Algebraic Graph Limits

Patrik Norén joint with Alexander Engström

Motivation

- Introduce new random graph models for large networks (finite simple graphs).
- Parameters of the model should be efficiently recoverable from observations.
- We want the model to have nice algebraic properties.

Subgraph densities

G

$t(F, G)=$
\#subgraphs isomorphic to F in G / \#subgraphs isomorphic to F in the complete graphs with the same vertices as G

$$
t(F, G)=3 / 15
$$

Exchangeable random graphs

- Let W be a symmetric measurable function from $[0,1]^{2}$ to $[0, I]$.
- Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent and uniform random variables on [0, I].
- The exchangeable random graph model $\mathrm{G}(\mathrm{n}, \mathrm{W})$ gives graphs with vertex set [n] and the edge ij exists with probability $\mathrm{W}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)$ independently of the other edges.

Expected subgraph densities

The expected value of $t(F, G)$ when G comes from $G(n, W)$ and $n \geq m=\# V(F)$ is $\mathrm{t}(\mathrm{F}, \mathrm{W})=$
$\int_{\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in[0,1]^{m}} \prod_{i j \in E(F)} W\left(x_{i}, x_{j}\right) d x_{1} d x_{2} \cdots d x_{m}$

Graph limits

- If W and W^{\prime} have $t(F, W)=t\left(F, W^{\prime}\right)$ for all graphs F then $G(n, W)=G\left(n, W^{\prime}\right)$ for all n.
- Two functions W and W^{\prime} are equivalent if $G(n, W)=G\left(n, W^{\prime}\right)$ for all n. The set of equivalence classes is the space of graph limits or graphons.
- This space is infinite dimensional and a bit difficult to work with.

Algebraic graph limits

- We want to investigate exchangeable random graphs where W is algebraic.
- A polynomial P in $R[x, y]$ is an algebraic graph limit if it takes values in [0,I] on the triangle $\left\{(x, y) \in[0, I]^{2}: I \geq x+y\right\}$.
- An algebraic graph limit gives an exchangeable random graph by setting $W(x, y)=P(I-x, y)$ for $x \geq y$ and symmetrizing.

Theorem

Any graph limit can be approximated arbitrary well with an algebraic graph limit. The algebraic graph limits are dense it the space of graph limits.

Examples

- A constant α_{000} is an algebraic graph limit if and only if $\mathrm{I} \geq \alpha_{000} \geq 0$. This is the ErdösRényi model.
- The polynomial $\alpha_{100 x}+\alpha_{010}+\alpha_{001}(1-x-y)$ is an algebraic graph limit if and only if $I \geq \alpha_{100}, \alpha_{010}, \alpha_{001} \geq 0$.

Bounded degree

- Let $\Delta=\left\{(x, y) \in[0, I]^{2}: I \geq x+y\right\}$.
- A polynomial P give a graph limit if $P(\Delta) \subset[0, I]$. We want to understand the set of all such polynomials of a given degree.
- The algebraic graph limits of degree d form a convex set. What is the boundary?
- There is an easy explicit description of the polynomials with $\mathrm{P}(\operatorname{int}(\Delta)) \subset(0, I)$.

Theorem

The polynomial

$$
P(x, y)=\sum_{i+j+k=d}\binom{d}{i, j, k} \alpha_{i j k} x^{i} y^{j}(1-x-y)^{k}
$$

satisfies $P(\operatorname{int}(\Delta)) \subset(0, I)$ if $I \geq \alpha_{i j k} \geq 0$, unless the polynomial is identically 1 or 0 .
Furthermore all polynomials with $P(\operatorname{int}(\Delta)) \subset(0, I)$ are of the form above.

Identifiability

- Any graph limit can be recovered by knowing all expected graph densities.
- Algebraic graph limits can be recovered by knowing a finite number of graph densities. This can be done with algebraic methods as the densities $t(F, W)$ are polynomials in the parameters α_{ijk}.

Identifiability

- Degree 0 algebraic graph limits can be recovered from knowing the edge density.
- Degree I algebraic graph limits can be recovered from knowing the edge, 2-path, and triangle densities.

A conjecture

- Algebraic graph limits of degree d can be recovered from $(d+2)(d+I) / 2$ subgraph densities.
- This is a lower bound.
- Not all $(d+2)(d+I) / 2$ work. For example stars do not work.

A second conjecture

- If $P(x, y)$ is an algebraic graph limit then $P(y, x)$ is an algebraic graph limit and as graph limits they are equivalent.
- We conjecture that there is no other algebraic graph limit equivalent to P.

Some algebra

- There are algebraic relations among the expected subgraph densities from algebraic graph limits.
- For example $t(\text { edge }, W)^{2}-t(2-p a t h, W)=0$ for constant W.
- For W from algebraic graph limits of degree I the following holds:

$$
\begin{gathered}
\mathrm{t}(3-\text { star, } \mathrm{W})+\mathrm{t}(3-\text { path }, \mathrm{W})+3 \mathrm{t}(3-\mathrm{star}, \mathrm{~W})^{3} \\
-5 \mathrm{t}(\text { edge }, \mathrm{W}) \mathrm{t}(2-\text { path }, \mathrm{W})=0
\end{gathered}
$$

Some pictures

Some pictures

Thank You

