The algebra of integrated partial belief systems

Manuele Leonelli ${ }^{1}$, Eva Riccomagno ${ }^{2}$, James Q. Smith ${ }^{1}$

${ }^{1}$ Department of Statistics, The University of Warwick
${ }^{2}$ Dipartimento di Matematica, Universitá degli Studi di Genova
Algebraic Statistics, Genova June 10, 2015

Research funded by the Department of Statistics, The University of Warwick, and EPRSC grant EP/K039628/1.

Modelling big systems

- Current decision support systems address complex domains: e.g. nuclear emergency management, food security;
- decision making \Longrightarrow Bayesian subjective probabilities;
- single agents systems are well established, but no clear extension to multi-agent;
- distributed and exact (symbolic) computations are vital;

Notation

- random vector $\boldsymbol{Y}=\left(\boldsymbol{Y}_{i}^{\top}\right)_{i \in[m]},[m]=\{1, \ldots, m\}$;
- panels of experts $\left\{G_{1}, \ldots, G_{m}\right\}$, where G_{i} is responsible for \boldsymbol{Y}_{i};
- decision space $d \in \mathcal{D}$;
- $\boldsymbol{\theta}_{i}$ parametrizes f_{i} the density of $\boldsymbol{Y}_{i} \mid\left(\boldsymbol{\theta}_{i}, d\right)$;
- π_{i} is the density over $\boldsymbol{\theta}_{i} \mid d$;
- d* optimal policy maximizing the expected utility

where

$$
\bar{u}(d \mid \boldsymbol{\theta})=\int_{\mathcal{Y}} u(\boldsymbol{y}, d) f(\boldsymbol{y} \mid \boldsymbol{\theta}, d) \mathrm{d} \boldsymbol{y}
$$

is the conditional expected utility (CEU).

Notation

- random vector $\boldsymbol{Y}=\left(\boldsymbol{Y}_{i}^{\top}\right)_{i \in[m]},[m]=\{1, \ldots, m\}$;
- panels of experts $\left\{G_{1}, \ldots, G_{m}\right\}$, where G_{i} is responsible for \boldsymbol{Y}_{i};
- decision space $d \in \mathcal{D}$;
- $\boldsymbol{\theta}_{i}$ parametrizes f_{i} the density of $\boldsymbol{Y}_{i} \mid\left(\boldsymbol{\theta}_{i}, d\right)$;
- π_{i} is the density over $\boldsymbol{\theta}_{i} \mid d$;
- d^{*} optimal policy maximizing the expected utility

$$
\bar{u}(d)=\int_{\Theta} \bar{u}(d \mid \theta) \pi(\boldsymbol{\theta} \mid d) \mathrm{d} \boldsymbol{\theta}
$$

where

$$
\bar{u}(d \mid \boldsymbol{\theta})=\int_{\mathcal{Y}} u(\boldsymbol{y}, d) f(\boldsymbol{y} \mid \boldsymbol{\theta}, d) \mathrm{d} \boldsymbol{y}
$$

is the conditional expected utility (CEU).

Utility theory

Utility $u: \mathcal{Y} \times \mathcal{D} \rightarrow \mathbb{R}$ such that

$$
(\boldsymbol{y}, d) \preceq\left(\boldsymbol{y}^{\prime}, d^{\prime}\right) \Longleftrightarrow u(\boldsymbol{y}, d) \leq u\left(\boldsymbol{y}^{\prime}, d^{\prime}\right)
$$

Panel separable factorization

$$
u(\boldsymbol{y}, d)=\sum_{I \in \mathcal{P}_{0}([m])} k_{l} \prod_{i \in I} u_{i}\left(\boldsymbol{y}_{i}, d\right)
$$

with \mathcal{P}_{0} the power set without empty set.
Polynomial marginal utility (univariate) of degree $n_{i}, \rho_{i j} \in \mathbb{R}$,

$$
u\left(y_{i}, d\right)=\sum_{j \in\left[n_{i}\right]} \rho_{i j}(d) y_{i}^{j}
$$

Integrated partial belief systems

Panels agrees on:

- a decision space \mathcal{D};
- a family of utility functions \mathcal{U};
- a dependence structure between various functions of $\boldsymbol{Y}, \boldsymbol{\theta}$ and d;
- to delegate quantifications to the most informed panel.

