Conditional independence ideals with hidden variables

Fatemeh Mohammadi (IST Austria) Johannes Rauh (York University)

June 10, 2015

Conditional independence

Consider three discrete random variables X_{1}, X_{2}, X_{3} with finite ranges $\left[r_{1}\right],\left[r_{2}\right],\left[r_{3}\right]$ and the joint state space: $\mathcal{X}=\left[r_{1}\right] \times\left[r_{2}\right] \times\left[r_{3}\right]$. X_{1} is (conditionally) independent of X_{2} given X_{3}

$$
\begin{gathered}
P\left(X_{1}=x_{1}, X_{2}=x_{2} \mid X_{3}=x_{3}\right)=P\left(X_{1}=x_{1} \mid X_{3}=x_{3}\right) P\left(X_{2}=x_{2} \mid X_{3}=x_{3}\right) \\
p_{x_{1} x_{2} x_{3}}=p_{x_{1}+x_{3}} p_{+x_{2} x_{3}} \\
X_{1} \Perp x_{2} \mid x_{3}
\end{gathered}
$$

Lemma

The following equivalent conditions holds:
(1) $X_{1} \Perp X_{2} \mid X_{3}$
(2) For each $x_{3} \in\left[r_{3}\right]$, the matrix $\left(p_{x_{1}, x_{2}, x_{3}}\right)_{x_{1}, x_{2}}$ has rank one.
(8) $p_{x_{1} x_{2} x_{3}} p_{x_{1}^{\prime} x_{2}^{\prime} x_{3}}=p_{x_{1} x_{2}^{\prime} x_{3}} p_{x_{1}^{\prime} x_{2} x_{3}}$

$$
\text { for all } x_{1}, x_{1}^{\prime} \in\left[r_{1}\right], x_{2}, x_{2}^{\prime} \in\left[r_{2}\right], x_{3} \in\left[r_{3}\right] .
$$

Conditional independence models

Consider n random variables X_{1}, \ldots, X_{n}, taking values in the finite sets $\left[r_{1}\right], \ldots,\left[r_{n}\right]$. For any $A \subseteq[n]$ let X_{A} be the random vector $\left(X_{i}\right)_{i \in A}$. For disjoint subsets $A, B, C \subset[n]$, a Cl statements has the form

$$
X_{A} \Perp X_{B} \mid X_{C}, \quad \text { or in short: } \quad A \Perp B \mid C
$$

Consider the joint distribution P of X_{1}, \ldots, X_{n} as an n-tensor $P=\left(p_{x_{1}, \ldots, x_{n}}\right)_{x_{i} \in\left[r_{i}\right]}$. The statement $A \Perp B \mid C$ says:
(0) Take the marginal over $[n] \backslash(A \cup B \cup C)$.
(2) For any fixed value of X_{C} take the slice with constant $\left(x_{k}\right)_{k \in C}$.
(3) Flatten this slice to a matrix, with rows indexed by $\left(x_{i}\right)_{i \in A}$, columns indexed by $\left(x_{j}\right)_{j \in B}$.
The resulting matrix has rank one.

An example

Short notation:
$X_{A} \Perp X_{B} \mid X_{C} \Longleftrightarrow\left(p_{x_{A} x_{B} x_{C}+}\right)_{x_{A}, x_{B}}$ has rank one for each x_{C}.

Example

Let $n=5$ and $\mathcal{X}_{i}=\{0,1\}$. The statement $\{1,2\} \Perp\{3\} \mid\{4\}$ holds if and only if the two matrices

$$
\left(\begin{array}{lll}
p_{00000}+p_{00001} & p_{00100}+p_{00101} \\
p_{01000}+p_{01001} & p_{01100}+p_{01101} \\
p_{10000}+p_{10001} & p_{10100}+p_{10101} \\
p_{11000}+p_{11001} & p_{11100}+p_{11101}
\end{array}\right),\left(\begin{array}{ll}
p_{00010}+p_{00011} & p_{00110}+p_{00111} \\
p_{01010}+p_{01011} & p_{01110}+p_{01111} \\
p_{10010}+p_{10011} & p_{10110}+p_{10111} \\
p_{11010}+p_{11011} & p_{11110}+p_{11111}
\end{array}\right)
$$ have rank one.

