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LUIGI MALAGÒ AND GIOVANNI PISTONE

Contents

1. Introduction 2
1.1. C. R. Rao 2
1.2. S.-H. Amari 2
2. Finite State Space: Full Simplex 4
2.1. Statistical bundle 4
2.2. Example: fractionalization 7
2.3. Example: entropy 8
2.4. Example: the polarization measure 10
2.5. Transports 10
2.6. Connections 11
2.7. Atlases 12
2.8. Using parameters 13
3. Finite State Space: Exponential Families 16
3.1. Statistical manifold 17
3.2. Gradient 18
3.3. Gradient flow in the mixture geometry 20
3.4. Gradient flow of the expected value function 20
4. Gaussian Models 21
4.1. Gaussian model in the Hermite basis 21
4.2. Optimisation 23
References 25

Date: June 11, 2015.
The authors wish to thank Henry Wynn for his comments on a draft of this tutorial. Some matherial

reproduced here is part of work in progress by the authors and collaborators. G. Pistone is supported by
the de Castro Statistics Initiative, Collegio Carlo Alberto, Moncalieri; and he is a member of GNAMPA–
INdAM.

1



1. Introduction

It was shown by C. R. Rao in a paper published 1945 [23] that the set of positive
probabilities ∆◦(Ω) on a finite state space Ω is a Riemannian manifold, as it is defined in
classical treatises such as [7] and [11], but in a way which is of interest for Statistics. It
was later pointed out by Sun-Ichi Amari that it is actually possible to define two affine
geometries of Hessian type [29] on top of the Rao’s Riemannian geometry, but see also the
original contribution by Steffen Laurizen [12]. This development was somehow stimulated
by two papers by Efron [8, 9]. The original work of Amari was published in the ’80s, see
Shun’ichi Amari [1], see monograph presentations in [10] and [3]. Amari gave to this new
topic the name of Information Geometry and provided many applications, in particular
in Machine Learning [2].

Information Geometry and Algebraic statistics are deeply connected because of the
central place occupied by statistical exponential families [4] in both fields. There is
possibly a simpler connection, which is the object of the first part of this presentation.
The present tutorial is focused mainly on Differential Geometry.

The present tutorial treats only cases where the statistical model is parametric. How-
ever, there is an effort to use methods that scale well to the case where the statistical
model is essentially infinite dimensional, e.g. [5, 6], parry—dawid—lauritzen:2012, [14],
and, in general, all applications in Statistical Physics.

Where to start from? Here is my choice, but read the comments by C. R. Rao to
Scholarpedia.

1.1. C. R. Rao. In [23] we find the following computation:

d

dt
Ep(t) [U ] =

d

dt

∑
x

U(x)p(x; t)

=
∑
x

U(x)
d

dt
p(x; t)

=
∑
x

U(x)
d

dt
log (p(x; t)) p(x; t)

=
∑
x

(
U(x)− Ep(t) [U ]

) d
dt

log (p(x; t)) p(x; t)

= Ep(t)
[(
U − Ep(t) [U ]

) d
dt

log (p(t))

]
=

〈(
U − Ep(t) [U ]

)
,
d

dt
log (p(t))

〉
p(t)

.

Here the relevant point is fact the scalar product is computed at the running p(t) and
the Fisher’s score d

dt
log (p(t)) appears as a measure of velocity.

1.2. S.-H. Amari. In [2] there are applications of computations of the following type.
Give a function f : ∆◦(Ω)→ R,
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d

dt
f(p(t)) =

∑
x∈Ω

∂

∂p(x)
f(p(x; t) : x ∈ Ω)

d

dt
p(x; t)

=

〈
grad f(p(t)),

d

dt
log (p(x; t))

〉
p(t)

=

〈
grad f(p(t))− Ep(t) [grad f(p(t))] ,

d

dt
log (p(x; t))

〉
p(t)

,

where grad f(p(t))−Ep(t) [grad f(p(t))] appears as the gradient of f in the scalar product
〈·, ·〉·.
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2. Finite State Space: Full Simplex

Let Ω be a finite set with n + 1 = #Ω points. We denote by ∆(Ω) the simplex of
the probability functions p : Ω → R≥0,

∑
x∈Ω p(x) = 1. It is a n-simplex, i.e. an n-

dimensional polytope which is the convex hull of its n + 1 vertices. It is a closed and
convex convex subset of the affine space A1(Ω) =

{
q ∈ RΩ

∣∣∑
x∈Ω q(x) = 1

}
and it has

non empty relative topological interior.
The interior of the simplex, ∆◦n, is the set of the strictly positive probability functions,

∆◦(Ω) =

{
p ∈ RΩ

∣∣∣∣∣∑
x∈Ω

p(x) = 1, p(x) > 0

}
.

The border of the simplex is the union of all the faces of ∆(Ω) as a convex set. We
recall that a face of maximal dimension n− 1 is called facet. Each face is itself a simplex.
An edge is a face of dimension 1.

Remark 1. The presentation below does not use explicitely any specific parameterization
of the sets ∆◦(Ω), ∆(Ω), A1(Ω). However, the actual extension of this theory to non
finite sample space requires a carefull handling as most of the topological features do not
hold in such a case. One possibility is given by the so called exponential manifolds, see
[21].

2.1. Statistical bundle. We first discuss the statistical geometry on the open simplex
as deriving from a vector bundle with base ∆◦(Ω).The notion of vector bundle has been
introduced in non-parametric Information Geometry by [13]. Later we will show that
such a bundle can be identified with the tangent bundle of proper manifold structure.
It is nevertheless interesting to observe that a number of geometrical properties do not
require the actual definition of the statistical manifold, possibly opening the way to a
generalization.

For each p ∈ ∆◦(Ω) we consider the plane through the origin, orthogonal to the vector−→
Op. The set of positive probabilities each one associated to its plane forms a vector
bundle which is the basic structure of our presentation of Information Geometry, see Fig.
1. Note that, because of our orientation to Statistics, we call each element of RΩ a random
variable. A section mapping S from probabilities p ∈ ∆◦(Ω) to the bundle, Ep [S(p)] = 0
is an estimating function as the equation F (p̂, x) = 0, x ∈ Ω, provides an estimator that
is a distinguished mapping from the sample space Ω to the simplex of probabilities ∆(Ω).

We can give a formal definition as follows.

Definition 1.

(1) For each p ∈ ∆◦(Ω) let Bp be the vector space of random variables U that are
p-centered,

Bp =

{
U : Ω→ R

∣∣∣∣∣Ep [U ] =
∑
x∈Ω

U(x)p(x) = 0

}
.

Each Bp is an Hilbert space for the scalar product 〈U, V 〉p = Ep [UV ].

(2) The statistical bundle of the open simplex ∆◦(Ω) is the linear bundle on ∆◦(Ω)

T∆◦(Ω) = {(p, U)|p ∈ ∆◦(Ω), U ∈ Bp} .
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Figure 1. The red triangle is the simplex on the sample space with 3
points Ω = {x, y, z} viewed from below. The blue curve on the simplex is
a one-dimensional statistical model. The probabilities p are represented by
vectors from O to the point whose coordinates are p = (p(x), p(y), p(z)).
The velocity vectors Dp(t) of a curve I 7→ p(t) are represented by arrows;
they are orthogonal to the vector from O to p.

It is an open subset of the variety of RΩ×RΩ defined by the polynomial equations{ ∑
x∈Ω p(x) = 1 ,∑
x∈Ω U(x)p(x) = 0 .

