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Phylogenetic Models

Problem
Find a tree that represents the evolutionary history of a group of taxa.

DATA
Species 1: ACCGTAGATGACT...
Species 2: ACTGTAGATGACT...
Species 3: ACCGTACATGACT...

Latent variable graphical models
Model evolution at a single locus.
Give probability distribution on n-tuples of DNA characters
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Phylogenetic Models

Tree parameter: Binary leaf-labelled tree T with label set [n].

Random variable Xv associated to each node of T .

State space of each Xv is {A,C,G,T}.

Transition matrix associated to each edge.

Mk
ij = P(Xv = i |Xw = j).

Entries of the transition matrices are the stochastic or numerical
parameters.

To find the probability of observing a particular state at the leaves,
sum over all histories, the possible states of internal nodes.
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Jukes-Cantor Example

Mk =


A C G T

A αk βk βk βk
C βk αk βk βk
G βk βk αk βk
T βk βk βk αk


Mk

ij = P(Xv = i |Xw = j)

pCCA = πAβ1β2α3+ πCα1α2β3+ πGβ1β2β3+ πTβ1β2β3

ψT : ΘT → ∆4n−1 ⊆ R4n

MT = ψT (ΘT ) is the model.
VT = im(ψT ) and IT = I(VT ) is the ideal of phylogenetic
invariants.
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The Strand Symmetric Model (SSM)

The Strand Symmetric Model (SSM) reflects the double-stranded
structure of DNA.

A-T and C-G are always paired, so a mutation in one induces a
mutation in the other.

We insist the root distribution satisfies πA = πT and πC = πG.

Likewise, if we let θij be the entries of the transition matrices,

θAA = θTT θAC = θTG θAG = θTC θAT = θTA

θCC = θGG θCG = θGC θCT = θGA θGT = θCA

Given any tree T , we want to be able to determine IT for the SSM.
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Determining the ideal of the SSM

Theorem (Casanellas-Sullivant 2005)
For any binary phylogenetic tree T , the ideal of phylogenetic invariants
for the SSM on T can be computed from the ideal of phylogenetic
invariants for the claw tree, ISSM .

Theoretically, this can be computed with elimination.

Computing the required Gröbner basis is not possible.

The Fourier transform gives a monomial parameterization for
group-based models.

We require something analogous for the Strand Symmetric Model.
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Matrix-Valued Group-Based Models ([1])

Identify states with elements of Z2 × {0,1}.

A =
(

0
0

)
, G =

(
0
1

)
, T =

(
1
0

)
, C =

(
1
1

)
.

E =

0 1
A G T C

0
A θ1 θ8 θ3 θ2
G θ7 θ5 θ4 θ6

1
T θ3 θ2 θ1 θ8
C θ4 θ6 θ7 θ5

E j1j2
i1i2

= Ek1k2
i1i2

whenever j1 − j2 = k1 − k2 in Z2.

This makes the strand symmetric model a matrix-valued group
based model.
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The Group-Valued Fourier Transform

In the new coordinates, the parameterization of the cone over the SSM
for K1,3 is given by

qmno
ijk = dmm

0i enn
0j f oo

0k + dmm
1i enn

1j f oo
1k

if m + n + o ≡ 0 in Z2, and qmno
ijk = 0 otherwise.

This is a projection of the space of rank 2 tensors.

Q =


d0

00
d0

01
d1

00
d1

01

⊗


e0
00

e0
01

e1
00

e1
01

⊗


f 0
00
f 0
01
f 1
00
f 1
01

+


d0

10
d0

11
d1

10
d1

11

⊗


e0
10

e0
11

e1
10

e1
11

⊗


f 0
10

f 0
11

f 1
10

f 1
11



ISSM = I(Sec2(Seg(P3 × P3 × P3))) ∩ C[qmno
ijk : m + n + o = 0].
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A Candidate Ideal

Using elimination, the same authors found ISSM is generated by
32 equations in degree 3
18 equations in degree 4
0 equations in degree 5.
Unknown for degree ≥ 6.

Theorem (L-Sullivant 2014)
Let IF be the ideal generated by the 50 equations found in [1]. Then
IF = ISSM .

We know that IF ⊆ ISSM and ISSM is prime, so we just need to show
1 dim(IF ) = dim(ISSM).
2 IF is prime.
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How to show IF is prime?

Dimension is easy,
Compute dim(IF ) with Macaulay2.
Compute dim(ISSM) as a tropical secant variety [3].
dim(IF ) = dim(ISSM) = 20.

Lemma [6, Proposition 23]
Let k be a field and J ⊂ k [x1, . . . , xn] be an ideal containing a
polynomial f = gx1 + h with g,h not involving x1 and g a non-zero
divisor modulo J. Let J1 = J ∩ k [x2, . . . , xn] be the elimination ideal.
Then J is prime if and only if J1 is prime.

J not prime⇒ J1 not prime.
Given a,b 6∈ J with ab ∈ J, a′ := (ga− hdxd−1

1 f ) 6∈ J, and a′b ∈ J
with lower x1-degree.
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Proving IF is prime.

1 Start with I0 = IF and k = 1.

2 Find a polynomial fk = gkxk + hk ∈ Ik−1.

3 Verify that gk is not a zero-divisor mod Ik−1.

4 eliminate xk to obtain the ideal Ik .

5 Generate a decreasing chain of elimination ideals

IF = I0 ⊃ I1 ⊃ I2 . . . ⊃ 〈0〉.

By repeated application of the lemma,

〈0〉 prime ⇒ IF prime .
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The Result

ISSM = I(Sec2(Seg(P3 × P3 × P3)))) ∩ C[qmno
ijk : m + n + o = 0].

To reduce computation time...

Take advantage of the group
action on IF .

Eliminate variables in
particular order.

We show IF = ISSM and therefore we can determine the ideal for the
strand symmetric model for any binary tree T .
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Another Application: CFN mixture models

The CFN model is a two-state group-based phylogenetic model.

Mixture models correspond to join varieties.

Goal
Find a generating set for the ideal of phylogenetic invariants for
two-tree CFN mixtures on the same tree.

Snowflake
Caterpillar

IS ∗ IS is generated by 32 equations in degree 3 and 18
equations in degree 4.
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CFN Mixtures

Relabeling coordinates, IS ∗ IS = ISSM .

We can also determine IC ∗ IC

1 Compute IC ∗ IC in degree 3 and 4.
2 Apply Draisma tropical secant dimension [3].
3 Apply the prime algorithm [6].

Observation
HS(IC ∗ IC , t) = HS(IS ∗ IS, t).

Conjecture
For T , T ′ ∈ T[n], HS(IT ∗ IT , t) = HS(IT ′ ∗ IT ′ , t).
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