The algebra of integrated partial belief systems

Manuele Leonelli¹, Eva Riccomagno², James Q. Smith¹

¹Department of Statistics, The University of Warwick

²Dipartimento di Matematica, Universitá degli Studi di Genova

Algebraic Statistics, Genova June 10, 2015

Research funded by the Department of Statistics, The University of Warwick, and EPRSC grant EP/K039628/1.

- Current decision support systems address complex domains: e.g. nuclear emergency management, food security;
- decision making \implies Bayesian subjective probabilities;
- single agents systems are well established, but no clear extension to multi-agent;
- distributed and exact (symbolic) computations are vital;

Notation

- random vector $\mathbf{Y} = (\mathbf{Y}_i^{\mathsf{T}})_{i \in [m]}, [m] = \{1, ..., m\};$
- panels of experts $\{G_1, \ldots, G_m\}$, where G_i is responsible for Y_i ;
- decision space $d \in D$;
- θ_i parametrizes f_i the density of $\mathbf{Y}_i \mid (\theta_i, d)$;
- π_i is the density over $\theta_i \mid d$;
- d* optimal policy maximizing the expected utility

$$ar{u}(d) = \int_{\Theta} ar{u}(d \mid heta) \pi(heta \mid d) \mathrm{d} heta$$

where

$$\bar{u}(d \mid \theta) = \int_{\mathcal{Y}} u(\mathbf{y}, d) f(\mathbf{y} \mid \theta, d) d\mathbf{y}$$

is the conditional expected utility (CEU).

Notation

- random vector $\mathbf{Y} = (\mathbf{Y}_i^{\mathsf{T}})_{i \in [m]}, [m] = \{1, ..., m\};$
- panels of experts $\{G_1, \ldots, G_m\}$, where G_i is responsible for Y_i ;
- decision space $d \in D$;
- θ_i parametrizes f_i the density of $\mathbf{Y}_i \mid (\theta_i, d)$;
- π_i is the density over $\theta_i \mid d$;
- d* optimal policy maximizing the expected utility

$$ar{u}(d) = \int_{\Theta} ar{u}(d \,|\, oldsymbol{ heta}) \pi(oldsymbol{ heta} \,|\, d) \mathsf{d} oldsymbol{ heta}$$

where

$$ar{u}(d \mid oldsymbol{ heta}) = \int_{oldsymbol{\mathcal{Y}}} u(oldsymbol{y}, d) f(oldsymbol{y} \mid oldsymbol{ heta}, d) \mathrm{d}oldsymbol{y}$$

is the conditional expected utility (CEU).

Utility theory

Utility $u : \boldsymbol{\mathcal{Y}} \times \boldsymbol{\mathcal{D}} \to \mathbb{R}$ such that

$$(\boldsymbol{y}, \boldsymbol{d}) \preceq (\boldsymbol{y}', \boldsymbol{d}') \Longleftrightarrow u(\boldsymbol{y}, \boldsymbol{d}) \leq u(\boldsymbol{y}', \boldsymbol{d}')$$

Panel separable factorization

$$u(\boldsymbol{y}, \boldsymbol{d}) = \sum_{l \in \mathcal{P}_0([m])} k_l \prod_{i \in I} u_i(\boldsymbol{y}_i, \boldsymbol{d}),$$

with \mathcal{P}_0 the power set without empty set.

Polynomial marginal utility (univariate) of degree n_i , $\rho_{ij} \in \mathbb{R}$,

$$u(\mathbf{y}_i, \mathbf{d}) = \sum_{j \in [n_i]} \rho_{ij}(\mathbf{d}) \mathbf{y}_i^j.$$

Integrated partial belief systems

Panels agrees on:

- a decision space D;
- a family of utility functions \mathcal{U} ;
- a dependence structure between various functions of Y, θ and d;
- to delegate quantifications to the most informed panel.