(3) A vector field F of the statistical bundle is a section of the bundle i.e.,

F : ∆◦(Ω) 3 p 7→ (p, F (p)) ∈ T∆◦(Ω)

The term estimating function is also used in the statistical literature.
(4) If I 3 t 7→ p(t) ∈ ∆◦(Ω) is a C1 curve, its score is defined by

Dp(t) =
ṗ(t)

p(t)
=

d

dt
log p(t), t ∈ I .

As the score Dp(t) is a p(t)-centered random variable which belongs to Bp(t) for
all t ∈ I, the mapping I 3 t 7→ (p(t), Dp(t)) is a curve in the statistical bundle.
Note that the notion of score extends to any curve p(·) in the affine space A1(Ω)
by its relation to the statistical gradient, i.e. Dp(t) is implicitely defined by〈

grad f(p(t))− Ep(t) [grad f(p(t))] , ,
〉
p(t)

f ∈ C1(RΩ) .

(5) Given a function f : ∆◦(Ω)→ R, its statistical gradient is a vector field ∇f : ∆◦(Ω) 3
p 7→ (p,∇F (p)) ∈ T∆◦(Ω) such that for each differentiable curve t 7→ p(t) it holds

d

dt
f(p(t)) = 〈∇f(p(t)), Dp(t)〉p(t)

Remark 2. The Information Geometry on the simplex does not coincide with the geometry
of the embedding of the simplex ∆◦(Ω) → RΩ, in the sense the statistical bundle is not
the tangent bundle of these embedding, see Fig. 1. It will become the tangent bundle of
the proper geometric structure which is given by special atlases.

Remark 3. We could extend the statistical bundle by taking the linear fiberts on ∆(Ω)
or A1(Ω). In such cases the bilinear form is not always a scalar product. In fact 〈·, ·〉p is
not faithful where at least a component of the probability vector is zero, while it is not
positive definite ourside the simplex ∆(Ω).
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Remark 4. The vector Dp(t) ∈ Bp(t) is meant to represent the relative variation of the
information in a one dimensional statistical model. The score is a representation of the
velocity along a curve, because of the geometric interpretation of C. R. Rao’s already
mentioned classical computation of [23],

d

dt
Ep(t) [U ] =

d

dt

∑
x

U(x)p(x; t) =
∑
x

U(x)
d

dt
p(x; t) =

∑
x

U(x)
d

dt
log (p(x; t)) p(x; t) =

∑
x

(
U(x)− Ep(t) [U ]

) d
dt

log (p(x; t)) p(x; t) =

Et

[(
U − Ep(t) [U ]

) d
dt

log (p(t))

]
=
〈
U − Ep(t) [U ] , Dp(t)

〉
p(t)

We observe that the scalar product above is the scalar product on Bp(t) because U 7→
U − Ep [U ] takes values in Bp.

Remark 5. Consider the level surface of f at p0 ∈ ∆◦(Ω), that is {p ∈ ∆◦(Ω)|f(p) = f(p0)},
and assume ∇f(p0) 6= 0. Then for each curve through p0, I 7→ p(t) with p(0) = p0, such
that f(p(t)) = f(p(0)), we have

0 =
d

dt
f(p(t))

∣∣∣∣
t=0

= 〈∇f(p(t)), Dp(t)〉p(t)
∣∣∣
t=0

= 〈∇f(p0), Dp(t0)〉p0

that is all velocities Dp(t0) tangential to the level set are orthogonal to the statistical
gradient. Note that we have not jet defined a manifold such that the statistical bundle is
equal to the tangent bundle.

Remark 6. If the function f : ∆◦(Ω) → R extends to a C1 funtion on an open subset
of RΩ, then we can compute the statistical gradient via the ordinary gradient in the

geometry of RΩ, namely grad f(p) =
(

∂
∂p(x)

f(p) : x ∈ Ω
)

. In fact,

d

dt
f(p(t)) =

∑
x∈Ω

∂

∂p(x)
f(p(x; t) : x ∈ Ω)

d

dt
p(x; t) =

〈grad f(p(t)), Dp(x; t)〉p(t) =
〈
grad f(p(t))− Ep(t) [grad f(p(t))] , Dp(t)

〉
p(t)

=

〈∇f(p(t)), Dp(t)〉p(t) ,
where grad f(p(t)) − Ep(t) [grad f(p(t))] is the projection of grad f(p(t)) onto Bp with
respect to the scalar product 〈., .〉p(t). Note that the statistical gradient is zero if, and
only if, the ordinary gradient is constant.

Definition 2 (Flow).

(1) Given a vector field F , the trajectories along the vector field are the solution of
the differential equation

D

dt
p(t) = F (p(t)) or

d

dt
p(t) = p(t)F (p(t)) .

(2) The flow is a mapping S : ∆◦(Ω) × R>0 3 (p, t) 7→ S(p, t) ∈ ∆◦(Ω) such that
S(p, 0) = p and t 7→ S(p, t) is a trajectory along F .

(3) Given f : ∆◦(Ω) → R with statistical gradient p 7→ (p,∇f(p)) ∈ T∆◦(Ω) a solu-
tion of the s-gradient flow equation, s = ±1, starting at p0 ∈ ∆◦(Ω) at time t0
is a curve I 7→ (p(t), Dp(t)) ∈ T∆◦(Ω) such that Dp(t) = s∇f(p(t)), t ∈ I, and
such that p(t0) = p0.
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Figure 2. The FRAC function on the 3-point simplex (left) and extended
to the affine space (right). Note difference between the flow of the ordinary
gradient and the flow of the statistical gradient.

(4) The s-gradient flow is a mapping

∆◦(Ω)× I 3 (p, t) 7→ S(p; t) ∈ ∆◦(Ω) ,

0 ∈ I, such that t 7→ S(p, t) is the solution of the gradient flow equation starting
at p at time 0,

D

dt
S(p, t) = ∇f(S(p, t)), t ∈ I and S(p, 0) = p .

Remark 7. If we have a solution of the +1 gradient flow Dp(t) = ∇f(p(t)), t ∈ I, then

d

dt
f(p(t)) = 〈∇f(p(t)), Dp(t)〉p(t) = ‖∇f(p(t))‖2

p(t) = ‖Dp(t)‖2
p(t) .

It follows that

f(p(t))− f(p0) =

∫ t

0

‖∇f(p(t))‖2
p(t) dt =

∫ t

0

‖Dp(t)‖2
p(t) dt .

Assume that p 7→ f(p) is bounded and t 7→ ‖∇f(p(t))‖2
p(t) = ‖Dp(t)‖2

p(t) is uniformely

continuous. Then limt→∞ f(p(t)) − f(p0) =
∫∞

0
‖∇f(p(t))‖2

p(t) dt =
∫∞

0
‖Dp(t)‖2

p(t) dt

is finite, hence limt→∞ ‖∇f(p(t))‖p(t) = limt→∞ ‖Dp(t)‖p(t) = 0 (Barbalat lemma). If

p 7→ ‖∇f(p)‖2
p has an isolated zero p̄, then limt→∞ p(t) = p̄

2.2. Example: fractionalization. Consider the function

FRAC(p) =
∑
x∈Ω

p(x)(1− p(x)) = 1−
∑
x∈Ω

p(x)2, p ∈ ∆◦(Ω) ,

see Fig. 2.
Its value is 0 if, and only if, p is a vertex of the simplex, otherwise it is positive. It

is an index used in the Social Sciences to measure the fractionalization of the society in
7



Figure 3. The entropy function on the 3-point simplex (left) and extended
as −∑x∈Ω p(x) log |p(x)| to the affine space (right). Note the large inverted
triangle corresponding to the cases of the type p(x) = 0, p(y) + p(z) = 0.

various groups. In fact, the gradient is

∇FRAC (p) =

(
−2p(x) + 2

∑
y∈Ω

p(y)2

∣∣∣∣∣x ∈ Ω

)
which is 0 on the uniform distribution. The same Eq. extends to A1(Ω), where the
statistical gradient is 0 at the vertexes of the simplex. On the uniform distribution
FRAC takes the maximal value (n− 1)/n. The +1 gradient flow equation is

Dp(t) = −2p(x) + 2
∑
y∈Ω

p(y)2 or ṗ(t) = 2p(t)(
∑
y∈Ω

p(y)2 − p(x)) .

