## On patterns of conjunctive forks

Vašek Chvátal ${ }^{1}$, František Matúš and Yori Zwols ${ }^{2}$<br>Institute of Information Theory and Automation<br>Academy of Sciences of the Czech Republic matus@utia.cas.cz<br>Algebraic Statistics

June 8-11, 2015 Genova, Italy

[^0]H. Reichenbach (1891-1953)
H. Reichenbach (1891-1953)

Stanford Encyclopedia of Philosophy:
"perhaps the greatest empiricist of the 20th century"
H. Reichenbach (1891-1953)

Stanford Encyclopedia of Philosophy:
"perhaps the greatest empiricist of the 20th century"
http://plato.stanford.edu/entries/reichenbach/
H. Reichenbach (1891-1953)

Stanford Encyclopedia of Philosophy:
"perhaps the greatest empiricist of the 20th century" http://plato.stanford.edu/entries/reichenbach/

Principle of the Common Cause: "If an improbable coincidence has occurred, there must exist a common cause."
H. Reichenbach (1891-1953)

Stanford Encyclopedia of Philosophy:
"perhaps the greatest empiricist of the 20th century" http://plato.stanford.edu/entries/reichenbach/

Principle of the Common Cause: "If an improbable coincidence has occurred, there must exist a common cause."

The Direction of Time (1956) University of California Press.
H. Reichenbach (1891-1953)

Stanford Encyclopedia of Philosophy:
"perhaps the greatest empiricist of the 20th century" http://plato.stanford.edu/entries/reichenbach/

Principle of the Common Cause: "If an improbable coincidence has occurred, there must exist a common cause."

The Direction of Time (1956) University of California Press.
conjunctive forks play a central role
in Reichenbach's causal theory of time

An ordered triple $(A, B, C)$ of events in a probability space $(\Omega, \mathrm{P})$

An ordered triple $(A, B, C)$ of events in a probability space $(\Omega, \mathrm{P})$ is a conjunctive fork if

$$
\begin{aligned}
\mathrm{P}(A \cap C \mid B) & =\mathrm{P}(A \mid B) \cdot \mathrm{P}(C \mid B), \\
\mathrm{P}(A \cap C \mid \Omega \backslash B) & =\mathrm{P}(A \mid \Omega \backslash B) \cdot \mathrm{P}(C \mid \Omega \backslash B), \\
\mathrm{P}(A \mid B) & >\mathrm{P}(A \mid \Omega \backslash B), \\
\mathrm{P}(C \mid B) & >\mathrm{P}(C \mid \Omega \backslash B) .
\end{aligned}
$$

An ordered triple $(A, B, C)$ of events in a probability space $(\Omega, \mathrm{P})$ is a conjunctive fork if

$$
\begin{aligned}
\mathrm{P}(A \cap C \mid B) & =\mathrm{P}(A \mid B) \cdot \mathrm{P}(C \mid B), \\
\mathrm{P}(A \cap C \mid \Omega \backslash B) & =\mathrm{P}(A \mid \Omega \backslash B) \cdot \mathrm{P}(C \mid \Omega \backslash B), \\
\mathrm{P}(A \mid B) & >\mathrm{P}(A \mid \Omega \backslash B), \\
\mathrm{P}(C \mid B) & >\mathrm{P}(C \mid \Omega \backslash B) .
\end{aligned}
$$

(implicit assumption $0<\mathrm{P}(B)<1$ )

An ordered triple $(A, B, C)$ of events in a probability space $(\Omega, \mathrm{P})$ is a conjunctive fork if

$$
\begin{aligned}
\mathrm{P}(A \cap C \mid B) & =\mathrm{P}(A \mid B) \cdot \mathrm{P}(C \mid B), \\
\mathrm{P}(A \cap C \mid \Omega \backslash B) & =\mathrm{P}(A \mid \Omega \backslash B) \cdot \mathrm{P}(C \mid \Omega \backslash B), \\
\mathrm{P}(A \mid B) & >\mathrm{P}(A \mid \Omega \backslash B), \\
\mathrm{P}(C \mid B) & >\mathrm{P}(C \mid \Omega \backslash B) .
\end{aligned}
$$

$$
\text { (implicit assumption } 0<\mathrm{P}(B)<1 \text { ) }
$$

In contemporary language, $\quad 1_{A} \Perp 1_{C} \mid 1_{B}$ and

$$
\operatorname{Cov}\left(1_{A}, 1_{B}\right)>0 \text { and } \operatorname{Cov}\left(1_{B}, 1_{C}\right)>0
$$

