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Definition
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An ordered triple (A,B,C ) of events in a probability space (Ω,P)

is a conjunctive fork if

P(A ∩ C |B) =P(A|B) · P(C |B) ,

P(A ∩ C |Ω \ B) =P(A|Ω \ B) · P(C |Ω \ B) ,

P(A|B)>P(A|Ω \ B) ,

P(C |B)>P(C |Ω \ B) .

(implicit assumption 0 < P(B) < 1)

In contemporary language, 11A⊥⊥11C |11B and

Cov(11A, 11B) > 0 and Cov(11B , 11C ) > 0

where Cov(11A, 11B) = P(AB)− P(A)P(B)
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Hans Reichenbach
Definition
Main problem

Notation: (A,B,C )P ... the triple of events is a conjunctive fork

Construction: having N finite and events Ai , i ∈ N, let

{(i , j , k) ∈ N3 : (Ai ,Aj ,Ak)P} .

Problem: Given a ternary relation R on a ground set N decide
whether it is fork representable, thus

(i , j , k) ∈ R ⇔ (Ai ,Aj ,Ak)P .

for some events Ai , i ∈ N.

In algebraic language,
solve a system of quadratic equations and inequalities.
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Signs of correlations
Necessary conditions
Nondegenerate version

〈A,B〉 , Cov(11A, 11B) = P(AB)− P(A)P(B)

Let σ =
(
σij ∈ {−1, 0, 1} : ij ∈ (N2)

)
be a pattern of signs indexed by

the subsets ij with two elements.

A simpler problem is easily solvable:
given any pattern σ, there exist events Ai , i ∈ N, s.t.

σij = sgn〈Ai ,Aj〉 , ij ∈ (N2) .
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Signs of correlations
Necessary conditions
Nondegenerate version

(A,B,C )P iff (C ,B,A)P

Lemma 1: 〈A,B〉2 6 〈A,A〉〈B,B〉, tight iff 11A, 11B lin. dependent

Lemma 2: If 11A⊥⊥11C |11B then 〈A,C 〉〈B,B〉 = 〈A,B〉〈B,C 〉.

Corollary 1: (A,B,C )P implies that A,B,C are nontrivial
( thus (A,A,A)P, (B,B,B)P and (C ,C ,C )P )

and any two are positively correlated
( thus (A,B,B)P, (B,C ,C )P, (C ,A,A)P )

Corollary 2: (A,B,C )P and (A,C ,B)P implies B = C

Proof: 〈A,C 〉〈B,B〉 = 〈A,B〉〈B,C 〉 and
〈A,B〉〈C ,C 〉 = 〈A,C 〉〈B,C 〉 combine to

〈B,C 〉2 = 〈B,B〉〈C ,C 〉, then B = C �
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To be fork representable, R ⊆ N3 must satisfy the symmetry

(i , j , k) ∈ R ⇒ (k , j , i) ∈ R

by Corollary 2
(i , j , k) ∈ R and (i , k , j) ∈ R ⇒ j = k

symmetry and ⇔ ... betweenness

by Corollary 1

(i , j , k) ∈ R ⇒ (i , i , i) ∈ R , (j , j , j) ∈ R , (k , k , k) ∈ R ,

(i , j , k) ∈ R ⇒ (i , j , j) ∈ R , (j , k, k) ∈ R and (k , i , i) ∈ R

Collecting the four implications ... weak betweenness
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Lemma 3: (A,B,A)P iff A = B is nontrivial

In the main problem assume R ⊆ N3 satisfies

(i , j , i) ∈ R iff i = j for i ∈ N

which excludes the trivial events and cloning

... the assumption of nondegeneracy

In a weak betweenness R for any 3-set ijk at most one of (i , j , k),
(j , k , i), (k , i , j) belongs to R

R is called solvable if and only if the system

xik = xij + xjk for (i , j , k) ∈ R pairwise distinct,

has a solution with all involved xij positive.
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has a solution with all involved xij positive.
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Under nondegeneracy, R ⊆ N3 is fork representable iff
it is a solvable weak betweenness.

In general, R must be a ’regular’ weak betweenness. Then a
quotient Q of R is constructed. It is a weak
betweenness that satisfies the nondegeneracy
condition. R is fork representable iff Q is solvable.

The conditions can be verified in time polynomial in |N|.
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necessity

Assume nondegeneracy and R to be fork representable by Ai , i ∈ N.

For i , k different, participating in a fork, let

xik = ln
〈Ai ,Ai 〉1/2 〈Ak ,Ak 〉1/2

〈Ai ,Ak 〉
.

By Lemma 1, xik > 0. By Lemma 2, R is solvable since

xik = ln
〈Ai ,Ai 〉1/2 〈Aj ,Aj 〉1/2

〈Ai ,Aj 〉
〈Aj ,Aj 〉1/2 〈Ak ,Ak 〉1/2

〈Aj ,Ak 〉
= xij + xjk

for (Ai ,Aj ,Ak)P.

sufficiency

P is constructed on ZN
2 explicitly, can be arbitrarily close to the

uniform distribution; Fourier-Stieltjes transform of P
is related to solvability + few other tricks
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Given a pattern of signs
(
σij : ij ∈ (N2)

)
and a family { (i , j , k)},

represent them simultaneously by events.

For P > 0 likely in reach (including primary decomposition),
for P > 0 open ??

Given a family { (i , j , k)}, represent it by arbitrary variables
(P > 0 or P > 0) ??

Gaussian case is likely not difficult.



Conjunctive forks
Basic observations

Main result

Theorem
Solvability
Open problems

Given a pattern of signs
(
σij : ij ∈ (N2)

)
and a family { (i , j , k)},

represent them simultaneously by events.

For P > 0 likely in reach (including primary decomposition),
for P > 0 open ??

Given a family { (i , j , k)}, represent it by arbitrary variables
(P > 0 or P > 0) ??

Gaussian case is likely not difficult.



Conjunctive forks
Basic observations

Main result

Theorem
Solvability
Open problems

Given a pattern of signs
(
σij : ij ∈ (N2)

)
and a family { (i , j , k)},

represent them simultaneously by events.

For P > 0 likely in reach (including primary decomposition),
for P > 0 open ??

Given a family { (i , j , k)}, represent it by arbitrary variables
(P > 0 or P > 0) ??

Gaussian case is likely not difficult.



Conjunctive forks
Basic observations

Main result

Theorem
Solvability
Open problems

Given a pattern of signs
(
σij : ij ∈ (N2)

)
and a family { (i , j , k)},

represent them simultaneously by events.

For P > 0 likely in reach (including primary decomposition),
for P > 0 open ??

Given a family { (i , j , k)}, represent it by arbitrary variables
(P > 0 or P > 0) ??

Gaussian case is likely not difficult.


	Conjunctive forks
	Hans Reichenbach
	Definition
	Main problem

	Basic observations
	Signs of correlations
	Necessary conditions
	Nondegenerate version

	Main result
	Theorem
	Solvability
	Open problems