I do not know a closed form solution. The function V (p) =
∑

x∈Ω p(x)2 has statistical

gradient ∇V (p) =
(

2(p(x)−∑y∈Ω p(y)2)
∣∣∣x ∈ Ω

)
= −∇FRAC (p), so that

〈∇V (p),∇FRAC (p)〉p < 0 ,

that is V is a Lyapunov function for FRAC.

2.3. Example: entropy. The combination of Dp as a definition of the derivative and
of the metric 〈·, ·〉p(t) on the vector fiber provides a computable rule for the gradient. We

compute the gradient of the entropy H(p) = −Ep [log p], p ∈ ∆◦(Ω), see Fig. 3.
Let us compute the gradient:

d

dt
H(p(t)) =

− d

dt

∑
x∈Ω

p(x; t) log (p(x; t)) = −
∑
x∈Ω

(log (p(x; t)) + 1)ṗ(x; t) =

〈− log (p(t)−H(p(t)) , Dp(t)〉p(t) ,
hence ∇H(p) = − log p − H(p). Note that the gradient is zero if, and only if, the
distribution is uniform.
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Let us solve the flow of the gradient equation

Dp(t) = ∇H(p(t)), p(0) = p0 ,

that is
d

dt
log (p(t)) = − log (p(t))−H(p(t)) .

It follows
d

dt

(
et log (p(t))

)
= −etH(p(t)) ,

hence

et log (p(t)) = log (p0)−
∫ t

0

esH(p(s)) ds ,

so that

p(t) =
pe−t

0

exp
(∫ t

0
e−(t−s)H(p(s)) ds

)
and

exp

(∫ t

0

e−(t−s)H(p(s))

)
ds =

∑
x∈Ω

p0(x)e−t .

In conclusion, we have proved that the solution of the gradient flow tends to the proba-
bility with maximal entropy, that is to the uniform distribution.

Let us consider the negative gradient flow,

Dp(t) = −∇H(p(t)), p(0) = p0 ,

that is
d

dt
log (p(t)) = log (p(t)) +H(p(t)) .

It follows
d

dt

(
e−t log (p(t))

)
= e−tH(p(t)) ,

hence

e−t log (p(t)) = log (p0) +

∫ t

0

e−sH(p(s)) ds ,

so that

p(t) =
pet

0

exp
(∫ t

0
e(t−s)H(p(s)) ds

)
and

exp

(∫ t

0

e(t−s)H(p(s)) ds

)
=
∑
x∈Ω

p0(x)et .

In conclusion, it is easy to check that the solution of the negative gradient flow tend
to the probability in ∆(Ω) which is uniform on the set {x ∈ Ω|p0(x) = maxy p0(y)}.
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Figure 4. Polarization

2.4. Example: the polarization measure. M. Roynal-Quenol has defined the index
of polarization in her PhD thesis, discussed at LSE on 2001, see [25] to be

POL: ∆n 3 p 7→ 1− 4
n∑
x=0

(
1

2
− p(x)

)2

p(x) = 4
n∑
x=0

p(x)2(1− p(x))

From the first form it follows that the value is 1 if, and only if, p(x) = 1/2 or p(x) = 0

for all x, that is p is the uniform distribution on a couple of points,
(
n+1

2

)
= n(n+1)

2
cases.

Otherwise it is < 1. From the second form, we see it is ≥ 0 and 0 on the vertexes of the
simplex only.

Note that we can extend the funtion POL on the affine space

A1(Ω) =

{
q ∈ RΩ

∣∣∣∣∣∑
x∈Ω

q(x) = 1

}
.

See in Fig. 4 the two cases. On such extension it is still true that the function is zero
on the vertexes of the simplex ∆(Ω), but it is not anymore true that the maximum is
reached on the middle points of the edges.

The statistical gradient is the vector

∇POL (p) =

(
8p(x)− 12p(x)2 − 8

∑
y∈Ω

p(y)2 + 12
∑
y∈Ω

p(y)3

∣∣∣∣∣x ∈ Ω

)
This example shall be discussed again in the context of parameterization.

2.5. Transports. For each random variable U ∈ Bp, note that Eq [U − Eq [U ]] = 0 and

Eq
[
p
q
U
]

= 0, so that we can define the following transport mappings.

Definition 3.

(1) The e-transport is the family of linear mappings

+Uq
p : Bp 3 U 7→ U − Eq [U ] ∈ Bq .
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(2) The m-transport is the family of linear mappings

−Uq
p : Bp 3 U 7→

q

p
U ∈ Bq .

(3) The h-transport is the family of linear mappings

0Uq
p : Bp 3 U 7→

√
p

q
u−

(
1 + Eq

[√
p

q

])−1(
1 +

√
p

q

)
Eq
[√

p

q
u

]
∈ Bq

Proposition 4.

(1) +Ur
q

+Uq
p = +Ur

p,
−Ur

q
−Uq

p = −Ur
p,

0Up
q

0Uq
pu = u.

(2)
〈

+Uq
pU, V

〉
q

=
〈
U, −Up

qV
〉
p
.

(3)
〈

+Uq
pU,

−Uq
pV
〉
q

= 〈U, V 〉p.
(4)

〈
0Uq

pU,
0Uq

pV
〉
q

= 〈U, V 〉p.

2.6. Connections. Second order geometry is usually based on a notion of covariant
derivative or a notion of connection. It leads to interesting applications in optimiziation,
such as the use of a Newton method based on the computation of the proper Heffian.
Here we restrict to a definition of accelleration based on the use of transports.

Let us compute the accelleration of a curve I 7→ p(t). The velocity is t 7→ (p(t), Dp(t)) =(
p(t), d

dt
log (p(t))

)
∈ T∆◦(Ω). The vector Dp(t) has to be checked against an element of

Bp(t), say −Up(t)
p v. We can compute an accelleration as

d

dt

〈
Dp(t), −Up(t)

p v
〉
p(t)

=
d

dt

〈
+Up

p(t)Dp(t), v
〉
p

=

〈
d

dt
+Up

p(t)Dp(t), v

〉
p

=

〈
+Up(t)

p

d

dt
+Up

p(t)Dp(t),
−Up(t)

p v

〉
p(t)

The exponential accelleration is

+Up(t)
p

d

dt
+Up

p(t)Dp(t) = +Up(t)
p

d

dt

(
ṗ(t)

p(t)
− Ep

[
ṗ(t)

p(t)

])
= +Up(t)

p

(
p̈(t)p(t)− ṗ(t)2

p(t)2
− Ep

[
p̈(t)p(t)− ṗ(t)2

p(t)2

])
=
p̈(t)p(t)− ṗ(t)2

p(t)2
− Ep(t)

[
p̈(t)p(t)− ṗ(t)2

p(t)2

]
=
p̈(t)

p(t)
− (Dp(t))2 + Ep(t)

[
(Dp(t))2

]
.