Integrated partial belief systems

Panels agrees on:

- a decision space \mathcal{D};
- a family of utility functions \mathcal{U};
- a dependence structure between various functions of $\boldsymbol{Y}, \boldsymbol{\theta}$ and d;
- to delegate quantifications to the most informed panel.

Definition

An IPBS is adequate if $\bar{u}(d)$, for each $d \in \mathcal{D}$ and $u \in \mathcal{U}$, can be computed from the beliefs of $G_{i}, i \in[m]$.

Algebraic expected utility

$\bar{u}(d \mid \theta)$ is called algebraic in the panels if, for each $d \in \mathcal{D}$, there exist $\lambda_{i}\left(\boldsymbol{\theta}_{i}, d\right)$ such that $\bar{u}(\boldsymbol{d} \mid \boldsymbol{\theta})$ is a square-free polynomial q_{d} of the $\boldsymbol{\lambda}_{i}$

$$
\bar{u}(d \mid \boldsymbol{\theta})=q_{d}\left(\boldsymbol{\lambda}_{1}\left(\boldsymbol{\theta}_{1}, d\right), \cdots, \boldsymbol{\lambda}_{m}\left(\boldsymbol{\theta}_{m}, d\right)\right) .
$$

Definition

$\bar{u}(\boldsymbol{d} \mid \boldsymbol{\theta})$ is called algebraic if, for each $d \in \mathcal{D}, q_{d}$ is a square-free polynomial of the $\lambda_{j i}$ such that

Algebraic expected utility

$\bar{u}(d \mid \theta)$ is called algebraic in the panels if, for each $d \in \mathcal{D}$, there exist $\lambda_{i}\left(\boldsymbol{\theta}_{i}, d\right)$ such that $\bar{u}(\boldsymbol{d} \mid \boldsymbol{\theta})$ is a square-free polynomial q_{d} of the $\boldsymbol{\lambda}_{i}$

$$
\bar{u}(d \mid \boldsymbol{\theta})=q_{d}\left(\boldsymbol{\lambda}_{1}\left(\boldsymbol{\theta}_{1}, d\right), \cdots, \boldsymbol{\lambda}_{m}\left(\boldsymbol{\theta}_{m}, d\right)\right) .
$$

Let $\boldsymbol{\lambda}_{i}\left(\boldsymbol{\theta}_{i}, d\right)=\left(\lambda_{j i}\left(\boldsymbol{\theta}_{i}, d\right)\right)_{j \in\left[s_{i}\right]}, \lambda_{0 i}\left(\boldsymbol{\theta}_{i}, d\right)=1$ and $B=\times_{i \in[m]}\left\{0, \ldots, s_{i}\right\}$. For a given $\boldsymbol{b} \in B$ let

$$
b_{j, i}=0 \text { if } j \neq b_{i}, \quad b_{j, i}=1 \text { if } j=b_{i}, \quad b_{0, i}=1 .
$$

Definition

$\bar{u}(d \mid \theta)$ is called algebraic if, for each $d \in \mathcal{D}, q_{d}$ is a square-free polynomial of the $\lambda_{j i}$ such that

$$
\begin{gathered}
q_{d}\left(\lambda_{1}\left(\boldsymbol{\theta}_{1}, d\right), \ldots, \lambda_{m}\left(\boldsymbol{\theta}_{m}, d\right)\right)=\sum_{\boldsymbol{b} \in B} k_{\boldsymbol{b}, d} \lambda_{\boldsymbol{b}}(\boldsymbol{\theta}, d), \\
\lambda_{\boldsymbol{b}}(\boldsymbol{\theta}, d)=\prod_{i \in[m] j \in\left[j_{j}\right]^{0}} \lambda_{j i}\left(\boldsymbol{\theta}_{i}, d\right)^{b_{j, i} .}
\end{gathered}
$$