Definition

An IPBS is **adequate** if $\bar{u}(d)$, for each $d \in D$ and $u \in U$, can be computed from the beliefs of G_i , $i \in [m]$.

Integrated partial belief systems

Panels agrees on:

- a decision space D;
- a family of utility functions \mathcal{U} ;
- a dependence structure between various functions of Y, θ and d;
- to delegate quantifications to the most informed panel.

Definition

An IPBS is **adequate** if $\bar{u}(d)$, for each $d \in D$ and $u \in U$, can be computed from the beliefs of G_i , $i \in [m]$.

Algebraic expected utility

 $\bar{u}(d \mid \theta)$ is called *algebraic in the panels* if, for each $d \in D$, there exist $\lambda_i(\theta_i, d)$ such that $\bar{u}(d \mid \theta)$ is a square-free polynomial q_d of the λ_i

$$\bar{u}(d \mid \theta) = q_d \left(\lambda_1(\theta_1, d), \cdots, \lambda_m(\theta_m, d) \right).$$

Let $\lambda_i(\theta_i, d) = (\lambda_{ji}(\theta_i, d))_{j \in [s_i]}, \lambda_{0i}(\theta_i, d) = 1$ and $B = \bigotimes_{i \in [m]} \{0, \dots, s_i\}$. For a given $\boldsymbol{b} \in B$ let

$$b_{j,i} = 0$$
 if $j \neq b_i$, $b_{j,i} = 1$ if $j = b_i$, $b_{0,i} = 1$.

Definition

 $\bar{u}(d \mid \theta)$ is called **algebraic** if, for each $d \in D$, q_d is a square-free polynomial of the λ_{ji} such that

$$q_d(\lambda_1(\theta_1, d), \dots, \lambda_m(\theta_m, d)) = \sum_{oldsymbol{b}\in B} k_{oldsymbol{b},d} \lambda_{oldsymbol{b}}(heta, d),$$

$$\lambda_{\boldsymbol{b}}(\boldsymbol{ heta}, \boldsymbol{d}) = \prod_{i \in [m]} \prod_{j \in [s_i]^0} \lambda_{ji}(\boldsymbol{ heta}_i, \boldsymbol{d})^{b_{j,i}}.$$

Algebraic expected utility

 $\bar{u}(d \mid \theta)$ is called *algebraic in the panels* if, for each $d \in D$, there exist $\lambda_i(\theta_i, d)$ such that $\bar{u}(d \mid \theta)$ is a square-free polynomial q_d of the λ_i

$$\overline{u}(d \mid \theta) = q_d \left(\lambda_1(\theta_1, d), \cdots, \lambda_m(\theta_m, d) \right).$$

Let $\lambda_i(\theta_i, d) = (\lambda_{ji}(\theta_i, d))_{j \in [s_i]}, \lambda_{0i}(\theta_i, d) = 1$ and $B = \bigotimes_{i \in [m]} \{0, \dots, s_i\}$. For a given $\boldsymbol{b} \in B$ let

$$b_{j,i} = 0$$
 if $j \neq b_i$, $b_{j,i} = 1$ if $j = b_i$, $b_{0,i} = 1$.

Definition

 $\bar{u}(d \mid \theta)$ is called **algebraic** if, for each $d \in D$, q_d is a square-free polynomial of the λ_{ji} such that

$$q_d(\lambda_1(heta_1,d),\ldots,\lambda_m(heta_m,d)) = \sum_{m{b}\in B} k_{m{b},d}\lambda_{m{b}}(heta,d),$$

$$\lambda_{\boldsymbol{b}}(\boldsymbol{ heta}, \boldsymbol{d}) = \prod_{i \in [m]} \prod_{j \in [\boldsymbol{s}_i]^0} \lambda_{ji}(\boldsymbol{ heta}_i, \boldsymbol{d})^{\boldsymbol{b}_{j,i}}.$$

