Conjunctive forks Basic observations Main result

On patterns of conjunctive forks

Vašek Chvátal¹, František Matúš and Yori Zwols²

Institute of Information Theory and Automation Academy of Sciences of the Czech Republic matus@utia.cas.cz

Algebraic Statistics

June 8-11, 2015 Genova, Italy

¹Concordia University, Montreal; ²Google, London

Conjunctive forks Basic observations Main result

Hans Reichenbach Definition Main problem

H. Reichenbach (1891–1953)

Conjunctive forks Hans Reichenbach Basic observations

H. Reichenbach (1891–1953)

Stanford Encyclopedia of Philosophy:

"perhaps the greatest empiricist of the 20th century"

H. Reichenbach (1891–1953)

Stanford Encyclopedia of Philosophy:

"perhaps the greatest empiricist of the 20th century"

http://plato.stanford.edu/entries/reichenbach/

H. Reichenbach (1891–1953)

Stanford Encyclopedia of Philosophy:

"perhaps the greatest empiricist of the 20th century"

http://plato.stanford.edu/entries/reichenbach/

Principle of the Common Cause: "If an improbable coincidence has occurred, there must exist a common cause."

H. Reichenbach (1891–1953)

Stanford Encyclopedia of Philosophy:

"perhaps the greatest empiricist of the 20th century"

http://plato.stanford.edu/entries/reichenbach/

Principle of the Common Cause: "If an improbable coincidence has occurred, there must exist a common cause."

The Direction of Time (1956) University of California Press.

H. Reichenbach (1891–1953)

Stanford Encyclopedia of Philosophy:

"perhaps the greatest empiricist of the 20th century"

http://plato.stanford.edu/entries/reichenbach/

Principle of the Common Cause: "If an improbable coincidence has occurred, there must exist a common cause."

The Direction of Time (1956) University of California Press.

conjunctive forks play a central role in Reichenbach's causal theory of time Conjunctive forks Basic observations Main result Hans Reichenbacl Definition Main problem

An ordered triple (A, B, C) of events in a probability space (Ω, P)

Conjunctive forks Basic observations Main result Hans R Definiti Main pr

Hans Reichenbacl Definition Main problem

An ordered triple (A, B, C) of events in a probability space (Ω, P) is a conjunctive fork if

 $P(A \cap C|B) = P(A|B) \cdot P(C|B),$ $P(A \cap C|\Omega \setminus B) = P(A|\Omega \setminus B) \cdot P(C|\Omega \setminus B),$ $P(A|B) > P(A|\Omega \setminus B),$ $P(C|B) > P(C|\Omega \setminus B).$

Conjunctive forks Basic observations

Definition

An ordered triple (A, B, C) of events in a probability space (Ω, P) is a conjunctive fork if

$$P(A \cap C|B) = P(A|B) \cdot P(C|B),$$

$$P(A \cap C|\Omega \setminus B) = P(A|\Omega \setminus B) \cdot P(C|\Omega \setminus B),$$

$$P(A|B) > P(A|\Omega \setminus B),$$

$$P(C|B) > P(C|\Omega \setminus B).$$

(implicit assumption 0 < P(B) < 1)

Conjunctive forks Definition Basic observations

An ordered triple (A, B, C) of events in a probability space (Ω, P) is a conjunctive fork if

$$P(A \cap C|B) = P(A|B) \cdot P(C|B),$$

$$P(A \cap C|\Omega \setminus B) = P(A|\Omega \setminus B) \cdot P(C|\Omega \setminus B),$$

$$P(A|B) > P(A|\Omega \setminus B),$$

$$P(C|B) > P(C|\Omega \setminus B).$$

(implicit assumption 0 < P(B) < 1)

 $1_A \perp 1_C \mid 1_B$ and In contemporary language,

 $Cov(1_A, 1_B) > 0$ and $Cov(1_B, 1_C) > 0$

An ordered triple (A, B, C) of events in a probability space (Ω, P) is a conjunctive fork if

$$P(A \cap C|B) = P(A|B) \cdot P(C|B),$$

$$P(A \cap C|\Omega \setminus B) = P(A|\Omega \setminus B) \cdot P(C|\Omega \setminus B),$$

$$P(A|B) > P(A|\Omega \setminus B),$$

$$P(C|B) > P(C|\Omega \setminus B).$$

(implicit assumption 0 < P(B) < 1)

