_{1} \backslash V_{2} \\
& z_{e} \mapsto 1 \otimes y_{e} \text { if } e \subseteq V_{2} \backslash V_{1}
\end{aligned}
$$

- $I_{H}=\operatorname{ker}\left(\phi_{I_{H_{1}}}, I_{H_{2}}\right)$

Graver basis

Definition

A Graver basis of a toric ideal I consists of all the binomials $p^{+}-p^{-} \in I$ such that there is no other binomial $q^{+}-q^{-} \in I$ such that q^{+}divides p^{+}and q^{-}divides p^{-}.

$$
\operatorname{Gr}\left(I_{H_{1}}\right)=\left\{x^{u_{i}^{+}}-x^{u_{i}^{-}}: i \in I\right\}, \operatorname{Gr}\left(I_{H_{2}}\right)=\left\{y^{v_{j}^{+}}-y^{v_{j}^{-}}: j \in J\right\}
$$

- $\left(\alpha_{i}^{+}, \alpha_{i}^{-}\right)=\left(\operatorname{deg}\left(x^{u_{i}^{+}}\right), \operatorname{deg}\left(x^{u_{i}^{-}}\right)\right)$for all $i \in I$
- $\left(\beta_{j}^{+}, \beta_{j}^{-}\right)=\left(\operatorname{deg}\left(y^{v_{j}^{+}}\right), \operatorname{deg}\left(y^{v_{j}^{-}}\right)\right)$for all $j \in J$

Graver basis

$$
\begin{aligned}
L=\left\{\left(a_{1}, \ldots, a_{l}, b_{1}, \ldots, b_{J}\right) \in \mathbb{Z}^{I+J}:\right. & \sum a_{i} \alpha_{i}^{\operatorname{sign}\left(a_{i}\right)}=\sum b_{j} \beta_{j}^{\operatorname{sign}\left(b_{j}\right)}, \\
& \left.\sum a_{i} \alpha_{i}^{-\operatorname{sign}\left(a_{i}\right)}=\sum b_{j} \beta_{j}^{-\operatorname{sign}\left(b_{j}\right)}\right\}
\end{aligned}
$$

Define a partial order on \mathbb{R}^{I+J} by

$$
x \preceq x^{\prime} \Leftrightarrow \operatorname{sign}\left(x_{i}\right)=\operatorname{sign}\left(x_{i}^{\prime}\right) \text { and }\left|x_{i}\right| \leq\left|x_{i}^{\prime}\right| \text { for } i=1, \ldots, I+J
$$

Let S be equal to the set of minimal elements in L wrt the partial order.

Gluing

- $E^{\prime}=\left\{e \in E: e \cap V_{1} \neq \emptyset, e \cap V_{2} \neq \emptyset\right\}$
- $f=\prod_{e \subseteq V_{1} \backslash V_{2}} x_{e}^{a_{e}^{+}} \prod_{e \in E^{\prime}} x_{e}^{c_{e}^{+}}-\prod_{e \subseteq V_{1} \backslash V_{2}} x_{e}^{a_{e}^{-}} \prod_{e \in E^{\prime}} x_{e}^{c_{e}^{-}}$
- $g=\prod_{e \subseteq V_{2} \backslash V_{1}} y_{e}^{b_{e}^{+}} \prod_{e \in E^{\prime}} y_{e}^{c_{e}^{+}}-\prod_{e \subseteq V_{1} \backslash V_{2}} y_{e}^{b_{e}^{-}} \prod_{e \in E^{\prime}} y_{e}^{c_{e}^{-}}$
- $\operatorname{glue}(f, g)=\prod_{e \subseteq V_{1} \backslash V_{2}} z_{e}^{a_{e}^{+}} \prod_{e \subseteq V_{2} \backslash V_{1}} z_{e}^{b_{e}^{+}} \prod_{e \in E^{\prime}} z_{e}^{c_{e}^{+}}-$ $\prod_{e \subseteq V_{1} \backslash V_{2}} z_{e}^{a_{e}^{-}} \prod_{e \subseteq V_{2} \backslash V_{1}} z_{e}^{b_{e}^{-}} \prod_{e \in E^{\prime}} z_{e}^{c_{e}^{-}}$
- we say f and g are compatible
- $\mathcal{F}_{1} \subseteq I_{H_{1}}$ and $\mathcal{F}_{2} \subseteq I_{H_{2}}$ consist of binomials
- $\operatorname{Glue}\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)=\left\{\operatorname{glue}(f, g): f \in \mathcal{F}_{1}, g \in \mathcal{F}_{2}\right.$ compatible $\}$