An ordered triple $(A, B, C)$ of events in a probability space $(\Omega, \mathrm{P})$ is a conjunctive fork if

$$
\begin{aligned}
\mathrm{P}(A \cap C \mid B) & =\mathrm{P}(A \mid B) \cdot \mathrm{P}(C \mid B), \\
\mathrm{P}(A \cap C \mid \Omega \backslash B) & =\mathrm{P}(A \mid \Omega \backslash B) \cdot \mathrm{P}(C \mid \Omega \backslash B), \\
\mathrm{P}(A \mid B) & >\mathrm{P}(A \mid \Omega \backslash B), \\
\mathrm{P}(C \mid B) & >\mathrm{P}(C \mid \Omega \backslash B) .
\end{aligned}
$$

$$
\text { (implicit assumption } 0<\mathrm{P}(B)<1 \text { ) }
$$

In contemporary language, $\quad 1_{A} \Perp 1_{C} \mid 1_{B}$ and

$$
\operatorname{Cov}\left(1_{A}, 1_{B}\right)>0 \text { and } \operatorname{Cov}\left(1_{B}, 1_{C}\right)>0
$$

where $\operatorname{Cov}\left(1_{A}, 1_{B}\right)=\mathrm{P}(A B)-\mathrm{P}(A) \mathrm{P}(B)$

An ordered triple $(A, B, C)$ of events in a probability space $(\Omega, \mathrm{P})$ is a conjunctive fork if

$$
\begin{aligned}
\mathrm{P}(A \cap C \mid B) & =\mathrm{P}(A \mid B) \cdot \mathrm{P}(C \mid B), \\
\mathrm{P}(A \cap C \mid \Omega \backslash B) & =\mathrm{P}(A \mid \Omega \backslash B) \cdot \mathrm{P}(C \mid \Omega \backslash B), \\
\mathrm{P}(A \mid B) & >\mathrm{P}(A \mid \Omega \backslash B), \\
\mathrm{P}(C \mid B) & >\mathrm{P}(C \mid \Omega \backslash B) .
\end{aligned}
$$

$$
\text { (implicit assumption } 0<\mathrm{P}(B)<1 \text { ) }
$$

In contemporary language, $\quad 1_{A} \Perp 1_{C} \mid 1_{B}$ and

$$
\operatorname{Cov}\left(1_{A}, 1_{B}\right)>0 \text { and } \operatorname{Cov}\left(1_{B}, 1_{C}\right)>0
$$


where $\operatorname{Cov}\left(1_{A}, 1_{B}\right)=\mathrm{P}(A B)-\mathrm{P}(A) \mathrm{P}(B)$

Notation: $(A, B, C)_{\mathrm{P}} \ldots$ the triple of events is a conjunctive fork

Notation: $(A, B, C)_{\mathrm{P}} \ldots$ the triple of events is a conjunctive fork
Construction: having $N$ finite and events $A_{i}, i \in N$, let

Notation: $(A, B, C)_{P} \ldots$ the triple of events is a conjunctive fork
Construction: having $N$ finite and events $A_{i}, i \in N$, let $\left\{(i, j, k) \in N^{3}:\left(A_{i}, A_{j}, A_{k}\right)_{\mathrm{P}}\right\}$.

Notation: $(A, B, C)_{P} \ldots$ the triple of events is a conjunctive fork
Construction: having $N$ finite and events $A_{i}, i \in N$, let

$$
\left\{(i, j, k) \in N^{3}:\left(A_{i}, A_{j}, A_{k}\right)_{\mathrm{P}}\right\} .
$$

Problem: Given a ternary relation $\mathcal{R}$ on a ground set $N$ decide whether it is fork representable, thus

$$
(i, j, k) \in \mathcal{R} \Leftrightarrow\left(A_{i}, A_{j}, A_{k}\right)_{\mathrm{P}}
$$

for some events $A_{i}, i \in N$.