In contemporary language, $1_A \perp 1_C | 1_B$ and

 $\operatorname{Cov}(1_A, 1_B) > 0$ and $\operatorname{Cov}(1_B, 1_C) > 0$

where $\operatorname{Cov}(1_A, 1_B) = \operatorname{P}(AB) - \operatorname{P}(A)\operatorname{P}(B)$

Conjunctive forks Basic observations

Definition

An ordered triple (A, B, C) of events in a probability space (Ω, P) is a conjunctive fork if

$$P(A \cap C|B) = P(A|B) \cdot P(C|B),$$

$$P(A \cap C|\Omega \setminus B) = P(A|\Omega \setminus B) \cdot P(C|\Omega \setminus B),$$

$$P(A|B) > P(A|\Omega \setminus B),$$

$$P(C|B) > P(C|\Omega \setminus B).$$

(implicit assumption 0 < P(B) < 1)

 $1_A \perp 1_C \mid 1_B$ and In contemporary language,

 $Cov(1_A, 1_B) > 0$ and $Cov(1_B, 1_C) > 0$

Conjunctive forks Basic observations Main result

Hans Reichenbach Definition Main problem

Notation: $(A, B, C)_P$... the triple of events is a conjunctive fork

Notation: $(A, B, C)_P$... the triple of events is a conjunctive fork Construction: having N finite and events A_i , $i \in N$, let Conjunctive forksHans ReichenbachBasic observationsDefinitionMain resultMain problem

Notation: $(A, B, C)_{P}$... the triple of events is a conjunctive fork

Construction: having N finite and events A_i , $i \in N$, let

 $\{(i,j,k) \in N^3: (A_i,A_j,A_k)_{\rm P}\}.$

Conjunctive forksHans ReichenbachBasic observationsDefinitionMain resultMain problem

Notation: $(A, B, C)_{P}$... the triple of events is a conjunctive fork

Construction: having N finite and events A_i , $i \in N$, let $\{(i, j, k) \in N^3 : (A_i, A_j, A_k)_P\}$.

PROBLEM: Given a ternary relation \mathcal{R} on a ground set N decide whether it is *fork representable*, thus

 $(i,j,k) \in \mathcal{R} \iff (A_i,A_j,A_k)_{\mathrm{P}}.$

for some events A_i , $i \in N$.

Conjunctive forksHans ReichenbachBasic observationsDefinitionMain resultMain problem

Notation: $(A, B, C)_{P}$... the triple of events is a conjunctive fork

Construction: having N finite and events A_i , $i \in N$, let $\{(i, j, k) \in N^3 : (A_i, A_j, A_k)_P\}$.

PROBLEM: Given a ternary relation \mathcal{R} on a ground set N decide whether it is *fork representable*, thus

 $(i,j,k) \in \mathcal{R} \iff (A_i,A_j,A_k)_{\mathrm{P}}.$

for some events A_i , $i \in N$.

In algebraic language,

solve a system of quadratic equations and inequalities.

Conjunctive forks Basic observations Main result Signs of Necessar Nondege

Signs of correlations Necessary conditions Nondegenerate version

$\langle A, B \rangle \triangleq \operatorname{Cov}(1_A, 1_B) = \operatorname{P}(AB) - \operatorname{P}(A)\operatorname{P}(B)$

$$\langle A, B \rangle \triangleq \operatorname{Cov}(1_A, 1_B) = \operatorname{P}(AB) - \operatorname{P}(A)\operatorname{P}(B)$$

Let $\sigma = (\sigma_{ij} \in \{-1, 0, 1\}: ij \in \binom{N}{2})$ be a pattern of signs indexed by the subsets ij with two elements.

$$\langle A, B \rangle \triangleq \operatorname{Cov}(1_A, 1_B) = \operatorname{P}(AB) - \operatorname{P}(A)\operatorname{P}(B)$$

Let $\sigma = (\sigma_{ij} \in \{-1, 0, 1\}: ij \in \binom{N}{2})$ be a pattern of signs indexed by the subsets ij with two elements.