Exponential families have null exponential accelleration: for p(t) = exp (tu− ψ(t)) p,
we have

Dp(t) = u− ψ̇(t)

d

dt
Dp(t) = −ψ̈(t)

Ep(t)
[
(Dp(t))2

]
= ψ̈(t)
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We could have computed the accelleration as

d

dt

〈
Dp(t), +Up(t)

p v
〉
p(t)

=
d

dt

〈
−Up

p(t)Dp(t), v
〉
p

=

〈
d

dt
−Up

p(t)Dp(t), v

〉
p

=

〈
−Up(t)

p

d

dt
−Up

p(t)Dp(t),
+Up(t)

p v

〉
p(t)

hence we can compute the mixture accelleration as follows

−Up(t)
p

d

dt
−Up

p(t)Dp(t) =
p

p(t)

d

dt

(
p(t)

p

ṗ(t)

p(t)

)
=
p̈(t)

p(t)
.

In follows that mixture models have null mixture accelleration.
We could compute the Riemannian accelleration as 0Up(t)

p
d
dt

0Up
p(t)Dp(t). See some

developments in [20, 21, 14]

2.7. Atlases. We now turn to the explicit introduction of atlases of charts. Each of these
chart correspond to a different geometry, in particular to different notion of geodesics.

Definition 5 (Exponential atlas). For each p ∈ ∆◦(Ω) we define

sp : T∆◦(Ω) 3 (q, w) 7→
(

log
q

p
− Ep

[
log

q

p

]
, +Up

qw

)
∈ Bp ×Bp

Proposition 6 (Exponential atlas).

(1) If u = sp(q), then q = eu−Kp(u) · p with Kp(u) = logEp [eu].
(2) The patches are

s−1
p : (u, v) 7→ (eu−Kp(u) · p, v − dKp(u)[v]

(3) The transitions are

sp1 ◦ s−1
p2

: (u, v) 7→
(

+Up1
p2
u+ log

p2

p1

− Ep1

[
log

p2

p1

])
∈ Bp1 ×Bp1

(4) The tangent bundle identifies with the statistical bundle,

d

dt
sp(p(t)) = +Up

p(t)Dp(t) .

Definition 7 (Mixture atlas). For each p ∈ ∆◦(Ω) we define

ηp : T∆◦(Ω) 3 (q, w) 7→
(
q

p
− 1, −Up

qw

)
∈ Bp ×Bp

Proposition 8 (Mixture atlas).

(1) If u = ηp(q), then q = (1 + u)p.
(2) The patches are

η−1
p : (u, v) 7→ ((1 + u)p, (1 + u)w)

(3) The transitions are

ηp1 ◦ η−1
p2

: (u, v) 7→
(

(1 + u)
p2

p1

− 1, −Up2
p1
v

)
12



(4) The tangent bundle identifies with the statistical bundle,

d

dt
ηp(p(t)) = −Up

p(t)Dp(t) .

It is possible to define the Riemannian atlas, see [21].

2.8. Using parameters. We still study the geometry of the full simplex, but now we
introduce parameters. This section is taken from [22].

Computations are usually performed in a parametrization

π : Θ 3 θ 7→ π(θ) ∈ ∆◦(Ω),

Θ being an open set in Rn. The j-th coordinate curve is obtained by fixing the other
n − 1 components and moving θj only. The scores of the j-th coordinate curves are the
random variables

Djπ(θ) =
∂

∂θj
log π(θ), j = 1, . . . , n.

The sequence (Djπ(θ) : j = 1, . . . , n) is a vector basis of the tangent space Bπ(θ). The
representation of the scalar product in such a basis is〈

n∑
i=1

αiDiπ(θ),
n∑
j=1

βjDjπ(θ)

〉
π(θ)

=
n∑

i,j=1

αiβjIij(θ) .

Definition 9 (Fisher Information). The matrix I(θ) =
[
〈Diπ(θ), Djπ(θ)〉π(θ)

]n
i,i=1

is the

Fisher information matrix.

If θ 7→ φ̃(θ) is the expression in the parameters of a function φ : ∆◦(Ω) → R, that

is φ̃(θ) = φ(π(θ)), and t 7→ θ(t) is the expression in the parameters of a generic curve
p : I → ∆◦(Ω), then the components of the gradient in (11) are expressed in terms of the
ordinary gradient by observing that

d

dt
φ(p(t)) =

d

dt
φ̃(θ(t)) =

n∑
j=1

∂

∂θj
φ̃(θ(t))θ̇j(t).

As Dp(t) =
∑

j Djπ(θ(t))θ̇j(t), we obtain from (11)

(1)
d

dt
φ(p(t)) = 〈∇φ(p(t)), Dp(t)〉p(t) =

∑
j

〈
∇φ(p(t)), Djπ(θ(t))θ̇j(t)

〉
p(t)

.

Definition 10 ([2]). The natural gradient is a vector ∇̃φ̃(θ) whose components are the

coordinates of the gradient ∇φ̃(π(θ)) ∈ Bπ(θ) in its π-basis, that is

∇φ(π(θ)) =
n∑
j=1

(∇̃φ̃(θ))jDjπ(θ).

By substitution of the expression in (1) we obtain

(2) ∇̃φ̃(θ) = ∇φ̃(θ)I−1(θ).

The common parametrization of the (flat) simplex ∆◦(Ω) is the projection on the solid

simplex Γn =
{
η ∈ Rn

∣∣∣0 < ηj,
∑n

j=1 ηj < 1
}

, that is

π : Γn 3 η 7→
(

1−
n∑
j=1

ηj, η1, . . . , ηn

)
∈ ∆◦(Ω),

13
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Figure 5. Diagram of the action of the natural gradient in a given
parametrization π : Θ→ ∆◦(Ω).

in which case ∂jπ(η), j = 1, . . . , n, is the random variable with values −1 at x = 0, 1 at
x = j, 0 otherwise, hence ∂jπ(η) = ((X = j)− (X = 0)) and

Djπ(η) = ((X = j)− (X = 0)) /π(η).

The element (j, h) of the Fisher information matrix is

Ijh(η) = Eπ(η)

[
(X = j)− (X = 0)

π(X;η)

(X = h)− (X = 0)

π(X;η)

]
=

∑
x

π(x,η)−1 ((x = j)(j = h) + (x = 0)) = η−1
j (j = h) +

(
1−

∑
k

ηk

)−1

hence

I(η) = diag (η)−1 +

(
1−

n∑
j=1

ηj

)−1

[1]ni,j=1.

As an example we consider n = 3. The Fisher information matrix, its inverse and the
determinant of the inverse are, respectively,

I(η1, η2, η3) =

(1− η1 − η2 − η3)−1

η−1
1 (1− η2 − η3) 1 1

1 η−1
2 (1− η1 − η3) 1

1 1 η−1
3 (1− η1 − η2)

 ,
I(η1, η2, η3)−1 =

(1− η1)η1 −η1η2 −η1η3

−η1η2 (1− η2)η2 −η2η3

−η1η3 −η2η3 (1− η3)η3

 ,
det
(
I(η1, η2, η3)−1

)
= (1− η1 − η2 − η3)η1η2η3.

Note that the computation of the inverse of I(η) is an application of the Sherman-
Morrison formula and the computation of the determinant of I(η)−1 is an application of
the matrix determinant lemma.

For general n, we have the following Proposition, whose interest stems from the defi-
nition of natural gradient, see Eq. (2).

Proposition 11.

(1) The inverse of the Fisher information matrix is

I(η)−1 = diag (η)− ηηt
14



(2) In particular, I(η)−1 is zero on the vertexes of the simplex, only.
(3) The determinant of the inverse Fisher information matrix is

det
(
I(η)−1

)
=

(
1−

n∑
i=1

ηi

)
n∏
i=1

ηi.

(4) The determinant of I(η)−1 is zero on the borders of the simplex, only.
(5) On the interior of each facet, the rank of I(η)−1 is n − 1 and the n − 1 liner

independent column vectors generate the subspace parallel to the facet itself.

Proof.