Score separability

For a given $\boldsymbol{b} \in B$, let

$$
\mu_{j i}(d)=\mathbb{E}\left(\lambda_{j i}\left(\boldsymbol{\theta}_{i}, d\right)^{b_{j, i}}\right), \quad \boldsymbol{\mu}_{i}(d)=\left(\mu_{j i}(d)\right)_{j \in\left[s_{i}\right]}
$$

Definition

Call an IPBS score separable if, for all $d \in \mathcal{D}$ and all $\boldsymbol{b} \in B$ such that $k_{b, d} \neq 0$,

$$
\mathbb{E}\left(\lambda_{\boldsymbol{b}}(\boldsymbol{\theta}, \boldsymbol{d})\right)=\prod_{i \in[m]} \prod_{j \in\left[\boldsymbol{s}_{\boldsymbol{i}}\right] \cup\{0\}} \mu_{j i}(d) .
$$

Lemma

Suppose panel G_{i} delivers $\mu_{i}(d), i \in[m], d \in \mathcal{D}$. Then, assuming a CEU is algebraic, if the IPBS is score separable then it is adequate.

New independence conditions

Definition (Quasi independence)

An IPBS is called quasi independent if $\mathbb{E}\left(q_{d}\left(\boldsymbol{\lambda}_{1}\left(\boldsymbol{\theta}_{1}, d\right), \ldots, \boldsymbol{\lambda}_{m}\left(\boldsymbol{\theta}_{m}, d\right)\right)\right)=q_{d}\left(\mathbb{E}\left(\boldsymbol{\lambda}_{1}\left(\boldsymbol{\theta}_{1}, d\right)\right), \ldots, \mathbb{E}\left(\boldsymbol{\lambda}_{m}\left(\boldsymbol{\theta}_{m}, d\right)\right)\right)$.

Definition (Moment independence)
$\boldsymbol{\theta}$ entertains moment independence of order c if for any $a \leq l e x c$

New independence conditions

Definition (Quasi independence)

An IPBS is called quasi independent if

Let $\boldsymbol{\theta}=\theta_{1} \cdots \theta_{n}, \boldsymbol{a}, \boldsymbol{c} \in \mathbb{Z}_{\geq 0}^{n}$.
Definition (Moment independence)
$\boldsymbol{\theta}$ entertains moment independence of order \boldsymbol{c} if for any $\boldsymbol{a} \leq_{\text {lex }} \boldsymbol{c}$

$$
\mathbb{E}\left(\boldsymbol{\theta}^{a}\right)=\prod_{i \in[n]} \mathbb{E}\left(\theta_{i}^{a_{i}}\right)
$$

Moment independence

Consider two parameters θ_{1} and θ_{2} and suppose moment independence of order $(2,2)$.

$$
\begin{aligned}
\mathbb{E}\left(\theta_{1}^{2} \theta_{2}^{2}\right)=\mathbb{E}\left(\theta_{1}^{2}\right) \mathbb{E}\left(\theta_{2}^{2}\right)=\mathbb{E}\left(\theta_{1}\right)^{2} \mathbb{E}\left(\theta_{2}\right)^{2} & +\mathbb{V}\left(\theta_{1}\right) \mathbb{E}\left(\theta_{2}\right)^{2} \\
& +\mathbb{E}\left(\theta_{1}\right)^{2} \mathbb{V}\left(\theta_{2}\right)+\mathbb{V}\left(\theta_{1}\right) \mathbb{V}\left(\theta_{2}\right)
\end{aligned}
$$

Moment independence

Consider two parameters θ_{1} and θ_{2} and suppose moment independence of order $(2,2)$.

$$
\begin{aligned}
\mathbb{E}\left(\theta_{1}^{2} \theta_{2}^{2}\right)=\mathbb{E}\left(\theta_{1}^{2}\right) \mathbb{E}\left(\theta_{2}^{2}\right)=\mathbb{E}\left(\theta_{1}\right)^{2} \mathbb{E}\left(\theta_{2}\right)^{2} & +\mathbb{V}\left(\theta_{1}\right) \mathbb{E}\left(\theta_{2}\right)^{2} \\
& +\mathbb{E}\left(\theta_{1}\right)^{2} \mathbb{V}\left(\theta_{2}\right)+\mathbb{V}\left(\theta_{1}\right) \mathbb{V}\left(\theta_{2}\right)
\end{aligned}
$$

