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Modelling big systems

Current decision support systems address complex domains: e.g.
nuclear emergency management, food security;

decision making =⇒ Bayesian subjective probabilities;

single agents systems are well established, but no clear extension
to multi-agent;

distributed and exact (symbolic) computations are vital;



Notation

random vector Y = (Y T
i )i∈[m], [m] = {1, . . . ,m};

panels of experts {G1, . . . ,Gm}, where Gi is responsible for Y i ;
decision space d ∈ D;
θi parametrizes fi the density of Y i | (θi ,d);
πi is the density over θi | d ;

d∗ optimal policy maximizing the expected utility

ū(d) =

∫
Θ

ū(d |θ)π(θ |d)dθ

where
ū(d |θ) =

∫
Y

u(y ,d)f (y | θ,d)dy

is the conditional expected utility (CEU).
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ū(d) =

∫
Θ
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Utility theory

Utility u : Y ×D → R such that

(y ,d) � (y ′,d ′)⇐⇒ u(y ,d) ≤ u(y ′,d ′)

Panel separable factorization

u(y ,d) =
∑

I∈P0([m])

kI

∏
i∈I

ui(y i ,d),

with P0 the power set without empty set.

Polynomial marginal utility (univariate) of degree ni , ρij ∈ R,

u(yi ,d) =
∑
j∈[ni ]

ρij(d)y j
i .



Integrated partial belief systems

Panels agrees on:
a decision space D;
a family of utility functions U ;
a dependence structure between various functions of Y , θ and d ;
to delegate quantifications to the most informed panel.

Definition
An IPBS is adequate if ū(d), for each d ∈ D and u ∈ U , can be
computed from the beliefs of Gi , i ∈ [m].
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Algebraic expected utility

ū(d | θ) is called algebraic in the panels if, for each d ∈ D, there exist
λi(θi ,d) such that ū(d | θ) is a square-free polynomial qd of the λi

ū(d | θ) = qd (λ1(θ1,d), · · · ,λm(θm,d)) .

Let λi(θi ,d) = (λji(θi ,d))j∈[si ], λ0i(θi ,d) = 1 and
B =×i∈[m]{0, . . . , si} . For a given b ∈ B let

bj,i = 0 if j 6= bi , bj,i = 1 if j = bi , b0,i = 1.

Definition
ū(d | θ) is called algebraic if, for each d ∈ D, qd is a square-free
polynomial of the λji such that

qd (λ1(θ1,d), . . . ,λm(θm,d)) =
∑
b∈B

kb,dλb(θ,d),

λb(θ,d) =
∏

i∈[m]

∏
j∈[si ]0

λji(θi ,d)bj,i .
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ū(d | θ) is called algebraic if, for each d ∈ D, qd is a square-free
polynomial of the λji such that

qd (λ1(θ1,d), . . . ,λm(θm,d)) =
∑
b∈B

kb,dλb(θ,d),

λb(θ,d) =
∏

i∈[m]

∏
j∈[si ]0

λji(θi ,d)bj,i .



Score separability

For a given b ∈ B, let

µji(d) = E
(
λji(θi ,d)bj,i

)
, µi(d) =

(
µji(d)

)
j∈[si ]

.

Definition
Call an IPBS score separable if, for all d ∈ D and all b ∈ B such that
kb,d 6= 0,

E (λb(θ,d)) =
∏

i∈[m]

∏
j∈[si ]∪{0}

µji(d).

Lemma

Suppose panel Gi delivers µi(d), i ∈ [m], d ∈ D. Then, assuming a
CEU is algebraic, if the IPBS is score separable then it is adequate.



New independence conditions

Definition (Quasi independence)
An IPBS is called quasi independent if

E(qd (λ1(θ1,d), . . . ,λm(θm,d))) = qd (E(λ1(θ1,d)), . . . ,E(λm(θm,d))).

Let θ = θ1 · · · θn, a,c ∈ Zn
≥0.

Definition (Moment independence)
θ entertains moment independence of order c if for any a ≤lex c

E(θa) =
∏
i∈[n]

E(θai
i ).
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Moment independence

Consider two parameters θ1 and θ2 and suppose moment
independence of order (2,2).

E(θ2
1θ

2
2) = E(θ2

1)E(θ2
2) = E(θ1)2E(θ2)2 + V(θ1)E(θ2)2

+ E(θ1)2V(θ2) + V(θ1)V(θ2)

If θ1 ⊥⊥ θ2,

E(θ2
1θ

2
2) = E(θ1θ2)2 + V(θ1θ2)

= E(θ1E(θ2))2 + V(θ1E(θ2)) + E(θ2
1V(θ2))

= E(θ1)2E(θ2)2 + V(θ1)E(θ2)2 + E(θ2
1)V(θ2)
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Some results

Theorem
Under quasi independence, an algebraic CEU is score separable.