Notation: $(A, B, C)_{\mathrm{P}} \ldots$ the triple of events is a conjunctive fork
Construction: having $N$ finite and events $A_{i}, i \in N$, let

$$
\left\{(i, j, k) \in N^{3}:\left(A_{i}, A_{j}, A_{k}\right)_{\mathrm{P}}\right\}
$$

Problem: Given a ternary relation $\mathcal{R}$ on a ground set $N$ decide whether it is fork representable, thus

$$
(i, j, k) \in \mathcal{R} \Leftrightarrow\left(A_{i}, A_{j}, A_{k}\right)_{\mathrm{P}}
$$

for some events $A_{i}, i \in N$.
In algebraic language, solve a system of quadratic equations and inequalities.

## $\langle A, B\rangle \triangleq \operatorname{Cov}\left(1_{A}, 1_{B}\right)=\mathrm{P}(A B)-\mathrm{P}(A) \mathrm{P}(B)$

$$
\begin{aligned}
& \langle A, B\rangle \triangleq \operatorname{Cov}\left(1_{A}, 1_{B}\right)=\mathrm{P}(A B)-\mathrm{P}(A) \mathrm{P}(B) \\
& \text { Let } \sigma=\left(\sigma_{i j} \in\{-1,0,1\}: i j \in\binom{N}{2}\right) \text { be a pattern of signs indexed by } \\
& \text { the subsets } i j \text { with two elements. }
\end{aligned}
$$

$$
\begin{aligned}
& \langle A, B\rangle \triangleq \operatorname{Cov}\left(1_{A}, 1_{B}\right)=\mathrm{P}(A B)-\mathrm{P}(A) \mathrm{P}(B) \\
& \text { Let } \sigma=\left(\sigma_{i j} \in\{-1,0,1\}: i j \in\binom{N}{2}\right) \text { be a pattern of signs indexed by } \\
& \text { the subsets } i j \text { with two elements. }
\end{aligned}
$$

A simpler problem is easily solvable: given any pattern $\sigma$, there exist events $A_{i}, i \in N$, s.t.

$$
\sigma_{i j}=\operatorname{sgn}\left\langle A_{i}, A_{j}\right\rangle, \quad i j \in\binom{N}{2} .
$$