Saturated Cl statements

Definition

A Cl statement $A \Perp B \mid C$ is saturated, if it involves all random variables, i.e. $A \cup B \cup C=[n]$.

Observation: Saturated Cl statements lead to binomial ideals.

- $R=\mathbb{C}\left[p_{x_{1} x_{2} \cdots x_{n}}: x_{1} \in\left[r_{1}\right], \ldots, x_{n} \in\left[r_{n}\right]\right]$
- $A \Perp B \mid C \Longleftrightarrow\left(p_{x_{A} x_{B} x_{C}+}\right)_{x_{A}, x_{B}}$ has rank one for each x_{C}
- $I_{A \Perp B \mid C}$ is generated by all 2 -minors of $\left(p_{x_{A} x_{B} x_{C}+}\right)_{x_{A}, x_{B}}$

Theorem (Eisenbud, Sturmfels '96)

Binomial ideals have a binomial primary decomposition.
Question: Describe the implications among a collection of Cl statements (preferably in terms of prime components of $I_{\mathcal{C}}$).

$$
I_{\mathcal{C}}=\bigcap I_{\mathcal{C}_{i}}
$$

Binomial edge ideals

- $\left\{X_{0} \Perp X_{1}\left|X_{2}, X_{0} \Perp X_{2}\right| X_{1}\right\}$ [Fink]
- $\left\{X_{0} \Perp X_{A} \mid X_{[n] \backslash A}\right.$: various subsets $\left.A\right\}$ [HHHKR, Ay-Rauh]
- $\left|\mathcal{X}_{0}\right|=2$: binomial edge ideals [HHHKR]
- $\left|\mathcal{X}_{0}\right|>2$: generalized binomial edge ideals [Ay-Rauh]
- $\left\{X_{i} \Perp X_{j} \mid X_{[n] \backslash\{i, j\}}: i<j\right\}$ [Swanson-Taylor]

Theorem [Fink]

Let $\left\{X_{0} \Perp X_{1}\left|X_{2}, X_{0} \Perp X_{2}\right| X_{1}\right\}$ with $\mathcal{X}_{0}=[2], \mathcal{X}_{1}=\left[n_{1}\right], \mathcal{X}_{2}=\left[n_{2}\right]$. Let $P=\left(p_{x_{0} x_{1} x_{2}}\right)$ be a vanishing point of $I_{\mathcal{C}}$. Then $I_{\mathcal{C}}$ is the binomial edge ideal of the bipartite graph G with vertex set $\left[n_{1}\right] \cup\left[n_{2}\right]$ and the edge set

$$
\left\{\left(x_{1}, x_{2}\right): p_{x_{0} x_{1} x_{2}} \neq 0 \text { for some } x_{0}\right\} .
$$

Binomial edge ideals

Definition

Let G be a graph on the vertex set $[n]$ and $R=\mathbb{C}\left[p_{1 x}, p_{2 x}: x \in[n]\right]$. The binomial edge ideal $I_{G} \subset R$ is generated by the binomials

$$
p_{1 x} p_{2 y}-p_{1 y} p_{2 x} \quad \text { for all edges }\{x, y\} \text { of } G .
$$

Known facts about binomial edge ideals:

- radical ideal
- nice description for Gröbner bases of I_{G}
- combinatorial description for primary decomposition.
- For $W \subset[n]$, let $m_{W}=\left\langle p_{1 x}, p_{2 x}: x \in W\right\rangle$ then

$$
\left(I_{G}+m_{W}\right):\left(\prod_{x \notin W} p_{1 x}, p_{2 x}\right)^{\infty}
$$

is a prime component of I_{G}.