(1) By direct computation, I(η)I(η)−1 is the identity matrix.
(2) The diagonal elements of I(η)−1 are zero if ηj = 1 or ηj = 0, for j = 1, . . . , n.

If, for a given j, ηj = 1, then the elements of I(η)−1 are zero if ηh = 0, h 6= j.
The remaining case corresponds to ηj = 0 for all j. Then I(η)−1 = 0 on all the
vertexes of the simplex.

(3) It follows from Matrix Determinant Lemma.
(4) The determinant factors in terms corresponding to the equations of the facets.
(5) Given i, the conditions ηi = 0 and ηj 6= 0, 1 for all j 6= i, define the interior

of the facet orthogonal to standard base vector ei. In this case the i-th row
and the i-th column of I(η)−1 are zero and the complement matrix corresponds
to the inverse of a Fisher information matrix in dimension n − 1 with non zero
determinant. It follows that the subspace generated by the columns has dimension
n−1 and coincides with the space orthogonal to ηi. Consider the facet defined by
(1−∑n

i=1 ηi) = 0, ηi 6= 0, 1 for all i. For a given j, the matrix without the j-th

row and the j-th column has determinant
(

1−∑n
i=1,i 6=j ηi

)∏n
i=1,i 6=j ηi. On the

considered facet this determinant is different to zero and I(η)−1 has rank n − 1
and their columns are orthogonal to the constant vector. �

�

An other parametrization is the exponential parametrization based on the exponential
family with sufficient statistics Xj = (X = j), j = 1, . . . , n,

π : Rn 3 θ 7→ exp

(
n∑
j=1

θjXj − ψ(θ)

)
1

n+ 1

where

ψ(θ) = log

(
1 +

∑
j

eθj

)
− log (n+ 1) .

See [22] for an illustration of the gradient flow in case of th function POL.
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3. Finite State Space: Exponential Families

This section is taken from our paper “Natural Gradient Flow in the Mixture Geometry
of a Discrete Exponential Family” to appear in Entropy.

Let Ω be a finite set of points x = (x1, . . . , xn) and µ the counting measure on Ω. In this
case a density p ∈ P≥ is a probability function i.e., p : Ω→ R+ such that

∑
x∈Ω p(x) = 1.

Given a set B = {T1, . . . , Td} of random variables such that, if
∑d

j=1 cjTj is constant,

then c1 = · · · = cd = 0. E.g., if
∑
x∈Ω Tj(x) = 0, j = 0, . . . , d, and the B is a linear basis.

We say that B is a set of affinely independent random variables. If B is a linear basis, it
is affinely independent if and only if {1, T1, . . . , Td} is a linear basis.

We consider the statistical model E whose elements are uniquely identified by the
natural parameters θ in the exponential family with sufficient statistics B, namely

pθ ∈ E ⇔ log pθ(x) =
d∑
i=1

θiTi(x)− ψ(θ), θ ∈ Rd ,

see [4].
The proper convex function ψ : Rd,

θ 7→ ψ(θ) = log
∑
x∈Ω

eθ·T (x) = θ · Epθ [T ]− Epθ [log (pθ)]

is the cumulant generating function of the sufficient statistics T , in particular,

∇ψ(θ) = Eθ [T ] , Hessψ(θ) = Covθ (T ,T ) .

Moreover, the entropy of pθ is

H(pθ) = −Epθ [log (pθ)] = ψ(θ)− θ · ∇ψ(θ) .

The mapping ∇ψ is 1-to-1 onto the interior M◦ of the marginal polytope, that is the
convex span of the values of the sufficient statistics M = {T (x)|x ∈ Ω}. Note that
no extra condition is required because on a finite state space all random variables are
bounded. Nonetheless, even in this case the proof is not trivial, see [4].

Convex conjugation applies, see [27, §25], with the definition

ψ∗(η) = sup
{
θ ∈ Rd

∣∣θ · η − ψ(θ)
}
, η ∈ Rd .

The concave function θ 7→ η · θ − ψ(θ) has divergence mapping θ 7→ η −∇ψ(θ) and
the equation η = ∇ψ(θ) has solution if and only if η belongs to the interior M◦ of the
marginal polytope. The restriction φ = ψ∗|M◦ is the Legendre conjugate of ψ, and it is
computed by

φ : M◦ 3 η 7→∈ (∇ψ)−1(η) · η − ψ ◦ (∇ψ)−1(η) ∈ R .

The Legendre conjugate φ is such that ∇φ = (∇ψ)−1 and it provides an alternative
parameterization of E with the so called extectation or mixture parameter η = ∇ψ(θ),

(3) pη = exp ((T − η) · ∇φ(η) + φ(η)) .

While in the θ-parameters the entropy is H(pθ) = ψ(θ)−θ·∇ψ(θ), in the η-parameters
the φ function gives the the negative of the entropy: −H(pη) = Epη [log pη] = φ(η).

Proposition 12.

(1) Hessφ(η) = (Hessψ(θ))−1 when η = ∇ψ(θ).
16



(2) The Fisher information matrix of the statistical model given by the exponential
family in the θ-parameters is Ie(θ) = Covpθ (∇ log pθ,∇ log pθ) = Hessψ(θ).

(3) The Fisher information matrix of the statistical model given by the exponential
family in the η-parameters is Im(θ) = Covpη (∇ log pη,∇ log pη) = Hessφ(η).

Proof. Derivation of the equality ∇φ = (∇ψ)−1 gives the first item. The second item
is a property of the cumulant generating function ψ. The third item follows from Eq.
(3). �

3.1. Statistical manifold. The exponential family E is an elementary manifold in either
the θ- or the η-parameterization, named respectively exponential of mixture parameter-
ization. We discuss now the proper definition of the tangent bundle TE .

Definition 13 (Velocity). If I 3 t 7→ pt, I open interval, is a differentiable curve in E,
then its velocity vector is identified with its Fisher score:

D

dt
p(t) =

d

dt
log (pt) .

The capital-D notation is taken from differential geometry, see the classical monograph
[7].

Definition 14 (Tangent space). In the expression of the curve by the exponential param-
eters, the velocity is

(4)
D

dt
p(t) =

d

dt
log (pt) =

d

dt
(θ(t) · T − ψ(θ(t))) = θ̇(t) ·

(
T − Eθ(t) [T ]

)
,

that is it equals the statistics whose coordinates are θ̇(t) in the basis of the sufficient
statistics centered at pt. As a consequence, we identify the tangent space at each p ∈ E
with the vector space of centered sufficient statistics, that is

TpE = Span (Tj − Ep [Tj]|j = 1, . . . , d) .

In the mixture parameterization of Eq. (3) the computation of the velocity is

(5)
D

dt
p(t) =

d

dt
log (pt) =

d

dt
(∇φ(η(t)) · (T − η(t)) + φ(η(t))) =

(Hessφ(η(t))η̇(t)) · (T − η(t)) = η̇(t) · [Hessφ(η(t)) (T − η(t))] .

The last equality provides the interpretation of η̇(t) as the coordinate of the velocity in
the conjugate vector basis Hessφ(η(t)) (T − η(t)), that is the basis of velocities along the
η coordinates.

In conclusion, the first order geometry is characterized as follows.

Definition 15 (Tangent bundle TE). The tangent space at each p ∈ E is a vector
space of random variables TpE = Span (Tj − Ep [Tj]|j = 1, . . . , d) and the tangent bundle
TE = {(p, V )|p ∈ E , V ∈ TpE}, as a manifold, is defined by the chart

(6) TE 3 (eθ·T−ψ(θ),v · (T − Eθ [T ])) 7→ (θ,v).

Proposition 16.
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(1) If V = v · (T − η) ∈ TpηE, then V is represented in the conjugate basis as

(7) V = v · (T − η) = v · (Hessφ(η))−1 Hessφ(η) (T − η) =(
(Hessφ(η))−1 v

)
· Hessφ(η) (T − η) .