## $(A, B, C)_{\mathrm{P}} \quad$ iff $\quad(C, B, A)_{\mathrm{P}}$

## $(A, B, C)_{\mathrm{P}} \quad$ iff $\quad(C, B, A)_{\mathrm{P}}$

Lemma 1: $\langle A, B\rangle^{2} \leqslant\langle A, A\rangle\langle B, B\rangle$, tight iff $1_{A}, 1_{B}$ lin. dependent
$(A, B, C)_{\mathrm{P}} \quad$ iff $\quad(C, B, A)_{\mathrm{P}}$
Lemma 1: $\langle A, B\rangle^{2} \leqslant\langle A, A\rangle\langle B, B\rangle$, tight iff $1_{A}, 1_{B}$ lin. dependent Lemma 2: If $1_{A} \Perp 1_{C} \mid 1_{B}$ then $\langle A, C\rangle\langle B, B\rangle=\langle A, B\rangle\langle B, C\rangle$.
$(A, B, C)_{\mathrm{P}} \quad$ iff $\quad(C, B, A)_{\mathrm{P}}$
Lemma 1: $\langle A, B\rangle^{2} \leqslant\langle A, A\rangle\langle B, B\rangle$, tight iff $1_{A}, 1_{B}$ lin. dependent
Lemma 2: If $1_{A} \Perp 1_{C} \mid 1_{B}$ then $\langle A, C\rangle\langle B, B\rangle=\langle A, B\rangle\langle B, C\rangle$.
Corollary 1: $(A, B, C)_{\mathrm{P}}$ implies that $A, B, C$ are nontrivial
(thus $(A, A, A)_{\mathrm{P}},(B, B, B)_{\mathrm{P}}$ and $\left.(C, C, C)_{\mathrm{P}}\right)$
and any two are positively correlated (thus $\left.(A, B, B)_{P},(B, C, C)_{P},(C, A, A)_{P}\right)$
$(A, B, C)_{\mathrm{P}} \quad$ iff $\quad(C, B, A)_{\mathrm{P}}$
Lemma 1: $\langle A, B\rangle^{2} \leqslant\langle A, A\rangle\langle B, B\rangle$, tight iff $1_{A}, 1_{B}$ lin. dependent
Lemma 2: If $1_{A} \Perp 1_{C} \mid 1_{B}$ then $\langle A, C\rangle\langle B, B\rangle=\langle A, B\rangle\langle B, C\rangle$.
Corollary 1: $(A, B, C)_{\mathrm{P}}$ implies that $A, B, C$ are nontrivial (thus $(A, A, A)_{\mathrm{P}},(B, B, B)_{\mathrm{P}}$ and $\left.(C, C, C)_{\mathrm{P}}\right)$
and any two are positively correlated (thus $\left.(A, B, B)_{P},(B, C, C)_{P},(C, A, A)_{\mathrm{P}}\right)$
Corollary 2: $(A, B, C)_{\mathrm{P}}$ and $(A, C, B)_{\mathrm{P}} \quad$ implies $\quad B=C$
$(A, B, C)_{\mathrm{P}} \quad$ iff $\quad(C, B, A)_{\mathrm{P}}$
Lemma 1: $\langle A, B\rangle^{2} \leqslant\langle A, A\rangle\langle B, B\rangle$, tight iff $1_{A}, 1_{B}$ lin. dependent
Lemma 2: If $1_{A} \Perp 1_{C} \mid 1_{B}$ then $\langle A, C\rangle\langle B, B\rangle=\langle A, B\rangle\langle B, C\rangle$.
Corollary 1: $(A, B, C)_{\mathrm{P}}$ implies that $A, B, C$ are nontrivial (thus $(A, A, A)_{\mathrm{P}},(B, B, B)_{\mathrm{P}}$ and $\left.(C, C, C)_{\mathrm{P}}\right)$ and any two are positively correlated (thus $\left.(A, B, B)_{P},(B, C, C)_{P},(C, A, A)_{\mathrm{P}}\right)$
Corollary 2: $(A, B, C)_{\mathrm{P}}$ and $(A, C, B)_{\mathrm{P}} \quad$ implies $\quad B=C$
Proof: $\langle A, C\rangle\langle B, B\rangle=\langle A, B\rangle\langle B, C\rangle$ and
$\langle A, B\rangle\langle C, C\rangle=\langle A, C\rangle\langle B, C\rangle$ combine to
$\langle B, C\rangle^{2}=\langle B, B\rangle\langle C, C\rangle$, then $B=C$

To be fork representable, $\mathcal{R} \subseteq N^{3}$ must satisfy the symmetry

$$
(i, j, k) \in \mathcal{R} \Rightarrow(k, j, i) \in \mathcal{R}
$$

To be fork representable, $\mathcal{R} \subseteq N^{3}$ must satisfy the symmetry

$$
(i, j, k) \in \mathcal{R} \Rightarrow(k, j, i) \in \mathcal{R}
$$

by Corollary 2

$$
(i, j, k) \in \mathcal{R} \text { and }(i, k, j) \in \mathcal{R} \Rightarrow j=k
$$

To be fork representable, $\mathcal{R} \subseteq N^{3}$ must satisfy the symmetry

$$
(i, j, k) \in \mathcal{R} \Rightarrow(k, j, i) \in \mathcal{R}
$$

by Corollary 2

$$
\begin{aligned}
(i, j, k) \in \mathcal{R} \text { and } & (i, k, j) \in \mathcal{R} \Rightarrow j=k \\
& \text { symmetry and } \Leftrightarrow \ldots \text { betweenness }
\end{aligned}
$$