A simpler problem is easily solvable:

given any pattern σ , there exist events A_i , $i \in N$, s.t.

$$\sigma_{ij} = \operatorname{sgn}\langle A_i, A_j \rangle, \quad ij \in \binom{N}{2}.$$

$(A, B, C)_{\mathrm{P}}$ iff $(C, B, A)_{\mathrm{P}}$

 $(A, B, C)_{\mathrm{P}}$ iff $(C, B, A)_{\mathrm{P}}$ Lemma 1: $\langle A, B \rangle^2 \leq \langle A, A \rangle \langle B, B \rangle$, tight iff $1_A, 1_B$ lin. dependent

 $(A, B, C)_{\mathrm{P}}$ iff $(C, B, A)_{\mathrm{P}}$ Lemma 1: $\langle A, B \rangle^2 \leq \langle A, A \rangle \langle B, B \rangle$, tight iff $\mathbf{1}_A, \mathbf{1}_B$ lin. dependent Lemma 2: If $\mathbf{1}_A \perp \!\!\!\perp \mathbf{1}_C | \mathbf{1}_B$ then $\langle A, C \rangle \langle B, B \rangle = \langle A, B \rangle \langle B, C \rangle$.

 $\begin{array}{ll} (A,B,C)_{\mathrm{P}} & \text{iff} & (C,B,A)_{\mathrm{P}} \\ \text{Lemma 1: } \langle A,B \rangle^2 \leqslant \langle A,A \rangle \langle B,B \rangle, & \text{tight iff } \mathbf{1}_A,\mathbf{1}_B \text{ lin. dependent} \\ \text{Lemma 2: } & \text{If } \mathbf{1}_A \bot \mathbf{1}_C | \mathbf{1}_B \text{ then } \langle A,C \rangle \langle B,B \rangle = \langle A,B \rangle \langle B,C \rangle. \\ \text{Corollary 1: } & (A,B,C)_{\mathrm{P}} \text{ implies that } A,B,C \text{ are nontrivial} \\ & (\text{ thus } (A,A,A)_{\mathrm{P}}, (B,B,B)_{\mathrm{P}} \text{ and } (C,C,C)_{\mathrm{P}}) \\ & \text{ and any two are positively correlated} \\ & (\text{ thus } (A,B,B)_{\mathrm{P}}, (B,C,C)_{\mathrm{P}}, (C,A,A)_{\mathrm{P}}) \end{array}$

 $(A, B, C)_{\rm P}$ iff $(C, B, A)_{\rm P}$ Lemma 1: $\langle A, B \rangle^2 \leq \langle A, A \rangle \langle B, B \rangle$, tight iff $\mathbf{1}_A, \mathbf{1}_B$ lin. dependent Lemma 2: If $1_A \perp 1_C | 1_B$ then $\langle A, C \rangle \langle B, B \rangle = \langle A, B \rangle \langle B, C \rangle$. Corollary 1: $(A, B, C)_{\rm P}$ implies that A, B, C are nontrivial (thus $(A, A, A)_{\rm P}$, $(B, B, B)_{\rm P}$ and $(C, C, C)_{\rm P}$) and any two are positively correlated $(\text{ thus } (A, B, B)_{P}, (B, C, C)_{P}, (C, A, A)_{P})$ Corollary 2: $(A, B, C)_P$ and $(A, C, B)_P$ implies B = C