(2) The mapping (Hessφ(η))−1 maps the coordinates v of a tangent vector V ∈ TpηE
with respect to the basis of centered sufficient statistics to the coordinates v∗ with
respect to the conjugate basis.

(3) In the θ-parameters the transformation is v 7→ v∗ = Hessψ(θ)v.

Remark 8. In the finite state space case it is not necessary to go on to the formal construc-
tion of a dual tangent bundle because all finite dimensional vector spaces are isomorphic.
However, this step is compulsolry in the infinite state space case, as it was done in [21].
Moreover, the explicit construction of natural connections and natural parallel transports
of the tangent and dual tangent bundle is unavoidable when considering the second order
calculus as it was done in [21, 17] in order to compute Hessians and implement Newton
methods of optimization. However, the scope of the present paper is restricted to a basic
study of gradient flows, hence from now on we focus on the Riemannian structure and
disregard all second order topics.

Proposition 17 (Riemannian metric). The tangent bundle has a Riemannian structure
with the natural scalar product of each TpE, 〈V,W 〉p = Ep [VW ]. In the basis of sufficient

statistics the metric is expressed by the Fisher information matrix I(p) = Covp (T ,T ),
while in the conjugate basis it is expressed by the inverse Fisher matrix I−1(p).

Proof. In the basis of the sufficient statistics, V = v · (T − Ep [T ]), W = w · (T − Ep [T ]),
so that

(8) 〈V,W 〉p = v′Ep
[
(T − Ep [T ]) (T − Ep [T ])′

]
w = v′Covp (T ,T )w = v′I(p)w ,

where I(p) = Covp (T ,T ) is the Fisher information matrix.
If p = pθ = pη, the conjugate basis at p is

(9) Hessφ(η)(T − η) = Hessψ(θ)−1(T −∇φ(θ)) = I−1(p)(T − Ep [T ]),

so that for elements of the tangent space expressed in the conjugate basis we have V =
v∗ · I−1(p) (T − Ep [T ]), W = w∗ · I−1(p) (T − Ep [T ]), thus

(10) 〈V,W 〉p = v∗′Ep
[
I−1(p) · (T − Ep [T ]) (T − Ep [T ])′ I−1(p)

]
w∗ = v∗′I−1(p)w∗.

�

3.2. Gradient. For each C1 real function F : E → R, its gradient is defined by taking
the derivative along a C1 curve I 7→ p(t), p = p(0), and writing it in the Riemannian
metrics,

(11)
d

dt
F̂ (θ(t))

∣∣∣∣
t=0

=

〈
∇F (p),

D

dt
p(t)

∣∣∣∣
t=0

〉
p

, ∇F (p) ∈ TpE .

If θ 7→ F̂ (θ) is the expression of F in the parameter θ, and t 7→ θ(t) is the expression

of the curve, then d
dt
F̂ (θ(t)) = ∇F̂ (θ(t)) · θ̇(t) so that at p = pθ(0), with velocity V =

18



D
dt
p(t)

∣∣
t=0

= θ̇(0) · (T − ∇ψ(θ(0)), so that we obtain the celebrated Amari’s natural
gradient of [2]:

(12) 〈∇F (p), V 〉p =
(

Hessψ(θ(0))−1∇F̂ (θ(0)
)′

Hessψ(θ(0))θ̇(0) .

If η 7→ F̌ (η) is the expression of F in the parameter η, and t 7→ η(t) is the expression
of the curve, then d

dt
F̌ (η(t)) = ∇F̌ (η(t)) · η̇(t) so that at p = pη(0), with velocity V =

d
dt

log (p(t))
∣∣
t=0

= η̇(0) · Hessφ(η(0))(T − η(0)),

(13) 〈∇F (p), V 〉p = (Hessφ(η(0))−1∇F̂ (η(0))′Hessφ(η(0))η̇(0).

We sumarize all notions od gradient in the following definition.

Definition 18 (Gradients).
(1) The random variable ∇F (p) uniquely defined by Eq. (11) is called statistical

gradient of F at p. The mapping ∇F : E 3 p 7→ ∇F (p) is a vector field of TE.

(2) The vector ∇̃ F̂ (θ) = Hessψ(θ)−1∇F̂ (θ) of (12) is the expression of the statistical
gradient in the θ in the basis of sufficient statistics, and it is called Amari’s
natural gradient, while ∇F̂ (θ), which is the expression in the conjugate basis of
the sufficient statistics, is called Amari’s vanilla gradient.

(3) The vector ∇̃ F̌ (η) = Hessφ(η)−1∇F̌ (η) of (12) is the expression of the statistical
gradient in the η parameter and in the conjugate basis of sufficient statistics, and
it is called Amari’s natural gradient, while ∇F̌ (η), which is the expression in the
basis of sufficient statistics, is called Amari’s vanilla gradient.

Given a vector field of E i.e., a mapping G defined on E such that G(p) ∈ TpE—which is
called a section of the tangent bundle in the standard differential geometric language—an
integral curve from p is a curve I 3 t 7→ p(t) such that p(0) = p and D

dt
p(t) = G(p(t)).

In the θ parameters G(pθ) = Ĝ(θ) · (T − ∇ψ(θ)), so that the differential equation is

expressed by θ̇(t) = Ĝ(θ(t)). In the η parameters, G(pη) = Ǧ(η) ·Hessφ(η)(T −η) and
the differential equation is η̇(t) = Ǧ(η(t)).

Definition 19 (Gradient flow).

• The gradient flow of the real function F : E is the flow of the differential equation
D
dt
p(t) = ∇F (p(t)) i.e. d

dt
p(t) = p(t)∇F (p(t)).

• The expression in the θ parameters is θ̇(t) = ∇̃ F̂ (θ(t)).

• The expression in the η parameters is η̇(t) = ∇̃ F̌ (η(t)).

The cases of gradient computation we have discussed above are just a special case of
a generic argument. Let us brefly study the gradient flow in a general chart f : ζ 7→ pζ.
Consider the change of of parametrization from ζ to θ,

ζ 7→ pζ 7→ θ(pζ) = I(pζ)
−1 Covpζ (T , log pζ) ,

and denote the Jacobian matrix of the parameters’ change by J(ζ). We have

log pζ = T · θ(ζ)− ψ(θ(ζ))

= T · I(pζ)
−1 Covpζ (T , log pζ)− ψ

(
I(pζ)

−1 Covpζ (T , log pζ)
)
,

and the ζ-coordinate basis of the tangent space TpζE consists of the components of the
gradient with respect to ζ,
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∇(ζ 7→ log pζ) = J−1(ζ)
(
T − Epζ [T ]

)
It should be noted that in this case the expression Fisher information matrix does not

have the form od an Hessian of a potential function. In fact, the case of the exponential
and the mixture parameters point to a special structure which is called Hessian manifold,
see [29].

3.3. Gradient flow in the mixture geometry. From now on, we are going to focus
on the expression of the gradient flow in the η parameters. From Def. 18 we have

∇̃ F̌ (η) = Hessφ(η)−1∇F̌ (η) = Hessψ(∇φ(η))∇F̌ (η) = I(pη)∇F̌ (η) ,

where I(p) = Covp (T ,T ). As p 7→ Covp (T ,T ) is the restriction to the simplex of
a quadratic function, while p 7→ η is the restriction to the exponential family E of a
linear function, in some cases we can naturally consider the extension of the gradient
flow equation outside M◦. One notable case is when the function F is a relaxation of a
non constant state space function f : Ω→ R, as it is defined in e.g. [15].