To be fork representable, $\mathcal{R} \subseteq N^{3}$ must satisfy the symmetry

$$
(i, j, k) \in \mathcal{R} \Rightarrow(k, j, i) \in \mathcal{R}
$$

by Corollary 2

$$
(i, j, k) \in \mathcal{R} \text { and }(i, k, j) \in \mathcal{R} \Rightarrow j=k
$$


by Corollary 1

$$
\begin{gathered}
(i, j, k) \in \mathcal{R} \Rightarrow(i, i, i) \in \mathcal{R},(j, j, j) \in \mathcal{R},(k, k, k) \in \mathcal{R} \\
(i, j, k) \in \mathcal{R} \Rightarrow \quad(i, j, j) \in \mathcal{R},(j, k, k) \in \mathcal{R} \text { and }(k, i, i) \in \mathcal{R}
\end{gathered}
$$

To be fork representable, $\mathcal{R} \subseteq N^{3}$ must satisfy the symmetry

$$
(i, j, k) \in \mathcal{R} \Rightarrow(k, j, i) \in \mathcal{R}
$$

by Corollary 2

$$
(i, j, k) \in \mathcal{R} \text { and }(i, k, j) \in \mathcal{R} \Rightarrow j=k
$$

$$
\text { symmetry and } \Leftrightarrow \ldots \text { betweenness }
$$

by Corollary 1

$$
\begin{gathered}
(i, j, k) \in \mathcal{R} \Rightarrow(i, i, i) \in \mathcal{R},(j, j, j) \in \mathcal{R},(k, k, k) \in \mathcal{R} \\
(i, j, k) \in \mathcal{R} \Rightarrow(i, j, j) \in \mathcal{R},(j, k, k) \in \mathcal{R} \text { and }(k, i, i) \in \mathcal{R}
\end{gathered}
$$

Collecting the four implications ... weak betweenness

## Lemma 3: $(A, B, A)_{\mathrm{P}} \quad$ iff $\quad A=B$ is nontrivial

Lemma 3: $(A, B, A)_{\mathrm{P}} \quad$ iff $\quad A=B$ is nontrivial
In the main problem assume $\mathcal{R} \subseteq N^{3}$ satisfies

Lemma 3: $(A, B, A)_{\mathrm{P}} \quad$ iff $\quad A=B$ is nontrivial
In the main problem assume $\mathcal{R} \subseteq N^{3}$ satisfies

$$
(i, j, i) \in \mathcal{R} \quad \text { iff } \quad i=j \quad \text { for } i \in N
$$

Lemma 3: $(A, B, A)_{\mathrm{P}} \quad$ iff $\quad A=B$ is nontrivial
In the main problem assume $\mathcal{R} \subseteq N^{3}$ satisfies

$$
(i, j, i) \in \mathcal{R} \quad \text { iff } \quad i=j \quad \text { for } i \in N
$$

which excludes the trivial events and cloning
... the assumption of nondegeneracy

Lemma 3: $(A, B, A)_{\mathrm{P}} \quad$ iff $\quad A=B$ is nontrivial
In the main problem assume $\mathcal{R} \subseteq N^{3}$ satisfies

$$
(i, j, i) \in \mathcal{R} \quad \text { iff } \quad i=j \quad \text { for } i \in N
$$

which excludes the trivial events and cloning
... the assumption of nondegeneracy

In a weak betweenness $\mathcal{R}$ for any 3 -set $i j k$ at most one of $(i, j, k)$, $(j, k, i),(k, i, j)$ belongs to $\mathcal{R}$

Lemma 3: $(A, B, A)_{\mathrm{P}} \quad$ iff $\quad A=B$ is nontrivial
In the main problem assume $\mathcal{R} \subseteq N^{3}$ satisfies

$$
(i, j, i) \in \mathcal{R} \quad \text { iff } \quad i=j \quad \text { for } i \in N
$$

which excludes the trivial events and cloning
... the assumption of nondegeneracy

In a weak betweenness $\mathcal{R}$ for any 3 -set $i j k$ at most one of $(i, j, k)$, $(j, k, i),(k, i, j)$ belongs to $\mathcal{R}$
$\mathcal{R}$ is called solvable if and only if the system

$$
x_{i k}=x_{i j}+x_{j k} \quad \text { for }(i, j, k) \in \mathcal{R} \text { pairwise distinct, }
$$

has a solution with all involved $x_{i j}$ positive.