Graver basis

Theorem

The Graver basis of I_{H} is given by

$$
\begin{aligned}
&\{g l u e(f, g) \in k[H]: f=\prod_{i \in I}\left(x^{u_{i}^{\operatorname{sign}\left(a_{i}\right)}}\right)^{a_{i}}-\prod_{i \in I}\left(x^{u_{i}^{-\operatorname{sign}\left(a_{i}\right)}}\right)^{a_{i}} \\
& g=\prod_{j \in J}\left(y^{v_{j}^{\operatorname{sign}\left(b_{j}\right)}}\right)^{b_{j}}-\prod_{j \in J}\left(y^{v_{j}^{-\operatorname{sign}\left(b_{j}\right)}}\right)^{b_{j}} \\
&\left.f o r\left(a_{1}, \ldots, a_{I}, b_{1}, \ldots, b_{J}\right) \in S\right\} .
\end{aligned}
$$

Graver basis

The compatible projection property

Definition

Let $\mathcal{F}_{1} \subset I_{1}$ and $\mathcal{F}_{2} \subset I_{2}$. The pair \mathcal{F}_{1} and \mathcal{F}_{2} has compatible projection property if for all compatible pairs $x^{u^{+}}-x^{u^{-}} \in I_{H_{1}}$ and $y^{v^{+}}-y^{v^{-}} \in I_{H_{2}}$ there exist $x^{u_{i}^{+}}-x^{u_{i}^{-}}$, monomial multiples of elements of $\mathcal{F}_{1}, i=1, \ldots, m$, and $y^{v_{j}^{+}}-y^{v_{j}^{-}}$, monomial multiples of elements of $\mathcal{F}_{2}, j=1, \ldots, n$, such that

1. $x^{u^{+}}-x^{u^{-}}=\sum x^{u_{i}^{+}}-x^{u_{i}^{-}}$and $y^{v^{+}}-y^{v^{-}}=\sum y^{v_{j}^{+}}-y^{v_{j}^{-}}$,
2. if $i_{1}<i_{2}<\ldots<i_{k}$ are indices where $\operatorname{deg}\left(x^{u_{i}^{+}}\right)-\operatorname{deg}\left(x^{u_{i}^{-}}\right) \neq 0$ and $j_{1}<j_{2}<\ldots<j_{1}$ are indices where $\operatorname{deg}\left(y^{v_{j}^{+}}\right)-\operatorname{deg}\left(y^{v_{j}^{-}}\right) \neq 0$, then $k=I$ and $\operatorname{deg}\left(x^{u_{i h}^{+}}\right)-\operatorname{deg}\left(x^{u_{i_{h}}^{-}}\right)=\operatorname{deg}\left(y^{v_{j_{h}}^{+}}\right)-\operatorname{deg}\left(y^{v_{j_{h}}^{-}}\right)$for all $h \in[k]$.

Markov basis

Theorem

Let $\mathcal{F}_{1} \subset I_{H_{1}}$ and $\mathcal{F}_{2} \subset I_{H_{2}}$ be Markov bases. Then $\operatorname{Glue}\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ is a Markov basis of I_{H} if and only if \mathcal{F}_{1} and \mathcal{F}_{2} satisfy the compatible projection property.

Monomial sunflower

Consider the monomial sunflower. We can construct larger monomial sunflowers by taking an even number of copies of H and identifying all copies of the vertex v_{1}. We consider 128 copies of the sunflower. If we split it into two, then computing a Markov basis using Macaulay2 interface for 4 ti2 is 10 times faster compared to computing a Markov basis for the original hypergraph.