Cl statements with hidden variables

- X_{0}, X_{1} : visible random variables, H : hidden random variable
- joint probability distribution: $P=\left(p_{i, x, h}\right)_{i \in \mathcal{X}_{0}, x \in \mathcal{X}_{1}, h \in \mathcal{H}}$.
- $X_{0} \Perp X_{1} \mid H$ iff each slice $P_{h}:=\left(p_{i, x}\right)_{i \in \mathcal{X}_{0}, x \in \mathcal{X}_{1}}$ has rank one.
- The marginal distribution of X_{0} and X_{1} is $P^{X_{0}, X_{1}}=\sum_{h \in \mathcal{H}} P_{h}$.
- Therefore $P^{X_{0}, X_{1}}$ has rank at most $|\mathcal{H}|$.
- Find all matrices $P=\left(p_{i, x}\right)_{i \in \mathcal{X}_{0}, x \in \mathcal{X}_{1}}$ of non-negative rank at most $|\mathcal{H}|$ with the normalization condition $\sum_{i, x} p_{i, x}=1$.
- The set of matrices of given non-negative rank at most r is a semi-algebraic set whose semi-algebraic condition is not known for general r. However, it is known that its Zariski closure equals the set of all rank r matrices, and it is described by

$$
\text { the determinantal ideal of all }(r+1) \times(r+1) \text {-minors of } P \text {. }
$$

Cl statements with hidden variables

Question

Let $\mathcal{C}=\left\{X_{0} \Perp X_{1}\left|\left\{X_{2}, H_{1}\right\}, X_{0} \Perp X_{2}\right|\left\{X_{1}, H_{2}\right\}\right\}$. Describe $I_{\mathcal{C}}$ and its primary decomposition combinatorially.

Theorem

Let $\mathcal{C}=\left\{X_{0} \Perp X_{1}\left|\left\{X_{2}, H_{1}\right\}, X_{0} \Perp X_{2}\right|\left\{X_{1}, H_{2}\right\}\right\}$ with

- $\mathcal{X}_{0}=[d], \mathcal{X}_{1}=\left[n_{1}\right]$ and $\mathcal{X}_{2}=\left[n_{2}\right]$
- $\mathcal{H}_{1}=\left[r_{1}\right]$ and $\mathcal{H}_{2}=\left[r_{2}\right]$
- $\Delta^{n_{1}, 0}=\left\{\left\{(i, 1),(i, 2), \ldots,\left(i, n_{2}\right)\right\}: i \in\left[n_{1}\right]\right\}$
- $\Delta^{0, n_{2}}=\left\{\left\{(1, j),(2, j), \ldots,\left(n_{1}, j\right)\right\}: j \in\left[n_{2}\right]\right\}$.

Then $I_{\mathcal{C}}=I_{\Delta}$, where Δ is the union of the r_{1}-skeleton of $\Delta^{n_{1}, 0}$ and the r_{2}-skeleton of $\Delta^{0, r_{2}}$, and all its prime components can be read from subcomplexes of Δ.

Example of Cl statements with hidden variables

- $\mathcal{C}=\left\{X_{0} \Perp X_{1}\left|\left\{X_{2}, H_{1}\right\}, X_{0} \Perp X_{2}\right|\left\{X_{1}, H_{2}\right\}\right\}$
- $\left|\mathcal{X}_{0}\right|=3,\left|\mathcal{X}_{1}\right|=2,\left|\mathcal{X}_{2}\right|=3,\left|\mathcal{H}_{1}\right|=3$ and $\left|\mathcal{H}_{2}\right|=2$.

$$
\Delta=\{135,246,12,34,56\}
$$

$$
P_{\left|\mathcal{X}_{0}\right| \times\left|\mathcal{X}_{1}\right|\left|\mathcal{X}_{2}\right|}=\left(\begin{array}{llll}
p_{11} & p_{12} & \cdots & p_{16} \\
p_{21} & p_{22} & \cdots & p_{26} \\
p_{31} & p_{32} & \cdots & p_{36}
\end{array}\right)
$$