## Theorem

Under nondegeneracy, $\mathcal{R} \subseteq N^{3}$ is fork representable iff it is a solvable weak betweenness.

## Theorem

Under nondegeneracy, $\mathcal{R} \subseteq N^{3}$ is fork representable iff it is a solvable weak betweenness.

In general, $\mathcal{R}$ must be a 'regular' weak betweenness. Then a quotient $\mathcal{Q}$ of $\mathcal{R}$ is constructed. It is a weak betweenness that satisfies the nondegeneracy condition. $\mathcal{R}$ is fork representable iff $\mathcal{Q}$ is solvable.

## Theorem

Under nondegeneracy, $\mathcal{R} \subseteq N^{3}$ is fork representable iff it is a solvable weak betweenness.

In general, $\mathcal{R}$ must be a 'regular' weak betweenness. Then a quotient $\mathcal{Q}$ of $\mathcal{R}$ is constructed. It is a weak betweenness that satisfies the nondegeneracy condition. $\mathcal{R}$ is fork representable iff $\mathcal{Q}$ is solvable.

The conditions can be verified in time polynomial in $|N|$.

## NECESSITY

## NECESSITY

Assume nondegeneracy and $\mathcal{R}$ to be fork representable by $A_{i}, i \in N$.

## NECESSITY

Assume nondegeneracy and $\mathcal{R}$ to be fork representable by $A_{i}, i \in N$.
For $i, k$ different, participating in a fork, let

$$
x_{i k}=\ln \frac{\left\langle A_{i}, A_{i}\right\rangle^{1 / 2}\left\langle A_{k}, A_{k}\right\rangle^{1 / 2}}{\left\langle A_{i}, A_{k}\right\rangle}
$$

## NECESSITY

Assume nondegeneracy and $\mathcal{R}$ to be fork representable by $A_{i}, i \in N$.
For $i, k$ different, participating in a fork, let

$$
x_{i k}=\ln \frac{\left\langle A_{i}, A_{i}\right\rangle^{1 / 2}\left\langle A_{k}, A_{k}\right\rangle^{1 / 2}}{\left\langle A_{i}, A_{k}\right\rangle}
$$

By Lemma 1, $x_{i k}>0$. By Lemma 2, $\mathcal{R}$ is solvable since

$$
x_{i k}=\ln \frac{\left\langle A_{i}, A_{i}\right\rangle^{1 / 2}\left\langle A_{j}, A_{j}\right\rangle^{1 / 2}}{\left\langle A_{i}, A_{j}\right\rangle} \frac{\left\langle A_{j}, A_{j}\right\rangle^{1 / 2}\left\langle A_{k}, A_{k}\right\rangle^{1 / 2}}{\left\langle A_{j}, A_{k}\right\rangle}=x_{i j}+x_{j k}
$$

## NECESSITY

Assume nondegeneracy and $\mathcal{R}$ to be fork representable by $A_{i}, i \in N$.
For $i, k$ different, participating in a fork, let

$$
x_{i k}=\ln \frac{\left\langle A_{i}, A_{i}\right\rangle^{1 / 2}\left\langle A_{k}, A_{k}\right\rangle^{1 / 2}}{\left\langle A_{i}, A_{k}\right\rangle}
$$

By Lemma 1, $x_{i k}>0$. By Lemma 2, $\mathcal{R}$ is solvable since

$$
x_{i k}=\ln \frac{\left\langle A_{i}, A_{i}\right\rangle^{1 / 2}\left\langle A_{j}, A_{j}\right\rangle^{1 / 2}}{\left\langle A_{i}, A_{j}\right\rangle} \frac{\left\langle A_{j}, A_{j}\right\rangle^{1 / 2}\left\langle A_{k}, A_{k}\right\rangle^{1 / 2}}{\left\langle A_{j}, A_{k}\right\rangle}=x_{i j}+x_{j k}
$$

for $\left(A_{i}, A_{j}, A_{k}\right)_{\mathrm{P}}$.