Corollary
Let

λji(θi ,d) = θ
aji
i , aji ∈ Zsi

≥0;
a∗i = (a∗ji )j∈[si ], where a∗ji = max{aji | j ∈ [si ]};

θ = (θT
i ) moment independent of order a∗ = (a∗i

T);
an algebraic CEU is score separable.



Polynomial SEMs

A polynomial structural equation model (SEM) over Y = (Yi)i∈[m] is
defined as

Yi =
∑

ai∈Ai

θiai Y
ai
[i−1] + εi ,

where Ai ⊂ Zi−1
≥0 , εi ∼ (0, ψi), Y [i−1] = Y1 · · ·Yi−1.

Theorem
Assume

a polynomial SEM;
a panel separable utility;
a marginal polynomial utility;

The IPBS is score separable under quasi independence.



Polynomial SEMs

A polynomial structural equation model (SEM) over Y = (Yi)i∈[m] is
defined as

Yi =
∑

ai∈Ai

θiai Y
ai
[i−1] + εi ,

where Ai ⊂ Zi−1
≥0 , εi ∼ (0, ψi), Y [i−1] = Y1 · · ·Yi−1.

Theorem
Assume

a polynomial SEM;
a panel separable utility;
a marginal polynomial utility;

The IPBS is score separable under quasi independence.



Bayesian networks

Definition (Linear SEM)
A BN over a DAG G, V (G) = {1, . . . ,m}, is a linear SEM if

Yi = θ0i +
∑
j∈Πi

θjiYj + εi ,

Πi parent set of Yi , εi ∼ (0, ψi) and θ0i , θji ∈ R.

4 2

��

1

OO

//

@@

3

Y1 = θ01 + ε1

Y2 = θ02 + θ12Y1 + ε2

Y3 = θ03 + θ13Y1 + θ23Y2 + ε3

Y4 = θ04 + ε4



Rooted paths

A rooted path P from i1 to jm is a sequence

(i1, (i1, j1), . . . , (ik , jk ), (ik+1, jk+1), . . . , (im, jm)),

where jk = ik+1. ~Pi is the set of rooted paths ending in i .
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Path monomials

Associate

i ∈ V (G) −→ θ′0i = θ0i + εi , (j , k) ∈ E(G) −→ θjk ,

and, for P ∈ ~Pi , define

θP =
∏
i∈P

θ0i

∏
(j,k)∈P

θjk ,

as the path monomial.

Proposition
For a linear SEM over a DAG G

E(Yi | θ,d) =
∑
P∈~Pi

θP



Multilinear Factorizations

Let
θ~Pi

=
∏

P∈~Pi
θP , θTot =

∏
i∈[m] θ~Pi

;

ai = (aij)j∈[#~Pi ]
, a = (aT

i ), r = (ri)i∈[m];
r ' a if both |a| = |r | and |ai | = ri

Theorem
Suppose

a linear SEM;
a panel separable utility;
ui is polynomial of degree ni ;

then

ū(d |θ) =
∑

0<lex r≤lex n

cr
∑
a'r

(
|r |
a

)
θr

Tot ,

where n = (ni)i∈[m], |r | =
∑

i∈[m] ri , cr = kJ
∏

j∈J ρjrj and
J = {j ∈ [m] : rj 6= 0}



A graphical interpretation

Note that
u(y ,d) =

∑
0<lex r≤lex n

cry r

Let
~P j

i be the set of unordered j-tuples of paths ending in i ;

for P ∈ ~P j
i , nPi the number of distinct permutations of the elements

of P;
for r ∈ Zm

≥0, ~Pr = ×ri 6=0
~Pri

i and nP =
∑

ri 6=0 nPi ,
then ∑

a'r

(
|r |
a

)
θr

Tot =
∑

P∈~Pr

nP

∏
p∈P

θp



An example

E(Y 2
2 Y 2

4 |θ) = θ′202θ
′2
04 + 2θ12θ

′
02θ
′2
04 + θ2

12θ
′2
04 + 2θ′202θ14θ

′
04+

4θ12θ
′
02θ14θ04 + 2θ2

12θ14θ
′
04 + θ′202θ

2
14 + 2θ12θ

′
02θ

2
14 + θ2

12θ
2
14.

4 2

��

1

OO

//

@@

3

((2), (2), (4), (4))
((1, (1,2)), (2), (4), (4))

((1, (1,2)), (1, (1,2)), (4), (4))
((2), (2), (1, (1,4)), (4))

((1, (1,2)), (2), (1, (1,4)), (4))
((1, (1,2)), (1, (1,2)), (1, (1,4)), (4))

((2), (2), (1, (1,4)), (1, (1,4)))
((1, (1,2)), (2), (1, (1,4)), (1, (1,4)))

((1, (1,2)), (1, (1,2)), (1, (1,4)), (1, (1,4)))



Discussion

New application in Bayesian decision making;

Algebra helped us identifying minimal sets of separation conditions for
fast multi-expert analyses;

Extensions:
Bayesian dynamic forecasting;
Tensor propagation;

Thanks for your attention
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