 $(A, B, C)_{\rm P}$ iff $(C, B, A)_{\rm P}$ Lemma 1: $\langle A, B \rangle^2 \leq \langle A, A \rangle \langle B, B \rangle$, tight iff $\mathbf{1}_A, \mathbf{1}_B$ lin. dependent Lemma 2: If $1_A \perp 1_C | 1_B$ then $\langle A, C \rangle \langle B, B \rangle = \langle A, B \rangle \langle B, C \rangle$. Corollary 1: $(A, B, C)_{\rm P}$ implies that A, B, C are nontrivial (thus $(A, A, A)_{\rm P}$, $(B, B, B)_{\rm P}$ and $(C, C, C)_{\rm P}$) and any two are positively correlated $(\text{ thus } (A, B, B)_{P}, (B, C, C)_{P}, (C, A, A)_{P})$ Corollary 2: $(A, B, C)_{\rm P}$ and $(A, C, B)_{\rm P}$ implies B = CProof: $\langle A, C \rangle \langle B, B \rangle = \langle A, B \rangle \langle B, C \rangle$ and $\langle A, B \rangle \langle C, C \rangle = \langle A, C \rangle \langle B, C \rangle$ combine to $\langle B, C \rangle^2 = \langle B, B \rangle \langle C, C \rangle$, then B = C

To be fork representable, $\mathcal{R} \subseteq N^3$ must satisfy the symmetry

$$(i,j,k) \in \mathcal{R} \Rightarrow (k,j,i) \in \mathcal{R}$$

To be fork representable, $\mathcal{R} \subseteq N^3$ must satisfy the symmetry

$$(i,j,k) \in \mathcal{R} \Rightarrow (k,j,i) \in \mathcal{R}$$

by Corollary 2

 $(i,j,k)\in \mathcal{R}$ and $(i,k,j)\in \mathcal{R}$ \Rightarrow j=k

To be fork representable, $\mathcal{R} \subseteq N^3$ must satisfy the symmetry

$$(i,j,k) \in \mathcal{R} \Rightarrow (k,j,i) \in \mathcal{R}$$

by Corollary 2

$$(i,j,k)\in \mathcal{R}$$
 and $(i,k,j)\in \mathcal{R}$ \Rightarrow $j=k$

symmetry and $\Leftrightarrow \dots$ betweenness

To be fork representable, $\mathcal{R} \subseteq N^3$ must satisfy the symmetry

$$(i,j,k) \in \mathcal{R} \Rightarrow (k,j,i) \in \mathcal{R}$$

by Corollary 2

$$(i,j,k)\in \mathcal{R}$$
 and $(i,k,j)\in \mathcal{R}$ \Rightarrow $j=k$

symmetry and $\Leftrightarrow \dots$ betweenness

by Corollary 1

 $(i,j,k) \in \mathcal{R} \implies (i,i,i) \in \mathcal{R}, (j,j,j) \in \mathcal{R}, (k,k,k) \in \mathcal{R},$ $(i,j,k) \in \mathcal{R} \implies (i,j,j) \in \mathcal{R}, (j,k,k) \in \mathcal{R} \text{ and } (k,i,i) \in \mathcal{R}$

To be fork representable, $\mathcal{R} \subseteq N^3$ must satisfy the symmetry

$$(i,j,k) \in \mathcal{R} \Rightarrow (k,j,i) \in \mathcal{R}$$

by Corollary 2

$$(i,j,k)\in \mathcal{R}$$
 and $(i,k,j)\in \mathcal{R}$ \Rightarrow $j=k$

symmetry and $\Leftrightarrow \dots$ betweenness

by Corollary 1

 $(i,j,k) \in \mathcal{R} \implies (i,i,i) \in \mathcal{R}, (j,j,j) \in \mathcal{R}, (k,k,k) \in \mathcal{R},$ $(i,j,k) \in \mathcal{R} \implies (i,j,j) \in \mathcal{R}, (j,k,k) \in \mathcal{R} \text{ and } (k,i,i) \in \mathcal{R}$ Collecting the four implications ... weak betweenness Conjunctive forks Basic observations Main result Signs of correlations Necessary conditions Nondegenerate version