## NECESSITY

Assume nondegeneracy and $\mathcal{R}$ to be fork representable by $A_{i}, i \in N$.
For $i, k$ different, participating in a fork, let

$$
x_{i k}=\ln \frac{\left\langle A_{i}, A_{i}\right\rangle^{1 / 2}\left\langle A_{k}, A_{k}\right\rangle^{1 / 2}}{\left\langle A_{i}, A_{k}\right\rangle}
$$

By Lemma 1, $x_{i k}>0$. By Lemma 2, $\mathcal{R}$ is solvable since

$$
x_{i k}=\ln \frac{\left\langle A_{i}, A_{i}\right\rangle^{1 / 2}\left\langle A_{j}, A_{j}\right\rangle^{1 / 2}}{\left\langle A_{i}, A_{j}\right\rangle} \frac{\left\langle A_{j}, A_{j}\right\rangle^{1 / 2}\left\langle A_{k}, A_{k}\right\rangle^{1 / 2}}{\left\langle A_{j}, A_{k}\right\rangle}=x_{i j}+x_{j k}
$$

for $\left(A_{i}, A_{j}, A_{k}\right)_{\mathrm{P}}$.

SUFFICIENCY

## NECESSITY

Assume nondegeneracy and $\mathcal{R}$ to be fork representable by $A_{i}, i \in N$.
For $i, k$ different, participating in a fork, let

$$
x_{i k}=\ln \frac{\left\langle A_{i}, A_{i}\right\rangle^{1 / 2}\left\langle A_{k}, A_{k}\right\rangle^{1 / 2}}{\left\langle A_{i}, A_{k}\right\rangle}
$$

By Lemma 1, $x_{i k}>0$. By Lemma 2, $\mathcal{R}$ is solvable since

$$
x_{i k}=\ln \frac{\left\langle A_{i}, A_{i}\right\rangle^{1 / 2}\left\langle A_{j}, A_{j}\right\rangle^{1 / 2}}{\left\langle A_{i}, A_{j}\right\rangle} \frac{\left\langle A_{j}, A_{j}\right\rangle^{1 / 2}\left\langle A_{k}, A_{k}\right\rangle^{1 / 2}}{\left\langle A_{j}, A_{k}\right\rangle}=x_{i j}+x_{j k}
$$

for $\left(A_{i}, A_{j}, A_{k}\right)_{\mathrm{P}}$.

SUFFICIENCY
$P$ is constructed on $\mathbb{Z}_{2}^{N}$ explicitly, can be arbitrarily close to the uniform distribution; Fourier-Stieltjes transform of $P$ is related to solvability + few other tricks

Given a pattern of signs $\left(\sigma_{i j}: i j \in\binom{N}{2}\right)$ and a family $\{(i, j, k)\}$, represent them simultaneously by events.

Given a pattern of signs $\left(\sigma_{i j}: i j \in\binom{N}{2}\right)$ and a family $\{(i, j, k)\}$, represent them simultaneously by events.

For $P>0$ likely in reach (including primary decomposition), for $P \geqslant 0$ open ??

Given a pattern of signs $\left(\sigma_{i j}: i j \in\binom{N}{2}\right)$ and a family $\{(i, j, k)\}$, represent them simultaneously by events.

> For $P>0$ likely in reach (including primary decomposition), $\quad$ for $P \geqslant 0$ open ??

Given a family $\{(i, j, k)\}$, represent it by arbitrary variables

$$
(P>0 \text { or } P \geqslant 0) ? ?
$$

Given a pattern of signs $\left(\sigma_{i j}: i j \in\binom{N}{2}\right)$ and a family $\{(i, j, k)\}$, represent them simultaneously by events.

For $P>0$ likely in reach (including primary decomposition), for $P \geqslant 0$ open ??

Given a family $\{(i, j, k)\}$, represent it by arbitrary variables

$$
(P>0 \text { or } P \geqslant 0) ? ?
$$

Gaussian case is likely not difficult.


[^0]:    ${ }^{1}$ Concordia University, Montreal; ${ }^{2}$ Google, London

