Conditional independence ideals with hidden variables

Fatemeh Mohammadi (IST Austria) Johannes Rauh (York University)

June 10, 2015

Conditional independence

Consider three discrete random variables X_1, X_2, X_3 with finite ranges $[r_1], [r_2], [r_3]$ and the joint state space: $\mathcal{X} = [r_1] \times [r_2] \times [r_3]$.

 X_1 is (conditionally) independent of X_2 given X_3

 $P(X_1 = x_1, X_2 = x_2 | X_3 = x_3) = P(X_1 = x_1 | X_3 = x_3)P(X_2 = x_2 | X_3 = x_3)$

$$p_{x_1x_2x_3} = p_{x_1+x_3}p_{+x_2x_3}$$

$$X_1 \perp X_2 \mid X_3$$

Lemma

The following equivalent conditions holds:

- $X_1 \perp X_2 \mid X_3$
- **2** For each $x_3 \in [r_3]$, the matrix $(p_{x_1,x_2,x_3})_{x_1,x_2}$ has rank one.

for all $x_1, x_1' \in [r_1], x_2, x_2' \in [r_2], x_3 \in [r_3]$.

Consider *n* random variables X_1, \ldots, X_n , taking values in the finite sets $[r_1], \ldots, [r_n]$. For any $A \subseteq [n]$ let X_A be the random vector $(X_i)_{i \in A}$. For disjoint subsets $A, B, C \subset [n]$, a Cl statements has the form

$$X_A \perp X_B \mid X_C$$
, or in short: $A \perp B \mid C$

Consider the joint distribution *P* of $X_1, ..., X_n$ as an *n*-tensor $P = (p_{x_1,...,x_n})_{x_i \in [r_i]}$. The statement $A \perp B \mid C$ says:

- Take the marginal over $[n] \setminus (A \cup B \cup C)$.
- So For any fixed value of X_C take the slice with constant $(x_k)_{k \in C}$.
- Solution Flatten this slice to a matrix, with rows indexed by (x_i)_{i∈A}, columns indexed by (x_j)_{j∈B}.

The resulting matrix has rank one.

Short notation:

$$X_A \perp X_B \mid X_C \iff (p_{x_A x_B x_C +})_{x_A, x_B}$$
 has rank one for each x_C .

Example

Let n = 5 and $\mathcal{X}_i = \{0, 1\}$. The statement $\{1, 2\} \perp \{3\} \mid \{4\}$ holds if and only if the two matrices

1	$p_{00000} + p_{00001}$	$p_{00100} + p_{00101}$		$(p_{00010} + p_{00011})$	$p_{00110} + p_{00111}$
I	$p_{01000} + p_{01001}$	<i>P</i> ₀₁₁₀₀ + <i>P</i> ₀₁₁₀₁		$p_{01010} + p_{01011}$	$p_{01110} + p_{01111}$
I	$p_{10000} + p_{10001}$	$p_{10100} + p_{10101}$,	$p_{10010} + p_{10011}$	$p_{10110} + p_{10111}$
	$p_{11000} + p_{11001}$	$p_{11100} + p_{11101}$	/	$p_{11010} + p_{11011}$	$p_{11110} + p_{11111}$

have rank one.

Saturated CI statements

Definition

A CI statement $A \perp B \mid C$ is saturated, if it involves all random variables, i.e. $A \cup B \cup C = [n]$.

Observation: Saturated CI statements lead to binomial ideals.

- $R = \mathbb{C}[p_{x_1x_2\cdots x_n}: x_1 \in [r_1], \ldots, x_n \in [r_n]]$
- $A \perp B \mid C \iff (p_{x_A x_B x_C +})_{x_A, x_B}$ has rank one for each x_C
- $I_{A\perp B\mid C}$ is generated by all 2-minors of $(p_{x_A x_B x_C +})_{x_A, x_B}$

Theorem (Eisenbud, Sturmfels '96)

Binomial ideals have a binomial primary decomposition.