Lemma 3: $(A, B, A)_{P}$ iff A = B is nontrivial

Lemma 3: $(A, B, A)_{P}$ iff A = B is nontrivial

In the main problem assume $\mathcal{R} \subseteq N^3$ satisfies

Lemma 3: $(A, B, A)_{P}$ iff A = B is nontrivial

In the main problem assume $\mathcal{R} \subseteq N^3$ satisfies

$$(i,j,i) \in \mathcal{R}$$
 iff $i = j$ for $i \in N$

Conjunctive forks Basic observations Main result Nondegenerate version

Lemma 3: $(A, B, A)_{P}$ iff A = B is nontrivial

In the main problem assume $\mathcal{R} \subseteq N^3$ satisfies

$$(i,j,i) \in \mathcal{R}$$
 iff $i = j$ for $i \in N$

which excludes the trivial events and cloning

... the assumption of nondegeneracy

Conjunctive forksSigns of correlationsBasic observationsNecessary conditionsMain resultNondegenerate version

Lemma 3: $(A, B, A)_{P}$ iff A = B is nontrivial

In the main problem assume $\mathcal{R} \subseteq N^3$ satisfies

$$(i,j,i) \in \mathcal{R}$$
 iff $i = j$ for $i \in N$

which excludes the trivial events and cloning

... the assumption of nondegeneracy

In a weak betweenness \mathcal{R} for any 3-set *ijk* at most one of (i, j, k), (j, k, i), (k, i, j) belongs to \mathcal{R}

Conjunctive forks Basic observations Main result Nondegenerate version

Lemma 3: $(A, B, A)_{P}$ iff A = B is nontrivial

In the main problem assume $\mathcal{R} \subseteq N^3$ satisfies

$$(i,j,i) \in \mathcal{R}$$
 iff $i = j$ for $i \in N$

which excludes the trivial events and cloning

... the assumption of nondegeneracy

In a weak betweenness \mathcal{R} for any 3-set *ijk* at most one of (i, j, k), (j, k, i), (k, i, j) belongs to \mathcal{R}

 \mathcal{R} is called *solvable* if and only if the system

 $x_{ik} = x_{ij} + x_{jk}$ for $(i, j, k) \in \mathcal{R}$ pairwise distinct,

has a solution with all involved x_{ij} positive.

Theorem

Under nondegeneracy, $\mathcal{R} \subseteq N^3$ is fork representable iff it is a solvable weak betweenness.

Theorem

Under nondegeneracy, $\mathcal{R} \subseteq N^3$ is fork representable iff it is a solvable weak betweenness.

In general, \mathcal{R} must be a 'regular' weak betweenness. Then a quotient \mathcal{Q} of \mathcal{R} is constructed. It is a weak betweenness that satisfies the nondegeneracy condition. \mathcal{R} is fork representable iff \mathcal{Q} is solvable.

Theorem

Under nondegeneracy, $\mathcal{R} \subseteq N^3$ is fork representable iff it is a solvable weak betweenness.

In general, \mathcal{R} must be a 'regular' weak betweenness. Then a quotient \mathcal{Q} of \mathcal{R} is constructed. It is a weak betweenness that satisfies the nondegeneracy condition. \mathcal{R} is fork representable iff \mathcal{Q} is solvable.

The conditions can be verified in time polynomial in |N|.

NECESSITY

NECESSITY

Assume nondegeneracy and \mathcal{R} to be fork representable by A_i , $i \in N$.

NECESSITY

Assume nondegeneracy and \mathcal{R} to be fork representable by A_i , $i \in N$. For i, k different, participating in a fork, let

$$x_{ik} = \ln rac{\langle A_i, A_i
angle^{1/2} \langle A_k, A_k
angle^{1/2}}{\langle A_i, A_k
angle}$$
 .

NECESSITY

Assume nondegeneracy and \mathcal{R} to be fork representable by A_i , $i \in N$. For i, k different, participating in a fork, let

$$x_{ik} = \ln rac{\langle A_i, A_i \rangle^{1/2} \langle A_k, A_k \rangle^{1/2}}{\langle A_i, A_k \rangle}$$

By Lemma 1, $x_{ik} > 0$. By Lemma 2, \mathcal{R} is solvable since

$$x_{ik} = \ln \frac{\langle A_i, A_i \rangle^{1/2} \langle A_j, A_j \rangle^{1/2}}{\langle A_i, A_j \rangle} \frac{\langle A_j, A_j \rangle^{1/2} \langle A_k, A_k \rangle^{1/2}}{\langle A_j, A_k \rangle} = x_{ij} + x_{jk}$$

