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H. Reichenbach (1891-1953)

Stanford Encyclopedia of Philosophy:
“perhaps the greatest empiricist of the 20th century”
http://plato.stanford.edu/entries/reichenbach/

Principle of the Common Cause: “If an improbable coincidence
has occurred, there must exist a common cause.”

The Direction of Time (1956) University of California Press.

conjunctive forks play a central role
in Reichenbach’s causal theory of time
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Notation: (A, B, C)p ... the triple of events is a conjunctive fork

Construction: having N finite and events A;, i € N, let
{(i’ja k) € N3: (Ai7Aj7Ak)P}'

PRrROBLEM: Given a ternary relation R on a ground set N decide
whether it is fork representable, thus
(i).jv k) ER < (Al'vAijk)P .
for some events A;, i € N.

In algebraic language,
solve a system of quadratic equations and inequalities.
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(A,B) 2 Cov(1a,15) =P(AB)—P(A)P(B)

Let 0 = (a,-j € {-1,0,1}: jj € (QV)) be a pattern of signs indexed by
the subsets jj with two elements.

A simpler problem is easily solvable:
given any pattern o, there exist events A;, i € N, s.t.
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Nondegenerate version

To be fork representable, R C N3 must satisfy the symmetry
(i7j7 k) €ER = (k?ja ’) €R

by Corollary 2
(i,j,k) € R and (i,k,j))ER = j=k

symmetry and & ... betweenness
by Corollary 1

(iij,k)eR = (i,i,i)€R,(,j.J) € R, (k. k, k) € R,

(i,j,k)eR = (i,j,))€ER,(,k,k) €R and (k,i,i) E€R

Collecting the four implications ... weak betweenness
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Basic observations y conditions

generate version

Lemma 3: (A, B,A)p iff A= B is nontrivial

In the main problem assume R C N3 satisfies
(i,j,i)eR iff i=j forieN
which excludes the trivial events and cloning

... the assumption of nondegeneracy

In a weak betweenness R for any 3-set ijk at most one of (i, J, k),
(U, k, i), (k,i,j) belongs to R

R is called solvable if and only if the system
xik = Xjj + Xj~ for (i, j, k) € R pairwise distinct,

has a solution with all involved x;; positive.
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Under nondegeneracy, R C N3 is fork representable iff
it is a solvable weak betweenness.

In general, R must be a 'regular’ weak betweenness. Then a
quotient @ of R is constructed. It is a weak
betweenness that satisfies the nondegeneracy
condition. R is fork representable iff Q is solvable.

The conditions can be verified in time polynomial in |N|.
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NECESSITY
Assume nondegeneracy and R to be fork representable by A;, i € N.
For i, k different, participating in a fork, let

(AL ANY? (A A2
(A AK)

Xik = In

By Lemma 1, xjx > 0. By Lemma 2, R is solvable since

(AL ANY2 (ALANY2 (ALADY2 (A A2 X + x:
(AiA;}) (Aj,Ak) - Jk

Xjk = In
for (A,‘7 Aj, Ak)P-

SUFFICIENCY

P is constructed on ZQ’ explicitly, can be arbitrarily close to the
uniform distribution; Fourier-Stieltjes transform of P
is related to solvability + few other tricks
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Given a pattern of signs (oj: ij € (3)) and a family { (i, /, k)},
represent them simultaneously by events.

For P > 0 likely in reach (including primary decomposition),
for P > 0 open 77

Given a family { (/,/, k)}, represent it by arbitrary variables
(P>0or P>0)77?

Gaussian case is likely not difficult.
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