If $\theta_{1} \Perp \theta_{2}$,

$$
\begin{aligned}
\mathbb{E}\left(\theta_{1}^{2} \theta_{2}^{2}\right) & =\mathbb{E}\left(\theta_{1} \theta_{2}\right)^{2}+\mathbb{V}\left(\theta_{1} \theta_{2}\right) \\
& =\mathbb{E}\left(\theta_{1} \mathbb{E}\left(\theta_{2}\right)\right)^{2}+\mathbb{V}\left(\theta_{1} \mathbb{E}\left(\theta_{2}\right)\right)+\mathbb{E}\left(\theta_{1}^{2} \mathbb{V}\left(\theta_{2}\right)\right) \\
& =\mathbb{E}\left(\theta_{1}\right)^{2} \mathbb{E}\left(\theta_{2}\right)^{2}+\mathbb{V}\left(\theta_{1}\right) \mathbb{E}\left(\theta_{2}\right)^{2}+\mathbb{E}\left(\theta_{1}^{2}\right) \mathbb{V}\left(\theta_{2}\right) \\
& =\mathbb{E}\left(\theta_{1}\right)^{2} \mathbb{E}\left(\theta_{2}\right)^{2}+\mathbb{V}\left(\theta_{1}\right) \mathbb{E}\left(\theta_{2}\right)^{2}+\mathbb{E}\left(\theta_{1}\right)^{2} \mathbb{V}\left(\theta_{2}\right)+\mathbb{V}\left(\theta_{1}\right) \mathbb{V}\left(\theta_{2}\right)
\end{aligned}
$$

Some results

Theorem

Under quasi independence, an algebraic CEU is score separable.

Corollary

Let

- $\lambda_{j i}\left(\boldsymbol{\theta}_{i}, d\right)=\theta_{i}^{\mathbf{a}_{j i}}, \mathbf{a}_{j i} \in \mathbb{Z}_{\geq 0}^{\boldsymbol{s}_{i}} ;$
- $\boldsymbol{a}_{i}^{*}=\left(a_{j i}^{*}\right)_{j \in\left[s_{i}\right]}$, where $a_{j i}^{*}=\max \left\{a_{j i} \mid j \in\left[s_{i}\right]\right\}$;
- $\boldsymbol{\theta}=\left(\boldsymbol{\theta}_{i}^{\top}\right)$ moment independent of order $\boldsymbol{a}^{*}=\left(\boldsymbol{a}_{i}^{* \mathrm{~T}}\right)$;
an algebraic CEU is score separable.

Polynomial SEMs

A polynomial structural equation model (SEM) over $\boldsymbol{Y}=\left(Y_{i}\right)_{i \in[m]}$ is defined as

$$
Y_{i}=\sum_{\boldsymbol{a}_{i} \in A_{i}} \theta_{i \boldsymbol{a}_{i}} \boldsymbol{Y}_{[i-1]}^{\boldsymbol{a}_{i}}+\varepsilon_{i}
$$

where $A_{i} \subset \mathbb{Z}_{\geq 0}^{i-1}, \varepsilon_{i} \sim\left(0, \psi_{i}\right), \boldsymbol{Y}_{[i-1]}=Y_{1} \cdots Y_{i-1}$.

Theorem

Assume

- a polynomial SEM;
- a panel separable utility;
- a marginal polynomial utility

The IPBS is score separable under quasi independence.

Polynomial SEMs

A polynomial structural equation model (SEM) over $\boldsymbol{Y}=\left(Y_{i}\right)_{i \in[m]}$ is defined as

$$
Y_{i}=\sum_{\mathbf{a}_{i} \in A_{i}} \theta_{i \boldsymbol{a}_{i}} \boldsymbol{Y}_{[i-1]}^{\boldsymbol{a}_{i}}+\varepsilon_{i}
$$

where $A_{i} \subset \mathbb{Z}_{\geq 0}^{i-1}, \varepsilon_{i} \sim\left(0, \psi_{i}\right), \boldsymbol{Y}_{[i-1]}=Y_{1} \cdots Y_{i-1}$.