Question: Describe the implications among a collection of CI statements (preferably in terms of prime components of I_c).

$$I_{\mathcal{C}} = \bigcap I_{\mathcal{C}_i}$$

Binomial edge ideals

•
$$\{X_0 \perp X_1 \mid X_2, X_0 \perp X_2 \mid X_1\}$$
 [Fink]

• { $X_0 \perp X_A \mid X_{[n]\setminus A}$: various subsets A} [HHHKR, Ay-Rauh]

- $|\mathcal{X}_0| = 2$: binomial edge ideals [HHHKR]
- $|\mathcal{X}_0| > 2$: generalized binomial edge ideals [Ay-Rauh]
- $\{X_i \perp X_j \mid X_{[n] \setminus \{i,j\}} : i < j\}$ [Swanson-Taylor]

Theorem [Fink]

Let $\{X_0 \perp X_1 \mid X_2, X_0 \perp X_2 \mid X_1\}$ with $\mathcal{X}_0 = [2], \mathcal{X}_1 = [n_1], \mathcal{X}_2 = [n_2]$. Let $P = (p_{x_0x_1x_2})$ be a vanishing point of I_c . Then I_c is the binomial edge ideal of the bipartite graph *G* with vertex set $[n_1] \cup [n_2]$ and the edge set

$$\{(x_1, x_2): p_{x_0x_1x_2} \neq 0 \text{ for some } x_0\}.$$

Fatemeh Mohammadi, Johannes Rauh

Definition

Let *G* be a graph on the vertex set [*n*] and $R = \mathbb{C}[p_{1x}, p_{2x} : x \in [n]]$. The binomial edge ideal $I_G \subset R$ is generated by the binomials

 $p_{1x}p_{2y} - p_{1y}p_{2x}$ for all edges $\{x, y\}$ of G.

Known facts about binomial edge ideals:

- radical ideal
- nice description for Gröbner bases of I_G
- combinatorial description for primary decomposition.
- For $W \subset [n]$, let $m_W = \langle p_{1x}, p_{2x} : x \in W \rangle$ then

$$(I_G + m_W) : (\prod_{x \notin W} p_{1x}, p_{2x})^\infty$$

is a prime component of I_G .

CI statements with hidden variables

- X_0 , X_1 : visible random variables, H: hidden random variable
- joint probability distribution: $P = (p_{i,x,h})_{i \in \mathcal{X}_0, x \in \mathcal{X}_1, h \in \mathcal{H}}$.
- $X_0 \perp X_1 \mid H$ iff each slice $P_h := (p_{i,x})_{i \in \mathcal{X}_0, x \in \mathcal{X}_1}$ has rank one.
- The marginal distribution of X_0 and X_1 is $P^{X_0,X_1} = \sum_{h \in \mathcal{H}} P_h$.
- Therefore P^{X_0,X_1} has rank at most $|\mathcal{H}|$.
- Find all matrices $P = (p_{i,x})_{i \in \mathcal{X}_0, x \in \mathcal{X}_1}$ of non-negative rank at most $|\mathcal{H}|$ with the normalization condition $\sum_{i,x} p_{i,x} = 1$.
- The set of matrices of given non-negative rank at most r is a semi-algebraic set whose semi-algebraic condition is not known for general r. However, it is known that its Zariski closure equals the set of all rank r matrices, and it is described by

the determinantal ideal of all $(r + 1) \times (r + 1)$ -minors of P.

CI statements with hidden variables

Question

Let $C = \{X_0 \perp X_1 | \{X_2, H_1\}, X_0 \perp X_2 | \{X_1, H_2\}\}$. Describe I_C and its primary decomposition combinatorially.

Theorem

Let
$$C = \{X_0 \perp X_1 | \{X_2, H_1\}, X_0 \perp X_2 | \{X_1, H_2\}\}$$
 with

•
$$\mathcal{X}_0 = [d], \, \mathcal{X}_1 = [n_1] \text{ and } \mathcal{X}_2 = [n_2]$$

•
$$H_1 = [r_1]$$
 and $H_2 = [r_2]$

•
$$\Delta^{n_1,0} = \left\{ \{(i,1), (i,2), \dots, (i,n_2)\} : i \in [n_1] \right\}$$

•
$$\Delta^{0,n_2} = \left\{ \{ (1,j), (2,j), \dots, (n_1,j) \} : j \in [n_2] \right\}.$$

Then $I_{\mathcal{C}} = I_{\Delta}$, where Δ is the union of the r_1 -skeleton of $\Delta^{n_1,0}$ and the r_2 -skeleton of Δ^{0,n_2} , and all its prime components can be read from subcomplexes of Δ .