Score separability

For a given $\boldsymbol{b} \in \boldsymbol{B}$, let

$$\mu_{ji}(d) = \mathbb{E}\left(\lambda_{ji}(\theta_i, d)^{b_{j,i}}\right), \qquad \mu_i(d) = \left(\mu_{ji}(d)\right)_{j \in [s_i]}.$$

Definition

Call an IPBS score separable if, for all $d \in D$ and all $b \in B$ such that $k_{b,d} \neq 0$,

$$\mathbb{E}\left(\lambda_{\boldsymbol{b}}(\boldsymbol{\theta},\boldsymbol{d})\right) = \prod_{i \in [\boldsymbol{m}]} \prod_{j \in [\boldsymbol{s}_i] \cup \{0\}} \mu_{ji}(\boldsymbol{d}).$$

Lemma

Suppose panel G_i delivers $\mu_i(d)$, $i \in [m]$, $d \in D$. Then, assuming a CEU is algebraic, if the IPBS is score separable then it is adequate.

New independence conditions

Definition (Quasi independence)

An IPBS is called quasi independent if

 $\mathbb{E}(q_d(\lambda_1(\theta_1,d),\ldots,\lambda_m(\theta_m,d))) = q_d(\mathbb{E}(\lambda_1(\theta_1,d)),\ldots,\mathbb{E}(\lambda_m(\theta_m,d))).$

Let
$$\boldsymbol{\theta} = \theta_1 \cdots \theta_n$$
, $\boldsymbol{a}, \boldsymbol{c} \in \mathbb{Z}_{\geq 0}^n$.

Definition (Moment independence)

 $m{ heta}$ entertains moment independence of order $m{c}$ if for any $m{a} \leq_{\mathit{lex}} m{c}$

$$\mathbb{E}(\boldsymbol{\theta}^{\boldsymbol{a}}) = \prod_{i \in [n]} \mathbb{E}(\theta_i^{\boldsymbol{a}_i}).$$

New independence conditions

Definition (Quasi independence)

An IPBS is called quasi independent if

 $\mathbb{E}(q_d(\lambda_1(\theta_1,d),\ldots,\lambda_m(\theta_m,d))) = q_d(\mathbb{E}(\lambda_1(\theta_1,d)),\ldots,\mathbb{E}(\lambda_m(\theta_m,d))).$

Let
$$\boldsymbol{\theta} = \theta_1 \cdots \theta_n$$
, $\boldsymbol{a}, \boldsymbol{c} \in \mathbb{Z}_{\geq 0}^n$.

Definition (Moment independence)

heta entertains moment independence of order $m{c}$ if for any $m{a} \leq_{\mathit{lex}} m{c}$

$$\mathbb{E}(\boldsymbol{\theta}^{\boldsymbol{a}}) = \prod_{i \in [n]} \mathbb{E}(\theta_i^{\boldsymbol{a}_i}).$$

Moment independence

Consider two parameters θ_1 and θ_2 and suppose moment independence of order (2, 2).

$$\begin{split} \mathbb{E}(\theta_1^2 \theta_2^2) &= \mathbb{E}(\theta_1^2) \mathbb{E}(\theta_2^2) = \mathbb{E}(\theta_1)^2 \mathbb{E}(\theta_2)^2 + \mathbb{V}(\theta_1) \mathbb{E}(\theta_2)^2 \\ &+ \mathbb{E}(\theta_1)^2 \mathbb{V}(\theta_2) + \mathbb{V}(\theta_1) \mathbb{V}(\theta_2) \end{split}$$