NECESSITY

Assume nondegeneracy and \mathcal{R} to be fork representable by A_i , $i \in N$. For i, k different, participating in a fork, let

$$x_{ik} = \ln rac{\langle A_i, A_i \rangle^{1/2} \langle A_k, A_k \rangle^{1/2}}{\langle A_i, A_k \rangle}$$

By Lemma 1, $x_{ik} > 0$. By Lemma 2, \mathcal{R} is solvable since

$$x_{ik} = \ln \frac{\langle A_i, A_i \rangle^{1/2} \langle A_j, A_j \rangle^{1/2}}{\langle A_i, A_j \rangle} \frac{\langle A_j, A_j \rangle^{1/2} \langle A_k, A_k \rangle^{1/2}}{\langle A_j, A_k \rangle} = x_{ij} + x_{jk}$$

for $(A_i, A_j, A_k)_{P}$.

NECESSITY

Assume nondegeneracy and \mathcal{R} to be fork representable by A_i , $i \in N$. For i, k different, participating in a fork, let

$$x_{ik} = \ln rac{\langle A_i, A_i \rangle^{1/2} \langle A_k, A_k \rangle^{1/2}}{\langle A_i, A_k \rangle}$$

By Lemma 1, $x_{ik} > 0$. By Lemma 2, \mathcal{R} is solvable since

$$x_{ik} = \ln \frac{\langle A_i, A_i \rangle^{1/2} \langle A_j, A_j \rangle^{1/2}}{\langle A_i, A_j \rangle} \frac{\langle A_j, A_j \rangle^{1/2} \langle A_k, A_k \rangle^{1/2}}{\langle A_j, A_k \rangle} = x_{ij} + x_{jk}$$

for $(A_i, A_j, A_k)_{\rm P}$.

SUFFICIENCY

NECESSITY

Assume nondegeneracy and \mathcal{R} to be fork representable by A_i , $i \in N$. For i, k different, participating in a fork, let

$$x_{ik} = \ln rac{\langle A_i, A_i \rangle^{1/2} \langle A_k, A_k \rangle^{1/2}}{\langle A_i, A_k \rangle}$$

By Lemma 1, $x_{ik} > 0$. By Lemma 2, \mathcal{R} is solvable since

$$x_{ik} = \ln \frac{\langle A_i, A_i \rangle^{1/2} \langle A_j, A_j \rangle^{1/2}}{\langle A_i, A_j \rangle} \frac{\langle A_j, A_j \rangle^{1/2} \langle A_k, A_k \rangle^{1/2}}{\langle A_j, A_k \rangle} = x_{ij} + x_{jk}$$

for $(A_i, A_j, A_k)_{\rm P}$.

SUFFICIENCY

P is constructed on \mathbb{Z}_2^N explicitly, can be arbitrarily close to the uniform distribution; Fourier-Stieltjes transform of P is related to solvability + few other tricks

Given a pattern of signs $(\sigma_{ij}: ij \in \binom{N}{2})$ and a family $\{(i, j, k)\}$, represent them simultaneously by events.

Given a pattern of signs $(\sigma_{ij}: ij \in \binom{N}{2})$ and a family $\{(i, j, k)\}$, represent them simultaneously by events.

For P > 0 likely in reach (including primary decomposition), for $P \ge 0$ open ??

Given a pattern of signs $(\sigma_{ij}: ij \in \binom{N}{2})$ and a family $\{(i, j, k)\}$, represent them simultaneously by events.

For P > 0 likely in reach (including primary decomposition), for $P \ge 0$ open ??

Given a family { (i, j, k)}, represent it by arbitrary variables (P > 0 or $P \ge 0$) ??

Given a pattern of signs $(\sigma_{ij}: ij \in \binom{N}{2})$ and a family $\{(i, j, k)\}$, represent them simultaneously by events.

For P > 0 likely in reach (including primary decomposition), for $P \ge 0$ open ??

Given a family { (i, j, k)}, represent it by arbitrary variables (P > 0 or $P \ge 0$) ??

Gaussian case is likely not difficult.