Theorem

Assume

- a polynomial SEM;
- a panel separable utility;
- a marginal polynomial utility;

The IPBS is score separable under quasi independence.

Bayesian networks

Definition (Linear SEM)

A BN over a DAG $\mathcal{G}, V(\mathcal{G})=\{1, \ldots, m\}$, is a linear SEM if

$$
Y_{i}=\theta_{0 i}+\sum_{j \in \Pi_{i}} \theta_{j i} Y_{j}+\varepsilon_{i},
$$

Π_{i} parent set of $Y_{i}, \varepsilon_{i} \sim\left(0, \psi_{i}\right)$ and $\theta_{0 i}, \theta_{j i} \in \mathbb{R}$.

$$
\begin{aligned}
& Y_{1}=\theta_{01}+\varepsilon_{1} \\
& Y_{2}=\theta_{02}+\theta_{12} Y_{1}+\varepsilon_{2} \\
& Y_{3}=\theta_{03}+\theta_{13} Y_{1}+\theta_{23} Y_{2}+\varepsilon_{3} \\
& Y_{4}=\theta_{04}+\varepsilon_{4}
\end{aligned}
$$

Rooted paths

A rooted path P from i_{1} to j_{m} is a sequence

$$
\left(i_{1},\left(i_{1}, j_{1}\right), \ldots,\left(i_{k}, j_{k}\right),\left(i_{k+1}, j_{k+1}\right), \ldots,\left(i_{m}, j_{m}\right)\right)
$$

where $j_{k}=i_{k+1} . \vec{P}_{i}$ is the set of rooted paths ending in i.

Rooted paths

A rooted path P from i_{1} to j_{m} is a sequence

$$
\left(i_{1},\left(i_{1}, j_{1}\right), \ldots,\left(i_{k}, j_{k}\right),\left(i_{k+1}, j_{k+1}\right), \ldots,\left(i_{m}, j_{m}\right)\right)
$$

where $j_{k}=i_{k+1} . \vec{P}_{i}$ is the set of rooted paths ending in i.

$$
\vec{P}_{3}=\{(3),(2,(2,3)),(1,(1,3)),(1,(1,2),(2,3))\}
$$

Path monomials

Associate

$$
i \in V(\mathcal{G}) \longrightarrow \theta_{0 i}^{\prime}=\theta_{0 i}+\varepsilon_{i}, \quad(j, k) \in E(\mathcal{G}) \longrightarrow \theta_{j k}
$$

and, for $P \in \vec{P}_{i}$, define

$$
\boldsymbol{\theta}_{P}=\prod_{i \in P} \theta_{0 i} \prod_{(j, k) \in P} \theta_{j k}
$$

as the path monomial.

Proposition

For a linear SEM over a DAG G

$$
\mathbb{E}\left(Y_{i} \mid \boldsymbol{\theta}, d\right)=\sum_{P \in \vec{P}_{i}} \boldsymbol{\theta}_{P}
$$

Multilinear Factorizations

Let

- $\boldsymbol{\theta}_{\vec{P}_{i}}=\prod_{P \in \vec{P}_{i}} \boldsymbol{\theta}_{P}, \boldsymbol{\theta}_{\text {Tot }}=\prod_{i \in[m]} \boldsymbol{\theta}_{\vec{P}_{i}} ;$
- $\boldsymbol{a}_{i}=\left(a_{i j}\right)_{j \in\left[\# \vec{P}_{i}\right]}, \boldsymbol{a}=\left(\boldsymbol{a}_{i}^{\top}\right), \boldsymbol{r}=\left(r_{i}\right)_{i \in[m]}$;
- $\boldsymbol{r} \simeq \boldsymbol{a}$ if both $|\boldsymbol{a}|=|\boldsymbol{r}|$ and $\left|\mathbf{a}_{i}\right|=r_{i}$