Example of CI statements with hidden variables

• $C = \{X_0 \perp X_1 | \{X_2, H_1\}, X_0 \perp X_2 | \{X_1, H_2\}\}$ • $|\mathcal{X}_0| = 3, |\mathcal{X}_1| = 2, |\mathcal{X}_2| = 3, |\mathcal{H}_1| = 3 \text{ and } |\mathcal{H}_2| = 2.$

 $\Delta = \{135, 246, 12, 34, 56\}$

$$P_{|\mathcal{X}_0| \times |\mathcal{X}_1||\mathcal{X}_2|} = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{16} \\ p_{21} & p_{22} & \cdots & p_{26} \\ p_{31} & p_{32} & \cdots & p_{36} \end{pmatrix}$$

Conditional independence ideals

We take all maximal minors of the submatrices of *P* corresponding to $\Delta = \{135, 246, 12, 34, 56\}$:

$$\begin{pmatrix} p_{11} & p_{13} & p_{15} \\ p_{21} & p_{23} & p_{25} \\ p_{31} & p_{33} & p_{35} \end{pmatrix}, \begin{pmatrix} p_{12} & p_{14} & p_{16} \\ p_{22} & p_{24} & p_{26} \\ p_{32} & p_{34} & p_{36} \end{pmatrix}, \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \\ p_{31} & p_{32} \end{pmatrix}, \begin{pmatrix} p_{13} & p_{14} \\ p_{23} & p_{24} \\ p_{33} & p_{34} \end{pmatrix}, \begin{pmatrix} p_{15} & p_{16} \\ p_{25} & p_{26} \\ p_{35} & p_{36} \end{pmatrix}$$

Then $I_{\mathcal{C}} = I_{\Delta}$ has seven minimal primes associated to the complexes:

$$\begin{split} &\Delta_{1,4} = \{1,4,56\}, \quad \Delta_{1,6} = \{1,6,34\}, \\ &\Delta_{2,3} = \{2,3,56\}, \quad \Delta_{2,5} = \{2,5,34\}, \\ &\Delta_{3,6} = \{3,6,12\}, \quad \Delta_{4,5} = \{4,5,12\}, \end{split}$$

 $\Delta_0 = \{12, 34, 56, 135, 145, 136, 146, 235, 245, 236, 246\}.$

CI statements with hidden variables

- X_0, X_1, \ldots, X_k : visible random variables
- H_1, \ldots, H_l : hidden random variables
- C: a family of CI statements of the form $X_0 \perp X_A \mid X_B$, where $A, B \subseteq \{X_1, \ldots, X_k, H_1, \ldots, H_l\}$ are disjoint

We are interested in the set $P_{\mathcal{C}}$ of marginal distributions of X_0, X_1, \ldots, X_k of the set of those joint distributions of $X_0, X_1, \ldots, X_k, H_1, \ldots, H_l$ that satisfy the statements in \mathcal{C} .

Question

Whether CI statements with hidden variables can be given an algebraic interpretation? What can we say about the ideal l_c ?

- Is $I_{\mathcal{C}}$ a radical ideal?
- Give a nice combinatorial primary decomposition for I_{C} .
- Describe a Gröbner basis.

Prime components of $I_{\mathcal{C}}$

Theorem [M.-Rauh]

The minimal primes of $I_{\mathcal{C}}$ are of the form

$$(I_{\mathcal{C}}+m_{W}):(\prod_{x\not\in W}p_{1x},p_{2x},\ldots,p_{dx})^{\infty}$$

where m_W is the ideal associated to a subcomplex of Δ .

Theorem [EHHM 2013], [M. 2012], [M.-Rauh]

The ideal $I_{\mathcal{C}}$ and all its prime components can be read from a simplicial complex associated to \mathcal{C} , i.e. these ideals are all determinantal facet ideals studied in [EHHM].

We computed some class of examples, which all are very nice:

- radical ideal,
- nice combinatorial primary decomposition.

Fatemeh Mohammadi, Johannes Rauh

References

- Ene, Herzog, Hibi, and Mohammadi: Determinantal facet ideals (Michigan Mathematical Journal, 2013)
- Mohammadi: Prime splittings of determinantal ideals (arXiv:1208.2930, 2012)
- Mohammadi & Rauh: Conditional independence ideals with hidden variables (in preparation)

Thank you!