If $\theta_1 \perp \theta_2$,

$$\begin{split} \mathbb{E}(\theta_1^2 \theta_2^2) &= \mathbb{E}(\theta_1 \theta_2)^2 + \mathbb{V}(\theta_1 \theta_2) \\ &= \mathbb{E}(\theta_1 \mathbb{E}(\theta_2))^2 + \mathbb{V}(\theta_1 \mathbb{E}(\theta_2)) + \mathbb{E}(\theta_1^2 \mathbb{V}(\theta_2)) \\ &= \mathbb{E}(\theta_1)^2 \mathbb{E}(\theta_2)^2 + \mathbb{V}(\theta_1) \mathbb{E}(\theta_2)^2 + \mathbb{E}(\theta_1^2) \mathbb{V}(\theta_2) \\ &= \mathbb{E}(\theta_1)^2 \mathbb{E}(\theta_2)^2 + \mathbb{V}(\theta_1) \mathbb{E}(\theta_2)^2 + \mathbb{E}(\theta_1)^2 \mathbb{V}(\theta_2) + \mathbb{V}(\theta_1) \mathbb{V}(\theta_2) \end{split}$$

Moment independence

Consider two parameters θ_1 and θ_2 and suppose moment independence of order (2, 2).

$$\begin{split} \mathbb{E}(\theta_1^2 \theta_2^2) &= \mathbb{E}(\theta_1^2) \mathbb{E}(\theta_2^2) = \mathbb{E}(\theta_1)^2 \mathbb{E}(\theta_2)^2 + \mathbb{V}(\theta_1) \mathbb{E}(\theta_2)^2 \\ &+ \mathbb{E}(\theta_1)^2 \mathbb{V}(\theta_2) + \mathbb{V}(\theta_1) \mathbb{V}(\theta_2) \end{split}$$

If $\theta_1 \perp \theta_2$,

$$\begin{split} \mathbb{E}(\theta_1^2 \theta_2^2) &= \mathbb{E}(\theta_1 \theta_2)^2 + \mathbb{V}(\theta_1 \theta_2) \\ &= \mathbb{E}(\theta_1 \mathbb{E}(\theta_2))^2 + \mathbb{V}(\theta_1 \mathbb{E}(\theta_2)) + \mathbb{E}(\theta_1^2 \mathbb{V}(\theta_2)) \\ &= \mathbb{E}(\theta_1)^2 \mathbb{E}(\theta_2)^2 + \mathbb{V}(\theta_1) \mathbb{E}(\theta_2)^2 + \mathbb{E}(\theta_1^2) \mathbb{V}(\theta_2) \\ &= \mathbb{E}(\theta_1)^2 \mathbb{E}(\theta_2)^2 + \mathbb{V}(\theta_1) \mathbb{E}(\theta_2)^2 + \mathbb{E}(\theta_1)^2 \mathbb{V}(\theta_2) + \mathbb{V}(\theta_1) \mathbb{V}(\theta_2) \end{split}$$

Theorem

Under quasi independence, an algebraic CEU is score separable.

Corollary

Let

•
$$\lambda_{ji}(\theta_i, d) = \theta_i^{\mathbf{a}_{ji}}, \mathbf{a}_{ji} \in \mathbb{Z}_{\geq 0}^{\mathbf{s}_i};$$

• $\mathbf{a}_i^* = (a_{ji}^*)_{j \in [s_i]}, \text{ where } a_{ji}^* = \max\{a_{ji} \mid j \in [s_i]\};$
• $\theta = (\theta_i^T) \text{ moment independent of order } \mathbf{a}^* = (\mathbf{a}_i^{*T});$
an algebraic CEU is score separable.

Polynomial SEMs

A polynomial structural equation model (SEM) over $\mathbf{Y} = (Y_i)_{i \in [m]}$ is defined as

$$Y_i = \sum_{\boldsymbol{a}_i \in \boldsymbol{A}_i} \theta_{i \boldsymbol{a}_i} \boldsymbol{Y}^{\boldsymbol{a}_i}_{[i-1]} + \varepsilon_i,$$

where
$$A_i \subset \mathbb{Z}_{\geq 0}^{i-1}$$
, $\varepsilon_i \sim (0, \psi_i)$, $Y_{[i-1]} = Y_1 \cdots Y_{i-1}$.