The ideal I_{C} and its prime components

We take all maximal minors of the submatrices of P corresponding to $\Delta=\{135,246,12,34,56\}:$
$\left(\begin{array}{lll}p_{11} & p_{13} & p_{15} \\ p_{21} & p_{23} & p_{25} \\ p_{31} & p_{33} & p_{35}\end{array}\right),\left(\begin{array}{lll}p_{12} & p_{14} & p_{16} \\ p_{22} & p_{24} & p_{26} \\ p_{32} & p_{34} & p_{36}\end{array}\right),\left(\begin{array}{ll}p_{11} & p_{12} \\ p_{21} & p_{22} \\ p_{31} & p_{32}\end{array}\right),\left(\begin{array}{ll}p_{13} & p_{14} \\ p_{23} & p_{24} \\ p_{33} & p_{34}\end{array}\right),\left(\begin{array}{ll}p_{15} & p_{16} \\ p_{25} & p_{26} \\ p_{35} & p_{36}\end{array}\right)$
Then $I_{\mathcal{C}}=I_{\Delta}$ has seven minimal primes associated to the complexes:

$$
\left.\begin{array}{rl}
\Delta_{1,4} & =\{1,4,56\}, \quad \Delta_{1,6}=\{1,6,34\} \\
\Delta_{2,3} & =\{2,3,56\}, \\
\Delta_{3,6} & =\{3,6,12\}, \\
\Delta_{2,5} & =\{2,5,34\} \\
\Delta_{4,5}=\{4,5,12\}
\end{array}\right\}
$$

Cl statements with hidden variables

- $X_{0}, X_{1}, \ldots, X_{k}$: visible random variables
- H_{1}, \ldots, H_{l} : hidden random variables
- \mathcal{C} : a family of Cl statements of the form $X_{0} \Perp X_{A} \mid X_{B}$, where $A, B \subseteq\left\{X_{1}, \ldots, X_{k}, H_{1}, \ldots, H_{l}\right\}$ are disjoint

We are interested in the set $P_{\mathcal{C}}$ of marginal distributions of $X_{0}, X_{1}, \ldots, X_{k}$ of the set of those joint distributions of $X_{0}, X_{1}, \ldots, X_{k}, H_{1}, \ldots, H_{l}$ that satisfy the statements in \mathcal{C}.

Question

Whether Cl statements with hidden variables can be given an algebraic interpretation? What can we say about the ideal $I_{\mathcal{C}}$?

- Is I_{C} a radical ideal?
- Give a nice combinatorial primary decomposition for $I_{\mathcal{C}}$.
- Describe a Gröbner basis.

Prime components of $I_{\mathcal{C}}$

Theorem [M.-Rauh]

The minimal primes of $I_{\mathcal{C}}$ are of the form

$$
\left(I_{\mathcal{C}}+m_{W}\right):\left(\prod_{x \notin W} p_{1 x}, p_{2 x}, \ldots, p_{d x}\right)^{\infty}
$$

where m_{W} is the ideal associated to a subcomplex of Δ.

Theorem [EHHM 2013], [M. 2012], [M.-Rauh]

The ideal I_{C} and all its prime components can be read from a simplicial complex associated to \mathcal{C}, i.e. these ideals are all determinantal facet ideals studied in [EHHM].

We computed some class of examples, which all are very nice:

- radical ideal,
- nice combinatorial primary decomposition.

References

- Ene, Herzog, Hibi, and Mohammadi: Determinantal facet ideals (Michigan Mathematical Journal, 2013)
- Mohammadi: Prime splittings of determinantal ideals (arXiv:1208.2930, 2012)
- Mohammadi \& Rauh: Conditional independence ideals with hidden variables (in preparation)