Theorem

Suppose

- a linear SEM;
- a panel separable utility;
- u_{i} is polynomial of degree n_{i};
then

$$
\bar{u}(d \mid \boldsymbol{\theta})=\sum_{\boldsymbol{0}<l_{\text {lex }} \boldsymbol{r} \leq l e x} c_{\boldsymbol{r}} \sum_{\boldsymbol{a} \simeq \boldsymbol{r}}\binom{|\boldsymbol{r}|}{\boldsymbol{a}} \boldsymbol{\theta}_{\text {Tot }}^{r}
$$

where $\boldsymbol{n}=\left(n_{i}\right)_{i \in[m]},|\boldsymbol{r}|=\sum_{i \in[m]} r_{i}, c_{\boldsymbol{r}}=k_{J} \prod_{j \in J} \rho_{j r_{j}}$ and $J=\left\{j \in[m]: r_{j} \neq 0\right\}$

A graphical interpretation

Note that

$$
u(\boldsymbol{y}, d)=\sum_{0<_{l e x} \boldsymbol{r} \leq l e x} c_{r} \boldsymbol{y}^{\boldsymbol{r}}
$$

Let

- \vec{P}_{i}^{j} be the set of unordered j-tuples of paths ending in i;
- for $P \in \vec{P}_{i}^{j}, n_{P_{i}}$ the number of distinct permutations of the elements of P;
- for $\boldsymbol{r} \in \mathbb{Z}_{\geq 0}^{m}, \vec{P}_{\boldsymbol{r}}=\times_{r_{i} \neq 0} \vec{P}_{i}^{r_{i}}$ and $n_{P}=\sum_{r_{i} \neq 0} n_{P_{i}}$, then

$$
\sum_{\boldsymbol{a} \simeq \boldsymbol{r}}\binom{|\boldsymbol{r}|}{\mathbf{a}} \boldsymbol{\theta}_{\text {Tot }}^{r}=\sum_{P \in \vec{P}_{r}} n_{P} \prod_{p \in P} \boldsymbol{\theta}_{p}
$$

An example

$$
\begin{aligned}
& \mathbb{E}\left(Y_{2}^{2} Y_{4}^{2} \mid \boldsymbol{\theta}\right)=\theta_{02}^{\prime 2} \theta_{04}^{\prime 2}+2 \theta_{12} \theta_{02}^{\prime} \theta_{04}^{\prime 2}+\theta_{12}^{2} \theta_{04}^{\prime 2}+2 \theta_{02}^{\prime 2} \theta_{14} \theta_{04}^{\prime}+ \\
& 4 \theta_{12} \theta_{02}^{\prime} \theta_{14} \theta_{04}+2 \theta_{12}^{2} \theta_{14} \theta_{04}^{\prime}+\theta_{02}^{\prime 2} \theta_{14}^{2}+2 \theta_{12} \theta_{02}^{\prime} \theta_{14}^{2}+\theta_{12}^{2} \theta_{14}^{2} .
\end{aligned}
$$

$$
\begin{gathered}
((2),(2),(4),(4)) \\
((1,(1,2)),(2),(4),(4)) \\
((1,(1,2)),(1,(1,2)),(4),(4)) \\
((2),(2),(1,(1,4)),(4)) \\
((1,(1,2)),(2),(1,(1,4)),(4)) \\
((1,(1,2)),(1,(1,2)),(1,(1,4)),(4)) \\
((2),(2),(1,(1,4)),(1,(1,4))) \\
((1,(1,2)),(2),(1,(1,4)),(1,(1,4))) \\
((1,(1,2)),(1,(1,2)),(1,(1,4)),(1,(1,4))) \\
\hline
\end{gathered}
$$

Discussion

New application in Bayesian decision making;
Algebra helped us identifying minimal sets of separation conditions for fast multi-expert analyses;

Extensions:

- Bayesian dynamic forecasting;
- Tensor propagation;

Discussion

New application in Bayesian decision making;
Algebra helped us identifying minimal sets of separation conditions for fast multi-expert analyses;

Extensions:

- Bayesian dynamic forecasting;
- Tensor propagation;

Thanks for your attention