Theorem

Assume

- a polynomial SEM;
- a panel separable utility;
- a marginal polynomial utility;

The IPBS is score separable under quasi independence.

Polynomial SEMs

A polynomial structural equation model (SEM) over $\mathbf{Y} = (Y_i)_{i \in [m]}$ is defined as

$$Y_{i} = \sum_{\boldsymbol{a}_{i} \in A_{i}} \theta_{i\boldsymbol{a}_{i}} \boldsymbol{Y}_{[i-1]}^{\boldsymbol{a}_{i}} + \varepsilon_{i},$$

where
$$A_i \subset \mathbb{Z}_{\geq 0}^{i-1}$$
, $\varepsilon_i \sim (0, \psi_i)$, $Y_{[i-1]} = Y_1 \cdots Y_{i-1}$.

Theorem

Assume

- a polynomial SEM;
- a panel separable utility;
- a marginal polynomial utility;

The IPBS is score separable under quasi independence.

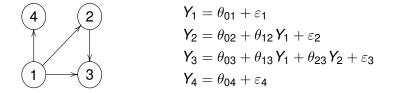
Bayesian networks

Definition (Linear SEM)

A BN over a DAG \mathcal{G} , $V(\mathcal{G}) = \{1, \ldots, m\}$, is a linear SEM if

$$Y_i = \theta_{0i} + \sum_{j \in \Pi_i} \theta_{ji} Y_j + \varepsilon_i,$$

 Π_i parent set of Y_i , $\varepsilon_i \sim (0, \psi_i)$ and $\theta_{0i}, \theta_{ji} \in \mathbb{R}$.



Rooted paths

A rooted path *P* from i_1 to j_m is a sequence

$$(i_1, (i_1, j_1), \ldots, (i_k, j_k), (i_{k+1}, j_{k+1}), \ldots, (i_m, j_m)),$$

where $j_k = i_{k+1}$. \vec{P}_i is the set of rooted paths ending in *i*.

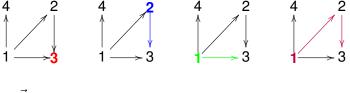
 $\dot{P}_3 = \{(3), (2, (2, 3)), (1, (1, 3)), (1, (1, 2), (2, 3))\}$

Rooted paths

A rooted path *P* from i_1 to j_m is a sequence

$$(i_1, (i_1, j_1), \ldots, (i_k, j_k), (i_{k+1}, j_{k+1}), \ldots, (i_m, j_m))$$

where $j_k = i_{k+1}$. \vec{P}_i is the set of rooted paths ending in *i*.



 $\vec{P}_3 = \{(3), (2, (2, 3)), (1, (1, 3)), (1, (1, 2), (2, 3))\}$

Path monomials

Associate

$$i \in V(\mathcal{G}) \longrightarrow \theta'_{0i} = \theta_{0i} + \varepsilon_i, \qquad (j, k) \in E(\mathcal{G}) \longrightarrow \theta_{jk},$$

and, for $P \in \vec{P}_i$, define

$$\boldsymbol{\theta}_{\boldsymbol{P}} = \prod_{i \in \boldsymbol{P}} \theta_{0i} \prod_{(j,k) \in \boldsymbol{P}} \theta_{jk},$$

as the path monomial.

Proposition

For a linear SEM over a DAG ${\mathcal G}$

$$\mathbb{E}(Y_i \mid \boldsymbol{\theta}, \boldsymbol{d}) = \sum_{\boldsymbol{P} \in \vec{\boldsymbol{P}}_i} \boldsymbol{\theta}_{\boldsymbol{P}}$$

Multilinear Factorizations

Let

•
$$\boldsymbol{\theta}_{\vec{P}_i} = \prod_{P \in \vec{P}_i} \boldsymbol{\theta}_P, \, \boldsymbol{\theta}_{Tot} = \prod_{i \in [m]} \boldsymbol{\theta}_{\vec{P}_i};$$