Proposition 20. Let f : Ω → R and let F (p) = Ep [f ] be its relaxation on p ∈ E, It
follows:

(1) ∇F (p) is the least square projection of f onto TpE, that is

∇F (p) = I(p)−1 Covp (f,T ) · (T − Ep [T ]) .

(2) The expressions in the exponential parameters θ are ∇̃ F̂ (θ) = (Hessψ(θ))−1 Covθ (f,T ),

∇F̂ (θ) = Covθ (f,T ), respectively.

(3) The expressions in the mixture parameters η are ∇̃ F̌ (η) = Covη (f,T ) and
∇F̌ (η) = Hessφ(η) Covη (f,T ), respectively.

Proof. On a generic curve thought p with velocity V , we have

d

dt
Ep(t) [f ]

∣∣∣∣
t=0

= Covp (f, V ) = 〈f, V 〉p .

If V ∈ TpE we can orthogonally project f to get 〈∇F, V 〉p = 〈(I−1(p) Covp (f,T )) · (T − Ep [T ]), V 〉p.
�

3.4. Gradient flow of the expected value function. Let us breafly recall the be-
haviour of the gradient flow in the relaxation case. Let θn, n = 1, 2, . . . , be a minimizing
sequence for F̂ and let p̄ be a limit point of the sequence (pθn)n. It follows that p̄ has a
defective support, in particular p̄ /∈ E , see [26] and [24]. For a proof along lines coherent
with the present paper, see [16, Th. 1]. It is found that the support F ⊂ Ω is exposed,
that is T (F ) is a face of the marginal polytope M = con {T (x)|x ∈ Ω}. In particular,
Ep̄ [T ] = η̄ belongs to a face of the marginal polytope M . If a is the (interior) orthogonal
of the face, that is a ·T (x) + b ≥ 0 for all x ∈ Ω and a ·T (x) + b = 0 on the exposed set,
then a · (T (x)− η̄) = 0 on the face, so that a ·Covp̄ (f,T ) = 0. If we extend the mapping
η 7→ Covη (f,T ) on the closed marginal polytope M to be the limit of the vector field of
the gradient on the faces of the marginal polytope, we expect to see that such a vector
field is tangent to the faces.
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4. Gaussian Models

This matherial is taken from a conference poster presented by G.P. at the 2014 SIS
conerence.

Gaussian models form an exponential family with special analytical features. The fol-
lowing notes are intended to underline some of these special feature namely the connection
between differentiation with respect to parameters and differentiation with respect to the
space variables.

The geometry of the multivariate Gaussian model N(~µ,Σ) has been studied in detail
by Skovgaard in [30], where normal densities are parameterised by the mean parameter
~µ and the covariance matrix Σ, and the relevant Riemannian geometry is based on an
explicit form of the Fisher information.

We review Hermite polynomials from [18, ch V]. If Z ∼ ν1 = N(0, 1) and f, g real
smooth functions, then E [df(Z)g(Z)] = E [f(Z)δg(Z)] where df(x) = f ′(x) and δg =
xg(x) − g′(x) is the Stein operator. The Hermite polynomial of order n = 0, 1, . . . is
Hn(x) = δn1 e.g., H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, . . . It follows that each Hn

is a monic polynomial of degree n, dHn = nHn−1, E [Hn(Z)Hm(Z)] = 0 for n 6= m,

E [Hn(Z)2] = n!. The sequence Hn/
√
n!, n = 0, 1, . . . is a complete orthonormal basis

of L2(ν1). In dimension d, for each multi-index α, we define Hα(~(x)) =
∏d

i=1 Hαi(xi)

to get an orthogonal basis of L2(νd), νd = Nd(~0, Id). If we define dα =
∏d

i=1 d
αi
xi

,

δα =
∏d

i=1 δ
αi
xi

, we have for functions f, g : Rd → R and ~Z ∼ νd that E
[
dαf(~Z)g(~Z)

]
=

E
[
f(~Z)δαg(~Z)

]
. If f is infinitely differentiable, then its Fourier-Hermite expansion is∑

α E
[
dαf(~Z)

]
Hα(~Z)/α!. Sometimes it is convenient to use H̃α = Hα/α!.

4.1. Gaussian model in the Hermite basis. Given a vector of means µ ∈ Rm and
and a full-rank covariance matrix Σ ∈ S+

m, with Σ = [σij] and Σ−1 = [σij], the exponent
−(1/2)(x− µ)tΣ−1(x− µ) in the Gaussian density N(µ,Σ) can be written

−1

2

(
µtΣ−1µ+ Tr

(
Σ−1

)
+ 2

∑
i

(µtΣ−1)iHi(x) + 2
∑
i<j

σijHij(x) +
∑
i

σiiHii(x)

)
,

where Hi(x) = H1(xi) = xi and Hii(x) = H2(xi) = x2
i − 1 for i = 1, . . . ,m, and

Hij = H1(xi)H1(xj) = xixj for 1 ≤ i < j ≤ m. The likelihood of N(µ,Σ) with respect to
the standard Gaussian with density w(x) = (2π)−1/2 exp (−xtx/2) has exponent

− 1

2
µtΣ−1µ− 1

2
Tr
(
Σ−1

)
− m

2

+
∑
i

(µtΣ−1)iHi(x)−
∑
i<j

σijHij(x)−
∑
i

(σii − 1)
Hii(x)

2

Vice-versa, given I −Θ ∈ S+
m and θ ∈ Rn, then

(14) p(x; θi, θij : i ≤ j) =

exp

(∑
i

θiHi(x) +
∑
i<j

θijHij(x) +
∑
i

θii
Hii(x)

2
− ψ(θi, θij : i ≤ j)

)
w(x)
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is the multivariate Gaussian density with Σ−1µ = θ = (θi : i = 1, . . . , n), I − Σ−1 = Θ
with upper entries (θij : i < j), and cumulant generating function

(15) ψ(θi, θij : i ≤ j) =
1

2
θt(I −Θ)−1θ − 1

2
Tr (Θ)− 1

2
log det(I −Θ).

In Eq. (14) the Gaussian model is presented as an exponential family with natural
parameters (θi : i = 1, . . . ,m; θij : 1 ≤ i ≤ j ≤ m) in the open convex set Rn × (I + S−m)
and w-orthogonal sufficient statistics. From (∂/∂θi)θ = ei, (∂/∂θij)Θ = Eij and Eq.
(15) we can compute the first derivatives of the cumulant generating function ψ, that is
the expected values of the sufficient statistics,

∂

∂θi
ψ = θt(I −Θ)−1ei = µi,(16)

∂

∂θij
ψ =

1

2
Tr
(
(I −Θ)−1Eij

)
+

1

2
θt(I −Θ)−1Eij(I −Θ)−1θ

= σij + µiµj, i < j,(17)

∂

∂θii
ψ =

1

2
Tr
(
(I −Θ)−1Eii

)
+

1

2
θt(I −Θ)−1Eii(I −Θ)−1θ − 1

2

=
1

2

(
σii + µ2

i − 1
)
.(18)

The second derivatives, that is the covariances of the the sufficient statistics, are

∂2

∂θi∂θj
ψ = etj(I −Θ)−1ei,

∂2

∂θi∂θjh
ψ = θt(I −Θ)−1Ejk(I −Θ)−1ei,

and

∂2

∂θij∂θhk
ψ =

1

2
Tr
(
(I −Θ)−1Ehk(I −Θ)−1Eij

)
+

1

2
θt(I −Θ)−1Ehk(I −Θ)−1Eij(I −Θ)−1θ

+
1

2
θt(I −Θ)−1Eij(I −Θ)−1Ehk(I −Θ)−1θ.

This formulæ are to be compared with the expression of the Riemannian metric in [30].
Yo Sheena [28] has a different parameterisation in which the Fisher matrix is diagonal.