• $\boldsymbol{a}_i = (\boldsymbol{a}_{ij})_{j \in [\#\vec{P}_i]}, \, \boldsymbol{a} = (\boldsymbol{a}_i^T), \, \boldsymbol{r} = (r_i)_{i \in [m]};$
• $\boldsymbol{r} \simeq \boldsymbol{a}$ if both $|\boldsymbol{a}| = |\boldsymbol{r}|$ and $|\boldsymbol{a}_i| = r_i$

Theorem

Suppose

• a linear SEM;

 $J = \{j \in [m] : r_j \neq 0\}$

- a panel separable utility;
- *u_i* is polynomial of degree *n_i*;

then

where **n** =

$$\bar{u}(d \mid \theta) = \sum_{\mathbf{0} <_{lex} \mathbf{r} \leq_{lex} \mathbf{n}} c_{\mathbf{r}} \sum_{\mathbf{a} \simeq \mathbf{r}} {|\mathbf{r}| \choose \mathbf{a}} \theta_{Tot}^{\mathbf{r}},$$
$$(n_{i})_{i \in [m]}, |\mathbf{r}| = \sum_{i \in [m]} r_{i}, c_{\mathbf{r}} = k_{J} \prod_{i \in J} \rho_{ir_{i}} and$$

A graphical interpretation

Note that

$$u(\boldsymbol{y}, \boldsymbol{d}) = \sum_{\boldsymbol{0} <_{lex} \boldsymbol{r} \leq_{lex} \boldsymbol{n}} c_{\boldsymbol{r}} \boldsymbol{y}^{\boldsymbol{r}}$$

Let

- \vec{P}_i^j be the set of unordered *j*-tuples of paths ending in *i*;
- for P ∈ P
 ^j_i, n_{Pi} the number of distinct permutations of the elements of P;

• for
$$\mathbf{r} \in \mathbb{Z}_{\geq 0}^m$$
, $\vec{P}_{\mathbf{r}} = \times_{r_i \neq 0} \vec{P}_i^{r_i}$ and $n_P = \sum_{r_i \neq 0} n_{P_i}$, then

$$\sum_{\boldsymbol{a}\simeq \boldsymbol{r}} \binom{|\boldsymbol{r}|}{\boldsymbol{a}} \boldsymbol{\theta}_{Tot}^{\boldsymbol{r}} = \sum_{\boldsymbol{P}\in\vec{P}_{\boldsymbol{r}}} n_{\boldsymbol{P}} \prod_{\boldsymbol{p}\in\boldsymbol{P}} \boldsymbol{\theta}_{\boldsymbol{p}}$$

An example

$\mathbb{E}(Y_2^2 Y_4^2 | \theta) = \theta_{02}^{\prime 2} \theta_{04}^{\prime 2} + 2\theta_{12} \theta_{02}^{\prime} \theta_{04}^{\prime 2} + \theta_{12}^2 \theta_{04}^{\prime 2} + 2\theta_{02}^{\prime 2} \theta_{14} \theta_{04}^{\prime} + \\ 4\theta_{12} \theta_{02}^{\prime} \theta_{14} \theta_{04} + 2\theta_{12}^2 \theta_{14} \theta_{04}^{\prime} + \theta_{02}^{\prime 2} \theta_{14}^2 + 2\theta_{12} \theta_{02}^{\prime} \theta_{14}^2 + \theta_{12}^2 \theta_{14}^2.$

Discussion

New application in Bayesian decision making;

Algebra helped us identifying minimal sets of separation conditions for fast multi-expert analyses;

Extensions:

- Bayesian dynamic forecasting;
- Tensor propagation;

Thanks for your attention

Discussion

New application in Bayesian decision making;

Algebra helped us identifying minimal sets of separation conditions for fast multi-expert analyses;

Extensions:

- Bayesian dynamic forecasting;
- Tensor propagation;

Thanks for your attention