We have used up to now standard change-of-parameter computations. We turn now to
exploit specific properties of the Hermite system. Let us write U(x;θ,Θ) =

∑
i θiHi(x)+∑

i<j θijHij(x) +
∑

i θii
Hii(x)

2
. The vector space generated by the sufficient statistics

Span (Uθ,Θ|θ,Θ) is the space of polynomials up to degree 2 in the variables X1, . . . , Xn

that are centered with respect to w. In the geometrical picture, it is the tangent space
at w of the Gaussian model, while the tangent space at pθ,Θ is generated by the Fisher’s
scores, i.e. the partial derivatives of the log-density, see the discussion in [21]. We have

∂U(x;θ,Θ)/∂xi =

∂

∂xi

(
θiH1(xi) +H1(xi)

∑
j<i

θjiH1(xj) +
1

2
θiiH2(xi) +H1(xi)

∑
i<j

θijH1(xj)

)
= θi +

∑
j<i

θjiH1(xj) + θiiH1(xi) +
∑
i<j

θijH1(xj)
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and ∂2U(x;θ,Θ)/∂xi∂xj = θij. In matrix form, the basic relation between parameters
of the Gaussian model and Hermite polynomials is

(19) ∇xU(x;θ,Θ) = θ + Θx, Hessx U(x;θ,Θ) = Θ.

Let us write the expectation parameters as ηi = Eθ,Θ [Hi], ηij = Eθ,Θ [Hij], i < j,
ηii = Eθ,Θ [Hij] /2, and E0,I = E. We can compute the η’s as moments, instead of
derivatives of the cumulant generating function. From Hi = δi1,

ηi = E
[
Hie

Uθ,Θ−ψ(θ,Θ)
]

= E
[
∂ie

Uθ,Θ−ψ(θ,Θ)
]

= E

[
(θi +

∑
j

θijHj)e
Uθ,Θ−ψ(θ,Θ)

]
= θi +

∑
j

θijηj,

or η = θ + Θη, η = (I −Θ)−1θ, cfr. Eq. (16). For ηij we need

∂i∂je
Uθ,Θ−ψ(θ,Θ) =

(
θij + (θi +

∑
h

θihHh)(θj +
∑
k

θjkHk)

)
eUθ,Θ−ψ(θ,Θ)

=

(
θij + θiθj +

∑
h

(θiθjh + θjθih)Hh +
∑
h,k

θikθjhHhHk

)
eUθ,Θ−ψ(θ,Θ).

From Hij = δiδj1, Eθ,Θ [HhHk] = ηhk if h 6= k, Eθ,Θ [H2
h] = 2ηhh + 1, we obtain

ηij = θij + θiθj +
∑
h

(θiθjh + θjθih)ηh +
∑
h6=k

θikθjhηhk +
∑
h

θihθjh(2ηhh + 1),

to be compared with Eqs. (17) and (18).

4.2. Optimisation. Let f : Rm → R be a continuous bounded function, with max-
imum at a point m ∈ Rm. We define the relaxed function F (θ,Θ) = Eθ,Θ [f ] =
E
[
feUθ,Θ−ψ(θ,Θ)

]
. Then F (θ,Θ) ≤ f(m) and for each sequence (θn,Θn), n = 1, 2, . . . ,

such that limn→∞(I −Θn)−1 = limn→∞Σn = 0 and limn→∞(I −Θn)−1θn = limn→∞µn =
m, we have limn→∞ F (θn,Θn) = f(m). This remark has been used in Optimisation
when the function f is a black box that is when no analytic expression is known, but the
function can be computed at each point x, see for example [19]. In fact, the gradient of
the relaxed function has components

∂

∂θi
F = Covθ,Θ (f,Hi) ,

∂

∂θij
F = Covθ,Θ (f,Hij) , i < j,

∂

∂θii
F =

1

2
Covθ,Θ (f,Hii) ,

so that the direction of steepest ascent at (θ,Θ) can be learned from a sample of
eUθ,Θ−φ(θ,Θ)v for example from sample covariances. This method does not require any
smoothness in the original function and it is expected to have a better robustness vs local
maxima than the ordinary gradient search because a mean values of the function f are
used. A reduction of dimensionality is obtained by considering sub-models, for example
Θ diagonal.
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We note that the gradient of the relaxed function is related with the f , ∇f , Hess f as
follows. We have Covθ,Θ (f,Hi) = Eθ,Θ [fHi]− Eθ,Θ [f ]Eθ,Θ [Hi] and

Eθ,Θ [fHi] = E
[
HifeUθ,Θ−ψ(θ,Θ)

]
= E

[
∂i
(
feUθ,Θ−ψ(θ,Θ)

)]
= E

[
(∂if + f∂iU)eUθ,Θ−ψ(θ,Θ)

]
= Eθ,Θ [∂if ] + θiEθ,Θ [f ] +

∑
j

θijEθ,Θ [fHj] .

If H1 is the vector with components H1, . . . , Hm,

Eθ,Θ [fH1] = Eθ,Θ
[
(I −Θ)−1∇f

]
+ Eθ,Θ [f ] (I −Θ)−1θ,

so that ∇θF = Eθ,Θ [(I −Θ)−1∇f ] = Eµ,Σ [Σ∇f ].
In a similar way, Covθ,Θ (f,Hij) = Eθ,Θ [fHij]− Eθ,Θ [f ]Eθ,Θ [Hij] and

Eθ,Θ [fHij] = E
[
HijfeUθ,Θ−ψ(θ,Θ)

]
= E

[
∂i∂j

(
feUθ,Θ−ψ(θ,Θ)

)]
= E

[
∂i
[
(∂jf + f∂jUθ,Θ)eUθ,Θ−ψ(θ,Θ)

]]
= Eθ,Θ [∂i∂jf + ∂if∂jUθ,Θ + ∂jf∂iUθ,Θ + f∂i∂jUθ,Θ + ∂iUθ,Θ∂jUθ,Θ] .

Now we can substitute in the equation above ∂iUθ,Θ = θi +
∑

h θihHh, ∂jUθ,Θ = θj +∑
h θjhHh, ∂i∂jUθ,Θ = θij and

∂iUθ,Θ∂jUθ,Θ = (θi +
∑
h

θihHh)(θj +
∑
k

θikHk)

= θiθj +
∑
h

(θiθjh + θjθih)Hh +
∑
h,k

θihθjkHhHk

= θiθj +
∑
h

(θiθjh + θjθih)Hh + 2
∑
h<k

θihθjkHhk +
∑
h

θihθjh(Hhh + 1),

to obtain the required relation. We leave the rest of the computation to the reader.
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16. Luigi Malagò and Giovanni Pistone, A note on the border of an exponential family,
arXiv:1012.0637v1, 2010.

17. , Combinatorial optimization with information geometry: Newton method, Entropy 16 (2014),
4260–4289.

18. Paul Malliavin, Integration and probability, Graduate Texts in Mathematics, vol. 157, Springer-
Verlag, New York, 1995, With the collaboration of Hélène Airault, Leslie Kay and Gérard Letac,
Edited and translated from the French by Kay, With a foreword by Mark Pinsky. MR MR1335234
(97f:28001a)

19. Y. Ollivier, L. Arnold, A. Auger, and N. Hansen, Information-Geometric Optimization Algorithms:
A Unifying Picture via Invariance Principles, arXiv:1106.3708, 2011v1; 2013v2.

20. Giovanni Pistone, Examples of the application of nonparametric information geometry to statistical
physics, Entropy 15 (2013), no. 10, 4042–4065. MR 3130268

21. , Nonparametric information geometry, Geometric science of information (Frank Nielsen and
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